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1 Introduction

Digital signal processing, or DSP, is a rapidly growing industry within Electrical and Computer
Engineering. With processing power doubling every 18 months (according to Moore’s law), the
number of applications suitable for DSP is increasing at a comparable rate. In this course, our
aim is to show how mathematical algorithms for digital signal processing may be encoded for
implementation on programmable hardware.



In this first lab, you will become familiar with a development system for programming DSP
hardware. You will study:

e Code Composer Studio
e TMS320C6713 DSP chip and supporting chip set (DSK) architecture
e The C programming language

2 Hardware and Software

2.1 DSP Chip Manufacturers

Many companies produce DSP chips. Some of the more well known include Agere Systems,
Analog Devices, Motorola, Lucent Technologies, NEC, SGS-Thompson, Conexant, and Texas
Instruments [1], [2], [3]. For information on these companies, see [1] and [2]. In this course, we
will use DSP chips designed and manufactured by Texas Instruments (TI). These DSP chips
will be interfaced through Code Composer Studio (CCS) software developed by TI.

2.2 Code Composer Studio (CCS)

CCS is a powerful integrated development environment that provides a useful transition between
a high-level (C or assembly) DSP program and an on-board machine language program. CCS
consists of a set of software tools and libraries for developing DSP programs, compiling and
linking them into machine code, and writing them into memory on the DSP chip and on-board
external memory. It also contains diagnostic tools for analyzing and tracing algorithms as they
are being implemented on-board. In this class, we will always use CCS to develop, compile, and
link programs that will be downloaded from a PC to DSP hardware.

2.3 TMS320 DSP Chips

In 1983, Texas Instruments released their first generation of DSP chips, the TMS320 single-
chip DSP series. The first generation chips (Clx family) could execute an instruction in a
single 200-nanosecond (ns) instruction cycle. The current generation of TI DSPs includes the
C2000, C5000, and C6000 series, which can run up to 8 32-bit parallel instructions in one 4.44ns
instruction cycle, for an instruction rate of 1.8 - 10” instructions per second. The C2000, and
C5000 series are fixed-point processors. The C6000 series contains both fixed-point and floating-
point processors. The distinction between fixed-point and floating-point processors is important,
and will be discussed in more detail later. For this lab, we will be using the C6713 processor, a
member of C67x family of floating-point processors|2].

The different families in the TMS320 seriea are targetted at different applications. The C2000
and C5000 series of chips are primarily used for digital control. They consume very little
power and are used in many portable devices including 3G cell phones, GPS (Global Positioning
System) receivers, portable medical equipment, and digital music players. Due to their low
power consumption (40mW to 160mW of active power), they are very attractive for power
sensitive portable systems. The C6000 series of chips provides both fixed and floating-point
processors that are used in systems that require high performance. Since these chips are not as
power efficient as the C5000 series of chips (.5W to 1.4W of active power), they are generally not



used in portable devices. Instead, the C6000 series of chips is used in high quality digital audio
applications, broadband infrastructure, and digital video/imaging, the latter being associated
almost exclusively with the fixed-point C64x family of processors. When designing a product,
the issues of power consumption, processing power, size, reliability, efficiency, etc. will be a
concern.

Learning how to implement basic DSP algorithms on the C6713 will provide you with the tools
to execute complex designs under various constraints in future projects. At one time, assembly
language was preferred for DSP programming. Today, C is the preferred way to code algorithms,
and we shall use it for fixed- and floating-point processing.

2.4 DSP Starter Kit (DSK)

The TMS320C6713 DSP chip is very powerful by itself, but for development of programs, a
supporting architecture is required to store programs and data, and bring signals on and off
the board. In order to use this DSP chip in a lab or development environment, a circuit board
containing appropriate components, designed and manufactured by Spectrum Digital, Inc, is
provided. Together, CCS, the DSP chip, and supporting hardware make up the DSP Starter
Kit, or DSK.

In this lab, we will go over the basic components of the DSK and show how software may be
downloaded onto the DSK. For more information, see [1].

3 Programming Languages

Assembly language was once the most commonly used programming language for DSP chips
(such as TT’s TMS320 series) and microprocessors (such as Motorola’s 68MC11 series). Coding
in assembly forces the programmer to manage CPU core registers (located on the DSP chip)
and to schedule events in the CPU core. It is the most time consuming way to program, but it is
the only way to fully optimize a program. Assembly language is specific to a given architecture
and is primarily used to schedule time critical and memory critical parts of algorithms. In
this course, we will use assembly code to gain intuition into the structure of digital filtering
algorithms.

The preferred way to code algorithms is to code them in C. Coding in C requires a compiler that
will convert C code to the assembly code of a given DSP instruction set. C compilers are very
common, so this is not a limitation. In fact, it is an advantage, since C coded algorithms may be
implemented on a variety platforms (provided there is a C compiler for a given architecture and
instruction set). Most of the programs created in this course will be coded in C. In CCS, the
C compiler has four optimization levels. The highest level of optimization will not achieve the
same level of optimization that programmer-optimized assembly programs will, but TI has done
a good job in making the optimized C compiler produce code that is comparable to programmer-
optimized assembly code.

Lastly, a cross between assembly language and C exists within CCS. It is called linear assembly
code. Linear assembly looks much like assembly language code, but it allows for symbolic names
and does not require the programmer schedule events and manage CPU core registers on the
DSP. Its advantage over C code is that it uses the DSP more efficiently, and its advantage over
assembly code is that it requires less time to program with. This will be apparent in future labs
when assembly and linear assembly code are given.



