ECEA411 - Laboratory Exercise #1

Introduction to Matlab/Simulink

This laboratory exercise is intended to provide a tutorial introduction to Matlab/Simulink.
Simulink is a Matlab toolbox for analysis/simulation of interconnections of dynamic systems.
The model building environment is GUI based, and it will be used heavily throughout the
rest of the course/laboratory. All the exercises in this assignment can be done entirely in
Matlab/Simulink.

1) Running, Plotting, Printing: In order to see a demonstration Simulink diagram
type sldemo_househeat at the Matlab prompt. Open the scope block, labeled “PlotResults”
by double clicking, and then run the simulation using the buttons or pull down menus
provided. Print the plot of the simulation output (scope block) and print the simulation
model itself.

2) Model Building: Figure 1 shows a Simulink model which represents the motor gear
system in the Controls Laboratory, with a PID controller implemented in feedback around
it. Launch the simulink library browser from within Matlab by using the button or typing
simulink. Then open a new model (using button or pull down menus), and build a copy of
the above model. This is achieved by dragging components from the library to the model
and connecting them using the mouse. Double clicking a box then allows you to edit the
contents, such as entering values for the transfer function (as shown). For the PID block set
the proportional gain to 0.05, and the integral and derivative gains to zero.

Look around at the (many) available blocks in Simulink. You will certainly need to look
in Sources, Sinks, Continuous, Math Operations and Signal Routing. Note that there is no
block for “Pulse Input”, but I made that myself from basic components using the Create
Subsystem from Selection command after selecting a section of the diagram and right-clicking.
The contents of the box are shown in figure 2. You can even use the Mask/Create Mask
command (again select and right-click) to take a subsystem and use it to make your own
custom library blocks (with GUI interfaces for the parameters).

When you have built a copy of the model save it with the name “gear” (it will actually
be saved as gear.slx). You can then launch this model later from Matlab simply by typing
gear at the command line. Go under Simulation to Model Configuration Parameters and set
the simulation time to 8 seconds. Then run the simulation and print the results from the
scope block. You should get a plot like figure 3 which shows the commanded response and
the actual system response (note the autoscale and zoom buttons on the scope). Of course
note that in order to get the correct commanded response you will need to enter appropriate
values for the two step input blocks that make up your pulse input.

Outl P+ { > 1710 L
' PID
_ s24225 Scope
Pulse Input Sum PID Controller Mux
Transfer Fen

Figure 1: Simulink model of motor gear drive system

—P| +
Step1 hal 1
e
P Suml Outl
Step2

Figure 2: Simulink pulse input subsystem

Having completed this exercise you should have a model and a simulation run that es-
sentially reproduce the figures shown here. Now try varying the parameters of the PID
controller and see how they affect the closed-loop control system (note that you can en-
ter variable names in Simulink Blocks if you like, and it will read them from the Matlab
workspace). In particular carry out the following simulation studies:

i) Vary the Proportional gain up and down and note the effect.

ii) Now try adding in the Integral and/or Derivative gains. You do not need to generate
large numbers of plots but plot a few of the results and discuss how the different controller
parameters (Proportional, Integral, and Derivative) affect the closed loop performance.

iii) See if you can manually tune the PID controller to get a good step response.

iv) See how well your controller rejects disturbances by adding a disturbance signal between
the controller and the plant (just use a summing junction to add your disturbance signal to
the output of the PID controller).

v) See how sensitive your closed loop system is to modeling errors by perturbing the open
loop plant model (i.e., change the Transfer Function parameters).

7000

6000 |— —
5000 — /\ . . —
4000

3000 — —

2000 [—

1000 —

o
—1000 — v —

—2000 [— —

—3000

Time offset: O

Figure 3: Scope block output from simulation

These trial-and-error simulation studies should give you some ideas about how the closed-
loop control is working. Later in the semester we will revisit this problem with the systematic
analysis and design tools we have learned in class, and try them out both in simulation (as
here) and on the actual hardware system in the laboratory. In addition to the above studies
you can find more Matlab/Simulink examples by typing demo. Further information is also
available at the following Websites:

https://www.mathworks.com/help/index.html
http://ctms.engin.umich.edu/CTMS/index.php?7aux=Home

The Mathworks Website is a general reference site for Matlab/Simulink and their various
toolboxes. The second Website is specifically designed as a tutorial introduction to Control
System analysis and design using Matlab and Simulink.

https://www.mathworks.com/help/index.html
http://ctms.engin.umich.edu/CTMS/index.php?aux=Home

APPENDIX: Introduction to Matlab

This material is NOT required
Included only as an OPTIONAL tutorial

This material is intended to provide a tutorial review of Matlab, which will be used
throughout the rest of the course. It will NOT be graded.

