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Abstract—The problem of designing a finite duration impulse
response (FIR) digital filter to approximate a desired spectral re-
sponse is treated in this paper. The philosophy adopted is that for a
given FIR filter structure, the filter coefficients can be designed to
provide a minimum mean-squared error (MMSE) estimate of a
random signal sequence (the design-signal) imbedded in a random
noise sequence. By treating the signal and noise covariance functions
as design parameters, one can design FIR filters with spectral re-
sponses that approximate the power spectral density of the design-
signal. For signal processing applications that require some attention
to signal fidelity, as well as noise rejection, the MMSE philosophy
seems appropriate (as opposed to a maximum signal-to-noise ratio
philosophy, for example).

Several practical designs are presented that emphasize the sim-
plicity of the design technique and illustrate the selection of design
parameters. The designs show quite dramatically that the MMSE
design technique can be competitive with existing low-pass and
bandpass design techniques.

Finally, considerable attention is given to an efficient Toeplitz
matrix inversion algorithm that permits rapid inversion of the co-
variance matrices that arise in the MMSE design. The resulting
computation times for the design of high-order filters (N = 128,
e.g.) appear to be shorter than computation times for competing
algorithms,

I. INTRODUCTION

THE PROBLEM of designing digital filters to ap-

proximate ‘‘ideal” spectral characteristics has received
considerable attention in recent years (e.g., [1],[2]).
Many different approaches have been used in the design
of finite duration impulse response (FIR) filters 3}
[137]. The majority of these FIR filter design techniques
employ either an iterative frequency sampling technique
or a window technique as, for example, in [6] and [11],
respectively. An alternative approach adopted in this
paper is to treat the FIR filter as an estimator structure to
provide a minimum mean-squared error (MMSE)
estimate of some design-signal. The MMSE philosophy
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has enjoyed great popularity in control and communica-
tion applications where signal fidelity is often an im-
portant consideration. More recently, the MMSE philo-
sophy has found its way into the digital filtering literature
[8]. The present paper is related in philosophy to [8],
but extends the MMSE methodology to the design of
linear phase MMSE low-pass and bandpass FIR filters
with computation design times and spectral characteristics
which appear to be competitive with existing design
techniques. The large number of examples in [6] has
prompted the choice of examples in this paper to coincide
with those of [6] for comparison purposes. The choices of
design parameters in this paper which lead to low-pass
and bandpass designs incorporate the idea of a “don’t
care’’ region or a transition band which is related to the
incompletely specified least mean square error method
presented in [107].

Methodology

The underlying theme of this paper is the use of an
hypothetical design-signal that has a power spectral
density equal to the desired spenctral response of the FIR
filter. The design-signal is assumed to be a stationary
random sequence imbedded in an additive stationary
noise sequence and/or a strong adjacent-band interference
sequence. The goal of the filter design, then, is to choose
the filter weighting coefficients so that the filter output
will be an MMSE estimate of the design-signal. By treat-
ing the noise and interference spectra as design parameters
one can achieve a family of FIR filter designs and then
choose the design that best satisfies the requirements of a
particular application.

It should be emphasized that specifications such as in-
band and out-of-band ripple, detailed transition-band
behavior, and other more classical digital filter specifica-
tions do not (and, indeed, need not) arise in our pro-
cedures. However, by judiciously choosing signal, noise,
and interference spectra, the designer can exercise im-
plicit control over such specifications and obtain filters
with excellent passband ripple and “side-lobe character-
istics.
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Results

Several MMSE designs are presented for low-pass and
bandpass FIR digital filters. One comb filter is designed to
illustrate the versatility of the method. Each design
assumes a perfectly bandlimited signal with known center
frequency and bandwidth. Similar specifications are often
employed in more conventional designs.

The results presented in this paper indicate that clever
choices of signal, noise, and interference spectra can lead to
designs that are competitive with other published designs.
A particularly attractive feature of the results is the
modest computational times required to realize the filters
of interest. Each design requires a simple matrix inversion
that is effected very efficiently with a recently published
Toeplitz matrix inversion algorithm [14].

