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In this paper, we derive a general relationship for the turbulent Prandtl number Pr,
for homogeneous stably stratified turbulence from the turbulent kinetic energy and
scalar variance equations. A formulation for the turbulent Prandtl number, Pr,, is
developed in terms of a mixing length scale L, and an overturning length scale
L, the ratio of the mechanical (turbulent kinetic energy) decay time scale 7, to
scalar decay time scale 7, and the gradient Richardson number Ri. We show that
our formulation for Pr, is appropriate even for non-stationary (developing) stratified
flows, since it does not include the reversible contributions in both the turbulent
kinetic energy production and buoyancy fluxes that drive the time variations in the
flow. Our analysis of direct numerical simulation (DNS) data of homogeneous sheared
turbulence shows that the ratio Ly /Lg ~1 for weakly stratified flows. We show that
in the limit of zero stratification, the turbulent Prandtl number is equal to the inverse
of the ratio of the mechanical time scale to the scalar time scale, T,/ T,. We use the
stably stratified DNS data of Shih et al. (J. Fluid Mech., vol. 412, 2000, pp. 1-20;
J. Fluid Mech., vol. 525, 2005, pp. 193-214) to propose a new parameterization for
Pr, in terms of the gradient Richardson number Ri. The formulation presented here
provides a general framework for calculating Pr, that will be useful for turbulence
closure schemes in numerical models.

1. Introduction

The subject of turbulent mixing in stably stratified flows has received much
attention. This is not surprising, since stably stratified flows are prevalent in the
natural environment such as in the atmospheric boundary layer, the oceans, lakes and
estuaries. The presence of buoyancy forces because of stratification has a substantial
effect on the flow development and mixing processes and hence influences the
distribution of substances such as pollutants, nutrients and suspended matter in
the environment. The ability to predict mixing and dispersion in such flows has
many practical applications. For example, the management of air quality in the
atmospheric boundary layer requires accurate models for predicting how turbulence
disperses pollutants released by industrial activities. In the ocean, the rates of vertical
advection and diapycnal (across isopycnal) mixing are important to the dynamics
of the thermocline and deep ocean. Excellent reviews of stably stratified geophysical
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flows have been given by Gregg (1987), Peltier & Caulfield (2003) and Ivey, Winters
& Koseft (2008).

Turbulence closure schemes in Reynolds-averaged numerical models such as the
k—€ model (Launder & Spalding 1972) make use of a turbulent Prandtl number
Pr, =K, /K, to link the vertical momentum and scalar fluxes, where K,, and K, are
the momentum and scalar diffusivities respectively. For uni-directional shear flows,
K,, and K; are defined using the gradient-transport hypothesis as

u'w’

Ko ==Gijaz
,o’w’
K, =— , 1.1
=i (L.1)

where u'w’ is the Reynolds stress (turbulent momentum flux) and p'w’ is the
density flux. An overbar () implies averaging (spatial or temporal). Data from
direct numerical simulations (DNSs) and experiments have been used to develop
parameterizations of Pr, for stably stratified flows in terms of the gradient Richardson
number Ri (e.g. Webster 1964; Launder 1975; Baum & Caponi 1992; Schumann &

Gerz 1995) defined as
Ri = N?/S§°, (1.2)

where N = ,/(—g/p0)(dp/dz) is the buoyancy frequency and S =du/dz is the mean
shear rate. The main drawback of calculating Pr, using (1.1) from DNS data for

stably stratified homogeneous flows stems from the fact that most of these flows
are developing flows (i.e. locally non-equilibrium flows) and hence include reversible
contributions to both the momentum and scalar fluxes in the production terms
of the energy and scalar variance equations (see e.g. Komori et al. 1983; Rohr
et al. 1988; Gerz, Schumann & Elghobashi 1989; Holt, Koseff & Ferziger 1992).
An appropriate measure of Pr, can be obtained by using only the irreversible terms
in the turbulent kinetic energy and scalar variance balance equations to calculate the
turbulent diffusivities. This will allow for a parameterization that is more generally
applicable than previous formulations which do not necessarily separate out the
reversible components in both the turbulent kinetic energy production and scalar
fluxes. Furthermore, the value of Pr, under neutral (unstratified) conditions is known
to be close to unity, but there is no consensus on what the specific neutral value of
Pr; should be. Data from numerical simulations and experiments suggest values of
Pr, in the range 0.5-1.0 for neutrally stratified flows (Kays & Crawford 1993; Kays
1994).

