REAL-TIME DSP LABORATORY 3:
Assembly and Linear Assembly on the C6713 DSK

Contents
1 Introduction 1
2 Assembly Language on the C6713 1
3 Calculating a Finite Sum using C and Assembly Code 3
4 Calculating a Finite Sum using Linear Assembly* 9
4.1 Assignment 1 L L. e e e e e e e 11
5 Multiply and Accumulate in Assembly* 11
5.1 Assignment 2o Lo e e e e e e e e e e 14
5.2 Assignment 3 L e e 14
5.3 Assignment 4 L Lo oL L e e e e e e e e e 14
6 Optimizing Assembly Code 15
7 End Notes 16
Note: Starred sections contain assigned tasks to be written up in the report.

1 Introduction

DSP programming in assembly code is essential for the efficient coding of algorithms in DSP
hardware. Moreover, it brings insight into how these algorithms actually work at the register
level. Much of this insight is concealed in C programs.

In general, we will use a C program to communicate with the DSK board, but with a C program,
we can call C-coded functions, assembly-coded functions, or linear assembly-coded functions to
implement DSP algorithms.

The examples in this lab will not have any real-time constraints, but future labs in digital
filtering will, so we will explore the idea of efficient coding of functions using assembly and
linear assembly coding. In this lab, you will study

e assembly and linear assembly coding of functions that can be called from a C program,
e multiplication and accumulation in assembly and linear assembly, and
e optimization of assembly language code.

2 Assembly Language on the C6713

Using assembly code, unlike C code, you have direct control over the flow of data through the
DSP core. Along with optimization advantages, however, this brings the disadvantage that the
programming language used is specific to the hardware and the assembler'. In our case, the
assembler that we use is specific to TI’s C6000 series of DSP’s and to TI's CCS. A second
cost of assembly programming is that development is slower than coding in C. Therefore, it

!This is not an issue in C, since the American National Standards Institute (ANSI) created a standard for the
C programming language called ANSI C, which is used virtually everywhere (including CCS).

is normally reserved for time-critical operations, particularly those used over and over such as
multiply-accumulate (MAC).

The DSP Core

In the C6713 DSP core, there are two Data Path Register Files labelled Data Path A and Data
Path B (See Figure 1 below). In each path, there are four Functional Units. These include

e .L for logical and arithmetic operations,

e .S for branch, bit manipulations and arithmetic operations,

e .M for multiply operations, and

e .D for data transfers (loading/storing) and arithmetic operations.

In hardware, the eight functional units consist of

e the four fixed/floating-point arithmetic logic units (ALUs): .L1, .L2, .S1, and .S2,
e the two fixed/floating-point multipliers: .M1 and .M2, and
e the two fixed-point ALUs: .D1 and .D2.

These functional units can execute instructions in parallel during one clock cycle. There are a
total of 8 possible instructions (4 in each data path) that can be executed in one clock cycle. Since
the CPU is operating at 225MHz, it is possible to execute, in principle, 1800 million instructions
per second (MIPS), provided 8 instructions are operating in parallel. The functional units .S,
.L, and .M can handle floating point operations, which gives a maximum of 1350 million floating-
point operations per second (MFLOPS)[6]. These terms are often associated with DSP chips,
but they are often misleading since they are maximum processing rates that can only be achieved
under special circumstances. The importance of the different functional units and data paths
will be seen in assembly language programs we write, where the specific path may be designated
for each instruction. We will explore this in assembly language programs that follow.

In each data path (A or B) on the DSP chip, there is a set of sixteen 32-bit registers, namely
A0-A15 for path A and B0O-B15 for path B. Any of these registers can be used to store values
during execution of a program. By convention, when an assembly function is called from C,
the values passed to the function will be stored in specific registers. The first 10 arguments
passed to an assembly function will be stored (in the following order) to registers A4, B4, A6,
B6, A8, B8, A10, B10, A12, B12. Any additional arguments will be stored in a stack. The even
registers are used when 32-bits of data (or less) are being passed to each register. When a
64-bit (double precision floating-point number) is passed to a function, it is stored in adjoining
registers (e.g. A4:A5, B4:B5, A6:A7, etc.) [5]. Upon returning from a called function, only one
value may be returned. By convention, the value in register A4 will be returned. If no value is
to be returned, then the C program that called the function will ignore the value in register A4.
When a project is built and loaded onto the DSK, the program instructions will be organized
in blocks of memory for each function. Therefore, when a function is called, the program will
branch (jump) to a different part of the program memory. When a branch to a function (or
interrupt) is made, the current execution state is saved. This is done by the DSP assembler,
which stores the current memory location (in the program memory) to the register B3 before the
branch occurs. Upon completion of a function (or interrupt), the program will branch back to
the calling function by making a branch to the memory address stored in B3, thus returning the
execution state of the calling function. To illustrate this, assume that a C coded program called
the assembly coded function ans = myfunc(a,b,c). In this case, the value a would be stored
in (DSP core) register A4, the value b would be stored in register B4, and the value ¢ would be

