PAGE

SIGNALS AND SYSTEMS LABORATORY 6:

Fourier Transform and pulses

INTRODUCTION

Pulses are signals, which can have arbitrary shape, but must be relatively short-lived. One finds such signals in a great number of situations. The impulse response of a linear filter, or control system is a pulse. So is the short signal used to represent one symbol for digital communication over an analog channel. Long complicated signals can be broken down into a sum of pulses distributed in time and frequency. (This is what a speech vocoder does and what modern spread spectrum wireless transmitter does.). Pulses are also important in radar, sonar, and geophysical exploration. It is important to understand the time/frequency relations of such things, and the appropriate tool for this is the Fourier Transform.

The total energy of the pulse x(t) , given by

(1)

,

should be finite if the pulse is going to have a legitimate Fourier Transform. Finite energy pulse signals have the inverse Fourier transform representation
(2)

,

where

 is the Fourier transform of x(t):
(3)

A DATA STRUCTURE FOR PULSES IN MATLAB

Suppose that x(t) is a causal pulse that lasts for T seconds, and is approximately band-limited to B Hz. If we select a sampling frequency satisfying the Nyquist criterion

, then we can parameterize the signal with the row vector of samples

(4)

where

, and

. Then a complete parameterization will be the sampling frequency, and the vector of samples. This is coded into the data structure (x,fs). From this data structure the parameters L, T, etc. may be extracted as needed.

If x(t) is not a causal pulse, but lasts from -T to T, then we must describe the signal x(t) for negative time. Let’s invent a generalization that is consistent with the parameterization in equation (4). Add a second row of samples, to get a matrix of size 2 by L. For convenience when constructing even or odd pulses, repeat the value x(0) in the second row. The result is the matrix

(5)

.

We are not forced into this parameterization, but it has some advantages that allow us to quickly construct signals with symmetry.

Suppose that x(t) is a causal signal, and that with respect to a sampling frequency fs it has a parameterization vector v. Then we can construct some signals with either even or odd symmetry in the following ways. (The Fourier Transform tools ‘FTform.m’ and ‘IFTform.m’ are discussed in the next section.)

	Signal
	Parameterization
	Fourier Transform

	

	v
	

	

	w=[v(1),zeros(1,length(v)-1)]

[w;v]
	

	

	[v;v]
	

	

	w=[0,v(2:length(v))];

[w;-w]
	

	

((is convolution)
	Y=[FTform(v,fs);

IFTform(abs(Y)^2,fs)];
	

NUMERICAL APPROXIMATION OF THE FOURIER TRANSFORM, USING THE FFT
The best tool we have for computing approximations to the Fourier integral in equation (3) is the Fast Fourier Transform. If we type the MATLAB command V=fft(v), then we will get back a vector V having the same size as v, and whose values are given by
(6)

,

where

, and

, is the principle L-th root of unity on the unit circle.

(There is one difference, of course. MATLAB will index the vectors from 1 to L rather than 0 to L-1. We must be cognizant of this small frustration. By the way: the computation is fast only when L is a power of two.) Now let

 be the radian sampling frequency, and let

. Then

(7)

.

The FFT provides a Riemann sum approximation to the integral. Thus we can get samples of the approximate Fourier Transform spaced in frequency by

(8)

.

	Rule 1: The resolution in frequency is inversely proportional to the total duration of the set of samples.

For a signal x(t) with duration T, and bandwidth B, we must use

(9)

samples. The number 2BT is called the time-bandwidth product of the signal, and measures its complexity. Consider an especially complex signal consisting of an hour-long symphony of Beethoven, with highest frequency 20kHz. The time bandwidth product of this signal is 2BT=(2)(20,000)(60x60)=144 million!

Every nonzero signal has a time-bandwidth product of at least one. This lower bound is guaranteed by the uncertainty principle. The mathematics can be found on pages 13-19 of the Dover paperback version of The Physical Principles of the Quantum Theory, by Werner Heisenberg. The only signals which meet the bound exactly are the Gabor pulses, which will be introduced later.