4 Codec

The TI AIC23 codec (coder/decoder) is a chip located on-board the DSK which interfaces the
DSP chip to the analog world, specifically signal generator(s) and either an oscilloscope or stereo
headphones. The codec contains a coder, or analog-to-digital converter(ADC), and a decoder
or digital-to-analog converter (DAC). Both coder and decoder have two channels wihch run at
sample rates which can be set from 8KHz to 96KHz and support data word lengths of 16b, 20b,
24b, and 32b at the digital interfaces. In this course, we will generally use 16 bit data word
length. In Lab02, we will explore the codec in more depth.

5 C6713 DSP Chip

The C6713 DSP chip is a floating point processor which contains a CPU (Central Processing
Unit), internal memory, enhanced direct memory access (EDMA) controller, and on-chip pe-
ripheral interfaces. These interface include a 32-bit external memory interface (EMIF), four
Multi-channel Buffered Serial Ports (McASP and McBSP) used to communicate with the codec,
two 32-bit timers, a host port interface (HPI) for high-speed communication between chips in a
multi-DSP system, an interrupt selector, and a phase lock loop (PLL), along with hardware for
‘Boot Configurations’ and ‘Power Down Logic’. See Figure 1.

6 Timing

The DSP chip must be able to establish communication links between the CPU (DSP core),
the codecs, and memory. The two McBSPs, serial port 0 (SP0) and serial port 1 (SP1), are
used to establish bidirectional asynchronous links between the CPU and the codec or alternately
an external daughter card (not used in this course). SPO is used to send control data between
the codec and CPU; SP1 plays a similar role for digital audio data. The McBSPs use frame
synchronization to communicate with external devices [6]. Each McBSP has seven pins. Five of
them are used for timing and the other two are connected to the data receive and data transmit
pins on the on-board codec or daughter card. Also included in each McBSP is a 32-bit Serial
Port Control Register (SPCR). This register is updated when the on-board codec (or daughter
card) is ready to send data to or receive data from the CPU. The status of the SPCR will only
be a concern to us when polling methods are implemented.

In this lab, we will be exploring two possible ways of establishing a real-time communication
link between the CPU and the codec. The idea of real-time communication is that we want a
continuous stream of samples to be sent to or from the codec. For example, at an 8KHz sample
rate, one sample will be sent every .125ms. This is controlled by the on-board codec, which will
signal the CPU over serial port 0 (SP0), every 0.125ms.

6.1 Polling

The first method for establishing a real-time communication link between the CPU and the
on-board codec is polling. When the on-board codec is ready to receive a sample from the CPU,
it sets bit 17 of the SPCR register in the McBSP on the C6713 DSP to true'. Bit 17 of the

!By convention, a binary 0 will be is used for false and a binary 1 is used for true.
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Figure 1: C6713 DSP chip layout. Adapted from [5].

SPCR is the CPU transmit ready (XRDY) bit, which the on-board codec uses to let the CPU
know when it can transmit data®. In a polling application, the CPU continuously checks the
status of the SPCR and transmits a data sample to the codec as soon as bit 17 of the SPCR
is set true. Upon transmission, the McBSP will reset bit 17 of the SPCR to false. The polling

2The bits in the SPCR are labelled from the point-of-view of the DSP chip and not the peripheral that it is

communicating with.



program will then wait until the on-board codec sets bit 17 to true to indicate that it is ready
to receive the next data sample. In this manner, a polling algorithm will maintain a constant
stream of data flowing to the on-board codec. Bit 1 (RRDY) of the SPCR is used in a similar
manner to control the flow of sample data in the opposite direction — from the codec to the

CPU.

On the DSP hardware, polling is implemented mostly in software. The on-board codec will
continuously set XRDY and/or RRDY of the SPCR and the McBSP on the DSP chip will
always reset it. However, it is up to the programmer to write a program that will continuously
check the status of the SPCR. Fortunately, a program (support file) has already been written
to manage this. The details of this program will be explained later when a polling example is
implemented.

6.2 Interrupts

Interrupts are another way of handling asynchronous events on the DSP chip and may be
generated either internally through software or externally by other components on the DSK.
Handling (or servicing) of interrupts requires extra hardware that operates autonomously from
the CPU. The C6713 chip is equipped with this hardware (timers, McBSP, etc.) and is the
preferred way to time events on the DSP chip. In this lab, we will use interrupts to establish
a real-time communication link between the on-board codec and the CPU via SP0. When
interrupts are used to establish the real-time link between the on-board codec and the CPU,
the interrupt registers in SP0O are configured to handle interrupts. Now, when the codec sets
the transmit ready bit in the SPCR, the McBSP will generate an interrupt. When an interrupt
occurs, the following events happen:

the current program execution is halted;

the current execution state is saved (in a CPU register);

the program branches to and processes the interrupt; and

upon completion of the interrupt processing, the execution state is restored and the pro-
gram continues executing.

We will gain more insight into this process when we study assembly and linear assembly code
in Lab 3.

On the C6713 DSP chip, there are thirty-two possible interrupt sources, but only twelve may
be assigned by the programmer, namely INT4 through INT15 [6]. These twelve interrupts
are prioritized by the ‘Interrupt Selector’ (see Figure 1)°. In this class, we will use the SP0
transmit interrupt, which is labelled by the interrupt acronym XINTO in the TT literature [0].
Arbitrarily, we choose INT11 to handle this interrupt [4]. Using interrupts requires that each
interrupt be mapped to an interrupt service routine (ISR). This is done by a Vectors file that,
in our case, maps INT11 to the C coded ISR c_int11(). In addition, INT11 must be selected
to handle interrupts from XINTO, and the DSP chip must be set up to accept programmer
assigned interrupts?. These tasks will be done by the C coded function comm_intr (), which will
be provided for you on the class webpage. This process will be explained again during the first
programming example.