TMS320C6713B
FLOATING-POINT DIGITAL SIGNAL PROCESSOR

SPRSZ94B - QCTOBER 2005 - REVISED JUNE 2006

functional block and CPU (DSP core) diagram

Digital Signal Processor
32
EMIF L1P Cache
L;fr:::yﬂ Direct Mapped
4 Banks 4K Bytes Total
McASPT [+ BAK Bytes
Total t
CETX™ CPU
[upto
MeASPR A¥May) Instruction Fetch Contral
Instruction Dispatch Register:
McBSPT [- Contral
- Instruction Decode Logie
Data Path A Data Path B Test
o [4 register Fitn 8 Register Fe | [nziecan || |,
= | | | | | Emulation
Z
- Enhanced Iterry
£ EEI S |wrtlsitfmat] o1 ||| oz fmat] s2t] Lzt m.rﬂ' e
= Controller { {
é (16 channal)| | |
[E1="I mas L2 L1D Cache
Memary 2-Way
192K St Associative
m aves —
Timert sl Clock Generator and PLL P
xd through x25 Muttiplier ““I'_";:I o
I through 132 Dividers
GPIO -+
18 R PR

T In addition to fixed-point instructions, these functional units exscue floating-point instructions

EMIF interfaces fo McBSPs interface io McASPs interface to:

-SDRAM -EP| Control Port =125 Multichanmel ADC, DAC, Codec, DIR
-5B5RAM =High-Speed TDM Codecs =DIT: Multiple Outputs

-SRAM =ACHY Codecs

—ROM/Flash, and -Sefial EEPROM

= devices

Figure 1: C6713 DSP chip and CPU layout, taken from [6].

stored in register A6. Upon completion of the myfunc(), the value stored in register A4 would
be stored in the (C program) variable ans. The next two programming examples should clarify
this discussion.

3 Calculating a Finite Sum using C and Assembly Code

N

The first assembly language program we shall study computes the finite sum > k. To begin,
k=1

let’s examine a C code program that computes a finite sum. Create a project sum_C by cloning

a clean template project. Delete all the ¢ and asm source files.

Copy or import the C source code file sum_C.c. Build this project, load sum_C.out onto the
DSK, and run this project to verify that the output on the bottom of the screen reads Sum = 6.

When the program completes execution, it should halt showing a Disassembly window with
a bunch of assembly code lines shown (the numbers may differ in your display). The relevant
region is:

00007400 C$$EXIT, abort:

00007400 00000000 NOP

00007404 00000090 B.S1 0x7404
00007408 00008000 NOP 5
0000740C 00000000 NOP

00007410 00000000 NOP

with an arrow showing the nezt line to be executed, pointing at line 0007408. The program
stopped on line 0x7404; this line is a branch back to itself, i.e. in infinite loop. If you click Run
again, the execution point will not move; in order to run the program again, you will need to
click Debug->Restart and then Run. Notice that before you click Run, the disassembly window
will show the program to be in c_int00. This system interrupt, not accessible by the user, is
the normal starting point for C programs.

Now we look at the actual program. Open up the source code file sum_C.c in CCS (shown in
Figure 2) and examine it.

The first line of code (after the comments) includes the pre-compiled ANSI C “standard in-
put/output” header file stdio.h (By convention, header files have the extension .h). This is
required for outputting messages to the computer screen. When sum_C.out was loaded onto
the DSK, CCS automatically created the window Stdio, which is where the output appears.
The second line of code is a prototype of the C function that will be called from the main()
function?. These are required in C because they tell the compiler which functions to expect and
what types of data will be passed into and out of these functions. A function prototype must
appear in a program before the function is coded. Usually, prototypes appear at the beginning
of the program where the global variables and preprocessor directives® appear. In the previous
labs that used a codec, functions such as input_sample () and output_sample() (located in the
file dsk6713_bsl.1lib) were used. Each of these functions has a prototype. By convention, when
there are many functions in a C program, a header file is used to store the prototypes, which is
included in the beginning part of the C program that contains the coded function. For example,
open up the file dsk6713_aic23.h. You should notice that the only purpose dsk6713_aic23.h
serves is to hold the prototypes of the codec-related functions coded in the board support library
dsk6713_bsl.lib. NB: When the word void appears as the first word of a prototype, it means
that nothing is being returned from these functions.

The main() function in this program consists of two lines of code (see lines 25 and 26). The
first line passes the value N to the function sum_c_func() which returns a value that is stored in

2A prototype for a C function is simply the first line of the function with a semicolon at the end of it. For
example, compare lines 5 and 10 of Figure 2. Prototypes must be declared before the main() function and usually
appear after the preprocessor directives (#include and #define).

3Preprocessor directives are lines included in the code of programs that are not program statements but
directives for the preprocessor. Usually, they are indicated by #. The two main ones used in this course are the
#include directive and the #define directive. The #include directive tells the preprocessor to replace the line
with code from the function given. The #define directive tells the preprocessor to replace all instances of variable
with the specified value. In both cases, these directives are performed before the code is compiled.

/*x1 x/ // sum_C.c

/*2 =/ // calculates a sum by calling a C function

/*3 */

/*4 =/ #include <stdio.h> // required for printing output
/*5 x/ short sum_c_func(short k); // prototype for C function
/%6 */

/*7 */ short N=3; // number of integers to sum
/%8 *x/ short sum; // store value returned from sumcfunc
/%9 */

/*10%/ short sum_c_func(short k)

/x11x/ {

/*12%/ short i;

/*13*/ short total = 0;

/*14%/

/*15%/ for (i=k; i>=0; i--) // sum from top to bottom
/x16%/ |

/*17%x/ total += 1i;

/*18%/ }

/*19%/

/*20*%/ return(total);

/*21%/ }

/*22%/

/*23%/ void main()

/*24x/ {

/*25%/ sum = sum_c_func(N); // call sum_c_func to calculate sum
/*26%/ printf("Sum = %d", sum); // print result

/*27%/ }

Figure 2: Listing of sum C.c

the variable sum. The second line prints the result in the window Stdio in CCS. To learn more

2

about the syntax of the printf () function (and its counterpart scanf ()) refer to [3].

