
REAL-TIME DSP LABORATORY4:
Design and Implementation of Finite Impulse
Response (FIR) Filters on the C6713 DSK

Contents

1 Introduction 1

1.1 Discrete-Time Digital Filters . 1
1.2 Causal Linear Phase FIR Filters . 4

2 FIR Filter Design Methods 5

2.1 Designing a Lowpass Filter Using Fourier Methods 6
2.2 Windowing Methods for FIR Filter Design . 8
2.3 Specific FIR Filter Designs Using Windowing Methods 10

2.3.1 Example: Discrete-Time Differentiator . 13
2.3.2 Example: Discrete-Time Hilbert Transformers 13

2.4 Zero Placements in a Transfer Function . 14
3 FIR Filter Design Using MATLAB SPTOOL 14

4 FIR Implementation on the C6713 DSK Using C and Assembly 17

4.1 FIR Filter Design using MATLAB - Equiripple FIR * 19
4.2 FIR Filter Design - Notch Filter * . 21
4.3 FIR Filter Design - Zero Placement * . 22
4.4 FIR Filter Design - Delay * . 22
4.5 FIR Filter Design - Differentiator * . 23
4.6 FIR Filter Design - Hilbert Transformer * . 23
4.7 C Callable Assembly Code for Implementing FIR Filters * 24
4.8 Circular Buffers on the TMS320C6713 . 25

5 End Notes 29

1 Introduction

Digital filtering is a generic term for linear, shift-invariant filtering using time domain convolution
or frequency domain multiplication. The basic arithmetic is multiply and accumulate.

Figure 1 illustrates a Finite Duration Impulse Response (FIR) filter.

H(z)x[n]

Nn

nk

N

k

knhkxknxkhnhxny][][][][][][

0

Figure 1: Discrete-Time System

Here, the output of the FIR filter at time n is a linear combination of delayed unit pulse responses,
scaled by the input. In hardware, this means that in order to generate an output in real time,
we must multiply two values and add them to a sum (accumulate). This is exactly what the

1

DSP chip is designed to do. In fact, the ability to multiply and accumulate very fast is one
of the main differences between a DSP chip and the CPU found in a personal computer. The
filters that we design in the next two labs will be useful later when we implement communication
systems on DSP hardware. As a consequence, we will want these filters to operate at a high
sampling rate. One way to make these filters execute their adds and multiplies at high rate is
to code them in DSP assembly language. In this lab, you will study

• discrete-time digital filters,
• FIR filter design, and
• FIR filter implementation on the DSK, using C and assembly language programs.

1.1 Discrete-Time Digital Filters

The output of a general linear and shift-invariant (LSI) discrete-time system is described by
either

y[n] =
∞
∑

k=−∞

h[k]x[n − k] or Y (z) = H(z)X(z), (1)

where X(z) is the Z-transform of the input sequence {x[n]}, Y (z) is the Z-transform of the
output sequence {y[n]}, and H(z) is the Z-transform of the filter impulse response sequence
{h[n]}. The first equation in eqn(1) describes exactly what the filter does and the second is
an algebraic code for what is done. When evaluated at z = ejθ(t), the second equation shows
how the spectrum of the input, namely X(ejθ(t)), is shaped by the complex frequency response,
H(ejθ(t)), to determine the spectrum of the output, namely Y (ejθ(t)). Our shorthand way of
talking about eqn(1) is to say convolution in time is the equivalent of multiplication in frequency.
In digital signal processing, we design H(z) to meet frequency response specifications.

For an FIR filter of length N , with input x[n], the output y[n] is described by the difference
equation

y[n] = h[0]x[n] + h[1]x[n − 1] + . . .+ h[N]x[n −N] =

N
∑

k=0

h[k]x[n − k] (2)

The first part of eqn(2) illustrates that the output at time n is a weighted combination of the
N + 1 most recent inputs, where the weights h[k] are the filter coefficients. The right side
of eqn(2) illustrates that the output at time n is the convolution of the finite length impulse
response of the filter with the input. This is the finite impulse response version of eqn(1).

The Z-transform of h[n] is

h[n]←→ H(z) =

N
∑

k=0

h[k]z−k (3)

The response of the filter H(z) to the complex exponential input {x[n] = ejnθ} is y[n] =
H(ejθ)ejnθ, where H(ejθ) is the Discrete Time Fourier Transform (DTFT) of {h[n]}:

2

h[n]←→ H(ejθ) =

N
∑

k=0

h[k]e−jkθ (4)

Thus H(ejθ), a complex frequency response, illustrates how the input is complex scaled for each
value of θ on the Nyquist band (−π < θ ≤ π).

The rotating phasor ejθ is 2π-periodic in θ and therefore so is H(ejθ). This is illustrated in
Figure 2.

H(ejθ)

−3π 0 −2π −π π 2π 3π

... ...

Figure 2: Discrete-Time Fourier Transform H(ejθ)

The DTFT of a discrete-time signal is 2π periodic in θ which means there are aliases that appear
at multiples of 2π. These aliasing effects are seen in the DTFT, or complex frequency response,
of any digital filter that we design. We design digital filters on the Nyquist band, knowing that
these characteristics will be aliased every 2π radians.

This representation describes the frequency response of a filter on the Nyquist band , but it does
not give any information about the computation rate of the filter. In real-time DSP applications,
this rate is known and it must be taken into account. To account for this, we let θ = ωto, where
to is the time duration between samples of the impulse response h[n]. In the case of the onboard
codec, the incoming signal x(t) is sampled at ts = .125ms to generate x[n]. For this, we would
design a filter that is running at rate to = ts. Usually, we will design a filter H(z) that is running
at the same rate as our incoming sampled data (to = ts where ts is the sampling period of the
codec). In multi-rate systems, this would not be the case.

If the filter H(z) is excited by the sampled data sequence x[n] = x(nto), where x(t) = ejωt, then
the output is

y[n] =
N
∑

k=0

h[k]ej(n−k)ωto = ejnωto
N
∑

k=0

h[k]e−jkωto

= ejnωtoH(ejωto), (5)

where

H(ejωto) =
N
∑

k=0

h[k]e−jkωto (6)

3

The function H(ejωto) is the complex frequency response of the filter H(z) to a continuous-time
complex exponential that has been sampled at rate fo = 1/to. Of course, it is just the DTFT of
{h[n]}N0 evaluated at θ = ωt0. When plotted versus radian frequency ω, H(ejωto) is the complex
frequency response, or Bode plot, of the filter. See Figure 3.

H(ejωt
o)

−3π/t
o
 0 −2π/t

o
 −π/t

o
 π/t

o
 = π f

o
 2π/t

o
 3π/t

o

Figure 3: Discrete-Time Fourier Transform H(ejωto)

The only difference between Figures 2 and 3 is in the scaling of the variable θ = ωto, and
the corresponding scaling of the Nyquist band. The Nyquist band is now −π/to to π/to in
radians/second and is dependent upon the sample period to. As t0 (time duration between
samples) becomes smaller, the sample rate (f0 = 1/to) will become larger, which means that the
Nyquist band will cover a larger frequency range. As the Nyquist band increases, the frequency
range over which the filter may be applied will increase. Again, the sample rate of the filter (fo)
will generally be equal to the sampling rate of the codec (fs).

On the Nyquist band, we design digital filters that have certain magnitude and phase charac-
teristics. For a magnitude response, we want to amplify certain frequencies while attenuating
others. In this lab we will study filters with the following magnitude responses: lowpass, high-
pass, bandpass, and bandstop.

When the input to a real filter is real, then the output is real. Consider a special case of
eqn(5) when a real filter H(z) is excited by the real sampled data sequence x[n] = x(nto), where
x(t) = 2 cos(ωt) = ejωt + e−jωt, then the output is

y[n] =

N
∑

k=0

h[k]ej(n−k)ωto +

N
∑

k=0

h[k]e−j(n−k)ωto

= ejnωto
N
∑

k=0

h[k]e−jkωto + e−jnωto

N
∑

k=0

h[k]e−jkωto (7)

= ejnωtoH(ejωto) + e−jnωtoH(ejωto)

= 2
∣

∣H(ejωto)
∣

∣ cos(nωto + argH(ejωto)), (8)

where eqn(7) uses the fact that H(z) has a real impulse response (i.e. h[k] = h[k]). Both eqn(5)
and eqn(8) give a fundamental insight into signal processing and linear shift-invariant filtering:
sending a periodic signal at frequency ω through the LSI system H(ejωto) will produce a signal
at the same frequency ω that has been scaled and phased by the complex frequency response
H(ejωto). This is the reason that we use Fourier analysis to analyze signals and systems in the
frequency domain.