In the current paper, we present a formulation for the turbulent Prandtl number
for stably stratified flows, where the fluctuating quantities (such as velocity and scalar
fluctuations) are statistically homogeneous. Statistical homogeneity requires the mean
velocity gradients and mean density gradients to be uniform, although they can vary
with time (e.g. Pope 2000). The layout of the paper is as follows. In §2, we begin
with a presentation of the evolution equations for the turbulent kinetic energy and
density fluctuations to lay the context for our analysis followed by a derivation of the
turbulent Prandtl number in terms of relevant length scales and time scales. In § 3,
we provide an analysis of DNS results leading to a model for Pr, that arises directly
from our derivations. Conclusions are given in §4.
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2. Theoretical formulation for the turbulent Prandtl number
2.1. Dynamical equations

The evolution equations for the turbulent kinetic energy and scalar (density)
fluctuations for a homogeneous stably stratified flow with the Boussinesq
approximation can be written as

00°/2) _ —di g ——

o7 & ,00'0 w' — €, (2.1)
—
007/ _ ——dp
T pw dz €p> (2.2)

where g2 =(u? + v + w'?) is twice the turbulent kinetic energy per unit mass;
—u'w'(du/dz) is the rate of production of turbulent kinetic energy; (—g/po0)(0'w’) is
the buoyancy flux; and € =v(du;/dx;)(du;/dx;) and €, =«(Vp’)* are the dissipation
rates of kinetic energy and scalar fluctuations, respectively. For a stationary state,
(2.1) and (2.2) simplify to

—Jdu  g—— /(du\’ du\*
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P =€,. (2.4)
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dz
Equations (2.3) and (2.4) imply that the production terms are in balance with the
dissipation terms. Therefore, in stationary flows, the productions terms represent
the irreversible transfer of kinetic energy and density. In a non-stationary flow, the
production terms are no longer in balance with the dissipation terms. However, the
irreversible transfer of kinetic energy and density are still correctly represented by €
and €,.

2.2. Turbulent Prandtl number

For stationary flows, the vertical momentum eddy diffusivity can be obtained from
(2.3) as

K, =¢€/S*+RiK,, (2.5)

where K, =—p'w’/(dp/dz) is the vertical scalar eddy diffusivity previously defined in
(1.1). It also follows from (2.4) and (2.5) that

€ +6PE
K, = 2 s

where €pr = N2%¢,(dp/dz)~2 is the rate of dissipation of turbulent potential energy.
We also note that (2.5) is equivalent to the flux Richardson number formulation for
K., used often in the literature (e.g. Gregg 1987), given by

1 €
K= <1_Rf> 5 (2.7)

where the flux Richardson number R, is defined as the ratio of the buoyancy
flux B=—g/po(p'w’) to the rate of production of turbulent kinetic energy
P =—u'w'(du/dz). It should be noted that R, calculated using this definition can
attain negative values in non-stationary flows (see e.g. Shih et al. 2005).

(2.6)
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We now consider how these results may be generalized for non-stationary flows
described by (2.1) and (2.2). We start by noting that a diapycnal eddy diffusivity
K:=¢,/(dp/dz)* is a measure of irreversible mixing of a scalar (density in this case)
in both stationary and non-stationary homogeneous flows (see Winters & D’Asaro
1996; Venayagamoorthy & Stretch 2006). For stationary flows, K; and K, are equal
(which follows from (2.4)). By analogy, we define an irreversible vertical momentum
eddy diffusivity K, as

K =¢/S* + RiK. (2.8)
It follows from (2.1) that

2

Note for stationary flows, K, = K,, and K; = K, (which follow from (2.3) and (2.4)
respectively). Conceptually, the production term —u’w’(du/dz) in the turbulent kinetic
energy balance equation can be thought to consist of two parts: one part that is
irreversible in the sense that at a given time it balances the total dissipation (kinetic
and potential) as parameterized by K, , while the other part is reversible in the sense
that it accounts for the time variations in the energy balance equation. Similarly,
the density flux term in the density variance equation can be thought to consist
of an irreversible part that is in balance with €, as parameterized by K; and a
reversible part that accounts for the time rate of change of density variance. For
example, reversible fluxes can be generated by linear internal waves in stratified flows.
It follows from this reasoning that (2.6) with K,, replaced by K, provides a measure
of irreversible transfer of turbulent kinetic energy caused by momentum fluxes in a
non-stationary stratified flow. Furthermore, this argument also implies that the flux
Richardson number R, should then be calculated as