Functions such as sum_c_func() are similar to interrupts in the sense that the program saves
the current execution state in register B3, branches to the section of code where the function (or
interrupt) is located, executes the function (or interrupt), and then returns to the execution state
stored in B3 upon completion. The difference is that a function is executed only after it has been
called, whereas an interrupt is processed whenever an interrupt source initiates it. The actual
steps involved in executing a function (or interrupt) are not well displayed in C. In assembly,
however, this process is drawn out step-by-step. This may initially seem like a drawback, but it
leads to reduced code size and invaluable insights about how a process really works. Let’s look
at an example of how the function sum_c_func() could be coded as an assembly function. See
Figure 3, which we will annotate shortly.

This function can be called from a C source code, which is how we will use assembly code in this
course’. The C source that calls this function looks almost identical to the code from sum_C.c,
except that the function prototype (line 5 of Figure 2)) has been replaced with an external

4For an example of a complete assembly program on the DSK, see [1, pg 95-96].

1.) ; sum_asm_ func.asm

2.) ; assembly function to find n+(n-1)+...+1+40

3.)

4.) .def _sum_asm_func ; asm function called from C
5.) _sum_asm_func: MV .L1 A4, Al ; setup N as loop counter in Al
6.)

7.) LOOP: SUB .S1 Al,1,Al ; decrement loop counter Al
8.) ADD L1 A4,Al1,A4 ; accumulate in A4

9.) [Al] B .S2 LOOP ; branch to LOOP if Al#0
10.) NOP 5 ; five NOPs for delay slots
11.) B .S2 B3 ; return to calling routine
12.) NOP 5 ; five NOPs for delay slots
13.) .end

Figure 3: Listing of sum_asm func.asm. Adapted from [1].

declaration and the name of the function to be called has been changed. See Figure 4 for a
listing of the C code sum_asm.c which calls the assembly language function sum_asm_func ().

/*1 */ // sum_asm.c

/*2 */ // Calculates a sum by calling an assembly function

/*3 */

/*4 */ #include <stdio.h>

/*5 */ extern short sum_asm_func(); // declare external assembly function
/%6 */

/*7 x/ short N=3; // number of integers to sum

/%8 *x/ short sum; // value returned from sum_asm_func
/%9 */

/*10%/ main()

/x11x/ {

/*12%/ sum = sum_asm_func(N); // call sum_asm_func to calculate sum
/*13%/ printf("Sum = %d", sum); // print result

/*14%/ }

Figure 4: Listing of sum asm.c. Adapted from [1].

Download a Project

Create a workspace for Lab 3 and create a new project sum_asm by importing and renam-
ing a clean template project. Delete the old top-level file and replace it with sum_asm.c and
sum_asm_func.asm from the webpage. Delete or exclude from build the Vectors_intr.asm and
Vectors poll.asn files. In CCS, build this project, load sum asm.out onto the DSK, and run
this project to verify that it produces the same result as sum C.out. When sum_asm.out was
loaded onto the DSK, the global variables were stored at a linker assigned memory location, the
compiled and assembled code for the main() function were stored at a different linker assigned
memory location, and the assembled code for the function sum_asm_func() were stored at a
separate linker assigned memory location.

Annotating the Assembly Code

Line 4 in sum_asm_func.asm defines the starting point of the function sum_asm_func(), which
is located at line 5. By convention, when an assembly function is called from a C program, the

name of the assembly function is preceded by an underscore in its .asm file (see line 5 in Figure
3).

When the function call to sum_asm func(N) is made in the C program, the value N is moved
to register A4, and the current execution state of the main() function is written to register B3.
Then, the program branches to the starting point (memory location) of sum_asm func(). The
first command, MV A4,A1, copies (moves) the value in register A4 to register A1, so that the
value N is stored in both registers A1 and A4. This is done for two reasons. First, two registers
are required for this algorithm: one register, namely A4, is used to accumulate the sum and
the second register, namely A1, is used to determine the current value to add to the sum and
also to terminate the loop. The other reason for selecting register Al is that it can be used as
a conditional register, which will be discussed later. The loop in this assembly coded function
executes until A1l is equal to zero. Now, the value of N is located in A4 and the next value that
needs to be added is N-1, so Al is decremented by one. The command SUB A1,1,Al, reading
from left to right, takes the value in register A1, subtracts one from that value, and stores the
new value in register Al.

Next, we proceed into a loop, which was coded as a for loop in our C program. Notice that there
are no initial conditions that need to be met before entering the loop; therefore, this loop will
execute at least once’. The loop is coded in four lines. The first line (line 8 in Figure 3) adds
the current value in A1 to the sum in A4. Then, A1 is decremented by one. Finally, a decision is
made using a branch (B) statement. If [A1] is not equal to zero, the program will branch back
to the line with the label LOOP and continue to execute from there®. When the program returns
to the branch statement again, it re-tests Al to see if it equals zero. Once Al reaches zero, the
program will no longer branch back to the label LOOP. Instead, it will continue on to the next
instruction after the branch statement. Branch statements take six clock cycles to execute, so
they have five no operation (NOP) instructions following them. This is to ensure that no other
part of the program tries to use the .S2 data path during the branch. As a result, the program
execution will wait five clock cycles until the hardware decides whether to branch or not.

At this point, the function has calculated the sum and it is ready to return it to the function
from which is was called. The value being returned by this function must be in register A4.
The last instruction branches back to the calling function by branching to the memory address
stored in register B3, where B3 holds the execution state for the calling function.

