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Covariance-Invariant Digital Filtering

JOSEPH PERL, MEMBER, IEEE, AND LOUIS L. SCHARF. MEMBER, 1EEE

Abstract—=When discretizing continuous-time filters, one is often
interested in preserving a property termed covariance-invariance. Tech-
niques are outlined for synthesizing discrete-time filters which are
covariance-invariant with corresponding continuous-time filters, The
synthesis techniques involve straightforward matrix decompositions or
polynomial root-finding algorithms that can easily be programmed on a
digital computer. Applications of the technique to digital filter synthe-
sis are outlined, with exampie designs presented for covariance-invariant
Butterworth and Chebyshev digital filters. Based on the frequency
response of these designs it is argued that the method of covariance-
invariance is superior to the methods of impulse-invariance and bilinear-z
as a response matching design technique for the synthesis of digital
filters. This superiority is especially apparent at sampling rates that are
marginal with respect to filter critical frequencies. Moreover, the
covariance-invariant designs are stably invertible solutions to a so-called
spectral factorization problem. This property may be important in
inverse filtering applications.

I. INTRODUCTION

ATHER AMAZINGLY, with all of the attention de-

voted to impulse-invariant, bilinear-z, and related
discrete-time filter synthesis techniques, very little explicit
attention has been devoted to the synthesis of discrete-time
filters that are covariance-invariant with continuous-time
filters. The property of covariance-invariance, to be carefully
defined in Section II, ensures roughly that the covariance se-
quence associated with the output of a discrete-time filter
excited by “white noise™ equals the sampled covariance func-
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tion associated with the sampled output of a continuous-time
filter excited by “white noise.” In this paper we examine
covariance-invariance as a concept around which a response-
fitting theory of digital filter synthesis may be constructed.
The concept of covariance-invariance is a statistical one, so it
seems appropriate to classify covariance-invariant digital filters
as statistically motivated or statistically designed digital filters.
A similar classification applies to the classes of filters studied
by Kellogg [1] and Farden and Scharf [2]. These investiga-
tors have achieved their design objectives indirectly by synthe-
sizing filters to solve related minimum mean-squared error
filtering problems. The covariance-invariance approach is
rather more direct and classical: design objectives are achieved
directly by equating a sampled covariance function with a
covariance sequence. The result is a close match between
analog and digital magnitudesquared frequency responses.
The reasons for this are given in Section II of this paper. Other
loosely related work has been reported by Greaves and Cadzow
[3] and Chu er al. [4]. Greaves and Cadzow achieved a syn-
thesis by minimizing the meansquared error between two
discrete-time sequences, one of which is the output of a digital
filter and the other of which is the sampled output of an
analog filter. The input to the analog filter is either a “‘rational”
or “band-limited” covariance-stationary random process and
the input to the digital filter is a sampled version of the same
random process. Chu er al. have exploited results of Barlett
[5] to establish the correspondence between the autoregres-
sive (AR) and moving average (MA) parameters of an ARMA
(2, 1) digital filter (2 poles, 1 zero) and the AR, or feedback,
parameters of an all-pole second-order analog filter. The corre-
spondence is achieved by matching the output covariance
sequence of the ARMA (2,1) filter to the sampied output
covariance of the purely autoregressive analog filter. The ap-
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pearance of a zero in such covariance-invariant designs, even
when the analog filter has no Ze10, Was anticipated nearly
thirty years ago by Bartlett [5] in a slightly different context.

Recently, a great deal of attention has been devoted to
discrete-time  spectral factorization for the synthesis of
discrete-time systems with prescribed covariance $equences.
See [6] for original contributions and 2 bibliography of other
relevant work. When the prescribed covariance sequence cor-
responds to @ sampled data sequence, then the problem is a
covariance-invariant one. Mullis and Roberts (7] have dis-
cussed the use of first- and second-order information in the
synthesis of discrete-time systems.

