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[1] We use high-resolution two-dimensional simulations to
model the generation and evolution of nonlinear internal
waves formed as a result of the interaction of a first-mode
internal wave field with idealized slopes. The derivation of
the energy equation and the energy flux terms are presented.
By employing an analysis of the distribution of the energy
flux across the shelf break, we quantify the contributions to
the energy flux budget from nonhydrostatic as well as
nonlinear effects in comparison to the contribution from the
baroclinic pressure anomaly term used widely for linear
internal waves. Our results show that the contributions to the
total energy flux from these additional terms are significant
in these large nonlinear internal waves, consistent with
recent field observations. Citation: Venayagamoorthy, S. K.,
and O. B. Fringer (2005), Nonhydrostatic and nonlinear
contributions to the energy flux budget in nonlinear internal
waves, Geophys. Res. Lett., 32, L15603, doi:10.1029/
2005GL023432.

1. Introduction

[2] Recent observations in the coastal ocean reveal the
ubiquitous nature of nonlinear internal solitary waves [e.g.,
Klymak and Moum, 2003; Carter et al., 2005; Hosegood et
al., 2004; Scotti and Pineda, 2004]. These authors cite some
of the first waves of elevation observed in coastal waters.
Very little is known on how and where these waves are
generated, though it is hypothesized that the interaction
of long-first mode internal tides interacting with bottom
topography can be one possible mechanism. These bottom-
trapped nonlinear internal waves (herein referred to as
NLIWSs) are implicated in cross-shelf transport of nutrients,
sediments and contaminants, not withstanding their contri-
butions to diapycnal mixing on coastal shelves.

[3] The energy flux through a given location gives a
measure of the amount of energy available for mixing/
transport elsewhere (e.g. this would be upshelf for an
onshore propagating wave) [MacKinnon and Gregg,
2003]. The standard approach in energy flux calculations
is to only account for the contributions due to the hydro-

0
static pressure fluctuations given by p’ = Pgy + g / p'dZ
z

where Pg; denotes the free-surface pressure and p’ is the
density fluctuations associated with internal waves [see,
e.g., Kunze et al., 2002]. However, the contributions to
the energy flux due to the vertical inertia of the fluid parcels
will be significant in NLIWs since the aspect ratio of these
waves is of order one [e.g., see Carter et al., 2005]. The
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contributions from the nonlinear terms can also be quite
significant. Recently, Scotti and Pineda [2004] showed
that NLIWs observed near the Massachusetts Bay depart
strongly from weakly-nonlinear and weakly-nonhydrostatic
conditions owing to their steepness, highlighting the need to
take into account these effects in the energy flux budget.

[4] In this paper, we present results from high-resolution
two-dimensional laboratory-scale simulations modeling the
generation and evolution of NLIWs formed as a result of the
interaction of a first-mode internal wave field with an
idealized sloped coastal shelf. We provide a derivation of
all the relevant terms in the energy flux budget and compute
these terms in our simulations in order to quantify the
contributions from nonhydrostatic pressure as well as non-
linearity. The partitioning of the incident internal wave
energy over the course of the interaction process is discussed
extensively in a related paper by S. K. Venayagamoorthy and
O. B. Fringer (Energetics of the interaction of internal waves
with a shelf break, submitted to Journal of Fluid Mechanics,
2005).

2. Energy Flux Budget

[5] In this section, we present the evolution equation for
the total energy with a discussion of the different terms that
contribute to the energy flux budget and how they are
computed in the current simulations. Results showing the
relative contributions to the energy flux budget follow in
Section 3.

2.1. Derivation

[6] The governing Navier-Stokes equations with the
Boussinesq approximation are given by

Ou 1 g
—+u-Vu=——Vp+vViu— =0k, 1
ot Po Po M
9
LV (o) =T, @)

V-u=0, (3)

where v is the kinematic viscosity and k is the scalar
diffusivity.