Column Structure of Assembly Code

Assembly language programs have a structure that must be preserved. There are separate
columns for each part of the code. The basic column structure is [1]

Label || [] Instruction Unit Operands ; Comments.

The first column contains labels, such as LOOP. The second column designates instructions exe-
cuting in parallel, which we will explore later in this lab. The third column specifies conditional
registers associated with an instruction. The only registers that may be used as conditional
registers are BO, B1, B2, A1, and A2. All of the instructions in assembly may be conditional.
This means that any instruction (operating on any register) may or may not execute based on a
value in a conditional register. The two conditions that may be tested are whether the value in

5In older styles of programming such as BASIC, loops that executed at least once were called do-while loops.
5To set up a loop that branches only when A1 is equal to zero, replace [A1] with [1A1].

a conditional register is equal to zero or not equal to zero. The fourth column contains assembly
commands (instructions) like ADD, SUB, MPY, MV, etc. The fifth column specifies the functional
unit, such as .L1, that the instruction will use. This column is optional. If you do not specify the
data paths, the assembler will choose them for you, but it is good practice to assign these your-
self. The sixth column specifies the registers that the instructions will operate on. Depending
on the instruction, indirect addressing may be used to address the registers. Indirect addressing
includes pre- and post-incrementing the value in a register and memory location offsets. The
latter being used when the contents of a register point to the memory location of the data to be
processed. For a more comprehensive treatment of indirect addressing, see either [1] or [7]. The
last column is for appending comments. Any text on a line after a semicolon (;) in assembly
code is a comment and will be ignored by the assembler. These columns do not have to line up
perfectly, but at least one blank space must be left for each column that is empty. For ease of
readability, we will vertically align the columns as appropriate.

Use of Functional Units

The functional units in sum_asm_func.asm are chosen based on the location of the registers being
accessed. When the registers being accessed are located in data path A, the functional units
receive the suffix 1 (as in .L1, .S1, .M1, or .D1). Similarly, when the registers being accessed
are located in data path B, the functional units receive the suffix 2 (as in .L2, .S2, .M2, or .D2).
Some instructions can only be implemented on certain data paths. For example the branch to
register B3 (return from the function) can only be done by the functional unit .S2. This is the
case for most branch functions. The only exception is that branches to a label (such as B LOOP
in sum_asm_func.asm) can be done using either .S1 or .82. All other branch instructions must
be done on .82. For a list of instructions that can be implemented with each function unit, see

[5].

Break Points for Program Debugging

In CCS, the current values of the data path registers may be observed while the program is
executing. Reload the executable file sum_asm.out onto the DSK again to re-initialize the
hardware. This can be done by selecting the ‘File’ pull down menu and then selecting ‘Reload
Program’. Open up the file sum_asm func.asm in CCS. In the grey margin on the left double-
click the mouse on lines 6 and 8. Red dots should appear on these lines, signifying break points.
An executing program will stop at these break points, which will allow you to view the contents
of the registers at these points in the program. Go to the ‘View’ pull-down menu, select ‘CPU
Registers’, then select ‘Core registers’. A window should pop up on the lower right part of the
screen that shows the contents of the registers. Run the program. When execution stops, the
value 3 should appear in registers A1 and A4. Also, register B3 should contain the execution
state of the main() function at the time the program branched. In the window ‘Disassembly’
that was opened when you loaded the program, you should see the current program memory
location. This should agree with the program counter (PC) register in your ‘DSP core registers’
window. Continue to step through the program. Pay attention at each break point. Make sure
the correct value is stored in each register. Keep in mind that the instruction on the line of the
break point has not executed yet. This method of stepping through code, line-by-line, can be
very helpful when trying to debug an algorithm.

Use of Data Cross-Paths

Two data cross-paths are located in the DSP core that allow the registers in data paths A and
B to share data (one data path in each direction). These are denoted by an x at the end of the
functional units. For example, if you wanted to add the contents of A4 to B4 and store the result
in A7, you would use the following code:

ADD .L1x A4,B4,A7; note the use of spaces for the
; Label, ||, [], and operand columns

Here, the 1x suffix is used to tell the assembler that the final result will be stored in a register
located in data path A. If the result were to be stored in B7 instead of A7, the following code
would be used:

ADD .L2x A4,B4,B7

where the 2x suffix tells the assembler that the result will be stored in a register in data path
B. Since there are only two cross-data paths, there is a maximum of two instructions per cycle
that can use cross-paths. In the case where two cross-path instructions are being perform in one
clock cycle, they must write to different data paths (i.e. one of the functional units must have
the suffix 1x and the other must have the suffix 2x). Figure 5 implements the assembly code
of Figure 3 using cross-paths. For your own amusement, you can modify sum_asm_func.asm to
use cross-paths and verify that you get the same result. Also, try stepping through the code
line-by-line as before. Can you trace the algorithm through the different registers?

1.) ; sum_asm_func.asm using cross-paths and alternative branch instruction
2.) ; assembly function to find n+(n-1)+...+1+0

3.)

4.) .def _sum_asm_func ; asm function called from C
5.) _sum_asm_func: MV .L2x A4,Bl ; setup N as loop counter in Al
6.)