Frequency responses of Butterworth and Chebyshev digital
filters designed by the methods of covariance-invariance,
impulse-invariance, and bilinear-z aré presented and compared
in this paper. The results indicate a response-fitting superiority
for the covariance-invariant designs, a superiority that may be
important in applications that force the use of sampling rates
that are only marginally higher than filter cutoff frequencies.
We remark that the impulse-invariant design technique [8] is
appropriate (within a scale constant) as a covariance-invariant
design technique only for first-order filters, while the bilinear-z
technique [9] is never appropriate because the required
covariance-invariance is more demanding than the variance-
preserving isomorphism established by Steiglitz for such de-
signs [10]. There is a strong connection between covariance-
invariant filter synthesis and spectral factorization,a connection
discussed briefly in Section 11 and more fully in [1 1].

Finally, as discussed in [12], we emphasize that the issue of
covariance-invariance also arises when simulating 23 discrete-
time process that exhibits the covariance-nvariant property
with a related continuous-time process, and when designing a
minimum mean-squared error (MMSE) estimator for a discrete-
time process that has been obtained by sampling a continuous-
time Process. In the latter case, the covariance-invariant
representation of the discrete-time data may be used to derive
the appropriate sequential regression, of Kalman filter, equa-
tions provided the original continuous-time data are Markov.

The organization of this paper is as follows. In Secion 1l
the frequency-domain synthesis of covariance-invariant digital
filters is discussed. Section [1l contains example designs and
comparisons with impulse-invariant and bilinear-z designs. In
Section IV a time-domain technique for synthesizing multi-
input covariance-invariant systems is discussed. Conclusions
are advanced in Section V.

A preliminary version of this paper appeared in [121.

11. COVARIANCE-INVARIANCE

In our study of covariance-invariant digital filtering it is
sufficient to consider stable single-input, single-output (SIS0)
continuous-time filters’ characterized by rational transfer
functions

bms™ +b o gmt4-tbhsth
m m-1 1 ¢ m<n (1)

H:(s)=
¢ nag, s" e tastao

5

I More general multiinput, multioutput (MIMO) filters are considered
in [11] and [12]. By stability we mean bounded-input, bounded-
output (BIBO) stability.
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Such a filter is termed an n-pole, m-zero analog filter. The
spectrum of H,(s) is defined to be

Sc()= Hc(s)Hc(‘s)- 2)

The covariance function R(1) corresponding to Sc(s) is ob-
tained by inverse transforming S¢(s):

R (1)= ?11;]‘ f S.(s) e’ ds
()

Sc(s)= J Re(7) e~ " dr.
For H.(s) sta!;le,‘Sc(s) eﬁts on the imaginary axis s = j2nfand
we may write

Re(r)= j |He(s =j2m)\? ei*™7 df. @)

The function |Hc(s = j2nf)i? is, of course, the magnitude-
squared frequency response of H,(s). The covariance function
R, (7) describes the covariance, Re(1) = Ey(t)y(t + 7). of the
steady-state filter output y(r) when the system input u(f) isa
wwhite noise” process with covariance Eu(t)u(r * 7) = 8(7).
The notation E denotes expectation and &(r) is the Dirac delta

function.
Correspondingly, we are interested in stable SISO discrete-

time filters characterized by rational transfer functions H(z)

b2 + Bz iz o
-n+l 4.

r<n.

H(z)= (5)

7"t apz etz o

This is termed an n-pole, r-zero digital filter. The spectrum of
H(z)is

S(z) = HZ)HE™)-

The covariance sequence is
follows:

(6)

obtained by inverse transforming as

R

2= 5] S(z)z* ' dz
- )
S@2)= Z th_k.
k=-oo
For H(z) stable, all poles of H(z) lie within the unit circle z =
22T §(z) exists on the unit circle, and R may be written

12T
Rk = TJ.

-1/2T

The function |H(z=¢

frequency response of

scribes the covariance, Ry = EYiYisks of the steady-state filter

output y; when the system input u; is a white-noise sequence
with covariance Eujttiei = 8k- Here & is the Kronecker delta?