3In the assignable interrupts, INT4 has the highest priority and INT15 has the lowest.
“In polling programs, programmer assigned interrupts are disabled. This is done when the DSK is initialized.



7 Generating a Sinusoid in Real-Time

In many of the communication systems that we will design, we will want to be able to generate
a sinusoid with arbitrary frequency f,. In the first project, we generated the sinusoid

x(t) = sin(2m fot), (1)

where f, = 1KHz. In real-time digital systems, this requires samples of the signal in eqn(1) to
be sent to the codec at a fixed rate. In this example, samples will be sent to the on-board codec
at a rate fs = 8KHz (t; = 0.125ms). In C code, we generate samples of eqn(1) ever t, seconds.
This results in

x[n] = z(nts) = sin(2w fonts) = Sin(ZW?n) = sin(f,n), 0, = 271';0, (2)
S S

which is only defined for integer values of n. Here, the argument of the sine function, 6,n =

ol =, is a linear function that can be easily updated at each sample point. At the next time

1nstance time n + 1, the argument becomes

Oo(n+1) = 27ré(n +1)=2r

[s

fon + 277& =0,n + 0,, (3)

fs fs

which is the previous argument, namely 6,n, plus the phase offset 6, = o le P This means that
the sinusoidal frequency is determined by the dlstance (in radians) between sample points within
one 27 period of a sine wave. As long as f, < 2 (0, < m), the output will have frequency f,.
Using f, > J;S (0, > m) will result in aliasing, which will be explored in the first assignment.
This way of generating a sine wave may seem counterintuitive, since we generally fix f, and
vary the sampling rate. Here, the sampling rate is fixed, so we control the frequency of the
reconstructed signal by specifying the amount of radians to increment (within a 27 period) at
each sample point. The key idea here is that the sample rate fs is fixed and that f, is generated
by carefully choosing the sample spacing (6, radians).

Using the on-board codec running at 8MHz, it is theoretically possible to generate any sinusoid
whose frequency is f, < 4KHz in eqn(2), although limitations in the smoothing filter on the
analog output reduce the maximum frequency to less than f :

8 Setting up the Equipment and Starting Code Composer Stu-
dio

8.1 Hardware Setup

For every lab in this course (with a few minor variations), the following equipment will be needed
at every lab station:

e A pentium based computer with CCS version 5.5 installed on it.
e A C6713 DSK including power supply and USB cable.



Two 3 foot cables with a 1/8th inch stereo headphone male jack on one end and two BNC
male connectors (RF connectors) on the other end.

A set of speakers or headphones (provided by student).

A signal generator.

An oscilloscope.

To set up the DSK, connect the USB cable between the port on the the DSK board (J201) and
the USB2.0 port on the computer, then connect the 5V power supply to the power connector
next to the USB port on the DSK board. You should see the four LEDs next to some dip
switches blink, then finally stay all lit.

8.2 Starting CCS and Creating The First Project *

The information in this section assumes you have read the document “Getting Started with
CCS” [GSCCS] and have organized your workspaces and projects as recommended. This Lab
Note uses the project names and so forth as given in GSCCS - substitute the names you have
chosen if necessary.

Start with one of the team members logged into the windows network.

First, connect the DSK to the power supply - wall plug first and then cable to the board. The
group of LEDs should flash several time, finally stopping with all four LEDs lit. This process
takes about 15 seconds and is the board performing a self-test. Note that the board is NOT
ready for use until all four LEDs are lit

Then connect the board to the USB port on the computer using the supplied USB cable (im-
portant: USE the computer USB port marked 2.0, located near the top of the computer). You
should hear a beep as the board driver loads.

You can (and should) run a quick test of the board and USB link by clicking on
C:\ti\DSK6713\drivers\6713DSKDiag.exe

Once the program is fully loaded, click on the General tab at upper left and then the Start
button. A pop-up window titled DSK Startup will appear in the lower-right with the text
“Waiting for USB Enumeration”. This is just the diagnostic program scanning all the USB
ports on the computer to find where the board is connected. The enumeration may hang
because of incompatibility with USB3.0; when that happens, simply cancel the enumeration -
the link has been established. The diagnostics will then start and should complete in about 30
seconds with a status of PASS. The window labelled DSK should show the following;:

Utility Revision 1.12
Board Version: 2
CPLD Version:2

A couple of notes on this test:
e The diagnostic program will only run correctly in the Windows-XP compatability mode.

If it fails to establish connection, check the compatability mode (right-click on exe, click
properties, click compatibility tab).


http://www.engr.colostate.edu/ECE423/docs/getting_started_with_ccs.pdf
http://www.engr.colostate.edu/ECE423/docs/getting_started_with_ccs.pdf

e Running these disgnostics tests will leave the USB link in a non-functioning state such
that you will not be able to download programs to the DSK. This can be easily corrected
by “rebooting” the DSK:

. unplug the USB cable,
. unplug the power cable to the board,

1

2

3. wait 5-10 seconds

4. plug the power cable back into the board
5

. wait for the power on self-test to complet (4 LEDs are lit)
6. plug the USB cable back into the DSK.

The USB link should now be functional.

8.3 Creating and Running the First Project *

For the first project, create and download to the DSK a program to generate a sine wave using
interrupt, using the supplied file sine_gen _intr.c.

Follow the procedures for creating a project described in “Getting Started with CCS”. You will
then be able to use this project as a template for other projects by copying and modifying the
project as described in “Getting Started with CCS”.

