
 Page 1 of 6

SIGNALS AND SYSTEMS LABORATORY 1:
Intro to MATLAB and Complex Numbers

INTRODUCTION

The goal of this lab is to acquaint you with MATLAB, in the content of complex numbers. Make this lab
interactive by trying things, analyzing the outcomes, and asking questions. Then try something else based
on your increased understanding.

The instructions are written for IBM PCs, which run WINDOWS NT, on the engineering network here at
CSU. If you are using a computer in the Lockheed Martin Design Studio (Room B203 in the Engineering
building), you will be using MATLAB 6.1.

GETTING STARTED

Create a folder on your u:\ drive to save your work. This can be done by clicking on ‘Start’, then going to
‘Programs’, and then clicking on ‘Windows NT Explorer’. Once Explorer is open, click on your u:\ drive
on the left-hand side of the window. Then, click on ‘File’, go to ‘New’, and select ‘Folder’. A new folder
will pop up on the right-hand side of the screen, where you can label the folder. Label it ‘ee311’. Do not
put any spaces or odd characters in your folder name, so that you can access your new folder in any version
of MATLAB.

Once you have created a folder, you can start MATLAB. Click on ‘Start’, then ‘Engineering Applications’,
then ‘Matlab’, and then MATLAB 6.1’. You should now be in the MATLAB command window.

You should see a cursor flashing just to the right of the » prompt. Assuming you named your new folder
ee311, type:

»cd u:\ee311

You are now working in your ee311 folder on your u:\ drive. Type:

 »pwd

This command should output u\ee311, which is the directory you are currently in. (NOTE: pwd stands for
print working directory). This command is one of many that you can find on the class web page under
MATLAB Operating System Commands. At this point, you may want to create another folder in your
ee311 directory named ‘lab_1’ to help you organize your labs.

NB: Many of the commands look like UNIX commands (such as: pwd, ls, etc…) or DOS commands (dir,
copy, etc).

IMAGINARY NUMBERS AND THE COMPLEX PLANE

We use two different coordinate systems to represent complex numbers. There is the Cartesian system,

jbaz += , and the polar system, θjerz = , where 1−=j . In the Cartesian format, a is said to be the
real part of z, and b is the imaginary part of z. In the polar format, r is the magnitude of z and θ is the angle
of z. The complex number z can be plotted on the complex plane. The complex plane consists of a real axis
(the x-axis or horizontal axis) and an imaginary axis (the y-axis or vertical axis). When a complex number z
is plotted, we often draw a line from the origin to the point z on the complex plane. The length of the line is
the magnitude of z and the angle that the line makes with the positive real axis of the complex plane is
referred to as the angle of z. The location on the complex plane of z is defined by the Cartesian coordinate
pair (a,b), or the Euler coordinate pair (r,θ).

 Page 2 of 6

The coordinate transformations from one coordinate system to another are

)()cos(zrealra == θ and ())(2
1*22 zabszzbar ==+=

)()sin(zimagrb == θ and ())(arctan zanglea
b ==θ .

The functions ‘real’, ‘imag’, ‘abs’, and ‘angle’ are MATLAB functions.

To see these ideas demonstrated, go to the web page for EE311 and click on the link
‘complex_numbers_demo.m’ under ‘Demos for Lab1’. Save this file to your u:\ drive in the folder that you
are working in (u:\ee311\lab_1, for example). Once the file is in the folder, type

»complex_numbers_demo

to run the program. After you have run the program, click on ‘File’, go to ‘Open’, and then select the file
‘complex_numbers_demo.m’. Read through the file to familiarize yourself with the structure and syntax of
MATLAB m-files. Notice the use of comments. It is a good idea to comment your programs liberally, so
you or someone else can go back to the program later and understand what is going on.

THE EXCEPTIONAL NUMBER e

The next part of this lab deals with the exceptional number e = 2.718281828459045 …, which you may
recognize as the base of the natural logarithm. This number comes up often in engineering, so it is
important to understand where it comes from. The number e can be defined in several ways. Two of the
most important are Euler’s sequence and Taylor’s series. Euler’s sequence defines e as the limit of a
sequence:

n

n n
e 






 +=

∞→

11lim

This is the limit of a sequence. For n = 1, 2, 3, …, the sequence of numbers is

K,37.2,25.2,211 =





 +

n

n
, which converges to e. Taylor’s series expansion for e is

 ∑
=

∞→
=

n

k
n k

e
0 !

1lim

This is called the limit of a series. For n = 1, 2, 3, …, the sequence of series is

KK ,5.2,2,1,5.11,11,1
!

1
=+++=∑

k k
, which converges to e.

We are going to use these two definitions, along with an indirect definition to approximate e for different
values of n. The indirect definition is

1)1ln()ln(1
1

=−=∫ edt
t

e

This will be coded in MATLAB as numerical integration.

 Page 3 of 6

There is a demo called ‘approx_e.m’ that lets you enter the number of terms, n, and graph the n-term
approximation of e. One of the approximations converges rapidly. Can you guess which one it is?
Download ‘approx_e.m’ from the web page under ‘Demos for Lab 1’. Run the program with different
values of n to get a feel for how well each approximation works.