7.) LOOP: SUB .S2 B1,1,B1 ; decrement loop counter Al
8.) ADD .L1x A4,B1,A4 ; accumulate in A4

9.) [B1] B .S1 LOOP ; alternative branch unit .S1
10.) NOP 5 ; five NOPs for delay slots
11.) B .S2 B3 ; return to calling routine
12.) NOP 5 ; .52 must be used here

13.) .end

Figure 5: Listing of sum_asm_func.asm using data cross-paths and an alternate branch instruc-
tion

4 Calculating a Finite Sum using Linear Assembly*

Linear assembly code is very similar to assembly code except that data registers (A0-A15 and
B0-B15) and NOP instructions are not specified by the programmer. Instead, they assigned by
a highly optimized compiler. Figure 6 contains the linear assembly code for sum_asm_func.asm
of Figure 3.

As with an assembly program, the first line (not including comments) of a linear assembly
program begins with a definition (.def). Two new preprocessor directives are being used. They
are .cproc, which signifies the beginning of the linear assembly function, and .endproc, which
ends the linear assembly function. Line 5 of the function sum_sa_func() (.cproc N) tells the

1.) ; sum_sa func.sa

2.) ; linear assembly function to find n+(n-1)+...+1+0

3.)

4.) .def _sum sa_ func linear asm func called from C
5.) _sum_sa_ func: .cproc N start of linear asm function
6.) .reg sum, ctr asm optimizer directive

7.) MV N, ctr setup loop counter in ctr
8.) MV N, sum accumulate total in sum

9.)

10.) LOOP: SUB ctr,1,ctr decrement loop counter

11.) ADD sum, ctr, sum accumulate in sum

12.) [ctr] B LOOP ; branch to loop if ctr # 0
13.) .return sum ; return sum to calling func
14.) .endproc ; end of linear asm function

Figure 6: Listing of sum_sa_func.sa. Adapted from [1].

compiler that one argument will be passed into the function and it will be labelled N. Line 6
tells the compiler that two registers will be needed to hold data and it labels these registers
sum and ctr. The next two lines store the argument N into DSP core registers. From here, the
function proceeds exactly as in sum_asm_func.asm. The commands work exactly like they do
in assembly. The differences are that you do not have to specify the specific data registers, and
you do not have to account for delay slots (NOPs). A highly optimized compiler will assign the
best possible data register to each instruction and it will insert NOPs where appropriate. Here,
the programmer is still allowed to direct the data through DSP core registers, but is not forced
to specify the registers at each point. This will reduce development time. In more complicated
programs, the choice of using C, linear assembly, or assembly code becomes a trade-off between
coding effort and coding efficiency. Linear assembly in many cases can provide a good balance
between the two.

As a side note on linear assembly code, the labels associated with the registers and names of the
variables being passed to a linear assembly function are up to the programmer to choose. The
same algorithm in Figure 6 could be coded as in Figure 7 below, taken from [1].

1.) ; sum_sa func.sa Linear assembly function called from C to find sum

2.)

3.) .def _sum_sa_func Linear ASM func called from C
4.) _sum sa_ func: .cproc number start of linear ASM function
5.) .reg a,b asm optimizer directive

6.) mv number, b set-up loop counter in b

7.) mv number, a move number to a

8.)

9.) loop: sub b,1,b decrement loop counter

10.) add a,b,a n + (n-1)

11.) [b] b loop branch to loop if count # 0
12.) .return sum return sum to calling funct
13.) .endproc end of linear asm function

Figure 7: Alternative way of coding sum_sa_func.sa. Adapted from [1].

Notice that the assembly commands do not have to be capitalized. Also, the names of the
registers and the variables being passed can be labelled however you want to label them (provided
you do not use any invalid characters). It is, however, recommended that you choose meaningful
names for these registers so that your program is easy to follow. For example, in Figure 6, the
register ctr is for the loop counter, the register sum holds the accumulated sum, and the input
variable N is the number N being passed by the calling function.

10

4.1 Assignment 1

The factorial of a number N is defined to be Nl = N % (N —1)*...x 1. Create a C program
that calls a C function to calculate N!. Then, write the factorial function in both assembly
and linear assembly. Explain your programs and include copies of your code. (HINT: Refer
to [5] for the instruction MPY, which will multiply two numbers in assembly.)

5 Multiply and Accumulate in Assembly*

The process of multiplying two numbers and adding them to a sum is known as a multiply and
accumulate (MAC) operation. In digital signal processing, most algorithms require MAC oper-
ations. In the previous example, we introduced C callable assembly functions that accumulated
a value in a DSP core register. The next step is to multiply two values and accumulate them in
a register (MAC). To introduce this idea of multiply and accumulate (MAC), we will explore a
C callable assembly function that will calculate the standard inner product of two vectors.

We use the notation £ € R™ to describe the column vector z that contains n real numbers.
Given two vectors z,y € R", we define the standard inner product to be’

n n
<£7g>:£Tg:[$1---$n} Dl =ma Ty = Y Ty (1)
=1
Yn !

Thus, the inner product of two vectors is the sum of the products of their elements.
A C Program for Calculating an Inner Product on the C6713 DSK

A vector in an inner product space is an array in software and a set of memory registers in
hardware. An array of data is stored in adjacent memory registers on the DSP chip, so the idea
of a vector being a collection of elements in a specific order is similar to an array, which is a
collection of elements stored in memory registers in a specific order. Lets explore this idea on
the DSK.