II. THE FILTER MODEL

An FIR tapped delay line filter structure is illustrated in
Fig. 1. The structure consists of a tapped delay line with
N taps, N — 1 ideal time delays (D), and N weights
{u};, 1 = 1,2,--- N}. The input to the filter is assumed to
be a stationary random sequence, {z(kT), k = 0, +
1, & 2,- -}, with sampling interval 7. Note that D must
be an integer multiple of T'. It will be convenient to denote
the N filter weighting coefficients by the (N X 1) vector,

W= (wlyw27"°rwN)I; (1)

where ’ denotes transpose.
The data at the N taps of the tapped delay line at time
kT can be represented by the (N X 1) vector,

X(kT) = S(kT) + N(kT) (2)

where S(kT) and N (kT) are, respectively, signal and
noise components of the data vector:

§'(kT) = [s1(kT), s2(kT),- - «,sn(kT)]

N'(kT) = [m(kT), na(kT),- - ,nn(kT)].  (3)

Signal and Noise Covariance Functions

For convenience, the signal and noise sequences
{s:(kT),k = 0, £1,£2,---} and {n;(kT), k = 0,1,
+2,-- -} are assumed to be samples of uncorrelated, zero-
mean, wide-sense stationary continuous time random
processes, 8(t), and n(t), respectively. Define the signal
angi noise covariance functions, R,(r) and R,(+) by

Ru(r) = E{s(t)s(t + )},
R.(r) = E{n(t)n(t + 1)},

where E{-} denotes statistical expectation.
Define the data covariance matrix Rxx by

Rxx = E{X(kT)X'(kT)}
= Rss + Ruw, (5)

where the signal and noise covariance matrices are, re-
spectively,

(4)
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Fig. 1. Filter model.

Rss = E{S(kT)S'(kT)}

Ryn = E{N(kT)N'(kT)}. (6)
It is noted that trRgs = No,2 and trRyy = No,?, where
o2 is the signal variance per tap and o,? is the noise var-
iance per tap. The 4jth elements of Rss and Ryy are given
by R.[ (2 — 7)D] and R.[ (¢ — 7) D], respectively.

One other statistical parameter of interest is the so-

called signal covariance vector

P, = E{s:;(kT)S(kT)}.. (7

Noting that the ith element of P, is given by
R.[(¢ — I)D], the interpretation of s;(kT) can be gen-
eralized to include noninteger I, corresponding to
s1(kT — (I - 1)D).

Filter Frequency Response

The magnitude-squared frequency response, | H( f) |2,
of the FIR filter is defined to be

N
[H(f) |* =] X weexp {—j2nf(k — 1)D} |*.

k=1

(8)

It is worth emphasizing that forf = I/ND,l = 0,1,--.),
N — 1, H(f) is the discrete Fourier transform (DFT) of
W. A computationally efficient method of computing (8)
for a large number of equally spaced frequency points
is to augment W with zeros, ie., replace W’ by
(wy,we,* * +,wn,0,0,+ - -,0) and use the fast Fourier trans-
form (FFT).

III. THE MMSE FILTER DESIGN TECHNIQUE

The MMSE problem is one of designing the weight
vector W so that the filter output y(kT) (see Fig. 1) is the
MMSE estimate of the design-signal sequence {s;(kT),
k=0, £1, £2, ---}. Recall that s;(kT) is the design-
signal observed a.t time kT — (I — 1)D at the input of
the tapped delay line.

The output of the filter, y(£T), is given by

y(kT) = WX (kT). 9)

Therefore, the mean-squared error in estlmatmg si(kT)
with y(kT) is

; (W) = E{[y(kT) — :(kT) F}
= W'RxxW — 2W'P, + o/, (10)

where o2 = R,(0). Taking the gradient of {(W) with
respect to W, cne can easily show that the well known
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Wiener solution for the minimizing weight vector is

* Waumsg = Bxx'P..

(11)
Computational Considerations

The design of an MMSE filter requires inversion of the
(N X N) covariance matrix Rxx. Recently, a computa-
tionally efficient algorithm [14] has been déveloped for
the inversion of such matrices. The inversion algorithm
exploits the Toeplitz nature of Rxx, ie., the algorithm
makes efficient use of the fact that ».;, the Zjth element
of Rxx depends only on | ¢ — j|:

ry = E{I.(kT)Z,(kT)}
= E{z:(kT)z{kT + (j — 9D}

where R.(-) is the data covariance function, i.e., R.(+) =
R.(+) + R.(+). A Fortran subroutine making use of the
algorithm is presented in the Appendix. The routine is
capable of computing the solution of (11) for N = 256
in less than four s of central processor time on a CDC
6400 computer.