For this lab, we will just be observing and listening to signals generated by the on-board codec, so
only the oscilloscope, headphones or speakers, and one of the 3 foot headphone-to-RF connector
cables will be used. Before before connecting the DSK to the lab instruments, it is a good idea
to verify that the instruments are properly set up and in working order. It is a good idea to
connect the signal generator directly to the scope input you will be using, set up the signal
generator for a 1 KHz, 1 V peak-to-peak sine wave and verify correct setup.

8.4 Building and Running the Project *

Now you must build and run the project. To build the first project, left-click Project->Build
A1l. The program should compile with no errors.

When CCS “built” your project, it compiled the C coded source files and header files® into
assembly code, using a built-in compiler. Then it assembled the assembly code into a COFF
(common object file format) file that contains the program instructions, organized into modules.
Finally, the linker organized these modules and the run-time support library (rts6700.1ib)
into memory locations to create the executable .out file sine_gen_int.out. The executable file,
sine_gen_int.out, may be downloaded onto the DSK. When sine_gen_int.out is loaded onto
the DSK, the assembled program instructions, global variables, and run-time support libraries
are loaded to their linker-specified memory locations. This process is illustrated in [3, pg. 32].

SHeader files are C coded files that are included into C coded source files. This is done via pre-processor
directives, which will be explained later in this lab in the section Code Analysis. The purpose of header files is
to store C code that may be useful to many applications and to store function prototypes. The latter is used to
“clean up” a source code file and will be explained in more depth in Lab 4.


http://www.engr.colostate.edu/ECE423/lab01/source_code/sine_gen_intr.c

9 Code Analysis

Now that you have successfully implemented your first project in hardware, it is time to analyze
the source code in sine_gen_intr.c to see exactly how this 1KHz sine wave was generated.
Note in C (or more precisely C++) that text following ‘//’ or between ‘/*’ and ‘*/’ is regarded
as comment and is ignored when the program is compiled. A listing of sine_gen intr.c is given
in Figure 2.

In order to efficiently analyze the code, we will break it up into three sections, namely section one
(lines 1 through 10), section two (lines 12 through 37), and section three (lines 39 through 43).
Note that the line numbers referred to here are the numbers enclosed in the comment delimiters
‘/* and ‘*/°. When viewing in CCS, there will be a separate set of line numbers to the left -
ignore these.

Generally, the section containing the main() function, section three in this case, will always
come last. In C, the function main() is always the starting point of the program. The linker
knows to look for this function to begin execution. Therefore, a C program without a main()
function is meaningless.

The first section of code (lines 1 through 10) is used for preprocessor directives and the definition
of global variables. In C, the # sign signifies a preprocessor directive. In this course, we will
primarily use only two preprocessor directives, namely #include and #define. Line 1 includes a
header file for the codec (_aic23 refers to the codec). This file is needed so that the preprocessor
can replace the text string DSK6713_AIC23_FREQ_8KHZ on line 4 with the appropriate numerical
value (more on this below), as well as for other reasons. In line 2, the preprocessor directive,
#include <math.h>, tells the preprocessor to insert the code stored in the header file math.h
into the first lines of the code sine_gen.c before the compiler compiles the file. Including this
header file allows us to call mathematical functions such as sin(-), cos(-), tan(-), etc. as well
as functions for logarithms, exponentials, and hyperbolic functions. This header file is required
for the sin(-) function line 34. To see a full list of functions available with math.h, open the
Includes folder in the Project Explorer pane, expand the first entry, scroll down to math.h
and expand it. This will list all the defines and functions. You can also click on math.h and it
will open in the edit pane.

The next preprocessor directive defines the fixed point number PI, which approximates the
irrational number 7. Before compiling, the preprocessor will replace every occurrence of PI in
sine_gen.c with the number specified®.

The next seven lines (4 through 10) define the global variables: fs, £0, fs_float, angle, offset,
amp, and sine_value.

Line 4 defines an unsigned 32b integer fs which is a special global variable recognized by the
codec support files; it specifies the codec sampling frequency. You can see the relationship
between fs and actual frequency on lines 44-50 of file dsk6713_aic23.h. To open this file,
open the Include folder in the “File View” panel and double-click on dsk6713_aic23.h. No-
tice that all sampling frequencies are multiples of 8KHz, but not all multiples are supported.
To change the sampling rate to 96KHz, we would replace the right hand side of line 4 with

50ther commonly used preprocessor directives are #if and #endif. These directives are used to debug logical
errors in code. For example, if you do not want to execute a section of code, you would put #if O before the
section of code and #endif at the end of the section. The preprocessor would then remove this section of code
before compiling. By breaking the section into smaller pieces, you can home in on logical errors.
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// This project uses support files generated by
// Comm routines included in C6xdskinit.c

/*1
/%2
/*3
/%4
/*5
/%6
/%7
/*8
/*9

*/
*/
*/
*/
*/
*/
*/
*/
*/

/*10%/
/*11%/
/*12%/
/*13%/
/*14%/
/*15%/
/*16%/
/*17*x/
/*18%/
/*19%/
/*20%/
/*21%/
/*22%/
/*23%/
/*24%/
/*25%/
/*26%/
/*27%/
/*28%/
/*29%/
/*30%/
/*31%/
/*32%/
/*33%/
/*34x/
/*35%/
/*36%/
/*37*/
/*38%/
/*39%/
/*40%/
/*41%/
/*42%/
/*43%/