Examine the C code in Figure 8 for computing the inner product (z,y) for z = [1,2, 3, 417 and
y = [0,2,4, 6]T. Pay attention to lines 7 and 8, which define the two data arrays x and y. In
this example, the function inprod C_func() is being passed three arguments and will return
one. When a function is called, only one value for each argument can be passed to the function.
The memory locations of x[0] and y[0] are passed to the function. This fact is hidden in C
programming, since the function inprod_C_func() treats the variables a and b as though they
contain the entire array. As we will see in the assembly code implementation of this C function,
this is not the case. Within the function inprod_C_func(), there are two local variables, namely
sum and i. The variable i is used as a loop counter and array index for computing ncount
multiply and accumulate operations. The variable sum is used to accumulate. Notice that the

"The term inner product is used to describe a function of two vectors that has certain properties. The inner
product (z, g) = ng is referred to as the usual inner product or standard inner product. The notation z,y € R"

indicates that each of the vectors z and Y contains n real numbers. That is x = [ml .. mn]T belongs to R™, the
set of real n-tuples. For a more comprehensive treatment of inner products, see [2].

11

/*1 */ // inner_product_C.c
/*2 =/ // Calculates the inner product of two vectors

/%3 */

/*4 =/ int inprod_C_func(short *a, short *b, int ncount); // function prototype

/*5 */ #include <stdio.h> // for printf

/*6 x/ #define N 4 // # of data in each nxl vector
/*7 */ short x[N] = {1,2,3,4}; // define elements in 1st vector
/*8 =/ short y[N] = {0,2,4,6%}; // define elements in 2nd vector
/*9 x/ short inner_product; // to store inner product

/*10%/

/*11%/ int inprod_C_func(short *a, short *b, int ncount) // inner product function

/*12%/ {

/*x13%/ int sum = O; // init sum

/*x14%/ int i; // local var used in for loop
/*15%/

/*16%/ for (i = 0; i < ncount; i++)

/*x17x/ {

/*18%/ sum += al[i] * b[i]; // sum of products

/*19%/ }

/*20*/ return(sum) ; // return sum as result
/*21%/ }

/*22%/

/*23%/ main()

/*24x/ {

/*26%/ inner_product = inprod_C_func(x,y,N); // call inner_prod function

/*26%/ printf ("<x,y>
/*27%/ }

%d (decimal) \n", inner_product); // print result

Figure 8: Listing of inner _product_C.c. Adapted from [1].

multiply and accumulate operation is done in one line (see line 18 of Figure 8)%. Once the total
has been accumulated in the variable sum, the value in sum is returned to the calling function.
NB: The variables a, b, and ncount are local variables. A local variable of a function is a variable
that can only be accessed while executing the function.

An Assembly Program for Computing an Inner Product on the C6713 DSK

Consider Figure 9 below, which is an assembly version of the C function inprod C_func() in
Figure 8. Create a project inner product_asm’ and download the accompanying files from the
webpage. In CCS, build this project, reset the DSK, load inner product_asm.out onto the
DSK, and run this project to verify that if gives the same results as

inner _product_C.out. Open up and examine the file inprod_asm func.asm (shown in Figure

9).

When an array is passed to an asm function, the first memory location of the array is passed to
the function. Registers A4 and B4 hold the first memory locations for arrays x and y respectively.

8The command sum += a[i] * b[il; is shorthand notation for the multiply and accumulate operation sum
= sum + (a[i] * b[i]);. The MAC operation may be coded either way in C.

12

1.) ; inprod _asm func.asm

2.) ; Multiply two arrays. Called from inner prod asm.c

3.) ; Ad=x address,B4=y address,A6=count (size of array),B3=return address

4.)

5.) .def _inprod asm ; inner product function

6.) .text ; text section

7.) inprod asm MV Ao6,Al ; move loop count to Al

8.) B B ZERO A7 ; init A7 for accumulation

9.)

10.) LOOP LDH *Ad++,A2 ; A2=(x). A4 as address pointer
11.) LDH *B4++,B2 ; B2=(y). B4 as address pointer
12.) NOP 4 ; 4 delay slots for LDH

13.) MPY .Mlx B2,A2,A3 ; A3 = x *y

14.) NOP ; 1 delay slot for MPY

15.) ADD A3,A7,A7 ; sum of products in A7

16.) SUB Al,1,Al ; decrement loop counter

17.) [Al] B LOOP ; branch back to LOOP until A1=0
18.) NOP 5 ; 5 delay slots for branch

19.)

20.) MV A7,A4 ; Ad=result Ad=return register
21.) B B3 ; return from func to addr in B3
22.) NOP 5 ; 5 delay slots for branch

Figure 9: Listing of the function inprod_asm_func.asm. Adapted from [1].

The third argument passed to the function is the number of elements in each array. Since this
is not an array being passed to the function, the predefined value N = 4 is being passed to
register A6. Arrays are stored in contiguous blocks of memory, so accessing an array element
may be done by locating the the memory address of the first element, plus an offset. The offset
value will depend on the type of data being accessed. The memory on the C6713 chip is byte
addressable (i.e. split into 8-bit blocks). In the case of 16-bit shorts, a single 16-bit number will
be stored in two adjacent memory locations, with the most significant 8 bits in one location and
the least significant 8 bits in another. For example, if A4 holds the memory location of the first
element of an array of 16-bit numbers, then the memory address of the second element would
be A4+(2), the memory address of the third element would be A4+(4), and so on. To access the
contents of a memory location, pointers are used. In assembly code the notation *A4 points to
the contents of the memory location specified by the address (number) in A4. By convention,
the * operator is used to point to a memory location and & is used to refer to the address of a
variable. In ANSI C, the two operators are used together to indirectly address data. In CCS,
the & does not need to proceed an array variable that is being passed to a function. (NB: A
register that holds the memory location of the desired value, but not the value itself is referred
to as a pointer.) This will be illustrated shortly.

