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SIGNALS AND SYSTEMS LABORATORY 4: 
Polynomials, Laplace Transforms and Analog Filters in MATLAB 

 
INTRODUCTION 
 
Laplace transform pairs are very useful tools for solving ordinary differential equations. Most applications 
involve signals that are exponential in the time domain and rational in the frequency domain. MATLAB 
provides tools for dealing with this class of signals. Our goal in this lab is to get acquainted with these tools 
and develop some familiarity with the classical Butterworth and Chebychev lowpass and bandpass filters.  
 
POLYNOMIALS 
 
The rational functions we will study in the frequency domain will always be a ratio of polynomials, so it is 
important to be able understand how MATLAB deals with polynomials. Some of these functions will be 
reviewed in this Lab, but it will be up to you to learn how to use them. Using the MATLAB ‘help’ facility, 
or a MATLAB manual, study the functions ‘roots’, ‘polyval’, and ‘conv’. Then try these experiments: 
 
Finding the roots of a polynomial 

 
»a=[1 10 35 50 24]; 
»r=roots(a) 
r = 
 -4.0000 
 -3.0000 
 -2.0000 
 -1.0000 

 
The row vector a contains the coefficients of the polynomial 
 
(1)  )4)(3)(2)(1(24503510)( 234 ++++=++++= sssssssssA . 
 
The roots function returns the zeros of this polynomial. This function is not bulletproof, however. It, along 
with any root finder, will have some difficulty when roots are repeated several times. (We will demonstrate 
this later.) The roots function will return complex values when appropriate: 
 

»roots([1 0 1]) 
ans = 
 0 + 1.0000i 
 0 - 1.0000i 

 
In other words ))((12 jsjss −+=+ , where j is the square root of -1.  
 
The ‘roots’ function may have trouble when there is a root of very large multiplicity. To see this, try the 
following.  
 

»a=poly(eye(3)); % constructs the polynomial coefficient of (s-1)^3 
»roots(a) 
ans = 
 1.0000  
 1.0000 + 0.0000i 
 1.0000 - 0.0000i 

 
»a=poly(eye(10)); % constructs the polynomial coefficients of (s-1)^10 
»roots(a) 
ans = 
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 1.0474  
 1.0376 + 0.0284i 
 1.0376 - 0.0284i 
 1.0130 + 0.0445i 
 1.0130 - 0.0445i 
 0.9846 + 0.0428i 
 0.9846 - 0.0428i 
 0.9633 + 0.0256i 
 0.9633 - 0.0256i 
 0.9555  

 
The result looks good for a third order root, but is quite bad for a 10th order root. Use ‘help’ and ‘type’ to 
find out how poly(eye(3)) constructs the polynomial 3)1( −s . 
 
Multiplying Polynomials 
 
The ‘conv’ function in MATLAB is designed to convolve time sequences, the basic operation of a discrete 
time filter. But it can also be used to multiply polynomials, since the coefficients of C(s)=A(s)B(s) are the 
convolution of the coefficients of A and the coefficients of B. For example: 
 

»a=[1 2 1];b=[1 4 3]; 
»c=conv(a,b) 
c = 
 1 6 12 10 3 

 
In other words, 
 
(2) 310126)34)(12( 23422 ++++=++++ ssssssss . 
 
In MATLAB, try roots(a), roots(b), and roots(c). What happens? 
 
Adding Polynomials 
 
If a and b are row vectors representing polynomials, and C(s)=A(s)+B(s) is the sum of polynomials, then it 
is tempting to think that in MATLAB we need only write c=a+b. But this will work only when a and b 
have the same length. MATLAB will generate an error message when they have different lengths. There 
needs to be a left justification before the addition. The following homebrew function ‘polyadd.m’, found on 
the web page under ‘Functions for Lab 4’, could be used to add polynomials: 
 

function z=polyadd(x,y) 
% z=polyadd(x,y) 
% for finding the coefficient vector for the sum 
% of polynomials: z(s)=x(s)+y(s) 
 m=length(x);n=length(y); 
 if m>=n 
  z=x+[zeros(1,m-n),y]; 
 else 
  z=y+[zeros(1,n-m),x]; 
 end  

 
Using this function and the function ‘conv’ one can now do polynomial algebra numerically. To construct 
D(s)=A(s)B(s)+3C(s), for example, we could write 
 

»d=polyadd(conv(a,b),3*c); 
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Evaluating Polynomials 
 
When you need to compute the value of a polynomial at some point, you can use the built-in MATLAB 
function ‘polyval’. The evaluation can be done for single numbers or for whole arrays. For example, to 
evaluate 
 