A Sufficient Condition for Linear Phase

A well known result for FIR filters is that a sufficient

condition for linear phase is that the weight vector be
symmetric about its center, i.e.,

(13)

for all 1 € {1,2,---,N}. It has been shown [15] that the
inverse of a persymmetric (symmetric about both main
diagonals) matrix is also persymmetric. Since Rxx is
persymmetric it follows easily that if the elements of
P,; satisfy (13), then a filter designed using (11) will
have linear phase. For N even or odd, choosing the ith
element of P,; to be R,[(+ — (N + 1)/2)D] will result in
linear phase MMSE filters.

Wi = WN—-i41

IV. DESIGN CONSIDERATIONS

As the discussion of the previous sections has shown,
there are several design parameters that must be rationally
selected in the design of an MMSE filter. In this section
we discuss these design parameters and show how one can
choose R,(r) and R,(r) to achieve effective low-pass and
bandpass designs.

Signal Covariance Function, R,(r) ,

The signal covariance function R,(r) is uniquely de-
termined as the inverse Fourier transform of the desired
magnitude-squared frequency function of the FIR filter
between —f; and f;, where f; = 1/2D is the foldover fre-
quency of the FIR filter. For example, consider the
perfectly bandlimited spectrum S( f) illustrated with the
solid lines of Fig. 2(a). The inverse Foarier transform of
S(f), R.(7), is given by

sin (xBWr)

R.,(r) = 2BW ~BW.

cos 2xfor. (14)
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Fig. 2. Signal spectral model for bandpass designs. (a) Desired
spectral response, S(f). (b) Inverse transform of S(f).

The function R, (7) illustrated in Fig. 2(b) may be thought
of as the covariance function of some zero-mean, wide-
sense stationary design-signal s(f) with power spectral
density S(f). The spectral region where S( f) is nonzero
will be referred to as the passband. It is obvious that such
a selection of S( f) will lead to band-pass filter designs.

Notise Covariance Function, B.(r)

Once R.(r) is fixed, the noise covariance function
R.(7) may be chosen to reflect the relative costs of passing
a component of the noise and distorting the signal. For
conventional low-pass and bandpass designs, R.(r) will
be the inverse Fourier transform of the power spectral
density, S,(f) of a broadband interference. S, ( f) will be
nonzero in a spectral region which will be referred to as the
stopband, as illustrated in Fig. 3. The spectral level of
S.( f) will determine the price paid for passing a signal in
the stopband relative to the price paid for distorting a
signal in the passband; thus the level of S,(f) is a free
design parameter. The spectral region between the pass-
band and the stopband will be referred to as the transition
band. These heuristic comments are formalized in the
following paragraph.

From (11), the mean-squared error in estimating s;(kT)
when only the signal is present is given by

(W mmse) = E{[Wunse'S(kT) — s:(kT) T}
= Wumnsg'RssWunse — 2Wuuss'Pa + o2
(15)

From the definitions of Rgs and P;; it should be clear that
one may interpret £ (Wuumse) as “passband distortion.”
Making use of the well known faet that the mean-squared
error, £{(Wuuse) is always less than or equal to the signal
variance, o2, we have

0 < t:(Wunse) + Wunsg' RuvWunse < o (16)
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Fig. 3. Spectral model for low-pass filter designs.

where Wyyse' RvvW a use is the error variance due to the
stopband noise (or broadband interference). If Ryy =
An.pnn 15 the noise covariance matrix for a broadband
interference of spectral height A,, (16) becomes

1 0.2
0 < Wanse'onkWunse < A [o? — &(Wuuse)] < A

17)

and it follows that increasing A, will decrease
Wumse' ova W arnse, which is directly related to the stop-
band sidelobe level, at the expense of increasing
£.(Wnuse), the passband distortion.