4

The phase response of a digital filter, argH(ejωto) in eqn(8), shows how signals will be phased
(a little more general concept than time delay) at each frequency. The phase delay at each

frequency is given by argH(ejωto)
ω

1. For no phase distortion, the phase delay must be constant
(i.e. argH(ejωto) = αωto, where α is the delay (in samples) for sinusoids at every frequency.
We say that α is the filter latency (in samples) of a phase distortionless, and that its associated
time delay is αto seconds. The property argH(ejωto) = αωto is the linear phase property that
all of the lowpass, highpass, bandpass, and bandstop FIR filters that we design will have.

1.2 Causal Linear Phase FIR Filters

FIR filters are used in applications were a linear phase is required. General linear phase is when
argH(ejωto) = αωto + β. It is only when β = 0 that the filter will have no phase distortion2.

The linear phase of FIR filters is an artifact of the design process. A classical Fourier series
(FS) FIR filter design starts with designing an ideal filter with a given β, usually either β = 0
or β = ±π

2 . For the case β = 0, the ideal filter response H(ejωto) will be purely real, so the
impulse response will have even symmetry in time. That is, if a signal is real in one domain,
it will be Hermitian in the other3. In this case, real and even in the time domain means that
it is Hermitian in the time domain and is therefore real in the frequency domain. In the case
β = ±π

2 , the ideal filter response H(ejωto) will be purely imaginary, so the impulse response will
have odd symmetry in time. These are the two general cases we will use to design causal FIR
filters. Once this ideal filter (with either an even or odd impulse response) has been designed,
the filter impulse response is truncated using a windowing function to make the filter impulse
response finite-duration. This finite-duration impulse response is then delayed by α samples to
make the impulse response h[n] causal, where h[n] = 0, for n < 0. This delay of α samples
accounts for the αωto part of the phase response argH(ejωto) = αωto + β of the causal linear
phase FIR filter that is implemented in hardware. NB: Remember from signals and systems
that if h[n]←→ H(ejωto), then h[n − α]←→ ejαωtoH(ejωto).

In this discussion, the causal FIR filter impulse response must have symmetry about the point
N/2. When the order of the filter, namely N , is an odd integer, N/2 will be a point exactly
between two samples. This is perfectly acceptable for guaranteeing a linear phase, except that
it is not intuitive to design ideal filters whose impulse response is defined for half-sample points,
which would be required in the FS design method. To develop a more intuitive way of designing
odd order filters, we will design ideal bandlimited analog filters, create a finite support analog
impulse response using windowing, delay in time, and then sampling using impulse invariance
to get a causal FIR filter. This method will allow us to design both even and odd order FIR
filters without the ambiguity of where the samples of the ideal (un-delayed) impulse response
align in time. A point to be clarified in the section on windowing.

1The phase delay of a filter at a given frequency is the time delay within one period of a sinusoid at that
frequency.

2One could argue that when the magnitude response switches polarity that the phase response will have π

added to it, creating a β = π at some frequencies. However, if we unwrap the phase response, these jumps of π
will go away.

3Hermitian symmetry means that H(ejωto) has even magnitude (|H(ejωto)| = |H(e−jωto)|) and odd phase
(argH(ejωto) = − argH(e−jωto)), or H(e−jωto) = H(ejωto). This relationship is analogous for all Fourier trans-
form pairs.

5

2 FIR Filter Design Methods

A simple way to design causal digital linear phase FIR filters is to use a Fourier Series (FS)
approximation of a desired frequency response.

In continuous time, when a signal is T -periodic, x(t) = x(t + T) for all t, it has a (discrete)
Fourier series X[n]. The formulas that relate x(t) and X[n] are

x(t) =

∞
∑

n=−∞

X[n]ejnωot (synthesis) (9)

X[n] =
1

T

T
∫

0

x(t)e−jnω0tdt (analysis) (10)

In this representation, ωo = 2π
T is the fundamental frequency in rad/sec, T is the fundamental

period in seconds, and the values X[n] are referred to as the Fourier Series coefficients. Even
if x(t) has an infinite number of FS coefficients, it can usually be well-approximated by a finite
number of its FS coefficients. It is this idea of approximating a function by taking a finite
sum over some of its FS coefficients that gives rise to the FS method of designing FIR filters.
Examples of this along with a complete treatment of periodic signals and Fourier series can be
found in [3].

In the FS approach to FIR digital filter design, the continuous periodic frequency response
H(ejωto) takes the place of the the periodic continuous-time signal x(t) and the impulse response
h[n] takes the place of the discrete FS coefficients. The DTFT pair h[n]←→ H(ejωto) is described
by the equations

h[n] =
to
2π

π/to
∫

−π/to

H(ejωto)ejnωt0dω (synthesis) (11)

H(ejωto) =

∞
∑

n=−∞

h[n]e−jnωto (analysis) (12)

The idea now is to approximate an ideal frequency response with a finite number of filter
coefficients h[n]. By comparing eqn (9) and eqn (10) with eqn (11) and eqn (12), it is easy to
see that these equations are duals of each other.

For real filter coefficients h[n], H(ejωto) must have Hermitian symmetry. When we design linear
phase FIR filters, we force H(ejωto) to be either purely real or purely imaginary so that our
filter will have either an even or odd impulse response, respectively. Once we have our impulse
response, we will window it (truncate it to make it finite) and then delay it so that it is purely
causal, which gives us an FIR filter with linear phase.

2.1 Designing a Lowpass Filter Using Fourier Methods

Consider the ideal lowpass filter (LPF) in Figure 4.

6

0
1- 1

0
tj

id eH

1

0
t

0
t

Figure 4: Ideal LPF Hid(e
jωto)

The filter coefficients (impulse response) of this filter are

hid[n] =
to
2π

π/to
∫

−π/to

Hid(e
jωto)e−jnωt0dω

=
to
2π

ω1
∫

−ω1

e−jnωt0dω, ω1 <
π

to

=
1

πn

ejnω1to − e−jnω1to

2j

=
1

πn
sin[ω1ton]

=
ω1to
π

sinc[ω1ton], ω1 <
π

to
(13)

=
2f1
fo

sinc

[

2πf1
fo

n

]

, f1 <
fo
2

=
1

2to
(14)

The last two equations, eqn (13) and eqn (14), designate the cutoff frequency in radians per
second and Hertz respectively. Here, the sinc(·) function is defined to be sinc(x) = sin(x)/x.
The cutoff frequency must be less than half the rate of the filter (fo/2). Since Hid(e

jωto)
is real, the impulse response hid[n] is even. Also, hid[n] is an infinite sequence. Before this
can be implemented, the impulse response must be truncated in a manner that preserves the
even symmetry. There are many ways to truncate this response which we will explore next in
windowing. For now, lets define the truncated sequence to be

htn[n] =

{

hid[n] : |n| ≤ N
2

0 : otherwise
, (15)

where N is a positive even integer. The final step is to make this filter causal by delaying it N/2
(an integer number of) samples in time. Our causal linear phase FIR lowpass filter will have
the following impulse response

h[n] = htn[n−
N

2
] =

2f1
fo

sinc

(

2πf1
fo

(

n−
N

2

))

: 0 ≤ n ≤ N

0 : otherwise

(16)

7

The impulse response, h[n], will have even symmetry (h[n] = h[n − N]) about the point N/2.
This symmetry will guarantee that the FIR filter will have a constant phase delay (no phase
distortion), which is the desired property of the designed filter. It can be argued that when N
is a positive odd integer, that eqn (16) will also produce a linear phase FIR filter. This may be
justified by the fact that the samples of h[n] are calculated by evaluation the continuous-time
function sinc(·). Therefore, to get a non-integer delay, one could use bandlimited construction to
create the continuous-time function sinc(·), delay it by to/2 seconds, and then re-sample to get
a digital signal with a non-integer delay n− 1

2 . This is a confusing point that we will circumvent
by designing analog filters, truncating their continuous-time impulse, and sampling to generate
a discrete-time FIR filter. A point to be clarified in the next section.