12)( 2 ++= sssA  at s = 1,2, and 3, type 
  

»a=[1 2 1]; 
»polyval(a,[1:3]) 
ans = 
 4 9 16 

 
to produce the vector of values A (1) = 4, A(2) = 9, and A(3) = 16. The variables need not be real. For 
example, they can be complex: 
 

»a=[1 0 1]; 
»z=sqrt(-1); 
»polyval(a,[z,z+1]) 
ans = 
 0 1.0000 + 2.0000i 

 
 
IMPULSE RESPONSE 
 
The impulse response, h(t), of an LTI system is its response to an impulse function, )(tδ . This is illustrated 
as follows:  

H h ( t )δ ( t ) 
 

The response of the system H to a signal ste is stesH )( , where the complex impedance, or transfer 

function, H(s) is the Laplace transform of h(t). The response to tje ω is the complex frequency response 
)( ωjH , which is the Fourier transform of h(t) and also the complex impedance evaluated at s = jω. 

 
LAPLACE TRANSFORMS 
 
The Laplace transform provides an s-domain or frequency domain version of a time signal. Consider the 
common Laplace transform pair 
 

(3) 
as

sHtueth Laplaceat

−
= →←=

1)()()(  

 
where u(t) is the unit step function. The time function h(t) and the frequency function H(s) are alternate 
ways of describing the same signal. In the time domain, h(t) is exponential. In the frequency domain, H(s) 
is rational. The choice of the letter h for the above signal is commonly used for filter functions. In the time 
domain, h(t) is the impulse response function of the filter. In the frequency domain, H(s) is the transfer 
function of the filter. If we set s = jω, then we get the complex frequency response function H(jω). 
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A rational function is, by definition, the ratio of two polynomials. 
 

(4) 
)(
)()(

sA
sBsH = , where 

 
(5) mm

mm bsbsbsbsB ++++= −
−−

1
2

2
1

1)( K  and nn
nn asasasasA ++++= −
−−

1
2

2
1

1)( K . 
 
This method of numbering the coefficients is not standard in mathematics, but it is standard for MATLAB. 
If one constructs a row vector 

 ][ 21 mbbbb K=  
 
in MATLAB, and uses it for polynomial coefficients, then the polynomial B(s) is what MATLAB thinks 
you are talking about. The first element is the coefficient of the highest power of s, and this power is the 
size of the vector minus one. Thus the vectors [0 1 2] and [1 2] both represent the polynomial s+2. Leading 
zeros have no effect, but trailing zeros change things. The vector [1 2 0] represents the polynomial s(s+2), 
but the vector [1 2] represents s+2. It is a good idea to trim leading zeros since they can cause trouble when 
used with some of the MATLAB tools. 
 
MATLAB provides a variety of tools for resolving Laplace transform pairs when H(s) is rational. We begin 
with the polynomial tools.  
 
Rational Functions 
 
The rational function H(s)=B(s)/A(s) requires polynomials to describe the numerator and denominator. 
Therefore we need two polynomial coefficient row vectors for a parameterization. The denominator should 
be normalized in the sense that the leading coefficient should be one. After all, if both B(s) and A(s) are 
multiplied by the same constant, H(s) will not change. Thus we can force the coefficient of the highest 
power in the denominator polynomial to be one. For example, the rational function 
 

(6)  
1244

1)( 23

2

+++
+

=
sss

ssH  

 
has normalized representation b=[.25, 0, .25], and a=[1, 1, .5, .25]. Using the MATLAB ‘help’ facility, 
study the MATLAB functions ‘residue’, ‘freqs’, ‘bode’, ‘nyquist’, and ‘rlocus’. We will use only the 
first two of these, but they all deal with rational H(s) in some way. 
 
Evaluating rational functions, and the frequency response 
 
To evaluate H(s), we evaluate the numerator and denominator and then divide. For vectors, the MATLAB 
element-by-element division operator ‘./’ can be used. Suppose we want to evaluate H(s)=B(s)/A(s) on the 
frequency range zero to fmax. The following will do it: 
 

»fmax=1000; 
»wmax=2*pi*fmax; 
»w=[0:wmax/1000:wmax]; 
»H=polyval(b,j*w)./polyval(a,j*w); 

 
There are some important things to recognize here. First, we must evaluate H at s=jω. By this, we are 
converting frequency values to angular frequency values by using ω =2π f. In the above sequence of 
commands, a, b, and j, have not been defined. The vectors a and b represent H(s) and have been previously 
constructed, but unless you have defined them to be something else, the symbols ‘i’ and ‘j’ will be assumed 
to be the square root of -1. The vector H will contain all the evaluations of H(jω) (1001 of them), and will 
be complex. The functions ‘abs’ and ‘angle’ can be used to put things into polar form. The functions 
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‘real’ and ‘imag’ extract the real and imaginary parts. Actually, there is an easier way to do the evaluation, 
once the vector w is constructed. The MATLAB statement 
 