#include "
#include <
#define PI

Uint32 fs=

float f0=1
float fs_f
float angl
float offs

short amp=

short sine_value;
interrupt void c_int11()
{
switch(fs)
{
case DSK6713_AIC23_FREQ_8KHZ:
case DSK6713_AIC23_FREQ_16KHZ:
case DSK6713_AIC23_FREQ_24KHZ:
case DSK6713_AIC23_FREQ_32KHZ:
case DSK6713_AIC23_FREQ_48KHZ:
fs_float=8000%*fs;
break;
case DSK6713_AIC23_FREQ_44KHZ:
fs_float=44000;
break;
case DSK6713_AIC23_FREQ_96KHZ:
fs_£float=96000;
break;
}
offset=2xPI*f0/fs_float;
angle = angle + offset;
if (angle > 2*PI)
angle -= 2*PI;

dsk6713_aic23.h"
math.h>

3.14159265359
DSK6713_AIC23_FREQ_8KHZ;
000;
loat;
e=0;
et;
20;

//
//
//
//
//
//
//
//
//
//

//

//

//
//
//
//

sine_value=(short)1000*amp*sin(angle) ;

output_le
return;

}

void main(
{
comm_int
while(1)
¥

ft_sample(sine_value);

)

r();

’

//
//

//
//

Rulph Chassaing

needed to access codec function

needed for sin(*/ function

define the constant PI

sampling frequency of codec

generated sinusoid frequency

needed for calculating offset

sin(*/ argument in radians

sin(*/ argument change per sample period
sine amplitude scaling factor

value sent to codec

interrupt service routine

get sampling freq in Hz from fs

set offset value

previous angle plus offset

reset angle if > 2%PI

angle = angle - 2*PI

// calculate current output sample
output each sine value

return from interrupt

init DSK, codec, SPO for interrupts
wait for an interrupt to occur

Figure 2: Listing of sine_gen_intr.c.
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DSK6713_AIC23_FREQ_96KHZ. Notice that you can see the numerical value of a define such as
DSK6713_AIC23_FREQ_8KHZ by hovering the cursor over the text anywhere it appears in the
sine_gen.c file window.

The valiables £0, fs_float, angle, and offset are all float type which means they hold IEEE
single precision (32-bit) floating point numbers. For information on this IEEE standard, see [3].
Type float is required by the sine calculation on line 34.

The variable sine_value is of type short which means it holds a 16-bit signed integer value.
Since the C-library sine function returns type float, the casting operator is used to convert to
type short.

Notice that all of the lines that contain statements end with a semicolon. This is standard in C
code. The only lines that do not get semicolons are the following:

function names, like c_int11(),
e conditional statements, like if (),
e opening and closing braces ({ }) associated with them, and

e preprocessor directives (lines starting with #)

The last section of code (lines 39 through 43) contains the function main(). The format of the
main() function will NOT change substantially from program to program, and in particular the
lines seen here or a slight variation will generally appear.

Line 41 calls the function comm_intr (), which initializes interrupt hardware on the codec and
DSP chip. This function is located within the file c6713dskinit.c, which is one of the support
files given to you. In order to process interrupts, an interrupt source must be designated, a
specific interrupt (one of INT4 through INT15) must be assigned and enabled to handle the
interrupt, and the non-maskable interrupt (NMI) and global interrupt enable bits must be set
in the interrupt enable register (IER) and control status register (CSR), respectively. These
registers are located on the DSP chip and are a part of the extra hardware required to handle
interrupts. The initializations are done by calling low-level functions prototyped in the support
files csl_irq.h and csl_irghal.h (provided by TI), called by the function comm_intr (), located
in the support file c6xdskinit.c. In this program, the interrupt source with be the on-board
codec. When the codec is ready to receive a sample from the DSP chip, it will set the transmit
ready bit of the SPCR in McBSPO on the DSP chip. Assuming that the chip has been correctly
configured to handle interrupts, the transmit ready interrupt on SP0, namely XINTO, will be
generated.

Configuring the DSP chip for this interrupt requires four steps. First, a function call to
Config Interrupt_Selector (11, XINTO)) is made, which will designate the interrupts on
XINTO will be made and that these interrupts are assigned to INT11. This initialization
will configure the higher and lower interrupt multiplexing registers (IMH and IML respec-
tively). In the case of INT11, the initialization will alter the higher (upper 16-bits of the)
interrupt multiplexing register, which is determined by the hardware. Second, the function
call enableSpecificINT(11) is made, which will enable INT11. This is required for INT11 to
be recognized as an active interrupt handler. Third, a function call to enableNMI() is made
to enable non-maskable interrupts. This is required since maskable interrupts (INT4 through
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INT15) will not be recognized unless the NMI bit in the IER is enabled. NB: The NMI is
cleared (disabled) whenever the DSK is reset. Finally, a function call to enableGlobalINT() is
made, which will enable the GIE bit of the CSR. All of these configurations are required for
maskable interrupts to be processed. To learn more about configuring the DSP chip for handling
interrupts, examine the code in c6713dskinit.c and refer to either [1], [3], [0], or [7]. Now, the
DSP chip and codec have been configured to communicate via interrupts, which the codec will
generate every .125ms. The program coded in sine_gen.c now waits for an interrupt from the
codec, so an infinite loop (line 42) keeps the processor idle until an interrupt occurs. This does
not have to be the case, since an interrupt will halt the CPU regardless whether it is processing
or idling. But in this program, there is no other processing, so we must keep the processor idling
while waiting for an interrupt to occur.

The middle section of code (lines 12 through 37) is used to define the interrupt service routine
or ISR. When an interrupt occurs, the program branches to the ISR c_int11() as specified by
Vectors_intr.asm. This interrupt generates the current sample of the sinusoid and outputs it
to the codec.