2.2 Windowing Methods for FIR Filter Design

Windowing is multiplying an (infinite-duration) ideal filter impulse response hid(t) with a finite-
duration windowing function. To gain insight into this idea, lets consider designing ran ideal
bandlimited analog filter, windowing, delaying, and then sampling its impulse response to create
a discrete-time FIR filter. Specifically, this filter must be bandlimited to the Nyquist band
(−π
to

< ω < π
to
, where to is the sample rate of the DSP system). This will allow us to create a

digital filter that greatly minimizes the affects of aliasing.

To begin, we design an ideal analog filter Hid(jω) that has a desired frequency response on
the band −π

to
< ω < π

to
and is zero outside this band. This will lead to a filter whose impulse

response is infinite in duration with either even or odd symmetry. Then, this impulse response
is truncated by multiplying it (in the time domain) by an evenly symmetric windowing function.
Next, the truncated impulse response is delayed in time to make it causal (equal to zero for time
less than zero). This time delay is chosen to be the minimum time delay required to make the
truncated impulse response causal, which means that the time delay will be half the duration of
the windowing function. At this point, our finite duration analog filter is essentially bandlimited
to half the sample rate of the DSP system and is causal. Therefore, we can sample this impulse
response to create the causal discrete-time impulse response of our digital filter. This idea is
illustrated more carefully in the next discussion.

In the LPF example previously, our windowing function was a rectangular window. Our associ-
ated analog filter had impulse response

hid(t) =
ω1

π
sinc(ω1t) (17)

and the windowing function was

w(t) =

{

1, −N
2 to ≤ t ≤ N

2 to
0, otherwise

, (18)

where N is the filter order.

This gives us our windowed impulse response hw(t) = hid(t)w(t) which has frequency response

8

Hw(jω) = Hid(jω) ∗W (jω) =

∞
∫

−∞

Hid(jν)W (j(ω − ν))
dν

2π
, (19)

where W (jω) = Ntosinc(
Nωto

2). This frequency response is NOT bandlimited, but for large N
will nearly be so.

This finite-duration impulse response hw(t) is made causal by delaying this impulse response by
N
2 to seconds to create h(t) = hw(t−

N
2 to), which has frequency response

H(jω) = e−j N
2
ωtoHw(jω). (20)

Notice that Hw(jω) is real function, so this is a polar representation of H(jω). Note that the

phase delay is argH(jω)
ω = N

2 to seconds, which is gives us the phase distortionless linear phase
causal filter that we are trying to design. The windowing function causes a smearing effect in
the frequency domain. This is illustrated in Figure 5.

ω

W(j (ω − ν))

H
id

 (jν)

π/t
o
 −π/t

o

−π/t
o
 π/t

o

0

0

H (jω)

ω

ν

Figure 5: Convolution in Frequency

Impulse Invariance

9

Once we have our causal analog finite-duration filter, we convert it to a discrete-time filter by
using an impulse-invariance technique. Suppose we create the sampled sequence h(nto) from
the finite duration impulse response h(t). From the Shannon-Whittaker sampling theorem, we
have [2]

Hs(e
jωto) =

1

to

∞
∑

n=−∞

H(j(ω − nωo)). (21)

In the context of this section, H(jω) will be the spectrum defined in eqn (20), and Hs(e
jωto) is

the scaled frequency response of our intended digital FIR filter. Notice that frequency response
Hs(e

jωto) = 1
to
H(jω) on the Nyquist band. This scaling of 1

to
can be rather large, so to com-

pensate for this, we multiply our sampled sequence, h(nto), by to. This scaling factor, to, will
give the same power spectrum on the Nyquist band for both H(ejωto) = toHs(e

jωto) and H(jω).
Therefore, the FIR filter that we implement in hardware, H(ejωto), will have impulse response

h[n] =

{

toh(nto), 0 ≤ n ≤ N
0 , otherwise

, (22)

where the continuous-time function h(t) is the causal, windowed, impulse response of an ideal
bandlimited analog filter. The most important idea here is that the spectrumH(jω) is essentially
bandlimited to the Nyquist band, making H(ejωto) virtually void of aliasing effects.

2.3 Specific FIR Filter Designs Using Windowing Methods

In this section, we will explore digital filters with the four basic types of desired magnitude
responses, namely lowpass, highpass, bandstop, and bandpass. Figure 6 shows each of these
filters in terms of their bandlimited analog filter frequency responses.

These impulse responses of these filters may be calculated using the inverse Fourier transform
identity

x(t) =

∞
∫

ω=−∞

X(jω)ejωt
dω

2π
. (23)

Table 1 below shows the bandlimited analog impulse responses for each of the filters in Figure
6.

The frequency variables in Table 1 are in Hertz, with 2πfi = ωi, i ∈ {1, 2}. This is done for ease
of calculating filter impulse responses. When designing filters, we tend to think of frequency in
Hertz, but when we do mathematical manipulations of Fourier transforms, we think of frequency,
ω, in radians per second.

So far, we have only used rectangular windows. Rectangular windows will give the sharpest
transition at cutoff frequencies, but this will come at the expense of large oscillations in the
magnitude response at cutoff frequencies. This effect is known as the Gibbs phenomenon in
Fourier series analysis, and it is due to the non-uniform convergence in eqn (9) at values of t

10

0 1- 1

0t0t

- 2 2

- 1 1

0t 0t

- 2 - 1 21

0t

0

0

0t

Highpass Filter

Bandstop Filter
Bandpass Filter

Lowpass Filter

1- 1 /t0- /t0

Figure 6: Ideal Analog Lowpass, Highpass, Bandstop, and Bandpass Filter Frequency Responses

Filter Type h(t)

Lowpass filter 2f1sinc(2πf1t)

Highpass filter
sin(π

to
t)− sin(2πf1t)

πt

Bandstop filter
sin(π

to
t)− sin(2πf2t) + sin(2πf1t)

πt

Bandpass filter
sin(2πf2t)− sin(2πf1t)

πt

Table 1: Ideal Lowpass, Highpass, Bandstop, and Bandpass impulse responses bandlimited to
the Nyquist band.

where x(t) is discontinuous. To help alleviate this problem, other windows have been developed
that truncate the delayed ideal impulse response in a less abrupt manner. These windows come
at the expense of creating a larger transition band at the cutoff frequencies of the magnitude
response of H(jω).

11

When we talk about windowing functions, there are two characteristics, main lobe width and
relative first (peak) side lobe amplitude, that concern us. The main lobe width determines
the transition between pass and stop band frequencies (the smaller the main lobe width, the
sharper the transition) and the relative peak side lobe reveals the Gibbs phenomenon (the lower
the relative side lobe is to the main lobe, the less oscillation will be present in the magnitude
response of H(jω)). Unfortunately, this is a “no free lunch” situation. If you want a better
transition at cutoff frequencies, you have to allow for more oscillations at the transition regions
of your magnitude response, and if you want less oscillations in your magnitude response, then
you have to tolerate a longer transition band between pass and stop bands. Here is partial list
of windows available.

• Rectangular Window
The rectangular window is given in eqn (18).
The approximate width of the main lobe is 4π

(N+1)fo (rad/sec) and the relative peak side
lobe amplitude is -13dB less than the amplitude of the main lobe.