[7] The total energy (sum of kinetic and potential energy)
is obtained by taking the dot product of equation (1) with u
and multiplying equation (2) by gz and summing the two
resulting equations to obtain

B B
pr (Pog +pgz) +V - f = —pe — 2R (pg) s 4)
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Figure 1. Schematic of the laboratory setup that forms the

domain for the current simulations. The buoyancy fre-
quency is N = 0.57 rad/s, corresponding to a density
difference of Ap/py = 2% over the depth. Line (a) represents
the transect used to compute the energy flux in Section 3.

where ¢ = u - u/2 is the kinetic energy per unit mass, f is the
total energy flux given by

f = u(p+pgz+pyq) — Vg —rV(pgz), (5)

and the viscous dissipation rate of kinetic energy is given
0ui 8ui .

by € = Ua I For the present analysis we neglect the
contributionj of t]he diffusive fluxes of kinetic and potential
energies (the last two gradient transport terms in
equation (5)) to the energy flux (see, e.g., Fringer [2001]
for a justification).

[s] The depth-integrated horizontal energy flux at any
given vertical section in SI units of W m™ ', is then given by

0
FE=/du(p+pgz+poq)d27 (6)

where u is the onshore (horizontal) velocity. The pressure
term p inside the parentheses in equation (6) can be
written as the sum of the hydrostatic and nonhydrostatic
partg, where the Ohydrostatic pressure Py = Pgy — pogz +

g / ppdZ + g / p'dZ, with Pg; denoting the free-surface
z

pressure. The fast term here represents the hydrostatic
pressure fluctuations and accounts for most of the energy
flux in linear internal waves (i.e., waves with small aspect
ratios). The nonhydrostatic pressure Py arises due to
the vertical inertia in the waves and is given by Pyg(z) =

D D .
Pri0) + po / Fv;dz', where o denotes the total derivative

following a fluid parcel. It is easy to show that the
contribution to the energyoﬂux from both Pgy; and Py(0)

integrate to zero since udz = 0. This is convenient in

numerical codes using the drigid-lid approximation (e.g. the
LES code we use) and allows for the direct computation of
the nonhydrostatic contributions to the energy flux budget
using the nonhydrostatic pressure that is computed from the
pressure-Poisson solver in our code. However, it is
important to note that neglecting Pg;; and Pyy(0) will yield
incorrect vertical profiles of energy flux [see, e.g., Kunze et
al., 2002]. The second term representing contributions from
the potential energy in equation (6) can be written as pogz +
psgz + p'gz (since the total density is p = py + p, + p’, where
po is the reference density, p, is the imposed background
density field and p’ represents the density fluctuations due to
internal waves). The last term is the nonlinear contribution
(kinetic energy term) and is straightforward to compute
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numerically. Hence equation (6) (after some simplification)
becomes

-0 -0 -0 ~0
D
FE:g/ u/ p/dZ/dZ//-l—po/ u Fwdz/dz”
—d z —d z t
) ()

(a

0 0 0
+ py / ug dz' +/ up'gzdz +/ uppgz dz
—d —d —d

© @ ©
0 0
+g/ u/ ppdz' dz” . (7)
—d z
()

To summarize, the terms in equation (7) are:

[o] (a) Energy flux due to rate of work done by the
hydrostatic pressure fluctuations.

[10] (b) Energy flux due to rate of work done by the
nonhydrostatic pressure.

[11] (c) Energy flux due to advection of kinetic energy.

[12] (d) Energy flux from advection of potential energy
due to density fluctuations.

[13] (e) Energy flux from advection of potential energy
due to the presence of the mean background density field.

[14] (f) Energy flux due to rate of work done by the
hydrostatic pressure due to the background density field.

[15] In what follows we compute the contributions from
each of the terms shown in equation (7) to the total energy
flux at the shelf break (shown in Figure 1) and discuss the
relative effects of each term in the energy flux budget.

2.2. Numerical Setup

[16] We solve equations (1)—(3) with the LES code
developed by Fringer and Street [2003] in the two-
dimensional domain shown in Figure 1. This domain is a
proposed experimental setup of the companion laboratory-
scale experiments for this study. The code uses the method
of Zang et al. [1994] to solve equations (1)—(3) using a
finite volume formulation on a generalized curvilinear
coordinate nonstaggered grid with a rigid lid.