€pPE
R, = . 2.10
' rers (2.10)

This form of the flux Richardson number was previously suggested by Peltier &
Caulfield (2003); R calculated using (2.10) provides a measure of irreversible mixing
and hence excludes reversible fluxes that are included if R is calculated as B/ P, where
B and P are the buoyancy flux and production of turbulent kinetic energy previously
defined. The turbulent Prandtl number based on the irreversible contributions to the
momentum and scalar fluxes may now be defined as

. K, € .
PT’t = X" = SZK* —+ Ri. (211)

We can test these ideas using the DNS data of homogeneous shear flows of
Shih et al. (2000). These simulations are for temporally developing homogeneous
turbulence with uniform shear and uniform stratification and for microscale Reynolds
numbers Re; < 90. For small Ri the turbulent kinetic energy grows in time, while
for large Ri the energy decays. A stationary state is attained for Ri ~0.17. The
stationary Ri depends on Re; and the initial non-dimensional shear rate Sq*/e which
was equal to 4 for the cases considered here. Figure 1(a) shows Pr; obtained using
(2.11) as a function of non-dimensional time St for various values of Ri. It can be
seen that Pr, approaches a constant (but different) value for each Ri when St > 6
with no oscillations. Figure 1(b) shows a similar plot of Pr; using the definitions
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FIGURE 1. The turbulent Prandtl number as a function of non-dimensional time Sz for various
gradient Richardson numbers Ri calculated from the DNS data of Shih et al. (2000). The
data are shown for non-dimensional time St > 1: O, Ri =0.05; V, Ri =0.06; A, Ri =0.1; O,
Ri=0.15; ¢, Ri =0.18; ®, Ri =0.25; x, Ri =0.37; 4+, Ri =0.4; *, Ri =0.6. (a) Pr; =K, /K;
(from (2.11)); (b) Pr, =K,/ K, (from (1.1)). Note the oscillations in Pr, for Ri =0.6 have been
truncated.

for K,, and K, given by (1.1). In this case, as Ri increases, large oscillations appear
because of reversible fluxes associated with internal waves. Note the short-time
(St < 2) behaviour of Pr; and Pr, shown in figure 1 is an artefact of the initial
conditions specified for these particular simulations, i.e. isotropic velocity field with
no density fluctuations, and hence should be disregarded. Experimental results for
stably stratified flows in the works of Rohr et al. (1988) and Webster (1964) also
show large variations in Pr, for a given Ri. Hence by distinguishing reversible from
irreversible contributions in the energy and scalar balances, a formulation for the
turbulent Prandtl number that is applicable to both stationary and non-stationary
flows is obtained.

2.3. Relevant length scales and time scales

Here, we discuss the relevant length scales and time scales that will be used in
§3 to model the turbulent Prandtl number Pr;. Using dimensional and physical
arguments, a number of length scales have been used to characterize the dynamics of
stratified turbulence. Two relevant length scales are a characteristic mixing length scale
Ly =(g*)"?/S and an overturning length scale Lz = (p?)"/?/|(dp/dz)|; Ly represents
a rough measure of the size of active turbulent fluctuations in momentum and can be
identified as an approximate measure of the average eddy size; L is the well-known
Ellison length scale, and it provides a measure of the vertical distance travelled by
particles before either returning towards their equilibrium levels or mixing in a density
field (Ellison 1957). It is expected that the ratio of these length scales Ly /Lg =~ 1 for
energetic flows. Figure 2 shows a plot of L, /Lr as a function of non-dimensional
time St for 0 < Ri < 0.6, from the DNS data of Shih et al. (2000). The data suggest
that L, /Lr is approximately equal to unity (i.e. Ly /Lr ~ 1.05) for weakly stratified
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FiGure 2. The mixing length scale Lj, normalized by the Ellison length scale Lz as a function
of non-dimensional time St for various gradient Richardson numbers Ri calculated from the
DNS data of Shih et al. (2000). The data are shown for non-dimensional time St > 1: O,
Ri =0.05; V, Ri =0.06; A, Ri =0.1; 0, Ri =0.15; ¢, Ri =0.18; @, Ri =0.25; X, Ri =0.37; +,
Ri=0.4; = Ri=0.6.