• Bartlett (Triangular) Window
The Barlett window is

w(t) =

2

Nto
t+ 1 , −

N

2
to < t < 0

−
2

Nto
t+ 1, 0 ≤ t <

N

2
to

0 , otherwise

(24)

The approximate width of the main lobe is 8π
N fo (rad/sec) and the relative peak side lobe

amplitude is -25dB less than the amplitude of the main lobe.
• Hanning Window

The Hanning window is

w(t) =

0.5 + 0.5 cos

(

2π

Nto
t

)

, −
N

2
to < t <

N

2
to

0 , otherwise

(25)

The approximate width of the main lobe is 8π
N fo (rad/sec) and the relative peak side lobe

amplitude is -31dB less than the amplitude of the main lobe.
• Hamming Window

The Hamming window is

w(t) =

0.54 + 0.46 cos

(

2π

Nto
t

)

, −
N

2
to < t <

N

2
to

0 , otherwise

(26)

The approximate width of the main lobe is 8π
N fo (rad/sec) and the relative peak side lobe

amplitude is -41dB less than the amplitude of the main lobe.
• Blackman Window

The Blackman window is

w(t) =

0.42 + 0.5 cos

(

2π

Nto
t

)

− 0.08 cos

(

4π

Nto
t

)

, −
N

2
to < t <

N

2
to

0 , otherwise

(27)

12

The approximate width of the main lobe is 12π
N fo (rad/sec) and the relative peak side lobe

amplitude is -57dB less than the amplitude of the main lobe.

The windows above have been listed in order of smallest main lobe and highest peak side lobe
to largest main lobe and lowest peak side lobe. These are not the only windows available, but
they are some of the more common ones. We will experiment with a few of these later in the
lab. In addition to the window functions above is the Kaiser window. This window has two
parameters (filter length and a shape parameter) that are used to trade off side lobe amplitude
for main lobe width. In this lab, we will use MATLAB to design a Kaiser window, but for some
examples of Kaiser window designs, see [6, pg. 465–485] .

2.3.1 Example: Discrete-Time Differentiator

When doing digital signal processing of continuous-time signals, we may want to estimate the
derivative of the continuous-time signal that we are processing. In continuous-time Fourier
analysis, we have the following property

x(t) ←→ X(jω)

d

dt
x(t) ←→ jωX(jω) (28)

In the context of digital FIR filter design using windowing, we begin by designing an ideal
bandlimited analog filter with the frequency response

H(jω) =

jω, −
π

to
< t <

π

to

0 , otherwise
, (29)

which is bandlimited to the Nyquist band. The corresponding impulse response is

h(t) =
1

t

(

cos(π
to
t)

to
−

sin(π
to
t)

πt

)

. (30)

Differentiators are used for frequency discriminators in FM (frequency modulation) demodula-
tors, which we will explore in more depth when we use DSP techniques to implement classical
communication systems. Notice that the frequency response of H(jω) in eqn (28) is purely imag-
inary, so the corresponding impulse response in eqn (30) has odd symmetry (h(t) = −h(−t)).
This is what we expect out of an impulse response that mimics the differencing of a differentiator.

13

2.3.2 Example: Discrete-Time Hilbert Transformers

Another type of filter that is used in classical analog communication systems is a Hilbert trans-
former. In analog systems, a Hilbert transformer is an all-pass filter (magnitude of one at
all frequencies) with the frequency response H(jω) = −jsgn(ω), where sgn(·) is the signum
function (returns the sign of a number). When designing a digital FIR Hilbert transformer
using windowing, we start with the impulse response of the ideal bandlimited analog filter with
spectrum

H(jω) =

j , −
π

to
< ω < 0

−j, 0 < ω <
π

to

0 , otherwise

, (31)

which is bandlimited to the Nyquist band. The corresponding impulse response is

h(t) =
2 sin2(π

2to
t)

πt
. (32)

This filter has a purely imaginary frequency response and corresponding odd impulse response.
Both the Hilbert transformer and the differentiator have a general linear phase, but they will
cause phase distortion. We will explore this with square waves later in the lab. The phase distor-
tion in the Hilbert transformer will to be useful when we study classical analog communication
systems, especially single-sideband (SSB) modulation.

2.4 Zero Placements in a Transfer Function

When we analyze digital filters, we examine their poles and zeros in the Z-domain. All analyzable

filters are of the form H(z) =
B(z)

A(z)
. In the case of FIR filters, A(z) = 1 and H(z) = B(z). This

means that FIR filters have no poles, only zeros. This also means that the coefficients of the
polynomial B(z) are the filter coefficients {h[n]}N0 . For real filter coefficients, the zeros of H(z)
must appear in complex conjugate pairs. A zeros that occur on the unit circle at z = ejω1to will
translate to zeros in the magnitude response of the filter at frequency ω1. Frequency components
that neighbor a zero on the unit circle will be attenuated. Zeros that are not on the unit circle
will also shape the magnitude response of the filter H(z). The closer a frequency on the unit
circle gets to a zero, the more it will be attenuated. We will explore this later.

3 FIR Filter Design Using MATLAB SPTOOL

SPTOOL is a signal processing tool that is available for MATLAB4. SPTOOL provides a graph-
ical user interface (GUI) for designing FIR and IIR filters. In this section, we are going to design
a lowpass filter using MATLAB that you will use in the first FIR filter programming example.

4The signal processing tool (SPTOOL) is a part of the MATLAB “Signal Processing Toolbox”, which is
available on the engineering network services (ENS). The signal processing toolbox may also be purchased directly
from Mathworks at www.mathworks.com.

14

1. From the MATLAB command prompt, type
>> sptool

This will open the “SPtool: startup.spt” window (shown below). Keep this window open
until told to close it.

2. In the middle column labelled “Filters”, select “New Design”. This will open up the “Filter
Designer” window (shown below).

3. In the “Filter Designer” window, make sure the following are selected:
• Select Response Type: “lowpass”
• Make sure that “Equiripple FIR” is selected in the Design Method box.
• In the Filter Order box, make sure “Minimum order” is checked.
• In the Frequency Specification box, set:

– Fs (sampling frequency) to 8000,
– Fpass to 1500,
– Fstop to 1700.

• In the Magnitude Specification box, set:
– Apass to 2

15

– Astop to 60.
4. Your filter has been designed by MATLAB. To access this filter from the workspace,

go back to the window “SPtool: startup.spt”. Go to ‘File’ and select ‘Export’. In the
window ‘Export from SPtool”, select Filter: filt1 [design] and then click on the
button “Export to Workspace”.

5. Your filter is now available in the workspace. To see the filter coefficients, type the following
>> h=filt1.tf.num;

>> stem(h)

>> length(h)

in the MATLAB workspace.

When the above SPTOOL design was exported to the MATLAB workspace, the structured
array “filt1” was created. To see what is included in this structured array, type filt1 in the
MATLAB workspace. The part of the structured array that we will be most interested in is the
transfer function. To see the structure of the transfer function, type filt1.tf in the MATLAB
workspace. You should see that the numerator (num in the MATLAB workspace) is a 1x71

array of type double (double precision floating-point numbers) and the denominator (den in the
MATLAB workspace) is 1. This is what we expect since FIR filters contain no poles, only zeros.
As we have shown above, the numerator coefficients of the transfer function are access by typing
the filt1.tf.num in the MATLAB workspace. These numerator coefficients are the FIR filter
coefficients, namely h[n], that we will use to implement our digital FIR filter in hardware.

To further analyze this filter, download the MATLAB m-file plotZTP FIR.m from the class
webpage. This m-file is a contains a function that will plot the Z-transform (evaluated at
z = ejωto), the pole-zero diagram and the impulse response in a four-panel plot. This function
is a modified version of plotZTP.m that is used to analyze all rational filters (taken from [4]).
The modifications are that the denominator (A(z) in the representation H(z) = B(z)/A(z)) is
always 1, and the impulse response is always finite, so the entire impulse is displayed (This will
not be the case for IIR filters). To analyze the filter, filt1, type the following

>> h=filt1.tf.num;

>> fs=filt1.Fs;

>> plotZTP FIR(h,fs)

in the MATLAB workspace.

SPTOOL has three FIR filter options: Equiripple FIR, Least Squares FIR, and Kaiser Window
FIR. The passband and stopband each have two sets of parameters Fp, Rp, Fs, and Rs. The
parameters Fp and Fs define the boundaries of the passband and stopband frequencies, respec-
tively. The parameter Rp determines the ripple (in dB) of the passband and Rs is the stopband
rejection parameter that denotes the relative height of the stopband compared to the passband
(i.e. Rs = 60 means that the amplitude of the stop band is -60 dB less than the passband.) In
the case of bandpass and bandstop filters, there will be two passband and stopband parameters,
namely Fp1, Fp2, Fs1, and Fs2. When designing filters using SPTOOL, a transition band of
frequencies must be included between Fp1 and Fs1 as well as Fp2 and Fs2. The tighter these
bands are, the larger your filter order will be.