\H(z = e e/2nIkT df. ®)

1T is the periodic magnitude-squared

2we really should use the notation {R i) m—oe and
8]
entry in the sequence {RJimse-
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the meaning clear.
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Definition (Covariance-Invariance): Consider a SISO contin-
vous-time filter with transfer function H_(s) and spectral rep-
resentation S.(s). A discrete-time filter with transfer function
H(z) and spectral representation S(z) is said to be covariance-
invariant with the continuous-time filter if

Ry =R, (1 =kT)
for
k=0,%1,£2 . ®

Comments: The property of covariance-invariance ensures
that the covariance sequence characterizing the response of a
stable, linear discrete-time system to “‘white noise” equals the
sample covariance function that characterizes the sample out-
put of a stable, linear continuous-time system excited by
“white noise.” Thus, a second-order statistical equivalence is
established between samples of a continuous-time system out-
put and a discrete-time system output. The need for such an
equivalence arises naturally in MMSE filtering studies based
on second-order statistics (of sampled data).

Using (7) and (9) the problem of synthesizing a covariance-
invariant discrete-time system H(z) can be phrased as one of
finding the H(z) such that

H(2)H(z™")= 3 RJr=kT)z7*. (10)
k=—oa
In this form the covariance-invariant synthesis problem is one
of spectrally factoring the right-hand side (RHS) of (10) and
the relevant literature on minimal and partial realizations to
achieve or approximate the solution of (10) may be brought to
bear on the problem (for example [6] and [14]).

A. Why Covariance-Invariance for Frequency Response
Marching?

The covariances Ry are Fourier series coefficients for the
periodic function |H(z = e/*™T)[*. That is, Ry is the projec-
tion of |H(z = e/*™T)? onto {e/*7*T -1/2T < f<1/2T}.

For [He(s = j2nf)|* essentially banddimited to (-1/2T, 1/2T),

indicating that 1/T has been chosen according to a Nyquist-ike
criterion, then R.(7 = kT) is approximately equal to the pro-
jection of |H.(s = j2nf)|* onto {/*"*T -1/2T< f<1/2T}.
By matching Ry to R.(r = kT') we are matching Fourier coef-
ficients for |H(z = ¢/*”T)|? with approximate Fourier coef-
ficients for a periodic extension of |H.(s = j2nf)|*. By the
unicity of Fourier series we are obtaining an approximate
equality of |H(z = e/*”T)? and |H.(s = j2nf)|? on the inter-
val (-1/2T, 1/2T).

This implicit matching of magnitudesquared responses,
rather than the implicit matching of complex frequency re-
sponse in the impulse-invariant and bilinear-z methods, ac-
counts for the superior magnitude-squared response matching
of covariance-invariant designs. A distinct advantage of the
covariance-invariant designs is that they may always be chosen
to be minimum-phase (or stably invertible) by simply choosing
the zeros of H(z) to be within the unit circle. This property is
not enjoyed by impulse-invariant and bilinear-z designs, both
of which are always nonminimum-phase. Of course, in an
impulse-invariant design one may reflect zeros which lie out-
side the unit circle inside the unit circle without affecting the
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magnitude-squared frequency response of the filter; however,
the impulse-invariant property will be destroyed. Experience
with covariance-invariant designs has shown that nonminimum-
phase covariance-invariant designs may provide better phase re-
sponse matching than minimum-phase designs. Further, the
phase response matching of the nonminimum-phase designs is
approximately as accurate as it is for the impulse-invariant and
bilinear-z designs. Thus when phase response matching is im-
portant, one may trade stable invertibility for accurate phase
matching,

B. A Frequency-Domain Synthesis Procedure

The synthesis of a covariance-invariant digital filter proceeds
from the expression for R.(7) given in (3) or (4) and the
spectral factorization formula of (10). That is, given the
continuous-time transfer function H.(s), one obtains R.(7)
from (3) and samples it to obtain R; =R (r=IT). The se-
quence {R;,I=0, 1, -} is z-transformed to obtain the RHS
of (10), which is then factored into H(z) and H(z"'). To illus-
trate, consider the SISO continuous-time filter with transfer
function

Ho)= 322 (1)
o) = l;sﬂ,-

where Ajand s;,i=1,2, -+ n, may be complex and Re {s5;} >

0 for i=1,2,--+,n. When this continuous-time filter is ex-

cited by a white process of covariance 5(r), then the steady-
state covariance of the filter output is obtained from the in-
version of (4):