flows (i.e. for Ri <0.25). The data also show that for strongly stable flows (Ri 2 0.25),
Ly /L is an increasing function of Ri. Using the definitions of L, and Lg, it can be
shown that L, /Lg is given by

172
Ly _ (EKE> Ril%2, (2.12)
Lg

where Exp=(1/2)g* is the turbulent kinetic energy per unit mass and
Epr=—(1/2)(g/po)(dp/dz)~'p? is the (available) turbulent potential energy. For
now, if we assume that the ratio of the turbulent kinetic energy to the potential
energy is constant for large Ri, then Ly /Ly oc Ri'/?. We shall later show in §3.1 that
this is indeed a valid assumption for large Ri.

An important parameter widely used in second-moment closure models (see e.g.
Pope 2000) is the mechanical to scalar time scale ratio 7, /T, =2y ; T = Exg/€ is the

turbulent kinetic energy decay time scale and 7, =((1 /2)?2)/6/) is the scalar decay
time scale. Venayagamoorthy & Stretch (2006) and authors’ unpublished observations
showed that 7T, /T, is relatively insensitive to Ri with y ~ 0.7, using DNS results
and experiment data. Their dataset included DNS results of homogeneous sheared
stably stratified turbulence of Shih et al. (2000), unstratified homogeneous sheared
DNS data of Rogers, Mansour & Reynolds (1989) and experimental data on grid-
generated turbulence (Srivat & Warhaft 1983; Itsweire, Helland & Atta 1986; Yoon
& Warhaft 1990; Mydlarski 2003). The insensitivity of the mechanical-to-scalar time
scale ratio to stratification has important simplifying implications for modelling the
turbulent Prandtl number.

3. Modeling the turbulent Prandtl number

In this section, we propose a model for Pr; as a function of the gradient Richardson
number Ri and use DNS data to support it.
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FIGURE 3. The mixing efficiency I" as a function of non-dimensional time St for various
gradient Richardson numbers, Ri, calculated from the DNS data of Shih et al. (2000). The
data are shown for non-dimensional time St > 0: O, Ri =0.05; V, Ri =0.06; A, Ri =0.1; O,
Ri=0.15; ¢, Ri =0.18; ®, Ri =0.25; x, Ri =0.37; 4+, Ri =0.4; *, Ri =0.6.

3.1. Model formulation

Equation (2.11) can be recast in terms of the length scales and time scales discussed
in §2.3 as
R O :

Pr; = 3y 12 + Ri, (3.1)
where y =(1/2)(T;/T,). At Ri =0, Pr; =((1/2)y)/(L3,/L%). The DNS data of Rogers
et al. (1989) for neutrally stratified homogeneous shear flow show that Ly /Ly ~ 1.
Moreover, it can be observed from figure 2 that Ly /Lg ~ 1 for Ri <0.25. Hence
the neutral value of the turbulent Prandtl number is Pr,o=1/(2y) to a very good
approximation. In other words, the neutral turbulent Prandtl is approximately equal
to the ratio of the scalar time scale to mechanical time scale, 7,/ T,.. Using y ~ 0.7 as
suggested by Venayagamoorthy & Stretch (2006) gives a neutral value for Pr,y equal
to 0.7. It is worth noting that Townsend (1976) used rapid distortion theory (RDT)
to show that the neutral value of the turbulent Prandtl number Pr,, reaches a value
of 0.7 at a non-dimensional time St ~ 5.