At this point, your FIR filter should have been designed and exported to the MATLAB workspace.
There is the homebrew MATLAB function, namely FIR cof gen.m, available for download from
the webpage, which you will want to download into the directory on your u: drive for this lab.
This MATLAB m-file is a function that takes the filter coefficients h[n] and creates a formatted

16

.cof that can be included into a C program. Specifically, the .cof file that you create here will
be included in the C coded FIR filter in the next section. This file extension, .cof, is chosen to
give the file name meaning. We will treat .cof files as though they were header files with a .h

extension and include them in the beginning part of our C coded algorithms.

In the SPTOOL design example above, a lowpass filter with cutoff frequency 1500Hz was created.
Once this filter was exported to the workspace as filt1, the filter coefficients were found by
typing h=filt1.tf.num. These filter coefficients are formatted into a .cof by typing

>> FIR cof gen(‘LPF1500’, h, ‘fixed’)

in the MATLAB workspace. (NB: The m-file FIR cof gen.m must be stored in your current
working directory in MATLAB.) This command will create the file LPF1500.cof.

When you plotted the filter coefficients of the lowpass FIR filter designed in SPTOOL, you may
noticed that the coefficients were all less than one. In fixed-point arithmetic, all of the filter
coefficients must be signed-integers, so the numbers were all scaled by 215 and rounded to the
nearest integer. Therefore, the scaling of the filter coefficients will result in a scaling of the
output, which would overdrive the codec. To account for this, the output must be scaled down
by multiplying by 2−15. This will be addressed in more detail in the next section.

One final comment about FIR cof gen.m. This function performs H∞ (pronounced “H infin-
ity”) scaling to scale the frequency response H(ejωto). This scaling makes the gain ≤ 1 for all
frequencies. This is done to help keep you from overdriving the codec.

In this lab, SPTOOL, Windowing, and zero placements will be the three methods that we will
use to design FIR filters. In all three design methods, the MATLAB function FIR cof gen.m

will be used to create the formatted filter coefficient (.cof) file that we include into our C code.

4 FIR Implementation on the C6713 DSK Using C and Assem-

bly

One of the most common ways to describe digital filters is to use hardware diagrams to describe
the input - output relationships. For FIR filters, one possible hardware diagram is illustrated in
Figure 7. As the input stream x[n] enters the FIR filter it is delayed by the z−1 delay operator
and scaled by the filter coefficient h[k]. The output y[n] =

∑N
k=0 h[k]x[n − k]. This hardware

diagram shows that the output of FIR filter is calculated by doing explicit convolution.

x[n]

y[n]

h[0] h[1] h[N]h[2] h[N-1] . . .

 . . .

 . . .

 z -1 z -1 z -1 z -1

Figure 7: Delay Tap Hardware Diagram of an FIR Filter

17

Another way to describe FIR filters is to say that the output at time n is the inner product of a fil-
ter coefficient vector with an input vector containing theN+1 most recent inputs. Lets define the
two column vectors h = [h[0], h[1], . . . h[N]]T ∈ ℜN+1 and xn = [x[n], x[n− 1], . . . x[n−N]]T ∈
ℜN+1. The output is defined to be y[n] = 〈h, xn〉 = hTxn =

∑N
k=0 h[k]x[n − k], which, as we

saw in the last lab, can be implemented on our DSP hardware.

To make this a real-time digital filter, the input vector xn must be updated as each sample is
read in from the codec. After the next sample has been read in, the new input vector containing
the N + 1 most recent inputs is xn+1 = [x[n+ 1], x[n], . . . x[(n + 1)−N]]T ∈ ℜN+1 and the
output is y[n+ 1] = 〈h, xn+1〉. The vector xn+1 is created by removing the oldest sample of xn
from the bottom, shifting all of the elements down in vector (remember xn is a column vector),
and storing the newest sample x[n+ 1] at the top of the vector. This is illustrated below.

Input Array Time n Time n+ 1 Time n+ 2 · · ·

x[0]
x[1]
x[2]
...

x[N − 2]
x[N − 1]
x[N]

x[n]
x[n− 1]
x[n− 2]

...
x[n− (N − 2)]
x[n+ (N − 1)]

x[n−N]

x[n+ 1]
x[n]

x[n− 1]
...

x[n− (N − 3)]
x[n− (N − 2)]
x[n− (N − 1)]

x[n+ 2]
x[n+ 1]
x[n]
...

x[n− (N − 4)]
x[n− (N − 3)]
x[n− (N − 2)]

· · ·

The column on the left represents the C coded array that holds the N + 1 most recent inputs
and the three columns on the right illustrate how the incoming samples are stored in the C
coded array. This is not the most efficient way to organize the data in the input vector x, but
it provides a good starting point for coding digital FIR filters in C.

Create a project FIR c, download the file FIR c.c from the class webpage and open it in CCS.
Be sure that you have created the file LPF1500.cof from the previous section, and put a copy of
it in the folder (on your u: drive) for this project. Examine the code listing for FIR c.c shown
in Figure 8.

Within the ISR (lines 7 through 23), note the following:

• A local variable k, of type short, is created as a loop counter, the current sample is read
in from the code and stored at the top of the array buffer x[0], and the accumulating
variable for the current output, global variable yn, is initialized to zero (lines 9 through
12).

• The explicit convolution (multiply and accumulate operations) of theN+1 filter coefficients
stored in the vector h[] with the N + 1 most recent inputs stored in the vector x[] is
accumulated in yn (lines 14 and 15).

• The input buffer is shifted down starting at the bottom, where the last value of the array
is no longer stored in memory (lines 17 and 18).

• Finally, the output is scaled (fixed point implementation, see below) and sent to the codec,
and the ISR returns program control back to the main() function (lines 20 and 22).

18

/*1 */ // FIR_c.c FIR filter. Include file of N order FIR filter coefficients

/*2 */ #include "DSK6713_aic23.h"

/*3 */ #include "LPF1500.cof" // coefficient file LPF @ 1500Hz

/*4 */ int yn = 0; // initialize filter’s output

/*5 */ short x[N+1]; // input samples (N+1 samples)

/*6 */ Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; // sampling frequency of codec

/*7 */

/*8 */ interrupt void c_int11() // ISR

/*9 */ {

/*10*/ short k;

/*11*/

/*12*/ x[0] = input_left_sample(); // new input @ beginning of buffer

/*13*/ yn = 0; // initialize filter’s output

/*14*/

/*15*/ for (k = 0; k<= N; k++)

/*16*/ yn += (h[k] * x[k]); // y(n) += h(k)* x(n-k)

/*17*/

/*18*/ for (k = N; k > 0; k--) // starting @ end of buffer

/*19*/ x[k] = x[k-1]; // update delays with data move

/*20*/

/*21*/ output_left_sample((short)(yn >> 15));// scale output filter

/*22*/ return;

/*23*/ }

/*24*/

/*25*/ void main()

/*26*/ {

/*27*/ comm_intr(); // init DSK, codec, McBSP

/*28*/ while(1); // infinite loop

/*29*/ }

Figure 8: Listing of FIR c.c

In fixed-point algorithms, this type of scaling must be done. This leads to a few additional
comments. First, the input samples and the filter coefficients are 16-bit signed integers, and the
multiplication of two 16-bit numbers will result in a 32-bit number. Therefore, the accumulation
variable yn is a 32-bit signed integer, which, in C, means that the variable is of type int

yn (instead of type short yn). The scaling up of the filter coefficients by 215 was done by
FIR cof gen.m when the option ‘fixed’ was selected, and the down scaling was done in line
20 of Figure 8. In binary, multiplying or dividing a number by a power of two means shifting
bits of that number either to the left or right with respect to a decimal point. In this case, we
are dividing yn by 215, so we need to shift the bits of yn fifteen bits to the right, which is done
in C by using the right bit shift operator >> (see line 20).

4.1 FIR Filter Design using MATLAB - Equiripple FIR *

The filter implemented in Figure 8 is the equiripple FIR filter designed in SPTOOL. Look in the
folder “include” in CCS and open the file LPF1500.cof. Observe that it contains the 71 filter

19

coefficients of the 70th order FIR filter created earlier. Also, the filter order N=70 is defined.
By including a separate file that contains the filter coefficients and filter order, we can keep the
same basic FIR program and include different .cof files to change our FIR filter.