Ro(r)= 3 A; e™iTH (5. (12)

i=1
It follows that (10) may be written
H@)H(z™")= 3 R(r=kT)z"*
k==oc

n e-.q'r = e:;T
=z EA.I‘HC(Si) (2' E-S’T}(Z' e’iT)' (13)

i=1

The RHS of (13) exists for |z7'| < |z < |z,| with z, A min,
|e*iT| > 1. Equation (13) can be written as the following ratio
of polynomials in z:
N(z
HEHE™)= — ) (14)
l"] (Z - e-t,'T)(z—l = e-s;T)

i=1

where the numerator polynomial N(z) is of order 2(n - 1) in z:

N(z)= Z": A; Ho(s)(1 - e'“ir) ﬁ (z- e"’*T)(z“ _ e"kr),
=1 P
k+i

(15)

The factorization to obtain H(z) proceeds by choosing distinct
poles z = ¢~%iT (these are simply the impulse-invariant poles)
and then solving for the 2(n - 1) roots of N(z). One is then
free to associate the n - 1 roots that lie inside the unit circle
with H(z), and the (n - 1) roots that lie outside with H(z™"),
thereby obtaining a minimum phase design.
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We have essentially outlined the proof of the following
theorem.

Theorem: Given an nth-order stable SISO continuous-time
filter H.(s) with distinct poles s;, i=1,2,- -, nand m<n
zeros. The corresponding stable SISO covariance-invariant
digital filter has n poles (the impulse-invariant poles) and
(n- 1) zeros.

Comment: This theorem is proved and extended to in-
clude continuous-time filters H.(s) with repeated poles in
[11]. A similar idea is stated by Jenkins and Watts [15]:
“Whereas the original continuous AR process has an input
which is white noise, the discrete sampled AR process has an
input which is an MA process of order one less than the order
of the differential equation describing the system.” This
statement is not proved, but a reference is given to Bartlett
[5] who proved it constructively for a second-order case. A
general proof is contained in [11].

C. Synthesis Procedure: A Summary

The design steps in the synthesis are the following.

1) Evaluate R.(7) from (3) (or by correlation if the impulse
response A(t) is known).

2) Evaluate the RHS of (10).

3) Factor the RHS of (10) by choosing impulse-invariant
poles and solving for the 2(n - 1) zeros of N(z), to obtain the
transfer function H(z).

Comments: Whenever R.(7) is known, as in process simula-
tion applications, then only the last two design steps are re-
quired. In step 3), which is a spectral factorization problem,
relevant results from a vast literature may be used in the fac-
torization. When only a finite record of R.(r) is given, the
so-called partial realization problem is relevant and numerous
approximation algorithms are to to found in the literature to
solve the factorization [16].

An important observation in the design of covariance-
invariant discrete-time filters is that the gain due to sampling is
1/+/T instead of 1/7 as usual.

II. ExampLE DESIGNS

In order to demonstrate the excellent frequency response
fitting properties of covariance-invariant digital filters, we pre-
sent several example designs for a variety of Chebyshev and
Butterworth covariance-invariant filters.

Consider the continuous-time fourth-order Butterworth low-
pass filter with w, = | rad/s, whose transfer functioa has the
following poles:

1.2 =0.3827 £0.9239
534 =0.9239 £/ 0.3827. (16)

For T =0.1 s, the synthesis procedure of Section II results in a
discrete-time covariance-invariant filter with the following
poles:

Pr.a =0.9583 £/ 0.0888
P3.a = 09111+ I 0.0349.

(17)

The numerator polynomial of (15) is
Mz)=[3.6913+1.8197(z+z"')+1.8334 - 107! (z2 +z7%)
+1.5274 - 1072 (z* +z7%)] - 10-® (18)

16" =43 48 Rippie

id 41th Order Chebyshev Low-Pass
w0, T=01, w=l0w
Continuous-Time Filter

Iﬁ' o —— Covariance - invariant
Digital Filter
= == Bilinear - Z Digttal Filter
L ------ Impulse - Invariant Digital
Fiitar

MAGNITUDE

FREQUENCY (RAD/SEC)
Fig. 1. Magnitude responses for Chebyshev designs; T = 0.1.

with roots
z;=-0.1226 z,=-8.1591
z,=-0.5353 z;=-1.8682 (19)
z;=-0,0091 z,=-109.3434.