»H=freqs(b,a,w); 
 

does the same thing as the statement above using ‘polyval’, except it uses the built-in MATLAB function 
‘freqs’. This brings up a final comment. In MATLAB, the functions that need numerator and denominator 
polynomials follow the convention that the numerator comes first. If we typed ‘freqs(a,b,w)’ we would get 
values of 1/H(s). Keep this in mind when things don’t work. 
 
The poles and zeros of H(s) and pole-zero plots 
 
The poles of H(s) are the roots of the denominator polynomial A(s). At a pole, H becomes infinite. The 
zeros of H(s) are the roots of the numerator polynomial B(s). At a zero, H is zero. A pole-zero plot of H(s) 
simply places the poles (using the symbol ‘x’) and the zeros (using the symbol ‘o’) on the complex plane. 
This plot reveals a lot about the Laplace transform pair )()( sHth ↔ , after you know what to look for. 
Download the m-file ‘pzd.m’ from the web page under ‘Functions for Lab 4’. Use ‘help’ and ‘type’ to see 
what the file does. 
 
Note that we are using the MATLAB convention that the numerator comes first. For example, try using 
‘pzd.m’ to graph the poles and zeros of the transfer function in equation (6). Type 
 
 »a=[1 1 .5 .25];b=[.25 0 .25]; 
 »pzd(b,a) 
 
The result is shown below. You may think of this as the complex s-plane. The horizontal axis is the real 
axis (σ ), and the vertical axis is the imaginary axis (jω). 
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Partial Fraction Expansion 
 
If B(s) has degree less than that of A(s), and if A(s) does not have repeated roots, then the Laplace transform 
pair for H(s) = B(s) /A(s) is 
 

(7) ∑∑
== −

= →←=
n

k

Laplacetk
n

k ks
ksHtuekth

1

][

1 ][
][)()(][)(

α
γγ α . 

 
The right hand side of the above is the partial fraction expansion of H(s). The problem is to compute the 
poles (the alpha’s) and the residues (the gamma’s) knowing only the coefficients of the polynomials A(s) 
and B(s). The poles are the roots of the polynomial A(s). The residues can be computed with pencil and 
paper via the formula 

(8) 
)(

])[(])[(][
][

lim
sA

kskBk
ks

ααγ
α

−
=

→
. 

  
But the MATLAB function ‘residue’ can compute the parameters for you. For example, Let  
 

(9) 
6116

1
)3)(2)(1(

1)( 23

22

+++
+

=
+++

+
=

sss
s

sss
ssH . 

 
To do a partial fraction expansion, type 
  

»b=[1 0 1]; % B(s) 
»a=[1 6 11 6]; % A(s) 
»[gamma,alpha,k]=residue(b,a) 
gamma = 
 5.0000 
 -5.0000 
 1.0000 
alpha = 
 -3.0000 
 -2.0000 
 -1.0000 
k = [] 

 
This means that H(s) has the partial fraction expansion 
 

 
1

1
2

5
3

5)(
+

+
+
−

+
+

=
sss

sH . 

 
The parameter k is empty when the degree of B(s) is less than the degree of A(s). Partial fraction expansion 
in MATLAB will vary, and not be reliable, when there are repeated poles. 
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A tool for plotting a Laplace Transform Pair 
 
We can put together what we have developed to construct a tool for exhibiting the elements of a Laplace 
transform pair. The function ‘plotLTP.m’, found under ‘Functions for Lab 4’ on the web page, will make a 
4-panel plot: a pole-zero diagram, a graph of h(t) from zero to tmax, and graphs of the magnitude and 
phase of the complex frequency response function H(jω ) from zero to fmax. Type 
 
 »help plotLTP 
 

plotLTP(b,a,tmax,fmax) 
Plot Laplace transforms 
First, plot a pole zero diagram of H(s)=B(s)/A(s). 
Then plot the inverse Laplace transform h(t) from 0 to tmax, 
and the phase and magnitude of H from 0 to fmax. 
Note: any impulsive parts in h(t) will not be plotted. 

 
Try ‘plotLTP.m’ for a pair of polynomials representing b and a. 
 