Estimation Point, |

Filter applications for which a delayed estimate of the
signal component at the input of the FIR filter is ac-
ceptable permit a choice of delay (! — 1)D that can further
reduce the mean-square estimation error and, hence, yield
a more desirable spectral response than other choices of
delay. From (11) it is easily established that the minimum
mean-square error, {(Wauyuse), in estimating $;(kT) is
given by

tWaumse) = 0> — Wunsg'Pu
= g2 — P.z'Rxx—lp,z. (18)

The choice of I that minimizes §(Wumsk) is that value of
! for which the quadratic form P,'Rxx—'P,; is maximized.
Rather than maximize P,/Rxx'P.;, a procedure that

depends on Rxx~!, consider maximizing the following
bound:

Pa'Rxx™'Py

tr {Rxx PP}
ir {Rxx_l}tT{P.lP.l,}
tr {Rxx™*}Pu'Pa. (19)

From (19), a logical choice for the delay (I — 1)D is one
that maximizes the norm of P,;. Choosing I as near as
possible to the center of the tapped delay line results in an
excellent approximation to the maximum achievable
[| P. |2 This choice coincides nicely with the discussion
in Section III which suggested that for I = (N + 1)/2,

linear phase filters wonld result,

IA

I

Normalization Procedures

The level of the MMSE ﬁlter'spectral response (equiv-
alently, the norm of the weight vector) depends on the
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signal and noise covariance matrices. Consequently, the
weight vector designed by the MMSE method must be
scaled in order to achieve the desired spectral level. One
approach to scaling would be to select a frequency, f,,
where a spectral level, A, is required, and then compute a
scaled weight vector

A 1/2
w. = W(S(f.i))

where S(fis) is the spectral response of W at f =
fa[8(fa) = | H(fa) |? from (8)].

An alternative approach is to require that the output
variance of the filter be ¢,2 when driven by a discrete
white noise process n(kT) of unit spectral height. It
follows easily that the noise covariance matrix Ryy of
(6) is given by Ryy = (2/D)I. Thus the filter output
variance is given by

(7,,2 = W’RNNW

(20)

-Zww.

D (21)

Now consider use of the following scaled weight vector:

Doz \
W= W(zms)

(22)

It follows from (22) that the resulting filter output
variance is ¢,2 = o2

V. DESIGN PERFORMANCE

In this section we discuss the performance of the
MMSE-designed low-pass filter for several choices of
design parameters. The spectral model of Fig. 3 is used
throughout this section. A flow chart for the MMSE
design technique is shown in Fig. 4. More conventional
design techniques begin the design with specification of
filter bandwidth, transition band, and allowable passband
ripple and sidelobe height; the present technique calls for
specification of the intended signal and noise environment
in which the filter is to be used. By treating the noise
environment as a design parameter, one can obtain a
family of filter designs and observe passband ripple and
maximum sidelobe level for comparison with more con-
ventional designs. ‘

Performance Measures

A typical magnitude-squared frequency response
| H(f) |* is shown as the solid line in Fig. 5. The design-
signal 'power spectral density, S(f), is shown as the
dotted line. We define the passband ripple, R,, as

. | H(f1) I’}
R, =101 max Tt 23
' o8 {fl-fw[g%ud’r.l] | H(f2) I? ( )
The maximum sidelobe height, S;, is defined by
81 = 10 logy {maximum | H( f) 2}. (24)

. fdBW,+TB.f]

Another performance measure of interest is the maximum
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$(f)=arg H(f

Fig. 4. Flow chart for the MMSE design technique.

! &w,

Fig. 5. Typical magnitude-squared transfer function for FIR filter.

BW,+ T8 iy

of | H( f) |? for frequencies greater than the first frequency,

f. greater than BW, at which the slope of | H(f) |2

changes from negative to positive. Define S; by
S: = 10 logye [ maximum | H( f) |2}.

€LJsJ s

(25)

The performance measures S; and f, are of interest because
the effective transition band (defined as f, — BW,) cannot
be specified a priori' However, in all cases tried the
difference between f, — BW, and TB was less than
1/2N. We reiterate that this discrepancy between TB
and f; — BW, in no way detracts from the optimality of

! Actually the discrepancy between effective transition band and
design transition band is not unique to this de: b s, other
design é)rocedura often lead to slight differenc: tween T'B and
fi — BW,; in fact, there appears to be no universal agreement
concerning the proper definition of effective transition band.

IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, JUNE 1974

the filter, i.e., the filter provides an MMSE estimate of
the low-pass process characterized by the signal spectrum
of Fig. 3 when the process is immersed in bandpass, ad-
jacent channel interference.

Effects of Parameters on the Performance Measures

A large number of low-pass filters have been designed
to illustrate the effects of the design parameters on the
passband ripple and sidelobe level. Specifically, filters
have been designed for BW, € {0.1,0.2,0.3,0.4,0.5}, f; =
1.0, 4, = 1.0, A, € (10%10510°}, N € {32,64,128,256}
and TB € {2/N,4/N,6/N,8/N,10/N}. Note that a dif-
ferent set of transition bands has been used for each value
of N. The results indicate no dramatic difference in
maximum sidelobe height or passband ripple for the
values of bandwidth used.? Fig. 6 shows the effects of the
parameters A,, the interference level, and TB, the
transition band, on the passband ripple, R, for
N € {32,64,128,256}, and BW, € 10.1,0.2,0.3,0.4,0.5}.
Fig. 7 shows the effects of the parameters A, and TB on
the maximum sidelobe level, S;. Similarly, Fig. 8 shows
the effects of the parameters A, and TB on the per-
formance measure S;. Also shown in Figs. 7 and 8 is the
range of S; from the data given in [67] for BW, € {0.1,0.5},
TB ¢ {4/N,6/N,8/N}, and N € {32,64,128,256}. Figs.
7 and 8 illustrate the competitive nature of the MMSE
filter when rated according to conventional filter per-
formance measures.

Ezample Designs

In order to illustrate the performance of the MMSE
design technique, several practical designs are shown in
Figs. 9-11.

Figs. 9(a) and 9(b) show | H(f) |? for a low-pass filter
designed with BW, = 0.2, TB = 1/16, and A, = 103
for N = 32 and 128 respectively; these designs illustrate
the effect of increasing N without changing any other
parameter. Fig. 9(c) shows a low-pass filter designed with
BW, = 0.2, TB = 1/32, and A, = 10® for N = 256.
Comparing Figs. 9(b) and 9(c), we note that decreasing
TB by a factor of 2 and increasing N by a factor of 2 does
not markedly change any performance measure, except
the effective transition band, as one would expect from
Figs. 6-8.

Fig. 10(a) shows the appropriate spectral model for
bandpass designs. Figs. 10(b) and 10(c) show | H( f) |?
for fo = 61/128, TB = 1/16, BW, = 15/128, N = 128,
and A, = 10°® and 10° respectively. The above parameters
were chosen to coincide with the designs given as Figs.
2628 in [6]. Note the decrease in maximum sidelobe
height and the increase in passband ripple with an increase
in A4,.

A constant-Q comb filter was designed using the spectral

2 The single exception to this is the case where BW, = 0.1, N =
32, TB = 1/16, for which an increase in A, beyond 10*® makes no
significant difference. For this reason this case is not included in
any of the figures.
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model of Fig. 11(a) with 4, = 10% the magnitude-
squared frequency response of the MMSE filter is shown
in Fig. 11(b). This example shows the versatility of the
MMSBE design technique for piecewise-constant spectral
models. There is, however, no inherent reason why the
design technique cannot be extended to include more
general spectral models.

VII. CONCLUSIONS

The design philosophy presented in this paper en-
courages. the designer to treat the FIR filter as an estimator
structure and to specify the free design parameters in a
way directly related to the intended application of the
filter. Some connections between these parameters and
classical filter performance measures have been advanced.

Several designs have been presented for hypothetical
signal-interference-noise applications where the motiva-
tion is to obtain effective MMSE estimates of low-pass
and bandpass signals immersed in adjacent channel inter-
ference. By treating the interference level and bandwidth
as design parameters, the authors have obtained low-pass
bandpass, and comb filter designs with passband and
stopband properties that are competitive with existing
designs [6]. These properties are summarized in Figs.
6-11.