For calculation of the argument of the sine function (line 34), we need the actual sampling rate
in Hz, which is contained by variable fs_float . The conversion is in the switch() construct
on lines 14-29 and used in the offset calculation on line 30. Line 30 determines the offset value
2#%. For a given f,, this value will not change, so it does not need to be calculated every
time an interrupt occurs. By the same token, £fs_float need not be calculated every interrupt.
However, by calculating these values here, we will be able to change the value of our sinusoid
frequency £0, as well as the sampling frequency fs and derived fs_float using a Watch Window.
This is demonstrated in the next section. Line 31 calculates the current argument to the sin()
function. The sin(x) function in C approximates the value of sin(z) for any value of z, but a
better and more efficient approximation will be computed if 0 < x < 2. Therefore, lines 32 and
33 are used to reset the value of the argument if it is greater than 27. Since sin(z) is periodic
27 in x, subtracting 27 from z will not change the value of the output.

Line 34 calculates the current sine value sample point. The right-hand-side is typecast as (short)
before it is stored in the variable sine_value. Typecasting tells the compiler to convert a value
from one data type to another before storing it in a variable or sending it to a function. In this
case, the value returned from the sin() is a single precision floating point number (between -1.0
and 1.0) that gets scaled by 20000, since amp was initialized to 20 . By typecasting this number
as a short (16-bit signed integer between the values -32768 and 32767), the CPU will round the
number to the nearest integer and store it in a 16-bit signed integer format (2’s complement).
This value is scaled by 20000 for two reasons. First, it is needed so that rounding errors are
minimized, and second, it amplifies the signal so it can be observed on the oscilloscope and
heard through speakers or headphones. This scaling factor must be less than 32768 to prevent
overdriving the codec, which we will explore later in this lab. Line 35 sends the current sine
value to the left channel of the codec by calling the function output_left_sample(). Notice
again that by hovering the cursor over output_left_sample() on line 35, you can see function
prototypes which show the way the function can be called.

The code for output_left_sample () islocated in file c6713dskinit.c. Open the file c6713dskinit.c
in CCS and examine the code for this function. This function forces the least significant digit
of the sample that it receives to zero and sends it to a function MCBSP_write () which writes the
sample to the transmit buffer in the McBSP. This will cause the McBSP to transmit the data
sample to the on-board codec. The masking of the least significant digit of the output sample is
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needed so that the on-board codec interprets the received binary number as a data sample and
not as secondary information”. Upon completion of the interrupt (generating a sinusoid sample
and outputting it to the on-board codec), the interrupt service routine restores the saved exe-
cution state (see the command return; in line 36). In this program, the saved execution state
will always be the infinite while loop in the main() function.

10 Debugging

In this section we will use the IDE to i) find and fix source syntax errors, ii) single-step through
the program to trace execution, and iii) observe and change the variables of a running program.
We will learn additional debugging techniques later in the course.

10.1 Modifying Code to Fix Syntax Errors *

Create a deliberate syntax error by deleting the comma at the end of line 4 of sine_gen_intr.c
Recompile the project by selecting Project->Rebuild All. Note the error message produced in
the Console window and the fact that one syntax error can produce multiple lines of messages:

../sine_gen_intr.c
../sine_gen_intr.c", line 8: error #66: expected a ";"

../sine_gen_intr.c", line 33: error #20: identifier "fO" is undefined
>> Compilation failure

2 errors detected in the compilation of "../sine_gen_intr.c".

gmake: **x [sine_gen_intr.obj] Error 1

Experiment by producing other errors and noting the compile error messages. Be sure to fix all
errors before continuing.

10.2 Tracing Program Execution *

Tracing program execution is a useful way to determine why a program is behaving unexpectedly.
CCS gives you this capability.

Load sine_gen_intr.out by clicking on the bug icon or Run->Debug while in the “Edit Per-
spective”. When CCS switches to the “CCS Debug Perspective”, do the following: in the
sine_gen_intr.c window, set a breakpoint by double-clicking in the gray vertical column to the
left of the text on line 14. A gray dot should appear signifying a breakpoint; if the breakpoint
window is open, you should see an entry for the breakpoint. Stretch the “Identity” column until
you see all the text, including the line number and state. Enable the breakpoint if necessary by
checking the box on the left in the breakpoint window.

"The on-board codec is programmed to have certain characteristics in its data and voice channels. This is done
through secondary communication where the least significant digit of the binary number sent to the on-board
codec is one. To learn more about programming the on-board codec, see [8].
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Now click on the “Resume” icon (green triangle); the program should run briefly then stop at
the breakpoint with the execution point indicated by an arrow in the left column. You can then
single-step through the code, stepping into any functions called, by clicking Run->Step Into
or pressing the F5 key; you can step only through the current file, skipping over any functions
called by clicking Run->Step Over or pressing the FF6 key respectively. While the program is
halted you can quickly check the current value of any variable by hovering the cursor (click on
a blank space in the code window to bring focus if hovering is not working). For example, at
this point the value of f£s should be defined and equal to 1 assuming the sampling rate is 8 KHz
(line 4). However, the value of variables below the cursor, such as offset should have undefined
random values since this is the first pass through the function. Click “Resume” one more time
and observe the value of offset again.

10.3 Using the “Expressions” Window to Monitor Variable Values *

Once an algorithm has been coded, it is beneficial to have software tools for observing and
modifying the local and global variables after a program has been loaded onto the DSK.

CCS has a number of ways view local variables and to view and modify global variables during
execution. In this lab, we will not view any local variables, but we will view and modify global
variables.

With the program halted in the “Debug Perspective”, bring the Expressions window into focus.
Normally it is seen at the upper right of the screen visible as a tab. If necessary, click the tab
to bring it to the top and in focus. In the expression column, add the following variable names:
sine_value, angle, offset, and £O0. With the breakpoint still active at at line 14, click on
the “Resume” icon several times. The program will execute one sample update and you should
see that behavior in all the variables except offset and £0.