THE FUNCTION ex

The Euler and Taylor approximations of the function e

x are

n

n
x

n
xe 





 +=

∞→
1lim and ∑

=
∞→

=
n

k

k

n
x

k
xe

0 !
lim

THE FUNCTION e jθ AND PLOTTING THE UNIT CIRCLE

The function e jθ is defined by
n

n
j

n
je 






 +=

∞→

θθ 1lim and ∑
=

∞→
=

n

k

k

n
j

k
je

0 !
)(lim θθ , with θ defined in radians,

and NOT degrees. Euler’s Identity is θθθ sincos je j += . If you were to graph θje vs. πθ 20 ≤< on the
complex plane, you would have two functions oscillating between –1 and +1. The cosine function is
oscillating on the real axis and the sine function is oscillating on the imaginary axis. The result, if you
sweep θ through a range of 2π, is the unit circle. This is demonstrated in the demo ‘eulers_id.m’ located
under ‘Demos for Lab 1’ on the web page. You may notice that some fancy tricks were used to format the
output of the labels on the graph. Learn this nice printing format so you, too, can produce pretty graphs.

Assignment:

1. How many terms are required to have a 1% error or less in each approximation to e? (You

should have three answers: one for the integral approximation; one for Euler’s approximation;
and one for the Taylor series approximation.)

Assignment:

2. Without the aid of software, mathematically prove xx ee
dx
d

= using both Euler’s and Taylor’s

approximations.

Assignment:

3. Using Euler’s Identity, θθθ sincos je j += , and the Taylor Series expansion,

∑
=

∞→
=

n

k

k

n
j

k
je

0 !
)(lim θθ , find Taylor series expansions for)cos(θ and)sin(θ .

NOTE: Do this problem mathematically and without the aid of software (i.e. without using
MATLAB, Maple, Mathcad, etc.)

 Page 4 of 6

Assignment:

4. Download and run the program ‘app_expj.m’ from ‘Demos for Lab 1’ on the web page to

demonstrate how the Euler and Taylor approximations converge to θje . For 25 terms
approximation of θ, you should see this sequence approximations to 4πje , which is a unit vector at
angle 4π :

 0.2

 0.4

 0.6

 0.8

 1

30

210

60

240

90

270

120

300

150

330

180 0

Polar Plot of an 25-term approximation of exp(j*0.7854)

Explain the path that each approximation takes. Why is one arc-like and the other a sequence of
horizontal and vertical refinements? Use the zoom tool in MATLAB to see what is really going on.
Use what you have learned about complex numbers and the two approximations to justify your
answer.

ROOTS OF A QUADRATIC EQUATION

In our study of second-order linear time-invariant (LTI) systems, we will encounter second-order
polynomials of the form

02 2
00

2 =++ ωξω ss ,

where s is the Laplace transform variable, ξ ≥ 0 is the damping factor and ω 0 is the undamped resonant
frequency.

 Page 5 of 6

FUNCTIONS

Functions are an important part of any program. Whenever you have a block of code that you want to re-
use, it is a good idea to make a function out of that piece of code. Depending on the type of function, you
may pass variables into and retrieve information out of the function. You have already seen a few of
MATLAB’s built-in functions such as plot(x,y), exp(x), disp(‘text’), real(z), and imag(z). To display the
syntax of a function, type:

 >> type angle

function p = angle(h)
%ANGLE Phase angle.
% ANGLE(H) returns the phase angles, in radians, of a matrix with
% complex elements.

p = atan2(imag(h), real(h));

Assignment:

5. Complete the square in the equation 02 2

00
2 =++ ωξω ss to show that the solutions are

2
002,1 1 ξωξω −±−= js . Note that for |ξ | > 1, the roots are real, for |ξ | = 1, they are repeated,

and for |ξ | < 1, they are complex conjugates. In linear systems these cases are called over-damped,
critically damped, and under-damped, respectively. Download ‘rootdemo.m’ under ‘Demos for Lab
1’ on the web page to see the locus of roots for ω 0 = 1. You should see something like this:

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0
-1.5

-1

-0.5

0

0.5

1

1.5

Real Part

Im
ag

 P
ar

t

Roots of s2+ 2ξω0s + ω0
2, for ω0

2 = 1

Now re-do the loop for ξ to make it go from –4 to +4 in steps of 0.2. Use ‘help’ and ‘type’
commands to figure out what ‘rootdemo.m’ does. (HINT: In order to see your new results, change
the line that says axis([-4 0 -1.5 1.5]); to axis([-4 4 -1.5 1.5]);) Include a printout of your results.

 Page 6 of 6

Some of the extra comments were stripped away, so you are encouraged to actually use the type command
yourself. Using the ‘type’ command, you can see most of the functions in MATLAB, but some of them are
built-in and invisible.

Notice that in the function definition, the first line of the function is p=angle(h). This tells MATLAB that,
when the function is called using ang=angle(z), there is a matrix, or vector, named z to be passed in and
temporarily stored in h. Then, whatever is stored in p will be returned by the function and stored in the
variable ang in the program that called the function angle. Be sure that you understand how functions
work. You will be using and creating many in this course.

END NOTES

Please refer to the website for lab write-up format.

Also, the following m-files are located on the web page under ‘Lab 1’. These files are for your benefit.
Please do not turn in any of the results from these exercises or demos.

To get a better understanding of complex numbers and functions, try the following extra exercises:

Powers of Complex Numbers: ‘cn_powers.m’
Perpendicular Complex Numbers: ‘perpendicular_cn.m’
The ‘fac’ function: ‘fac.m’

For your amusement, run the following extra demos:

 Implicit and Explicit ‘for’ loops: ‘circle_demo.m’

 Polar Plots: ‘polar_plots_cart.m’
 ‘polar_plots_polar.m’

 ‘polar_plots_both.m’
 ‘polar_plots_movie_cart.m’
 ‘polar_plots_movie_polar.m’

 ‘polar_plots_movie_both.m’

 Using the ‘plot’ Command: ‘rainbow_simple.m’

 ‘rainbow_fancy.m’
 ‘rainbow_arch.m’

 Complex Numbers Using Euler’s Identity: ‘cn_eulers_id.m’