[17] We use an initial background linear stratification

A A

pol2) _ A (5), with =2 = 0.02, which results
) Po po \d Po .

in a buoyancy frequency of N=0.57rad s " in adepth of d =

60 cm. A first mode internal wave given by U(0, z, f) = U,
cos(mz) sin(wt) is imposed at the left boundary of the domain
shown in Figure 1, and U, is the velocity amplitude of the
forcing, m is the vertical wavenumber corresponding to a
mode-1 baroclinic wave with m = m/d, w is the forcing
frequency, and U is the cross-shore velocity component.
Boundary conditions for cross-shore velocity U are no-slip
on the bottom wall and free-slip on all other walls. The
density and vertical velocity fields are gradient-free at the
boundaries. The grid size is 512 x 128, with a maximum

% + g At, of 0.2. We use a
kinematic viscosity of v=10">m?s "', and scalar diffusivity

of k=10""m?s" L.

given by

Courant number, C =

3. Results and Discussion

[18] We present results obtained from the interaction of
an incident first-mode internal wave with frequency w =
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Figure 2. Numerical computation of a breaking internal
wave on a critical slope, showing how the solitary bolus
propagates onshore as a result of the interaction process.
The top panel shows the velocity vectors superimposed on
the density profile (shown in color) at time #/7 = 4.4, with T
=19.2 s. The lower left panel shows a detailed view of the
internal bolus seen onshelf in the color plot, indicating
the amplification of onshore velocities. The magnitude of
the single horizontal velocity vector in the right hand center
is 10 cm s~ and the forcing velocity amplitude is U, =
4 cm s~ '. The lower right panel shows the horizontal and
vertical velocity profiles with the solid line depicting the
density profile with Ap in kg m > scaled by 10>, See color
version of this figure in the HTML.

0.328 rad s~ ' and Uy = 4 cm s~ '. For this given frequency,
the bottom slope is critical i.e., the ratio y/s = 1, where vy is
the bathymetric slope and s is the slope of the internal wave
energy characteristic, which is defined by

(®)

N2 — 2

k 2 N 1/2
s:tanu:—:(u) s
m

where « is the angle of the internal wave characteristic, fis
the sine of latitude Coriolis parameter (f = 0 for the present
simulations), and N is the buoyancy frequency.

3.1. Structure of Bolus

[19] Figure 2 shows the velocity vectors superimposed
over the density field and depicts the interaction of a
nonlinear first-mode internal wave field with a sloped
coastal shelf break in the domain shown in Figure 1. The
solitary bolus that propagates onshore is formed from an
upslope propagating bolus that forms as a result of the
interaction of the incoming wave field with the slope and
subsequent ejection of this bolus of heavy fluid onto the
shelf. This is consistent with earlier numerical simulation
results and laboratory experiments of others [Slinn and
Riley, 1998; Legg and Adcroft, 2003; Cacchione and
Wunsch, 1974; Ivey and Nokes, 1989].

[20] These boluses are self-advecting vortex cores with
high aspect ratios that are propelled by some initial mo-
mentum and have large onshore velocities contained within
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their trapped cores (see bottom left panel in Figure 2). Using
a simple momentum-viscous balance, the advection speed
of the bolus is estimated to be of the order of 5 cm s !
consistent with the observed propagation speed, whereas the
expected speed for a gravity current would be about 2 to
3 times higher than this value.

[21] Figure 3 depicts the evolution of the trapped core
of the bolus shown in Figure 2. Figure 3 shows the results
at six points in time normalized by the wave period 7 =
2n/w. The loss of mass from the bolus core to the
surrounding fluid was estimated by calculating the mass
contained between identical isopycnals as the bore evolved
in time. The mass of the bolus at #7 = 5.1 is about
70 percent of its mass at /7 = 4.4, indicating that these
boluses can be an important mechanism for transporting
and mixing dense ocean water with the relatively homo-
geneous shelf water.