Now notice the f0O frequency under ‘Value’, you should see the number 1000, which is the
frequency of the observed sinusoid. Click on the value 1000 and change it to 2000. When you
resume the program, you should see offset change to twice the previous value and angle
increase at twice the rate as before.

Now disable the breakpoint at line 14 by right-clicking on it in the source code window and
selecting disable or unchecking it in the breakpoint window. With the DSK connected to the
oscilloscope and optionally headphones), click on the “Resume” icon and you should observe
a 2KHz sine wave, assuming £O0 is still 2000. Halt the running program by clicking on the
“Suspend” icon (double bars just to the right of the “Resume” icon) and change £0 back to
1000. You should see that change in the scope display and headphone tone.

Change the sampling frequency by adding fs to the watch window and changing it to the value
for 96KHz (this will be a small integer and NOT 96000. Find the appropriate integer value
for £s for 96KHz by looking in dsk6713_aic23.h as described above. Notice the difference in
the appearance of the sine wave for the higher sampling rate vs 8KHz. You should also see a
different behavior in offset because of the finer sampling.

Be sure to undo your changes by editing or re-reading the file sine_gen_intr.c stored on disk
by clicking File->0Open and selecting sine_gen_intr.c.
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11 Producing Artifacts by “Improper” Operation

Here we will look at two of the ways the DSK can produce unexpected results by operating
outside the parameters of the design.

11.1 Overdriving the Codec *

In sine_gen_intr.c, the variable sine_value goes from -20000 to 20000 because of how variable
amp is initialized. The codec is setup to receive 16-bit signed integers, which are numbers in
the range —2'% = —32768 to 2! — 1 = 32767. Any values that are greater than 32767 or less
than -32768 will result in a 2’s compliment overflow. This means that values of amp less than
or equal to 32 will not overflow the codec and values greater than or equal to 33 will overflow
the codec. Keeping in mind that amp must be integer valued, use the Expressions window to
experiment with various values of amp, both in the underflow (less than or equal to 32) and
overflow (greater than 32) ranges. Also, try negative values for amp. Listen to the results. Can
humans detect polarity or phase offsets® when listening to musical tones?

11.2 Aliasing Effects *

In the program sin gen intr.c, a sinusoid is generated by evaluating samples of the function
sin(27 fot) every ts = 0.125ms. When sinusoids with fy > 4KHz are sampled at fs = 1/ts =
8KHz, they are undersampled. This results in an aliasing effect. To see this, in the Expression
window change the value of £0 in sin_gen intr.c to both 5000 and 7000.

Assignment

1. What frequencies are observed when fy = 5KHz and fy = 7TKHz? Using your knowledge
of signals and systems, justify the frequencies observed using both a using frequency-
based and a time-based method. In the frequency-based method, use the Shannon-
Whitaker sampling theorem. In the time-based method, examine the sample points of
the function sin(27 fot) for an fy > 4KHz and its aliased frequency observed on the
oscilloscope. That is, sketch the sine waves actually output when you sample 5KHz
and 7TKHz sine functions every 0.125ms.

12 Generating a Sine Wave Using Polling*

This section has three purposes: to demonstrate how to reuse a previously created project,
create a real-time communication link between the CPU and codec using polling, and generate a
sinusoid using a lookup table. To create the project sine_lookup_poll, follow these instructions:

1. Open project sine gen intr (if not already open) and click Project->Clean. MAKE
SURE the box labelled “Start a build immediately” is unchecked. This will delete the
folder labelled “Binaries”.

8Flipping the polarity of sine wave is the equivalent of introducing a 180 degree phase shift into the original
sine wave. In other words, changing the polarity is a specific type of phase offset (a more general concept).
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2. Delete the folder labelled “Debug”. It will be regenerated if you later need to recompile
this project.

3. Now right-click on the project folder sine_gen_intr and do a copy-paste operation as
would be done with the windows file explorer. Choose a descriptive name such as sine_gen_poll.

4. Close first project using the context menu, i.e. right-click and click Close Project.

At this point, we have copied over all the necessary source files and setting to make a new
compilable project. Now we can modify the top-level source file.

5. Using the context menu in the Project Explorer, rename the file sine_gen_intr.c to
sine_lookup_poll.c.

6. Since we will be using polling instead of interrupts, enable the file Vectors_poll.asm by
right-clicking the file and unchecking Exclude from Build. Similarly, right-click and
check Exclude from Build for file Vectors_int.asm

7. In CCS, double-click on sine_lookup_poll.c in the left hand window. In the edit window,
delete code from the function cint_11() to the end of the file. Add the following code to
the area vacated:

short sine_table[8] = {0,14142,20000,14142,0,-14142,-20000,-14142};
short ctr;
void main()
{
ctr=0;
comm_poll();
while(1)

{
output_left_sample(sine_table[ctr]);
if (ctr < 7) ++ctr;
else ctr = 0;

}

You can delete any unused variables associated with c_int11()) but you must retain the
line defining fs in order to specify the sampling rate.

8. Add comments to your code where appropriate and save the file in CCS.

Now, build your project by clicking on the “build” button and load it onto the DSK and observe
a 1KHz sine wave on an oscilloscope.

Notice that the sine wave algorithm is now coded within the infinite while loop ( while(1)). This
is the general structure for polling. In both polling and interrupt based programs, the algorithm
must be small enough to execute within 0.125ms (at an 8KHz rate) in order to maintain a
constant output to the on-board codec. Algorithms can be coded under either scheme, using
polling or interrupts. In this class, most of the algorithms will be coded using interrupts.
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Assignment

2. Study the code above and the code in c6713dskinit.c. Pay particular attention to
the functions output_left_sample() and MCBSP_write (). Where is the polling done?
Other than the fact that polling is used instead of interrupts, how is this algorithm
different from the algorithm in sine_gen intr.c?