You should recognize most of the commands in Figure 9. Here, register A3 is used to hold the
result of the multiply operation and register A7 is used to accumulate the sum of products.
Register A7 is the equivalent of the variable sum in inprod C_func, see Figure 8. Once the loop
is completed, the final result is moved from A7 to A4 so that it will be returned to the calling
function. Finally, a branch back to the calling routine (branch to B3) is made.

In Figure 9, within the loop, the lines 10 and 11 may be new to you. These two lines load the
current values in arrays x and y into temporary registers. Consider line 10: ‘LDH *A4++,A2’.
The command ‘LDH’ stands for load half word or load 16 bits worth of data. Recall, the
DSP core registers are 32 bit registers, so the (full) word length is 32 bits. Here, A4 contains
the memory location of the current value in the array x, so the notation *A4++,A2 tells the
assembler to point to the memory location stored in A4, and load the value that is stored in the

13

memory address of A4 into the register A2. The ++ after A4 tells the assembler to increment the
memory address in A4 to the next valid memory address. Since the values that are stored in the
array x are of type short (16-bit signed integers), they take up two bytes (8 bits = 1 byte) of
memory”. Therefore, this increment operator adds two to the current value of A4. Since the ++
is placed after the register A4, the assembler will post-increment the value in A4. This means
the value in A4 is incremented after the load instruction is executed. This command could have
been split into two lines as follows:

LDH *A4,A2
ADD A4,2,A4

If the ++ had been placed before the register A4 (e.g. LDH *++A4,A2), then the address in A4
would have been incremented before the load (pre-incremented). This could be split into two
lines of code as follows:

ADD A4,2,A4
LDH =xA4,A2

The use of the ++ prefix/suffix is common practice when using indirect addressing. For a more
comprehensive treatment of indirect addressing, see [1]. Line 11 in Figure 9 is similar to line 10
except that it loads the data in vector y, by pointing to the memory address stored in register
B4. Line 13 uses the cross data paths between registers A and B. Since the final value of the
multiply operation will be stored in data path A, the functional unit is .M1x, rather than .M2x.

5.1 Assignment 2

Examine the function that is listed in Figure 9. Do the following;:

1. add functional units to each line of inprod asm func.asm where applicable; turn in
your updated code.

2. explain the function inprod_asm func.asm line-by-line in your own words.

5.2 Assignment 3

Re-load the project inner_product_asm onto the DSK. Open the file inprod_asm func.asm
and insert break points at lines 10,13, and 21. Keep track of the contents in registers A2, A3,
A4 A7, B2, and B4 at each loop iteration. Explain what is happening in the hardware.

5.3 Assignment 4

Download the linear assembly version of the inner product function from the class webpage
(project inner product_sa). Implement it on the DSK. Look at the code for the function
inner prod_sa_func(). Explain the similarities and differences between the linear assembly
function and the assembly function for calculating an inner product.

9Memory is broken up into 8 bit blocks known as bytes. Since there are 23 32-bit addressable memory
locations and each location is one byte, there are 4 x 23° bytes = 4Gb of addressable memory. NB: 2'° bytes =
1kb, 22° bytes = 1Mb, and 2% bytes = 1Gb, with the understanding that 1kb = 1024 bits, 1Mb = (1024)?, and

SO on.

14

6 Optimizing Assembly Code

Optimizing assembly code means scheduling events so that the DSP core is being utilized effi-
ciently on every clock cycle. In general, this will be difficult and time consuming, especially for
complicated algorithms. In this section, we will explore two optimization techniques: assigning
instructions to execute in parallel (during the same clock cycle on different functional units) and
inserting instructions into clock cycles that are designated no-operation (NOP). Other more
powerful and complicated procedures are available. So far, we have included all the NOP in-
structions required to idle the hardware while instructions that take more than one clock cycle
are executed. These are required so that a given functional unit is not accessed while it is exe-
cuting a multiple clock cycle instruction from a previous clock cycle. Without this protection,
an instruction that tries to access a functional unit that is in use will be ignored, which will
alter the intended algorithm and may cause the program to crash.

Since code optimization can be an advanced topic, we will only go through the basics, using one
example. Consider the function in Figure 9 and refer to Figure 10. There are five things that
we can do to optimize this code.

1.) ; inprod _asm_func_opt.asm

2.) ; Multiply two arrays. Called from inner prod asm.c

3.) ; Ad=x address,B4=y address,A6=count (size of array),B3=return address

4.) ; uses parallel instructions to optimize code.

5.)

6.) .def _inprod_asm func opt ; inner product function

7.) .text ; text section

8.) _inprod asm func opt MV L1 A6,Al ; move loop count -->Al

9.) | ZERO .S1 A7 ; init A7 for accumulation

10.)

11.) LOOP LDH .D1 *A4++,A2 ; A2=(x). A4 as address pointer
12.) | LDH .D2 *B4++,B2 ; B2=(y). B4 as address pointer
13.) SUB .S1 Al,1,Al ; decrement loop counter

14.) [Al] B .82 LOOP ; branch to LOOP after add

15.) NOP 2 ; 2 extra delay slots for LDH
16.) MPY .M1x B2,A2,A3 ; A3 = x *y

17.) NOP ; 1 delay slot for MPY

18.) ADD L1 A3,A7,A7 ; accum. in A7, then branch
19.)

20.) B .82 B3 ; return from func to addr in B3
21.) MV L1 A7,A4 ; Ad=result Ad=return register
22.) NOP 4 ; 4 extra delay slots for branch

Figure 10: Listing of an optimized inprod_asm func.asm. Adapted from [l].