As expected from a symmetric polynomial, z, =z3', z, = z5',
and z3 = z;'. Thus choosing the zeros which are within the
unit circle, the minimum-phase, fourth-order low-pass
covariance-invariant discrete-time Butterworth filter has the
following transfer function:

1.5955 - 107*(z + 0.1226)(z + 0.5353)(z + 0.0091) )
[(z - 0.9583)* +0.08882] [(z - 0.9111)% + 0.0349?]

(20)

The frequency response of (20) is presented in Figs. 6 and 7
together with the frequency response of H.(s) and the fre-
quency responses of two other digital filters: one designed
by the impulse-invariant procedure and the second by the
bilinear-z procedure. It is evident from Fig. 6 that the
covariance-invariant digital filter has better magnitude re-
sponse fitting properties than the other two. This superiority
is more remarkable for sampling rates 7~' that are close to the
critical frequencies of the filter (e.g., Figs. 11, 13). In Fig. 8
the phase response of the minimum-phase covariance-invariant
design is compared to the phase responses of two (out of seven
possible) nonminimum-phase covariance-invariant designs.
From Figs. 7 and 8 and Figs. 3 and 4, the phase response
matching of nonminimum-phase covariance-invariant designs
is approximately as accurate as it is for impulse-invariant and
bilinear-z designs.

A variety of similar covariance-invariant designs for Butter-
worth and Chebyshev filters are summarized in Tables I and II
and in Figs. 1-13. In all figures results are given for impulse-
invariant designs, prewarped bilinear-z designs, and covariance-
invariant designs. In Fig. 2 an extra magnitude response is
plotted to illustrate the effect of simply cascading two second-
order covariance-invariant digital filters rather than solving for
the fourth-order covariance-invariant digital filter.
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FREQUENCY (RAD/SEC)
Fig. 2. Magnitude responses for Chebyshev designs; T = 1.0.

In all examples considered to date the frequency response
matching of the covariance-invariant design is superior to the
corresponding magnitude response matching for the impulse-
invariant and bilinear-z designs. For sampling rates 7' that
are marginal with respect to filter critical frequencies, as in
Figs. 11 and 13, the magnitude response matching properties
of the covariance-invariant designs are far superior to the
impulse-invariant and bilinear-z designs. The pole-zero dia-
grams of Fips. 5 and 9 illustrate the differences in pole and
zero locations for impulse-invariant, bilinear-z, and covariance-
invariant designs. The solid dots represent fourth-order zeros
for the bilinear-z design. As indicated in the diagrams the only
distinction between the covariance-invariant designs and the
impulse-invariant designs is in the location of the zeros. This
systematic relocation of zeros yields improved magnitude
response matching and stable-invertibility.

IV. MISO SYNTHES1S PROCEDURE

The synthesis procedure of Section II is a straightforward
frequency-domain procedure. In this section we discuss a
time-domain approach to covariance-invariant synthesis that
is applicable to multiinput, single-output (MISO) discrete-
time systems. Such systems are not applicable to SISO digital
filtering, but they are useful for the synthesis of random se-
quences that are covariance-invariant with randomly sampled
data sequences.

Our convention in Section IV is that a state model for a
random sequence is always excited by a white sequence. Most
of the material on state equations in this section can be found
in [13, ch. 6].