The computation times required to design the class of
MMSE filters discussed in this paper appear to be
markedly shorter than the times required for other FIR




194

1E+02

IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, JUNE 1974

16401 L

1E+00

1€-01

1€-02

1€-03

1E-04

MAGNI TUDE-SQUARED

1E-05

1€-08

16-07

.30 M0 S0 .80
FREQUENCY IN HERTZ

1E+02

(a)

16401 |
1€+00
1E-0)
1€-02
1€-03
1E-04

1€-0§

1E-08
1€e-07 |

1E-08 |

MAGNITUDE-SQUARED

109 |
-0 L
TS

1€-12 |

1€-13

LI LA) s d L adEitd LbE i aa e ta)

TP 1
0.00 .10 .20

1E+02

(b)

.30 .40 .80
FREQUENCY IN HERTZ

1601 |
1€+00
1£-01
1€-02
1€-03
1E-0N
1E-0S
1E-08
1E-07

1E-08

MAGNI TUDE-~SQUARRED

1£-08
1€-10
1€-11

1€-12

N .0 .S .80
FREQUENCY IN HERTZ
(¢
F;, 9. Lowl\?ass example designs: (a) BW, = 0.2, TB = 1/16,

= 103
12’: (c) BW, = 02, TB =

1/32, An

= 32. (b) BW, = 0.2, TB = 1/16,

A,.-IO'N—

= 103, N = 256.

1E+02
1E+01 |
1€+00
1E-01
1E-02
1€-09
1E-04

MAGNI TUDE-SQUARED

1E-11
1E-12
€13
LTy
€15

16402
16401
. 1E+00
1€-01
1€-02
1E-03
1E-08
1€-08
1E-08
1e-?
1€-08
1E-08
1E-10
1E-13
1E-12
1E-13
1E-14
1€E-1§
1€-18
1E~17

MAGN] TUDE~SAQUARRED

Fig. 10.

%"“’i

1E-0%
1E-08
1E-07
1€-08
1€E-08
1E-10

(a)

T T T I T [T T T Y T T T

30 . -850
FREQUENCY IN HERTZ
(b)

6.00 .10 .20 .0 A0 50 A0 ':'" '.'.';"' i‘;‘.I.I;‘m
FREQUENCY IN HERTZ I
(e)
(a) Spectral model for bandpass filter dwi%‘r}s. (b) Band-
example design: fo = 61/128, TB = 1/16, B = 15/128
128, A, = = 61/128

= 1/16, BW, = 15/128 = 128, An =

108. (¢) Band I\yass example demgn fo

10°.



FARDEN AND SCHARF: NONRECURSIVE DIGITAL FILTERS

- S{f)
<ot sy

s [
c T
| I._
Ay ___“_‘_1['_ P23 éﬂr

PR
¢ o
@

Fr=—=="

JE+02

1400 L
1E«00 L
1£-00 L
e-02 L
1603 L
- | e
e L

108 L

MAGNI TUDE-SQUARED

1€ |

108

1e-09

1E-10 4
0.00 .10

..:u M0 .50 .60
FREQUENCT IN HERTZ
(b)

(a) Spectral model for oonstant—Q oomb filter. (b) Exa.mple
ign for constant-Q comb filter: A, = 103, N =

‘lgll

filter design techniques. Furthermore, the design times
(less than four s for N = 256) are independent of the
gpecified transition bandwidth, a property not shared by
the design technique of [6], for example. The very short
computation times for the MMSE filter designs accrue

from special properties of the Toeplitz matrices t.hat

arise and appear to be a strong virtue of the MMSE
designs for stringent filtering requirements which force
the use of a high order filter.

On thepessimistic side, although the computation times
for the design of large order filters seem to be extremely
reasonable, th® storage requirements (for the inverse
matrix) increase as [(N + 1)2/4], where [z] denotes
“largest integer contained in z.” For example, storage of
the inverse matrix for N = 256 requires 16 512 words of
storage, limiting the design technique to at least a medium
scale computing facility. However, it seems reasonable to
conclude that the inversion algorithm could be modified
to reduce storage requirements (at the expense of in-
creased computational time).