Assignment

1. Redo the SPTOOL design and run FIR cof gen.m to create LPF1500.cof. Implement
this filter on the DSK. Use the signal generator and oscilloscope to verify that the
filter is working properly by making a plot of normalized amplitude vs frequency for
a 500mVpp input. Discuss the amplitude response plot. (HINT: Use the MATLAB
function plotZTP FIR.m to examine the filter.)

2. Make a new project FIR float c and download FIR float c.c from the class webpage.
Using the homebrew function FIR cof gen.m, create a floating-point .cof file containing
the 71 (unscaled) filter coefficients from the lowpass filter designed in SPTOOL earlier.
Assuming that the filter coefficients are stored in the array h in MATLAB, typing the
following command (at the MATLAB command prompt)

>> FIR cof gen(‘LPF1500 float’, h, ‘float’)

will create the .cof file LPF1500 float.cof. You will need this file (with the name
LPF1500 float.cof) to implement this project. In CCS, built this project and imple-
ment it on the DSK, then plot its frequency behavior.
Compare the files FIR c.c and FIR float c.c. In your lab write-up, explain what the
difference is between a fixed-point and floating-point FIR filtering algorithm.

20

Assignment

3. Create two new projects that use the left channel of the codec I/O paths. One project
should implement a fixed-point arithmetic FIR filter with scaling and the other should
use floating-point arithmetic. Name these fixed-point and floating-point projects FIR c

and FIR float c, respectively. Design a filter of your choice. Implement fixed-point
and floating-point versions of this filter on the DSK. Uas a sampling rate of the 8KHz,
and take this into account when you design your filter in MATLAB. Use the homebrew
MATLAB function plotZTP FIR.m to analyze your filter. Include a copy of the figure
generated by plotZTP FIR.m and copies of your fixed-point and floating-point C coded
algorithms. Comment on the changes that were required to implement your filter, and
comment on the quality of the filter that you designed.

4. Once you have the programs in question 3 working, create a least squares 8KHz lowpass
filter. using SPTOOL. Using the signal generator and oscilloscope, filter a square wave
using the LPF LPF. Start with a low frequency square wave and increase the frequency
gradually. As the frequency increases, more Fourier series coefficients of the square
wave get filtered out. This is the same effect seen when using a rectangular window to
design FIR filters. Due to the sampling and reconstruction of the codec, the waveform
might not be exactly what you expect, but it should be similar to what one might
expect. Find a pair of headphones and listen to the effects of dropping FS coefficients.
Comment on what you see on the scope and hear. Give as much intuition as possible
as to the affects of truncating FS coefficients. What intuition do you get about digital
communication over bandlimited channels?

5. Create an audio (two-channel) versions of the fixed-point project of question 3. Name
this project FIR audio c.

Design Tips:
The command input sample() will read in a 32-bit binary number from the codec that
contains two 16-bit signed integer (short) values. To split these two channels up, do
the following:
int input value;

short input left;

short input right;

input value = input sample();

input left = (short)input value;

input right = (short)(input value >> 16);

Once you have the two channels split up, filter both channels and then use the function
output left right sample(short left sample, short right sample); to send
the two channels worth of data to the codec.

4.2 FIR Filter Design - Notch Filter *

Suppose that we would like to design a simple notch filter that knocks out a specific tone. This
could be done by designing a filter with frequency response

21

H(z) = (1− z−1ejω1to)(1 − z−1e−jω1to)

= 1− 2 ∗ cos(ω1to)z
−1 + z−2

= 1− 2 ∗ cos(2πf1to)z
−1 + z−2. (33)

Assignment

6. Design a notch filter for the codec that knocks out a 1KHz tone (or a tone of your
choice). Use plotZTP FIR.m to examine this filter. Plot the response of the filter
near the notch frequency. Using a pair of headphones, listen to sinusoids at and near
the notch frequency. How well does this filter suppress tones at the notch frequency?
Comment on the filter.

4.3 FIR Filter Design - Zero Placement *

Assignment

7. Design a digital filter by placing zeros in a transfer function (e.g. define the real and/or
complex conjugate pair zeros of some transfer functionH(z)). Create a transfer function
H(z) = H1(z)H2(z)H3(z), where Hi(z) = 1− αi2 cos(2π

fi
f0
)z−1 + α2

i z
−2 is the transfer

function of a complex conjugate zero pair at frequency fi with magnitude αi. Use
plotZTP FIR.m to analyze your filter. Intuitively, explain how these zeros affect the
frequency response of your filter. Implement this filter on the DSK. Include a copy of
the MATLAB figure generated by plotZTP FIR.m, give the magnitude and frequency
of each complex conjugate zero pair, and comment on the output of this filter for input
sinusoids of various frequencies. Give as much intuition as possible.

4.4 FIR Filter Design - Delay *

Delay is an echoing effect that can be found on many guitar effects boards. It produces an
effect that sounds much like the effect of hearing music at a sporting event. This effect is
described by the difference equation y[n] = x[n] + a[m]x[n −m], which is an FIR filter of the
form H(z) = 1 + a[m]z−m. Here |a[m]| ≤ 1 controls the amplitude of the echo and m, usually
large, controls the delay (e.g. m = 400 using the on-board codec translates to a 50ms delay).
An example impulse response with a[m] = .7 and m = 8 would be coded in MATLAB as h=[1
0 0 0 0 0 0 0 .7];. Use plotZTP FIR.m to examine this filter.

Caveat : For the delay filters that we will examine next, the frequency responses will take
MATLAB too long to compute, so we will not explore them.

Assignment

8. Design a digital delay filter for the with the parameters a[m] = .9 and m = 400 (a
50ms delay). This will require a buffer that will store the 400 most recent inputs, but
will only require two multiply and accumulate operations. Create your C code in a
way that does (at most) two multiply and accumulate operations. Play music through
the DSK and listen to the effects. Try various values of a[m] and m to get a feel for
how they affect the input. Specifically, try comment on delays of 50ms (m = 400) and
100ms (m = 800)? Does this filter have a linear phase? Comment on your results and
give as much intuition as possible.

22

4.5 FIR Filter Design - Differentiator *

A discrete-time differentiator approximates the continuous-time derivative of the continuous
signal that was sampled by the codec. In the ideal case, a square wave input will produce a
delta-train output. For the discrete-time case, the inputs will be bandlimited. In the case of the
square wave, this means that most of its higher order Fourier series coefficients will be removed
by the anti-aliasing filter. This will produce an output that will look like sinc(·) functions instead
of Dirac delta functions.

Assignment

9. Design a discrete-time differentiator using windowing. Use plotZTP FIR.m to examine
this filter. Implement it on the DSK. Use a sinusoidal input at various frequencies and
comment on the results. Then, use a low frequency (100Hz to 400Hz) square wave as the
input. Listen to the output. Also, observe the output wave form on the oscilloscope.
Comment on what you see and here. Give a mathematical argument as to what is
happening at the discontinuities. Give as much intuition as possible. Include a copy of
the Figure generated by plotZTP FIR.m, and your derivation of your impulse response
commenting on the windowing function used and the filter order.

4.6 FIR Filter Design - Hilbert Transformer *

The Hilbert transformer is used to shift the phase of positive frequencies by −90o and the phase
negative frequencies by 90o. Hilbert transformers are used in single-sideband communications.
To the human ear, the effects of phase shifting are not noticeable, but the time response may be
appear very different. We will observe this with a square wave input to a Hilbert transformer.

Assignment

10. Design a discrete-time Hilbert transformer using windowing. Use plotZTP FIR.m to
examine this filter. Implement it on the DSK. Use a sinusoidal input at various fre-
quencies and comment on the observed waveform. HINT: in order to see a fixed 90
degree phase shift between the output of the Hilbert Transformer an an unfiltered ref-
erence waveform, you will need to compensate in the reference channel for the delay
added to the Hilbert Transfomer to make it causal. This can only be done by putting
the reference channel through the other stereo channel, unfiltered.
Play music through the Hilbert transformer. Comment on what you hear. Then, use a
lower frequency (≤ 1kHz) square wave as the input with a limited amplitude (500mV
to 600mV peak-to-peak). Listen to the output. Observe the output waveform on the
oscilloscope. Comment on what you see and hear. Explain what is happening. Give as
much intuition as possible.
HINT: Think of a square wave as the sum of an infinite number of sinusoids, whose
frequencies are odd multiples of the fundamental frequency. What effect does the
Hilbert transformer have on these sinusoids in the time domain? Include a copy of
the Figure generated by plotZTP FIR.m, and your derivation of your impulse response
commenting on the windowing function used and the filter order.