The approximation

 in equation (7) is only good up to about the
[image: image1.wmf]2

/

L

-th sample. The others will simply wrap around or fold over. Thus the computation is useful only up to a frequency of

(10)

 Hz.

	Rule 2: The half sampling frequency is the highest usable frequency.

Now for real signals x(t), the Fourier transform

 will have Hermitian symmetry, or

. Thus, if we know the transform for positive frequencies, then we know the transform for negative frequencies (up to the half sampling frequency). The tool ‘FTform.m’ computes the Fourier transform of x(t), assuming either of the parameterizations of equations (4) or (5). Find it under ‘Functions for Lab 6’ on the web page and examine it with ‘help’ and ‘type’.

It is useful to have an inverse Fourier Transform, which takes the complex output of the above function and computes the representation of the time signal. The output will be a matrix with two rows. In other words, it will always deliver a two-sided representation. Download ‘IFTform.m’ from the web page under ‘Functions for Lab 6’. Use ‘help’ and ‘type’ to see what it does.

The function, ‘plotFT.m’, computes and plots Fourier transforms. It uses both ‘FTform.m’ and ‘IFTform.m’. It also goes to some trouble so that the plots are well scaled. It will deliver two time plots, one for the entire duration of the signal, and one limited by the input parameter tmax. Both frequency plots (magnitude and phase) are over the range of 0 to fmax. Locate it on the web page under ‘Functions for Lab 6’, and use ‘help’ and ‘type’ to see what it does.
THREE FAMILIES OF PULSES
There are three varieties of Fourier transform pairs that one encounters in applications for which the transforms can be computed analytically. In the assignment, we will explore these signals, and the common operations, like modulation, time reversal, time shifts, and so on.

Class One

The first class contains signals that are exponential in time and rational in frequency. This family of signals is common for linear filters with rational transfer functions, and is used extensively in circuits and automatic control problems. This is the class for which one commonly applies the Laplace Transform. If
[image: image2.wmf])

(

)

(

s

X

t

x

=

is a Laplace transform pair whose region of convergence includes the imaginary axis (s = j(), then

 is the Fourier transform of x(t). Thus the whole table of common Laplace transforms is usable for Fourier analysis. There is a warning, however. One often finds the signal

(11)

in Laplace transform tables, but the region of convergence does not include the imaginary axis. The Fourier transform is not what you would expect. Some authors are determined to have a Fourier transform for this signal. The usual version is

(12)

.

We will agree to avoid this.

Class Two

The second family contains those signals that can be generated from square pulses, via time shifts, modulation, and convolution. If x(t) is a square pulse, then

 is a sinc pulse. Conversely, if x(t) is a sinc pulse, then

 is a square pulse. Let’s do this pair, to see what the output of the ‘plotFT.m’ tool looks like.

[image: image3.wmf]-4

-2

0

2

4

0

0.5

1

signal vs. time (secs)

zoom in

-5

0

5

0

0.5

1

entire signal

0

2

4

6

0

0.5

1

1.5

2

Fourier transform vs. frequency (Hz)

magnitude

0

2

4

6

-1

-0.5

0

0.5

1

phase/pi

Figure One A square pulse

The square pulse in Figure One is

(13)

and can be constructed as follows:

»L=256;ts=1/L;fs=1/ts;u=[ones(1,L),zeros(1,7*L)];x=[u;u];plotFT(x,fs,5,6)

The Fourier Transform has duality, in the sense that one can reverse the roles of time and frequency. Some parameters have to be changed. But, for example, the Fourier transform of a sinc pulse is a square pulse.