The first set of modifications to Figure 9 designates instructions to execute in parallel. In-
structions that have double bars (|) in their second column are executed in parallel with the
instruction(s) on the previous line(s). The following instructions are designed to operate in
parallel:

1. The move instruction (MV on line 8) sets up the loop counter in A1 and the zeroing instruc-
tion (ZERO in line 9) initializes (sets to zero) the accumulating register A7. Each of these
instructions takes only one clock cycle and is being executed on a different functional unit,
so these instructions can execute in parallel.

2. Each of the two load half-word instructions (LDH) takes five clock cycles and operates
on a different data path, so these instructions can execute in parallel. (NB: Only the .D
functional unit can be used to load/store data, so a maximum of two load /store operations
is allowed to execute during a given clock cycle.)

15

The second set of modifications utilizes the delay slots (NOP) when possible. In particular, they
take advantage of the delay slots associated with branch instructions. Branch instructions take
six clock cycles to execute, and the branch will not occur until the sixth clock cycle has been
completed. This leads to the following rearrangements:

1. The loop counter (A1) needs to decrement each time the loop is executed, but where in
the loop cycle is not important. Since the decrementing of the loop counter is done by
functional unit .S1 and only takes one clock cycle, it can execute during one of the five
clock cycles needed to load a half-word using the .D functional unit.

2. The branch instruction will take six clock cycles to execute. Since the branch is a condi-
tional branch based on the decremented value of A1l it must occur after Al is decremented.
Therefore, it is moved to line 14. Now, two of four delay slots have be filled, so only 2
more NOP instruction are required

3. The final branch statement back to the calling function will also take six clock cycles, but
the final moving of the contents from the accumulation register A7 to the returning register
A4 will take only one cycle. The value in A4 after the sixth clock cycle will be the value
returned to the calling function. Therefore, the branch statement is started in line 20 of
Figure 10. Then, the final value is moved into A4 (the predetermined return register) in
line 21, which saves one clock cycle.

Now, let’s take a closer look at the optimized loop in Figure 10. The two load half-word com-
mands will begin during one clock cycle and it will be four more clock cycles before registers
A4 B4, A2 and B2 or functional units .D1 and .D2 will be available. During this time, the loop
counter (A1) will be updated on .81, then a six clock cycle branch will begin to process on .S2.
After an additional two NOP instructions, the load instructions will have finished, and registers
A2 and B2 will be available for multiplying. During the next two clock cycles, the two registers
A2 and B2 will be multiplied together and the result will be stored in A3. Finally, in one clock
cycle, the new value in A3 will be accumulated in A7 and the branch instruction will take effect,
sending the program back to the two load half-word instructions. The loop will repeat itself
until it is completed. It should be noted that the NOP instructions on lines 15 and 17 are required
since the instructions on the lines following them use registers that will not be ready until after
the clock cycles assigned by the NOP instructions have been exhausted.

This optimization requires careful planning of register use and tracking of branch statements.
To optimize larger programs, flow charts, dependency graphs, and schedule tables need to be
constructed. Examples of these can be found in [1] and [4]. Other optimization methods not
described here include the use of a C optimized compiler, intrinsic C functions, and software
pipelining. Intrinsic functions and the optimized compiler are for C programs only, and software
pipelining can only be used in assembly code. In future labs, we will use intrinsic functions,
but will not explore them. If you feel ambitious, you may use C compiler optimizations on your
programs.

7 End Notes

An FFT consists of the efficient computation of N inner products, in parallel, in lab or real-
time. An FIR filter consists of an unbounded number of inner products, computed sequentially

16

in real-time. Consequently, the insight we have gained in this lab for computing inner products
will be invaluable in subsequent labs.

Lab Suggestions for Course Project

e The most advanced and most efficient way to optimize code is to schedule events using
software pipelining. An advanced lab would explain software pipelining and require the
student to optimize all assembly language programs in the course, using software pipelin-
ing. For information on software pipelining, see [1], [7], or [5].

e Another way to schedule events, as well as interface the DSP chip in real-time, is to use
the DSP/BIOS. The DSP/BIOS is a software kernel that can be used to schedule events
on the DSK and can access any part of the internal memory without interfering with a
running application. There is much information available from TI’s website and in the
CCS help menus on using the DSP/BIOS.

References

1]

R. Chassaing, Digital Signal Processing and Applications with the C6713 and C6416 DSK.
Wiley, New Jersey, 2005.

Roger A. Horn and Charles R. Johnson. Matriz Analysis. Cambridge University Press, 1985.
Greg Perry. Absolute Beginners Guide to C. Pearson Education, 1984.

Texas Instruments, Dallas, TX. Guidelines for Software Development Efficiency on the
TMS320C6000 VelociTI Architecture, SPRA434, 1998.

Texas Instruments, Dallas, TX, TMS320C6000 CPU and Instruction Set Reference,
SPRU189G, 2006.

Texas Instruments, Dallas, TX. TMS320C6713B Floating-Point Digital Signal Processor,
SPRS294B, 2005.

Steven A. Tretter. Communication Design Using DSP Algorithms: With Laboratory Fxper-
iments for the TMS320C6701 and TMS320C6711. Kluwer Academic/Plenum Publishers,
New York, 2003.

17

	Introduction
	Assembly Language on the C6713
	Calculating a Finite Sum using C and Assembly Code
	Calculating a Finite Sum using Linear Assembly*
	Assignment 1

	Multiply and Accumulate in Assembly*
	Assignment 2
	Assignment 3
	Assignment 4

	Optimizing Assembly Code
	End Notes