Finzlly, making use of the persymmetric nature of the
covariance matrix that arises in the MMSE design
procedure, the authors have established a suffieient eomn-
dition for the design of linear phase MMSE filters and

ghown that such filters are easily obtained at no apparent -

cxpense to the overall design. In fact the motivation to
seek linear phase designs is consistent with the quest for
small-squared estimation errors. -
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APPENDIX

FORTRAN ROUTINE FOR TOEPLITZ MATRIX
INVERSION

SUAROUTINE TPLTZ (IaNardehsdersMm) 1Pz 10
c w2z 20
[ RIS SUMKOUTINF COMPUTES [HME wWX] VECTOR W OETERMINED HY ™wI k1)
c wz 40
¢ Prrtears, 1wz  so
ic Lig 4 60
i¢ WHFRE wXX IS A4 NAN SY e J2IC TORPLITZ MATRIX weOSE FIWST 1wz 70
c Q04 15 Ae  THF 1hvEuSE OF wXX 15 STORED IN B wHICH [S OF . P2 A0
o LFNGTH Mux ((Ne])®82) /74, N MUST of GNEATER THAN UR EQUAL Pz 20
C TO THOEF, A 1§ A Wiwr AwGAY b PIMENSIUN N, TPz 100
i PZ 110
'c THIS HUIT] o0 IS na®F) 5% A4 ALRONETHM PRESENTID oY [Je He PRELSs 1Pz 120
t TEFF T-ANS, #RTENMAS 2euen 53], 0 MaWCH 19720 PV, 206206, ™z 130
< TPZ 140
c THIS wOUTINe #8% @ [TTr.; rm' A CuC ~ed) AI COLONAY STATE TP 150
< VNTVERSTTY 4y Do Co P Abns ™wZ 160
[ N Pz 170
AL 2050 S0 Al wih) e MIM¥) TPZ 1R0
UNE -y =L 190
YD a2 Pz 200
Cz2tl) ™z 210
Cravzq oz . TPZ 220
N0 101 l=gensy TP 230
101 <(Thecinsewylol) TP2 240
AMaml, tmd ()00 TPZ 250
Aty =emitr  ° TPZ 260
NO )95 lajenn> TPz 210
Clan.y TPZ  2A0
lzie] w2 2%
N g2 Lzl ™wZ 30u
12 (S LIS RN URE LN FEIIN P2 310
e e LI L EN Y] ™2 320
CrzaLrr/ A TPZ 330
29 163 L=l TPLZ 340
191 Atorzatli=u 1°2 350
N e Lz]ll TPZ 60
15 AlLrsan ) erseeq) Pz 370
Mlir=ts ™z 380
105 AMMEAAn= (0, Wran2) /0ty TPZ 390
M 108 Ta)ent TPZ 400
Coane aqTrsaenel APL 4lo0
. AdirmiLi/nmr “TPZ W20
CAMSTx ey TP 430
0 15 twser. TPZ 440
107 Miirarnmsgesit=i) P2 450
Nutdvs( o[ }/7 TPZ 460
Mixey TPZ 470
WL0R LEsana TPZ  4AaQ
JNE a0 TPL 490
Jas el e 500
ML 30 NS IMAKe i bed wZ 510
L= (L=/18( jMAT02) ™I S20
DOIR e Jz ] i TPZ 530
TR EnLrs D=t il 2 D eCnSTH AL B ) Pu (Y =N IM NI Sw (U] ) TPZ S0
MR LR TP $50
~akzn, 0 T2 S60
90 104 s T™wZ S710
w=yp=y P2 SA0
w(II3al)beDS ety - ™z 580
109 A = m ) oS (a1 i) WL 600
AR B P I T™Z 610
L=t ] we 620
L¥=L -} TPZ 630
NLsr-L . B TPZ b4l
NL M o ] TPL 650
Al iFden 102 #60
LY SER R ITR L 670
ot gslll® P2 680
Jizae) TPZ 690
JS=jlet -1 ™Z 700
FLENIRIS 1wz T10
RLYENELLNI w120
wr= gt L 730
SILPEx L Fa ) P tJa) o PN (k) U tIAL) TRZ 740
1a WENL LR ANL LD o PN (KD S (a1 omS () 03 (JALY P 7150
JAZILMONG ) ot P2 740
NGO oELet Lt . T®Z 170
L0 Rl ™Z 780
IS E T (WY FTR Y TP 790
IR N EE TR SRR YL S LY NT Y TPZ 800
(X3} JAz A TPZ 810
112 CONTINUF ™wil 820
¢ wZ 630
¢ IF 4 TS Olne” sUNFAL) dhy WeEN CALCILATED TwICF, TPZ 840
< T¢I 8so
TF t4233-u/7) 11 % 11ee11) ™I 860