[image: image4.wmf]-2

0

2

-0.5

0

0.5

1

1.5

2

signal vs. time (secs)

zoom in

-10

0

10

-0.5

0

0.5

1

1.5

2

entire signal

0

0.5

1

0

0.2

0.4

0.6

0.8

1

Fourier transform vs. frequency (Hz)

magnitude

0

0.5

1

-1

-0.5

0

0.5

1

phase/pi

Figure Two A sinc pulse

The sinc pulse in Figure Two is
(14)

Try
»ts=pi/50;fs=1/ts; f0=1; t=ts*[1:255]; v=2*pi*f0*t; x=2*f0*[1,sin(v)./v];

»plotFT([x;x],fs,4,1.5)

From square pulses, one can get an infinite variety of useful pulses. For example, a triangular pulse is the convolution of a square pulse with itself, and its transform is the square of a sinc pulse. The following simple function will generate a three-parameter family of pulses derived from the square pulse. (We shall use this in the assignment). It is located on the web page under ‘Functions for Lab 6’ as ‘pulse.m’. To see what it does, use ‘help’ and ‘type’.

In ‘pulse.m’, there are three integer parameters, L, M, and N. For a sampling frequency of 1/ts, the Fourier transform of the pulse produced is

(15)

, where

.

Alternately, the Laplace transform of the pulse is

(16)

, where

.

The constants are chosen so that the pulse x(t) has amplitude one.

Class Three

The third important family of pulses are the so-called Gabor pulses (named for Dennis, not Zsa Zsa nor her half-sister Eva). These pulses have some very desirable qualities. The Fourier transform of a Gaussian pulse is Gaussian. The elementary Gabor pulse is

(17)

The whole family is generated by doing time shifts, frequency shifts (modulation), and time scaling (dilation). These pulses have one exceptional feature: every Gabor pulse has minimum time-bandwidth product, and they are the only pulses with this property. Heisenberg proved this in the reference mentioned above.
MODULATION (FREQUENCY CONVERSION)
The process of modulation involves multiplying a signal by the output of an oscillator. In radios, this is often called mixing. All modern radios, televisions, and spectrum analyzers employ frequency conversion, usually several times. The following tool makes this job easy. Locate ‘modulate.m’ on the web page under ‘Functions for Lab 6’. Use the ‘type’ command to see how this is coded. Then, for some x, try

y=modulate(x,fs,f0)

to produce
[image: image5.wmf])

(

)

2

cos(

)

(

0

t

x

t

f

t

y

p

=

.

Analytically, modulation moves the spectrum to the left and to the right and adds both shifts. Let x(t) be any pulse, and let y(t) be the output of the modulation tool above. Then their Fourier transforms have the following relationship:

(18)

(19)

where

. Try this example:

»x=pulse(30,5,2);plotFT(x,1,200,.1) % be sure to look at the plot

»y=modulate(x,1,.2); % move to 20% of the sampling freq.

»plotFT(y,1,200,.4)

TUNES

Just for fun, we can use the modulation tool to produce some synthetic music, illustrated in Figure Three below. (The word modulation came originally from the vocabulary of musicians. So we pay some tribute, with apologies.)
[image: image6.wmf]-0.02

-0.01

0

0.01

0.02

-2

0

2

signal vs. time (secs)

zoom in

-0.2

-0.1

0

0.1

0.2

-2

0

2

entire signal

0

100

200

300

400

0

0.05

0.1

Fourier transform vs. frequency (Hz)

magnitude

0

100

200

300

400

-1

-0.5

0

0.5

1

phase/pi

Figure Three The Musical Tone C

Each note of music will have an attack-decay-sustain-release envelope, as seen in Figure Three, which displays the note C. Try

»plotFT(tune(1),4000,.03,440)

The function ‘tune.m’ used here can be found on the web page under ‘Functions for Lab 6’. To see what it does, type:

» help tune

y=tune(notes)

produce a phrase of music,

from a string of ‘notes’

(a row vector of integers 1<=note<=24)

The vector ode reproduces a famous musical phrase.

»ode=[10,10,11,13,13,11,10,8,6,6,8,10,10,8,8];

»y=tune(ode);

The next two lines play a C chord.