23

4.7 C Callable Assembly Code for Implementing FIR Filters *

As we saw in the last lab, it is possible to call an assembly coded function from a C program.
The FIR filters that we have implemented so far can be coded in assembly in the same way the
inner product function inprod asm func.asm was coded. The only difference is that now the
input sample vector x[] needs to be updated as the FIR filter output is being calculated. An
example of a fixed-point FIR filter coded in assembly can be seen in Figure 9.

; FIR_asm_func.asm

; asm function called from C to implement fixed-point FIR

; A4 = x[n] address, B4 = h[0] address, A6 = filter order N

; input samples organized as x(n)...x(n-N)

; coefficients as h[0]...h[N]

1 .) .def _FIR_asm_func

2 .)_FIR_asm_func: ; asm function called from C

3 .) MV .L1 A6,A1 ; setup loop count in A1

4 .) ZERO .S1 A8 ; init A8 for accumulation

5 .) LDH .D1 *A4++,A2 ; x[n]

6 .) LDH .D2 *B4++,B2 ; h[0]

7 .) NOP 4

8 .) MPY .M1x A2,B2,A7 ; A7=x[n]*h[0]

9 .) NOP

10.) ADD .L1 A7,A8,A8 ; accumlate in A8

11.)

12.)LOOP: ; start of FIR loop

13.) MV .L1 A2,A3 ; used to update input vector x

14.) LDH .D1 *A4,A2 ; A2=x[n-k] k=1,...,N

15.) LDH .D2 *B4++,B2 ; B2=h[k] k=1,...,N

16.) NOP 4

17.) STH .D1 A3,*A4++ ; update input vector, inc x[k]

18.) MPY .M1x A2,B2,A7 ; A7=h[k]*x[n-k]

19.) NOP

20.) ADD .L1 A7,A8,A8 ; accumlate in A8

21.) SUB .S1 A1,1,A1 ; decrement loop count A1

22.)

23.) [A1] B .S2 LOOP ; branch to loop if A1 # 0

24.) NOP 5

25.)

26.) MV .L1 A8,A4 ; result returned in A4

27.) B .S2 B3 ; return addr to calling routine

28.) NOP 5

Figure 9: Listing of FIR asm func.asm

The function FIR asm func.asm is called from the C program FIR asm.c in Figure 10.

The FIR filter FIR asm func.asm may be optimized in the same way as the inner product
function was optimized in the last lab. An optimized version of this program can be found on
the class webpage as the FIR asm opt.asm. It is left to the student to examine the optimized

24

/*1 */ //FIR_asm.c FIR C program calling ASM function FIR_asm_func.asm

/*2 */ #include "DSK6713_aic23.h"

/*3 */ #include "LPF1500.cof" // LPF 1500 Hz cutoff

/*4 */ int yn = 0; // initialize filter’s output

/*5 */ short x[N+1]; // input samples (N+1 samples)

/*6 */ Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; // sampling frequency

/*7 */ interrupt void c_int11() // ISR

/*8 */ {

/*9 */ x[0] = input_left_sample(); // newest sample @ top of buffer

/*10*/ yn = FIR_asm_func(x,h,N); // to asm func through A4,B4,A6

/*11*/ output_left_sample((short)(yn >> 15));// scale output filter

/*12*/

/*13*/ return;

/*14*/ }

/*15*/

/*16*/ void main()

/*17*/ {

/*18*/ short i;

/*19*/

/*20*/ for (i = 0; i<N; i++)

/*21*/ x[i] = 0; // init buffer for delays

/*22*/

/*23*/ comm_intr(); // init DSK, codec, McBSP

/*24*/ while(1); // infinite loop

/*25*/ }

Figure 10: Listing of FIR asm.c

assembly code. Create the projects FIR asm and FIR asm opt; download and examine the the
accompanying files from the class webpage

Assignment

11. Build the executable files FIR asm.out and FIR asm opt.out. Implement one of the
fixed-point FIR filters designed earlier to make sure that both algorithms are working
properly. Briefly explain what changes were made to FIR asm func.asm to optimize it.

12. Briefly explain how each CPU core register (e.g. A0-A15 and B0-B15) is being used
in FIR asm func.asm. Create a linear assembly version of FIR asm func.asm using
meaningful names for each register. Implement it on the DSK. Include a copy of your
linear assembly function and an explanation of how each register is being used.

4.8 Circular Buffers on the TMS320C6713

The most efficient way to code FIR filters is to use circular buffers. The idea of circular buffers
is that once you get to the end of a buffer, you wrap around to the first element of the buffer.
We will use a circular buffer to hold our inputs. The advantage to this is that we will not need to
update the input buffer (x[n]) after each output has been calculated. Instead, as a new sample

25

is read in, it is stored in the memory location of the oldest sample, and then the current output
is calculated and sent to the codec. The memory management of circular buffers is as follows.

Array Index h[] x[]

0 h[0] x[n-newest]

1 h[1] x[n-newest+1]

...
...

...

x[n-1]

newest x[n]

oldest x[n-N+1]

x[n-N+2]

...
...

...

N-2 h[N-2] x[n-newest-21]

N-1 h[N-1] x[n-newest-1]

Memory Management Using Circular Buffers. Adapted from [8].

The twist on this story is that we want to increment up in memory locations through our circular
buffer x[], but the first input sample that we will access will be x[n-N]. This involves working
backwards (in relation to the other FIR algorithms) through our input array. As a result, we
must go backwards (in relation to the other FIR algorithms) through the the coefficient array,
h[]. This is done by starting at the bottom of the coefficient array, h[N], and decrementing
our way back to the top of the array. At the same time, we increment forward through the
input array. This is done since we are not storing our input samples in reverse order (as we did
in FIR.c, see Figure 8). To see this, let’s examine the an assembly coded FIR filter that uses
circular buffers. See Figure 11 below.

In Figure 11, lines 13, 15 and 16 are used to align the filter coefficient register with the bottom
of the coefficient array h[n]. Line 13 accounts for the 16-bit signed integer filter coefficients

26

; FIR_asm_circ_func.asm

; asm function called from C to implement fixed-point FIR filter

; using circular addressing

; A4=newest sample, B4=coefficient address, A6=filter order

; input samples organized: x[n]...x[n-N]

; coefficients as h[0]...h[N]

1 .) .def _FIR_asm_circ_func

2 .) .def last_addr

3 .) .def delays

4 .) .sect "circdata" ; circular data section

5 .) .align 256 ; align delay buffer 256-byte boundary

6 .) delays .space 256 ; init 256-byte buffer with 0’s

7 .) last_addr .int last_addr-1 ; point to input buffer

8 .)

9 .) .text ; code section

10.) _FIR_asm_circ_func: ; FIR function using circ addr

11.) ADD A6,1,A6 ; duration N+1 samples

12.) MV A6,A1 ; setup loop count

13.) MPY A6,2,A6 ; 2-byte filter coeff.