3.2. Energy Flux Contributions

[22] We compute the depth-integrated energy flux using
equation (7) at transect (a) shown in Figure 1. Figure 4
shows the total (contributions from all the terms in
equation (7)) depth-integrated flux as a function of time.
The fluxes have been normalized by the estimate of the
energy flux for an incoming internal wave using linear
theory [Kundu, 1990], for which

_ Pong
Fr Y d, )

where py is the reference density, w is the forcing frequency,
U, is the forcing amplitude, d is the offshore depth, m = n/d
is the vertical wavenumber, and k& is the horizontal
wavenumber that is readily obtained from the dispersion

depth 2 (mi)
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Figure 3. Evolution of an internal bolus as it propagates
onshore for critical slope. The color bar shows the density
difference Ap. The plots span from non-dimensional #7 =
4.4 to 5.1. The density contours shown in solid black
lines are 10, 12 & 14 kg m > as referenced from po =
1000 kg m > respectively. Also shown are red contours of
critical Richardson number, Ri. = 0.25, and white contours
of Ri < Ri... Here Ri = N°/ Ou

0z

frequency and — is the vertical shear rate. See color version
Z
of this figure in the HTML.

)2, where N is the buoyancy
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Figure 4. Normalized total energy flux as a function of
time #/7T at x = 3.2 m, y/s = 1; solid lines: depth-integrated
energy flux Fj; dashed lines: cumulative energy flux E..
The intermittent peaks in the depth integrated flux, Fp,
signify the passage of internal boluses through transect (a)
shown in Figure 1. 7= 19.2 s. See color version of this
figure in the HTML.

relation for internal waves. Also shown in Figure 4 is the
cumulative (time-integrated) energy flux given by

ET:/O Fg(t)dT. (10)

The cumulative energy fluxes have all been normalized by
F/w. The intermittent peaks in the depth-integrated energy
flux signify the passage of the nonlinear internal boluses.
[23] The contributions to both the total depth-integrated
energy flux and cumulative energy flux from each of
the terms in equation (7) are shown in Figure 5 and
summarized in Table 1. The hydrostatic pressure anomaly
term comprises over 50% of the cumulative energy flux.
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Figure 5. Normalized energy fluxes as a function of time
t/T at x = 3.2 m, y/s = 1; for each of the six terms shown
in equation (7) as follows: (a) first term; (b) second term;
(c) third term; (d) fourth term; (e) fifth term; (f) sixth term;
respectively. Solid lines: depth-integrated energy flux Fi;
dashed lines: cumulative energy flux E.. See color version
of this figure in the HTML.
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Table 1. Percentage Contributions of the Terms in Equation (7) to
the Total Cumulative Energy Flux E.

Ratio
Contribution (Relative to Hydrostatic
Term (in Equation (7)) (percent) Term (1))
(a) Hydrostatic pressure 54 1.00
anomaly term

(b) Nonhydrostatic pressure term 37 0.69
(c) KE term 8 0.14
(d) PE (density anomaly) term 4 0.09
(e) PE (due to p,) term -3 0.05
(f) Hydrostatic pressure 0 0.005

(due to pj) term

The nonhydrostatic pressure term contribution is about
35%. The contributions from both the advective flux of
potential energy due to density fluctuations and the nonlin-
ear advection of kinetic energy account for approximately
10% of the cumulative energy flux. The background density
terms (i.e. terms 5 and 6 in Table 1) have negligible
contributions to the cumulative energy flux. However,
they are important in the instantaneous sense as shown in
Figure 5.

[24] The contributions of all the other terms relative to the
hydrostatic pressure anomaly term is also given in Table 1.
The only important term besides the usually computed
hydrostatic pressure anomaly term is the nonhydrostatic
pressure term. These results highlight the importance of
accounting for the vertical inertia in highly nonlinear
internal waves.

4. Conclusions

[25] We have presented results from high-resolution two-
dimensional laboratory-scale simulations of internal waves
interacting with a sloped coastal shelf break, leading to the
formation of boluses that propagate onshore. These boluses
are both highly nonlinear and nonhydrostatic due to their
steepness and enhanced velocities within their trapped
cores. We have presented calculations of the energy flux
that clearly show the need to include the contributions from
the nonhydrostatic pressure as well as the nonlinear terms in
the calculation of the total energy flux in these boluses.

[26] As indicated by many others [Klymak and Moum,
2003; Scotti and Pineda, 2004; Carter et al., 2005], it is
critical to understand how NLIWs form, how far onshore
they propagate and their eventual fate. Answers to some of
these fundamental questions require a better understanding
of these waves. This can be attained through detailed field-
campaign studies in conjunction with three-dimensional
numerical modeling efforts. Our current work is focusing
on three-dimensional large-eddy simulations of the internal
boluses presented here.
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