A. Continuous-Time State Equations

There are a variety of state-space representations of (1). The
representation which leads to the most direct calculation of
covariance-invariant equations is the so-called Luenberger
canonical form (F, G, C) with

X(1) = FX(r) + Gu(r)

@
»(1)=CX(1)
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Fig. 3 Phase responses for Chebyshev low-pass designs; T = 1.0.
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Fig. 4. Phase responses for Chebyshev low-pass designs; T = 1.0.
and
1
[0 | 1
(f)l= o — | "(x)-[lo 0]
nxAn 1Xn
| "@0 "4, Tan,
~ -
81 =bp.y - bnan,
8= by~ bpap_; - 818,
& 2
&2 .
¢ =1 n-k-1 (22)
(nx1) . =
4 =by - z Eiljsx
i=0
En
n=1
& =bn- ) &4
=0

where we define b; =0 fori=m+1,m+2,---,n-1. In
(21), y(2) is the system output and u(t) is the system input.
The transfer function H,.(s) is given by
H(s)=CQsl - F)'G. (23)
This transfer function exists for Re {s} > max; Re {)\;(F)},
where A\;(F) is the ith eigenvalue of F and Re {\;(F)} <0
(1<i<n)
When u(r) in (21) is a “white” process, then the steady-state
covariance of y(7) can be written
cefry.c, r<o0
R.(1)= {

24
cv.eFTc’, 20 (24)

. ————————— - T e e ————
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Fig. 5. Pole-zero locations for Chebyshev designs; T = 1.0.

Here V. is the steady-state zero-lag covariance matrix for the

state X(¢r). This covariance matrix satisfies the Lyapunov
equation
FV . +V.F'+GG' =0 (25)

or the integral equation

V,= f eF'GG' eF ' dt (26)
(1]

where superscript prime denotes matrix transpose.
B. Discrete-Time State Equations
A state-space model for (5) that is useful in the synthesis of
multiinput covariance-invariant systems is
Xis1 = QX +TU

(27)
Y = WX

Here @ is an (n X n) state-transition matrix, I"is an (n X n) in-
put matrix, W is the (1 X n) output vector [1 0---0], and Uy
is an (n X 1) white input vecror. This is a state-model for a
MISO discrete-time system. CT

For Uy a white vector, i.e., EUy Uy, = 15, the covariance of
Vi is given by

_{ NI O 1<0

= 28
levge)y'. 1zo0 %)
with V; satisfying the equation
Vd = Cdeq)' +IT. (29)

Of course R, will not be the correct model for the system of
(5) when Uy, is chosen to be Uy = (uy,Ug—y," " *,Ug—pn). The
reason is that white u, results in a nonwhite covariance for
Uy, that is EU, Uy, = §; where §2; is a matrix with ones on
the Ith diagonal. The main diagonal is the zeroth diagonal.
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-y LG, T=0l, w=*I0Ow
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—— Covarionce - Invariant Digital Filtar
——— Bilinear - Z Digital Filter
id -==--= Impulss-invariant Digital Filler
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. # ¥
FREQUENCY ( RAD /SEC)
Fig. 6. Magnitude responses for Butterworth designs; T = 0.1.
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————— Impulse- Invariant Digital Filter |

PHASE (RAD)

v
X

FREQUENCY (RAD/SEC)

Fig. 7. Phase responses for Butterworth low-pass designs; T = 0.1.

C. MISO Synthesis

The appropriate MISO synthesis equations are (24), (25),
(28), and (29). From (24) the covariance R.(7)is computed.
The sampled version is simply

Ce P e, k<D
CV, eF*TC, k>0
with ¥, given by (25). For MISO synthesis, in which case a
white vector U, may be employed, one may consider the co-
variance model of (28). Then a covariance-invariant design is

achieved by equating R.(r = kT') with the expression given for
Ry in (28). The result is

R (r=kT) ={ (30)

1) ¥=C
2) d=eFT (31)
3) lfc = lﬂd'

Condition 3) imposes a solution constraint on the marrix T
via (29):

V,=®V,® +IT. (32)

The following theorem ensures that a solution for I exists.
Theorem: The (n X n) matrix Q(T)AV, - e TV, e T is
symmetric and nonnegative definite for all T € [0, =°).
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TABLE 1