»y=tune([1;5;8]);

»plotFT(y,3000,.04,500)

These two lines compose a silly phrase in AABA form, and play it:

»A=fix(12*rand(1,4)+1);B=fix(12*rand(1,4)+11);tune([A,A,B,A]);
To hear your song, try

»tune([digits of your telephone number]+1);

The (+1) is to correct for possible zeros.

[image: image7.wmf]T

L

f

s

=

Assignment

For each of the following signals, construct a sample vector, and plot the Fourier Transform using ‘plotFT.m’. Choose the sampling frequency � EMBED Equation.3 ���Hz, with T=5 sec signal duration and L=4096 for the length of the data vectors. Choose tmax, and fmax to get suitable accuracy and to scale the plots properly. Then find the Fourier transforms analytically.

a. 	� EMBED "Equation" "Word Object13" * mergeformat ���

b.	� EMBED "Equation" "Word Object14" * mergeformat ���

c.	� EMBED "Equation" "Word Object15" * mergeformat ���

d. 	� EMBED "Equation" "Word Object16" * mergeformat ���

Construct an interesting even pulse and an interesting odd pulse. Plot the Fourier transforms of these pulses, using the homebrew function ‘plotFT.m’, and indicate how one knows the symmetry by considering only the frequency domain magnitude and phase plots.

The m-file ‘pulse_construction.m’, found on the web page under ‘Demos for Lab 6’, exercises the pulse construction of the homebrew function ‘pulse.m’ for several values of M, and N and makes a triangular array of plots. Run the script and print the result. Now determine how the table should be labeled. For each pulse, determine the values of M and N. For any two vertically adjacent signals, the one on the bottom is the derivative (except for amplitude) of the one on the top. Why is this? What is the connection between two horizontally adjacent signals?

Assignment:

Phase changes

Run through the following signals, and print each plot as it is generated. The signals x, y, z, and v all have the same magnitude spectrum. Only the phase spectrum is changed. For y, z, and v, explain how the phase change produces differences from x in the time domain.

»fs=2000;

»tmax=1;

»fmax=100;

»x=pulse(40,4,1);

»plotFT(x,fs,tmax,fmax)

»X=FTform(x,fs);

»y=IFTform(conj(X),fs);

»plotFT(y,fs,tmax,fmax)

»phi=exp(-j*[0:length(X)-1]);

»z=IFTform(X.*phi,fs);

»plotFT(z,fs,tmax,fmax)

»v=IFTform(abs(X).*abs(X),fs);

»plotFT(v,fs,tmax,fmax)

A Pulse Design Problem

We want a pulse that occupies the frequency band 200 Hz to 300 Hz, with a very small spillover into adjacent frequency bands. We also want this pulse to have minimum time duration, say 0 to T seconds, with very small spillover outside this interval (including negative times). Using the time/frequency scaling rule

� EMBED "Equation" "Word Object17" * mergeformat ���, a > 0

(and modulation) design a pulse. Give an analytical expression for the pulse and its Fourier transform. Construct a parameterization vector and use ‘plotFT.m’ to display the result. Be sure to choose a sampling frequency fs >> twice 300 Hz, perhaps 1000Hz. What is your value for T?

Page 6 of 9

_1058187904

_1058357632

_1058619983

_1085571497

_1085571629

_1085571657

_1085571611

_1059566172

_1085571471

_1059566204

_1058620491

_1059566016.unknown

_1058620421

_1058359099.unknown

_1058359165

_1058359416.unknown

_1058359136

_1058357641

_1058357751.unknown

_1058356397

_1058356672

_1058357375

_1058356438

_1058187940

_1058188016

_1058188021

_1058188270

_1058188019

_1058187963

_1058187936

_1057498005

_1057498355

_1057498670

_1057499018

_1058187822

_1058187900

_1057499019

_1057499084

_1057498958

_1057499017

_1057498714

_1057498652

_1057498653

_1057498358

_1057498297

_1057498345

_1057498006

_1057497818

_1057497841

_1057497844

_1057497840

_1057497839

_1057497781

_1057497817

_1057497700