1) Vectors and Matrices: Data entry in Matlab is achieved by separating columns of
matrices by spaces, and rows of matrices by semi colons. Thus in order to enter the matrix

137
“ 1256

a=1[13725 6

one would type

Having defined matrices then one can compute algebraic manipulations of them easily in
Matlab. Matlab provides a wealth of matrix functions, each of which has online help to
describe their operation. Type the following commands to learn about the functions and
then carry out the exercises below:

help arith
help inv
help eig

You can also browse the available help by typing helpwin. Look around in the directories
general, ops, lang, elmat, elfun, and matfun to familiarize yourself with what is available
in Matlab. Of course we will not be using all of the available tools, but some we will use
heavily, and you will build your understanding of Matlab as the course progresses.

Enter the following matrices (the imaginary number j = 1/—1 is recognized in Matlab):
-
6 .

—_
ot W

9
3
1 11

1—5 1+j 3
c=|2-4j 84+3j 6j
0 0o 7

[yl
I
0 W~
— =

Now compute the following quantities:

i) be

i) b~ te

i) ab

iv) b+c

v) ba® (where a’ denotes the transpose of a)
vi) The eigenvalues of b

vii) The eigenvalues of ¢

You may find the following commands useful

help diary
help save
help load

2) Polynomials: Matlab facilitates easy manipulation of polynomials, by storing the
coefficients as vectors. The polynomial

s>+ 352 —Ts+8

would be stored as the vector
p=[13 —7§

Evaluating the polynomial and calculating the roots is then straightforward in Matlab. Type
the commands

help polyval
help roots

and look in helpwin under polyfun. Then carry out the following exercises:

i) Evaluate s® +2s* +4s — 8 for s =1

ii) Evaluate s® 4+ 2s* +4s — 8 for s =2 — 45
iii) Evaluate s + 4s for s = 2j

iv) Compute the roots of 253 — 3s? + 65+ 7
iv) Compute the roots of s3> — 125>

v) Compute all the cube roots of 1

3) Plotting and Printing: Matlab has an array of commands for plotting, label-
ing/editing plots, and printing. Type the following commands:

help plot
help print

Note that there are “See also” commands suggested at the end of every help menu. You can
also look in helpwin under graph2d (and others). As a simple example the following series of
commands generates a plot of a cosine wave:

t = 0:0.01:2"pi;
y = cos(t);
plot(t,y);

title(’Plot of a cosine wave’);

Note the first line is used to automatically generate a time vector (see also linspace and
logspace). The semicolons keep the commands silent. Generate and print plots of the follow-
ing functions. Please include titles and axis labels.

i) sin?(t) — cos(3t) for 0 <t < 27
i) 3 —3t2 — 2t for 0 <t <5

4) Scripts and Functions: Any collection of Matlab commands can be gathered to-
gether as a script, saved in an “m-file”. For instance save the following commands in a text
file called plotit.m

numhar = 5;
numpoints = 300;
= linspace(0,2*pi,numpoints);
y = zeros(1,numpoints);
for i = 1:numhar

A ((-1)) (ii+1))*(1/(2%ii-1)) *cos((2*ii-1) *t);

plot(t,y)
title(’Harmonic decomposition of a square wave’)

You can then run this straight from Matlab (just type plotit) to build a square wave from
its harmonics and plot it. The formulae for the harmonic series coefficients comes from the
Fourier Series expansion (verify that). Note that this is a script in that all the variables
exist in the workspace. You can also write subroutines, which use local variables. Type help
function to see the syntax for doing this. Carry out the following programming tasks:

i) Write a function from the above script to generate and plot a square wave from its har-
monics. The inputs should include the number of harmonics and number of points. The
outputs should include the time and amplitude vectors for the square wave. Plot the wave
for various values. Can you see Gibb’s phenomenon when the number of harmonics is large?
ii) Write a function which gives back the sum of the squares of the absolute values of the
elements of a matrix, i.e., it evaluates the function

n m
f=2_2 layl”
i=1 j=1

for any n x m matrix a. Test your routine on the matrices a, b, ¢ from question 1).