11Y w(NAARI G atW (N IAN) w2 aro -
11e COHTINUE 12 880
c P2 490
No 11N [sgen TP 900
115 wini=Cinvea(l) L 9t
NETURY TPZ 920
c . TPZ 930
Flan TPL 940

REFERENCES

[1] B. Gold and C. M. Rader, Digital Processing of Signals. New
York: McGraw-Hill, 1969.

[2] C. M. Rader and B. Gold, “Dgltnl filter design techniques in
the frequency domain,” Proc. I EE, vol. 55, pp. 149-171, Feb.
1967.

[3) L. R. Rabiner & al.,
TEEE Trans. A
Deo, 1972. ) . .

[4] E. Hofstetter ef al., “A new technique for the design of non-
recursive digital filters,” in Proc. 6th Annu. Pr:'nco:r‘.on. Conf.
Information Seience and Systems, 1071, pp. 64-T72.

5] L. R. Rabiner, “The design of finite impulse response digital
filters using linear programming tedmu;ne:: Bell Syst. Tech. J.,

‘““Terminology in dlgltal stgnal proc:
udio Electroacoust., vol. AU-20, pp. 322- 7

vol. 51, pp. 1177-1198, July-Aug. 1972 . )
[6] L R. ll{a. iner e al., “An spproac sh to 1he u roximation rol?-
lem for nonrecursive di igital flters,” LE Trans. Audio

Electroacoust., vol. AU-18, pp. 83-106, Jmm 1970,
{71 A.A.G. I“wquu_hu and H. G Vocll.lu,r, “D p
filters by specification of frequency doma.ln zeros,” IEEE

1 of nonrecursive’




196

Trans. Audio Electroacoust., vol. AU-18, pp. 464470, Dec. 1970.

8] W. C. Kellogg, “Time domain design of nonrecursive least
mean-square digital filters,” IEEE Trans. Audio Electroacoust.,
vol. AU-20, pp. 155-158, June 1972,

[9] A. Papoulis and M. S. Bertran, “Digital filtering and prolate
functions,” IEEE Trans. Circuit Theory, vol. CT-19, pp. 674—
681, Nov. 1972.

(10} D. W .Tufts and J. T. Francis, “Designing digital low-pass.
filters—comparison of some methods snd criteria,” IEEE
Trans. Audio Eleciroacoust., vol. AU-18, pp. 487-494, Dec. 1970.

(11] J. F. Kaiser, “Digital filters,” in System Analysis by Digital
Computers, ¥. F. Kuo and J. F. Kaiser, Eds. New York:
Wiley, 1966, ch. 7.

IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL .Pno'cmssmo, VOL. ASSP-22, NO. 3, JUNE 1974

[12] T. W. Parks and J. H. McClellan, "“Chebyshev approximation
for nonrecursive digital filters with linear phase,” JEEE Trans.
Circuit Theory, vol. CT-19, pp. 189-194, Mar. 1972.

{13] H. S. Hersey et al., “Interactive minimax design of linear-
hase nonrecursive digital filters subject to upper and lower
unction constraints,”” JEEE Trans. Audio Electroacoust.

(Corresp.), vol. ATU-20, pp. 171-173, June 1972.

{14] D. H. Preis, ““The Toeplitz matrix: its occurrence in antenna
problems and a rapid inversion algorithm,” IEEE Trans.
Antennas Propaga!. (Commun.), vol. AP-20, pp. 204-206, Mar.

2

1972. .
{15] 8. Zohar, ““Toeplitz matrix inversion: the algorithm of W. F.
Trench,” J. Ass. Comput. Mach., vol. 16, pp. 592-601, Oct. 1969.

.-