CHeBYSHEY FILTER DESIGNS

Synthesis
Method

H(z), covariance-invariant

Hiz), impulse-invariant H(z), bilinewr z-transform

Filter design design design
Type
4th order Chebyshev
L.P. filter . - 4 .
w =1 3 T=0.1 2.2119°107 " (240.1231) (2+0. 5345 . 0090 2.0575-10 ';!ﬂ! 67570 (240 26&)2 7.51'-5:10 (z+1) .
c:_ Fig. 1 [ (2-0.9871)°40, 093771 [ (2-0.9789) *+0. 0384 l(z-0. 9871)%40.0917°] | {2-0.9789)° 0. nml [(e-0.9871)"+0.0937° | [ (2-0.9789)°40.0364° )

ath order Chebyshev
L.P. filcer

w =l ; T=1.0
c

cf. Figs. 2-5

.8552:10°2 (2+0.1321}(2+0.552)) (£40.0098)

1.1lzar:n‘2-.(:43.0)6!)(:*0.2665) s.:uaz-lu"(aoLJ'

| (2=0.5368)°40.76517) | (2-0. 75247740, 31117}

[(2-0.3368)°+0, 7451° ] [ (2=0.7524) %40, 31127 [ (£-0.5361) 240, 75897 1| (2-0.7337) 240, 3339° |

&th order Chebyshev
B.P. filter

..O-A_o; Bl=3;T=0.1

Cf, Fig. 10

9.8439-2072 (340, 2950) | (2-0. 94573 2+0.0530° 1
7

| (2-0.8319)°40. 48137 ) [ (2-0. 6857)°+0. 64947

1. 02!1 10” (sﬂ) ft-_}
[{==0. !]0?) +0. illb 11 (z~0.8857)" 40 55“ 1

3.5182:1070 -5 (3-1.1325) (2-0. 8893)
[ (2~0.8319) 40, 6813° ) [ (2-0.6857)°+0. 6454° |

4rh order Chehyshev
B.F. fileer

...n-/a—u;w-hr-u. 19

CE. Fig, 11

!

J.usno—:o'l(-¢o.7369)l(:-n.ls:1)210.353421

~4.6110-107" cx{z+l.3739) (240, 3766) 1.2656+10° (Hll jl.-lL

| (240, 3918)740. 76222 ] [ (2+0. 7865140, 1666° )

[ e+0.3918) 240, 76227 | (x40, T865) " +0. 1486 | [ (x+0.3859) "0, 6074° 1| (240, 9907) *40.0236% |

TABLE 11

BUTTERWORTH FiLTER DESIGNS

Synthesis

Flliter
Type

Hiz)}, covarlance-invariant
design

H(z), bilinear r-tranaform
Hiz}, iwpulse-invariant design

design

4th order Butterworth
L.F. fllter

=1 ; T=0.1

cf. Figs 6-8

1.5955+10" (24'0 1326) (240, 535])(!1'0 00911

“

1.5608° 107" -5 (2+3.4937) (£+0.2512) 5.4847-10"° (e41) "

1{2-0.9583)" ‘0. DBBB‘]((!-U 9111 “40. ﬂJaVl

| (z-0. 958337 +0.0888° | | (2-0.9111)"+0.03497 | 7

[ (2=0.9384)%+0. 08887 [ (£-0. 9311} %+0. 03307

dth nrder Bulterworth

L.F. filter
_E-l ; TeD.5
€f Fig 9

2.6446- 1072 (2+0. 1226) (+0. 5353 (240.0091)

[ (2=U-7393)°+0. 3681% ) [ (2-0. 6186)°+0. 1198° )

148621077

-2 (242.660) 2.0436°10" (ze1)
2
[ (2-0.7393) 240 3681 | (2~0. 61861340, 1198 [(2=0.7477) *+0. 368471 [ (2-0. 6150) 140, 1255

hth order Buttervorth
B.F. filter

4 =3710 ; BW=1;T=0.0)

cf. Fig 12

40065 10~ (240 2729) Kz-0 98391210.0159?'\

l(==0. 9529)"*0. ZGTIJ 11 ¢z=0. 9&5))200. Zﬂll:]

2.8576:10"2 2 (=172

it - 2.2031°10”% (1) 2 (=132
[(3-0,9529)+0.2678% ) [ (s-0. 9462124028787 )