3. Re-implement the project sine_lookup_poll using interrupts by copying to a new
project named sine_lookup_intr. Rename the source C file to sine_lookup_intr.c
and modify it. Explain the procedure you used to change a polling based program to
an interrupt driven program. Include a copy of your C program.

13 Design Problem *

In sine_gen_intr.c, a discrete-time output sample is calculated at every interrupt. In this
code, there are an integer number of sample points Ny = f,/ fo per cycle of the sine wave, where
fs is the sample frequency and fy is the sine frequency. The same set of sine values repeat for
each cycle: the output samples form a discrete-time periodic sequence. Note that for sine
frequencies which are not an integer divisor of the sample frequency, such as WHZ (or 2000
rad/sec), the sequence is aperiodic. There is no limitation in the code to prevent this and the
program will still work properly.

However, when the sequence of discrete-time samples IS periodic, a lookup table may be a better
option than repeatedly re-calculating the same output sample values. This is true whether using
interrupts or polling to send values to the codec (see sine_lookup_poll.c). We will see another
example of the table advantage in Lab 6, which employs pre-computing and storing the 128
twiddle factors of a 256-point FFT algorithm.

For generating sinusoids of various frequencies, a large sine table (e.g. 1000 points or more)
may be employed. The frequency of the sinusoid can be changed by incrementing the counter
variable ctr by any integer smaller than the length of the table at each interval. In the previous
code, the command ++ctr; incremented the counter by one, which in C is equivalent to coding
either ctr += 1; or ctr = ctr + 1;.

In MATLAB, the values of sine_table[8] were generated by the command
20000*sin(2*xpi*[0:7]1/8).

Since the number of discrete-time samples was small, they were included directly into the C
source code. For larger sine tables, it is recommended that you store the values in a header
file (extension .h) and include the file in the beginning part of your program. Generating this
header file can be done directly using the homebrew MATLAB function make_sine_table.m.

To see this, create a new project sine_lookup_alt in the workspace for Lab_01 by copying the
project sine_lookup_intr (see Question 3) and renaming it. Rename the source C file to match
the project name.

Download the MATLAB file make_sine_table.m from the class webpage into the sine_lookup_alt
folder. Open MATLAB and change your current working (MATLAB) directory to the directory
where you downloaded make _sine _table.m. At the MATLAB command prompt, type

>> make_sine_table(‘sine_table8’,8).
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This will create the file sine_table8.h, which is the header file that you will want to include in
your C code. Note: It is important that this header file be in the same folder as the C source code
file for this example, namely sine_lookup_alt.c. In CCS, open the project sine_lookup_alt
(if necessary) and update sine_lookup_alt.c by replacing the line’

short sine table[8] = {0,14142,20000,14142,0,-14142,-20000,-14142};
with
#include "sine_table8.h"
Build this project and run it on the DSK. You should see the same 1KHz sine wave from before.

In CCS, open up the file sine_table8.h, which is located in the project explorer pane. Notice
that this file contains the code that was originally in the C source code file.

The number of evenly spaced discrete-time samples of one period of a sinusoid (along with the
rate of the codec) determine the frequency of the observed (analog) sine wave. If N is the number
of samples and fs is the sample rate of the codec, then the observed (analog) sine wave will have
frequency fs/N Hz. In this example, N = 8 and f; = 8000Hz, so the observed (analog) sinusoid
frequency will be (8000Hz)/8 = 1KHz. The name of the header file included in the C source code
is sine_table8.h, which was determined by passing the string ‘sine_table8’ to the function
make_sine_table.m. This file will prove to be useful in the next assignment. As a final note,
the counter variable, ctr, needs to be reset to zero only after it increments past N-1. In the
previous program, this value was 7, since there were 8 samples of a sinusoid.

Assignment

4. Create a project, using either polling or interrupts, that generates a sinusoid using a
lookup table of 1000 points. Use the program make sine table.m (mentioned above)
to create a header file with 1000 samples of one period of a sinusoid. Define a new
global variable step of type short and initially assign it the value 20. Increment your
counter variable by the value of step instead of 1 in each iteration. Now, when the
value of step is not a factor of the size of the lookup table (1000 in this case), the
counter variable will not necessarily be reset to zero. To compensate for this, use the
modulus (or remainder) operator %. (HINT: Use the help menu in CCS to research
the modulus operator and refer to “Class Demo 1”.) Describe the design process and
submit a copy of your C source code. Test your program by observing a 160Hz sine
wave on an oscilloscope for step=20.

5. Once your program is working, derive an analytical formula for the sinusoidal frequency
fo in terms of the variable step. Then, determine analytically the actual frequency
observed for the following values of step: 1, 4, 59, 200, and 500. Once you have
calculated these values, use an oscilloscope to measure the frequency observed for each
value of step. If you have coded this correctly, each of these sine waves should appear
to be relatively smooth. Use a table to compare the analytical and measured values of
the actual frequencies f,.

9When #include is used to include files that are not pre-compiled header files (like math.h), quotation marks
are used in place of the < and > signs.
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14 End Notes

The first lab was used to learn how to create a project and implement it on the DSK. In all
real-time DSP algorithm implementations, the processing rate of a digital signal processing
system is very important. For this lab, only an 8KHz rate was used to implement algorithms.
In future labs, this rate will be increased by the use of an audio daughter card, but the issues
of timing will be the same. In the next lab, we will explore the concepts of input and output,
and develop the foundation for designing systems and processing signals on the C6713 DSK. For
more introductory information about the C6713 see [1].

One of the requirements for this class is that you, the student, design a lab of your own. In
future labs, the end notes will be used to give you ideas for creating your own lab.
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