LOWPASS AND BANDPASS FILTERS 
 
There are ways of choosing the poles and zeros of a filter H(s) so that it acts as a lowpass or bandpass filter. 
A lowpass filter with cutoff frequency 1 kHz should pass all sinusoids whose frequency is less than 1 kHz, 
and stop those with frequencies above 1 kHz. Stop means that the output will be zero. There are a few 
classical filter designs that are used extensively for bandpass filters. These include the Butterworth and 
Chebychev filters, named for their respective inventors. To get an impression of what these filters do, use 
the tool ‘plotLTP.m’ (plot Laplace Transform Pair). Use the MATLAB ‘help’ command to investigate the 
functions ‘butter’, ‘cheby1’, and ‘cheby2’. Then build some filters and display the results using 
‘plotLTP.m’. To construct a Butterworth lowpass filter with 10 poles, whose cutoff frequency is 1 Hz, type 
the following commands. 
 
 »[b,a]=butter(10,2*pi*1,'s'); 
 »plotLTP(b,a,10,4) 
 
Note that the function ‘butter’ asks for radian frequency while ‘plotLTP.m’ uses actual frequency. This 
explains the appearance of 2π in the first line. The string ‘s’ will request an analog (rather than digital) 
filter. You may have to play with the parameter ‘tmax’ to get a useful display of the impulse response. To 
construct a bandpass filter whose pass band is 10 Hz to 20 Hz, use the following: 
 
 »[b,a]=butter(4,2*pi*[10,20],'s'); 
 »plotLTP(b,a,1,40) 
 
This example shows the utility of transfer function zeros on the imaginary axis, in this case at 0=ω . 
Whenever this happens, the frequency response function goes to zero. Thus the zeros of bandpass filters 
occur in the stop bands. Since our second example is a bandpass filter, the zeros at frequency zero force the 
zero-frequency or DC response to be zero. 
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Assignment: 
 
1. How does poly(eye(3)) construct the polynomial 3)1( −s ? 
 
2. For each of the following functions, find a partial fraction expansion, and the inverse Laplace

transform. Then use the function ‘plotLTP.m’ to get graphical information. (Make a hardcopy only
after you determine what tmax and fmax ought to be so that h(t) and H(jω) use most of the graph,
but are not truncated.) 

 

 (1) 
)16/5()16/13()2/3(

)12()( 23 +++
+

=
sss

sssH  

 

 (2) 
)16/5()16/13()2/3(

)12()( 23 +++
+

=
sss

ssG  

 
 Verify that h(t) is the time derivative of g(t), from the graphs. 
 
3. Now consider the transfer function ( )0)( ωsGsF = . Choose an interesting value of 0ω , like

6102 ×π , and re-work problem 2. What do you see and why do you see it? Can you see that
normalized transfer functions can be frequency scaled to suit any application? 

 
4. Estimating the bandwidth of a lowpass filter from the impulse response  
 
 An ideal lowpass filter with cutoff frequency cf  has a non-causal impulse response of the form 
 
  )2(sinc2)( tffth cc π⋅= . 
 

This signal has a central peak whose height is 2 f c. It will then cross zero 1/( 2 f c ) seconds to the right
of the position of the peak. How well do these properties hold for realizable lowpass filters? Using
Butterworth lowpass filters, designed with ‘butter’ and displayed with ‘plotLTP.m’, make these
measurements for filter orders of 2, 4, 6 and cutoff frequencies of 1, 10, and 100 Hz. Compare the
actual values with the expected ones. (Using these rules, one can turn the tables and estimate the
bandwidth from the impulse response.) 
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Assignment: 
 
5. The figure below is the output of ‘plotLTP.m’ for some filter. Find the command that designed the filter.

It is either ‘butter’, ‘cheby1’, or ‘cheby2’. The command will look like 
 

[b,a]= <type>(<parameter list>,'s') 
 

where <type>. is either ‘butter’, ‘cheby1’, or ‘cheby2’. Determine which, and find the input parameters.
(Use the ‘help’ facility for these three functions.) Remember, ‘s’ will request the analog filter. 
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Assignment 
 

6. Consider the transfer function 
 

2/1
2/1)(

+
−

−=
s
ssF  

 
Use ‘plotLTP.m’ to compute and plot the impulse response, pole-zero diagram, and Bode plots for )(sF .
What good is this filter? Now re-do this experiment for )( sF − , which incidentally is the matched filter for

)(sF . (You will study these in communications). The function ‘plotLTP.m’ thinks )( sF −  is causal and
unstable. How can an unstable system be all-pass? Explain what is going on, and what you would do to
recognize )( sF −  as a stable, anti-causal transfer function. If you are ambitious you might try to re-write
‘plotLTP.m’ to account for causal and anti-causal transfer functions. 