14.) ZERO A8 ; init A8 for accum. (NOP for MPY)

15.) ADD A6,B4,B4 ; go to bottom of filter buffer

16.) SUB B4,1,B4 ; align with bottom of filter buffer

17.) MVKL 0x00070040,B6 ; select A7 as pointer and BK0

18.) MVKH 0x00070040,B6 ; BK0 for 256 bytes (128 shorts)

19.) MVC B6,AMR ; set address mode register AMR

20.) MVK last_addr,A9 ; A9=last circ addr(lower 16 bits)

21.) MVKH last_addr,A9 ; last circ addr (higher 16 bits)

22.) LDW *A9,A7 ; A5=last circ addr

23.) NOP 4

24.) STH A4,*A7++ ; newest sample to last address

25.) LOOP: ; start of FIR loop

26.) LDH .D1 *A7++,A2 ; A2=x[n-k] k=1,...,N

27.) || LDH .D2 *B4--,B2 ; B2=h[k] k=1,...,N

28.) SUB .S1 A1,1,A1 ; decrement loop count

29.) [A1] B .S2 LOOP ; branch to loop if count # 0

30.) NOP 2 ; 3rd and 4th NOPs for LDH

31.) MPY .M1x A2,B2,A6 ; A7=h[k]*x[n-k]

32.) NOP

33.) ADD .L1 A6,A8,A8 ; accumlate in A8

34.) STW A7,*A9 ; store last circ addr to last_addr

35.) B .S2 B3 ; return addr to calling routine

36.) MV .L1 A8,A4 ; result returned in A4

37.) NOP 4

Figure 11: Listing of FIR asm circ func.asm

(2 bytes = 16 bits) and lines 15 and 16 search to the end of the buffer. From here, the loop
works exactly as it did before. Here, register A5 has been configured to be a circular buffer of
length 256 bytes (this configuration will be explained shortly). When the register A5 is at the
last memory location in the buffer x[n], it will automatically reset to the first memory location

27

in the buffer when the it is incremented (see the command *A5++ in line 26).

Circular buffers require extra initialization to work properly. First, the memory address of the
first memory location of a circular buffer must be aligned with an address boundary. In our
case, we have 128 16-bit filter coefficients that take up 256 bytes of memory. By aligning with
a 256-bit address boundary5, the first memory address will be X100 in hexadecimal, where X
is some number6. Now as a program increments through the memory addresses, it will reach
the last element of the buffer at memory location X1FE (hex). Incrementing this address would
yield X200 (hex), but a circular buffer will not allow this addition to carryover into bit 9 of the
memory address, so the result will be X100 (hex) and not X200 (hex). This will align the pointer
in A5 to the top of the buffer without programmer intervention. Basically, circular addressing
freezes a certain number of most significant bits in a register and ignores the carryovers from
addition. These types of registers are referred to as circular registers, while non-circular registers
are referred to as linear registers.

In assembly code, the input buffer that holds x[n] is aligned with a 256-bit boundary in line 12.
Next, the register A5 must be initialized to act as circular buffer for a 256-bit buffer. This is
done by setting the address mode register (AMR) in the CPU core. In this example, we loaded
a hexadecimal number with this information into the register B6 by using the move constant
commands MVK and MVKH, where MVK moves the lower 16-bits of the constant into B6 (line 26)
and MVKH moves the higher 16-bits into B6 (line 27). This 32-bit number in B6 is then stored
in the AMR register using the move constant command MVC in line 29. NB: The move constant
command is the only way to write to the specialized CPU core registers like the AMR.

The next step in this program is to store the current (read in) data sample into the memory
location of the oldest sample in the circular buffer. Here, a global variable last addr, which is
defined on line 13, is used to hold the location of the last input sample. When this program is
called, only the new sample (16-bit signed integer) is passed to the function. Lines 34 through
36 are used to store the current sample in the memory location of the oldest sample. The pointer
in the circular register A5 is then incremented to the next valid memory location within the
circular buffer.

This program requires a slightly different C program. The C program no longer needs an array
to hold the inputs, and therefore, only needs to send the current input sample to the function
FIR asm circ func.asm. Figure 12 contains a listing of the C function that calls a FIR assembly
coded program that uses circular buffers.

This circular buffer has been coded assuming the the filter impulse response is of duration 128
samples (127th order filter). For this code to work, the filter duration must be a power of two.
For example, if the filter duration were changed to 32 samples, the program would need to be
altered so that the input samples were aligned to a 64-bit boundary and the AMR would need
to be configured to handle a 64-bit circular register (instead of a 256-bit register). Only registers
A4-A7 and B4-B7 may be initialized to due circular addressing. To learn more about circular
addressing and initializing the AMR, see [7], [1], and [8].

Circular buffers are the fastest way to implement FIR filters, but this speed will not be necessary
for the projects implemented in this class. Nonetheless, you should try to implement these
whenever possible.

5Each byte of memory is addressed by one bit in a memory address.
6In binary, this number is XXXX XXX1 0000 0000, where bit 9 (29 = 256) is the boundary that the memory

address has been aligned to.

28

/*1 */ // FIR_asm_circ.c C program calling asm function using a circular buffer

/*2 */ #include "DSK6713_aic23.h"

/*3 */ #include "LPF1500_128.cof" // LPF, 1500 Hz cutoff

/*4 */ int yn = 0; short yn_short=0; // init filter’s output

/*5 */ Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; // sampling frequency

/*6 */ interrupt void c_int11() // ISR

/*7 */ {

/*8 */ short sample_data;

/*9 */

/*10*/ sample_data = input_left_sample(); // newest input sample data

/*11*/ yn = FIR_asm_circ_func(sample_data,h,N);

/*12*/ yn_short = (short) (yn>>15); // asm func passing to A4,B4,A6

/*13*/ output_left_sample(yn_short); // filter’s output

/*14*/ return; // return to calling function

/*15*/ }

/*16*/

/*17*/ void main()

/*18*/ {

/*19*/ comm_intr(); // init DSK, codec, McBSP

/*20*/ while(1); // infinite loop

/*21*/ }

Figure 12: Listing of FIR asm circ.c

5 End Notes

In this lab, we explored some simple techniques for designing and implementing FIR filters. In
general, FIR filters are used when a linear phase is required. Also FIR filters give an insight to
how the zeros of a transfer function affect the frequency response of a filter. We will use these
filters in later labs when Hilbert transformers and differentiators are required.

Lab Suggestions for Course Project

1. Assembly code FIR filters that use the floating-point instructions available for the C6713.
2. Implement circular buffers for an N order filter, where N + 1 is not a power of two.
3. Design Least-Squares FIR filters (Farden/Scharf designs [5]) by hand. Explain what the

weighting functions do and how they affect the frequency response of your filter.

29

References

[1] R. Chassaing, Digital Signal Processing and Applications with the C6713 and C6416 DSK.
Wiley, New Jersey, 2005.

[2] Colorado State University, Fort Collins, CO. Signals and Systems Laboratory 10: Sampling,
Reconstruction, and Rate Conversion, 2001.

[3] Colorado State University, Fort Collins, CO. Signals and Systems Laboratory 5: Periodic
Signals and Fourier Series, 2001.

[4] Colorado State University, Fort Collins, CO. Signals and Systems Laboratory 9: The Z
Transform, the DTFT, and Digital Filters, 2001.

[5] D. C. Farden and L.L. Scharf. Statistical design of nonrecursive digital filters. IEEE Trans-
actions on Acoustics, Speech, and Signal Processing, 3(22):188–196, June 1974.

[6] Alan V. Oppenheim and Ronald W. Schafer. Discrete-Time Signal Processing. Prentice
Hall, Uper Saddle River, NJ, 1989.

[7] Texas Instruments, Dallas, TX, TMS320C6000 CPU and Instruction Set Reference,
SPRU189G, 2006.

[8] Steven A. Tretter. Communication Design Using DSP Algorithms: With Laboratory Exper-
iments for the TMS320C6701 and TMS320C6711. Kluwer Academic/Plenum Publishers,
New York, 2003.

30

	Introduction
	Discrete-Time Digital Filters
	Causal Linear Phase FIR Filters

	FIR Filter Design Methods
	Designing a Lowpass Filter Using Fourier Methods
	Windowing Methods for FIR Filter Design
	Specific FIR Filter Designs Using Windowing Methods
	Example: Discrete-Time Differentiator
	Example: Discrete-Time Hilbert Transformers

	Zero Placements in a Transfer Function

	FIR Filter Design Using MATLAB SPTOOL
	FIR Implementation on the C6713 DSK Using C and Assembly
	FIR Filter Design using MATLAB - Equiripple FIR *
	FIR Filter Design - Notch Filter *
	FIR Filter Design - Zero Placement *
	FIR Filter Design - Delay *
	FIR Filter Design - Differentiator *
	FIR Filter Design - Hilbert Transformer *
	C Callable Assembly Code for Implementing FIR Filters *
	Circular Buffers on the TMS320C6713

	End Notes