[€£-0.9529)740.2678% ) [ (2-0. 9463240, 28787 |

aen order Butterworth
B.P. [Llter

4, =310 BW=1:T0.3

cf Fig: 13

4.9371°10" (240,229 (2+0.8742) (++0.0381)
z

[¢2+0.8311)%20.1520% | [ (240.8798)%40.1687° |

=1.177%- 10-1- 2{z+1.1849) (£+0.6490)
2

[ (3+0.8311)% 40, 3525° ] [ (£40.8798)°+0.1687° ]

., -2 2 2
1827230 2 (ae1) P ga1y?
[ (x+0.8067) 20, ;u;*]-ﬁ;o. 9294340, 13867 )

Proof: The symmetry of Q(T') follows from the symmetry
of V.. Define

eW)=V, -

0(r) = eF'GG' eF ",

eFt V, ef r

Q0)=0
Q(0)=GG' = 0.

Thus Q(¢) is nonnegative definite and Q(T) = [ Q(¢) is non-
negative definite for T € [0, =).
Comment: The nonnegative definiteness of QAT ensures
that the “variance equation™ (32) can be solved by a Cholesky

decomposition algorithm. We emphasize that the resulting
discrete-time system (@, ", ¥) is a multiinput system excited
by a vector of uncorrelated components with the property
E Uk U rk...] =J8 I

(33) D. Numerical Example

Consider a second-order SISO continuous-time system with
input dynamics and transfer function

Ho(s)= s+7.5

(5+05)(s+4) (34)

- » —
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Fig. 9. Pole-zero locations for Butterworth designs; T =0.5.

Assume the scalar input to be a white process with covar-
iance function &(¢). The output covariance is obtained from
(12):

- . S -

Rc(r)—?e ""~ﬁe ™, (35)

It is required to design a discrete-time system that is
covariance-invariant with the given H.(s), for sampling interval
T =0.1s. The frequency-domain synthesis procedure results
in the following covariance-invariant discrete-time SISO system

0.3572(z - 0.4662)
H(z) = :
@)= - 09512)¢ - 0.6703)

The time-domain synthesis procedure results in the following
MISO covariance-invariant discrete-time system (&, ', ¥):

(36)

| 09914 00803 03569 0
-0.1605 0.6302 | 0.7259 0.1590/|
¥=[1 0]. (37
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Fig. 10. Magnitude responses for Chebyshev designs; 7 =0.1.
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Fig. 11. Magnitude responses for Chebyshev designs; I" = 0.39.

V. CONCLUSIONS

Covariance invariance seems to be a useful concept around
which to construct a response-fitting theory of digital filter
synthesis. For SISO filters the synthesis of covariance-invariant
digital filters is straightforward, involving the selection of
impulse-invariant poles and the selection of zeros that are
roots of a 2(n - 1)-order polynomial in z. For high-order fil-
ters one can simply use standard polynomial root finding
algorithms available in scientific subroutine packages. The
designs presented in this paper suggest that covariance-invariant
digital filters are only slightly more difficult to design than
their impulse-invariant and bilinear-z transform counterparts,
and that they outperform them as magnitude-squared fre-
quency response matching filters.
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Fig. 12. Magnitude responses for Butterworth designs; T = 0.03.

The results on MISO synthesis in Section IV are useful for
the synthesis, using independent random numbers, of random
sequences having a prescribed covariance function. When the
independent random numbers are Gaussian, then so s the
synthesized sequence. When using the MISO time-domain
synthesis method, one simply employs a Cholesky decomposi-
tion algorithm to solve for the input matrix I. The theorem
of Section IV ensures a solution exists.

Finally, we remark that the parallel or serial cascades of low-
order discrete-time sections that are covariance-invariant with
corresponding low-order continuous-time sections are not
covariance-invariant. Thus pole-grouping, which is useful in
the design of high-order digital filters, cannot be directly
applied in covariance-invariant digital filter design. The same
difficulty arises in impulse-invariant digital filtering. Only in
the bilinear-z transform design method is it possible to cascade
and to parallel digital filters, and obtain the correct overall
digital filter. If, however, in the covariance-invariant design
of cascaded filters it is taken into consideration that the input
spectrum of each filter is the output spectrum of the filter
preceding it, then covariance-invariant digital filters can be de-
signed which will result in the desired overall covariance-
invariant filter.
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