The near constancy of y and Ly /Lg for low Ri provides a model for Pr, given by

1
Pr; = — + Ri = Pr, + Ri, (3.2)
2y
which is valid in the weakly stratified regime (Ri <0.25). Equation (3.2) indicates that
Pr; is a linear function of Ri with a slope of 1. On the other hand, at high Ri, the
DNS data indicate that Ly, /Lg is a strong function of Ri (see figure 2). Equating (3.1)
with Pr; = Ri/R; (which follows from (2.10) and (2.11)) allows us to write L3,/L% as
a function of Ri, namely
Ly, 2
S g, (3.3)
L2~ T
where I =R /(1 — R;) =e€pg/€ is the instantaneous mixing efficiency of the flow with
Ry defined by (2.10). I provides a measure of the irreversible conversion of kinetic
energy into potential energy. Figure 3 shows a plot of I" as function of St for various
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Ri values. It is evident that I becomes approximately constant for large Ri. It is
interesting to note that the overall mixing efficiency obtained from time-integrated
calculations for decaying homogeneous stably stratified turbulence also indicate an
approximately constant value at large Ri (see Stretch et al. 2010). By combining (2.12)
and (3.3), it follows that the ratio of turbulent kinetic energy to potential energy is
given by

EKE — 2l
Epg r
The ratio Exg/Epg is indeed approximately a constant for large Ri, since y has been
shown to be relatively insensitive to stratification effects (Venayagamoorthy & Stretch

2006). Therefore the near constancy of I or equivalently Ry provides a model for
Pr; in the large-Ri limit given by

(34)

. 1
Pr

where R, is the asymptotic value of the flux Richardson number for large Ri. This
means that Pr; is again a linear function of Ri but with a slope equal to 1/R;..
Equations (3.2) and (3.5) provide the low-Ri and high-Ri behaviour of Pr;. All
that remains to be done is to fit a blending function for Pr; as a function of Ri
that smoothly transitions between these two limits. Before we proceed to the curve
fitting, it is worth mentioning in passing that Launder (1975) provided a model for
Pr, obtained using second-moment closure models that capture the above-mentioned
behaviour of Pr, for the low-Ri limit predicted by our formulation (ie. a linear
dependence on Ri with a slope of 1). However, his model suggests that in the strongly
stratified limit, Pr, approaches a constant value of 2. From (3.5), this implies that the
mixing efficiency increases linearly with Ri in this limit, which contradicts the DNS
data presented in figure 3.

3.2. Model for the turbulent Prandtl number

We find that the empirical formulation given by Schumann & Gerz (1995) is a suitable
blending function that captures the correct behaviour of Pr; in the large-Ri limit.
This is not surprising, since they made the assumption that R, approaches a constant
limit for large Ri, but they did not have access to sufficient data to show that this was
indeed a reasonable assumption. However, their assumption that Pr, is independent
of Ri as Ri — 0 is not consistent with (3.2). We propose the following revised function
that captures the behaviour of Pr; for both Ri limits to first-order accuracy:

pr! ( Ri > Ri
—exp | — + , (3.6)
PV,Q p Pr,ofao RfocPrtO

where it is important to note that R, is obtained using (2.10) and the neutral Prandtl
number Pr,y ~ 1/(2y). Note also that I, = R;../(1 — Ry).

The DNS results shown in figure 3 indicate an average value of I, ~ 1/3, which
translates to a flux Richardson of R, =1/4. This seems to be a reasonable upper
bound for Ry that is in agreement with the time-integrated mixing efficiency at large
Ri of the decaying simulations of Stretch et al. (2010). Figure 4 shows the prediction
for Pr; given by (3.6) as a function of Ri. Also shown are values of Pr,; computed from
the DNS results by averaging over the time interval St =6 to Sr=28 (see figure 1).
It is seen that with a mixing efficiency I, =1/3 and a mechanical-to-scalar time
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FIGURE 4. The turbulent Prandtl number Pr; as a function of gradient Richardson number
Ri: @, DNS data (Shih et al. 2000); dashed line, model prediction given by (3.6); dotted line,
curve fit of Schumann & Gerz (1995).

scale ratio, 7,./T,, of 1.4, the model agrees remarkably well with the data. The
empirical function of Schumann & Gerz (1995) is also shown, and it is evident that
the differences are minor for all practical purposes, although the agreement seems
fortuitous, since their formulation (and many other formulations) for Pr, is obtained
by fitting a curve through very noisy data.

4. Concluding remarks

In this study, our main proposition is the separation of reversible and irreversible
contributions that inherently arise in the kinetic energy production and buoyancy flux
terms in the balance equations for non-stationary homogeneous stably stratified shear
flows. We have argued that the turbulent Prandtl number should be calculated using
the dissipation terms € and €, since these terms represent the irreversible transfers of
momentum and scalar fluxes.

Using this novel proposition, we have derived a formulation for the turbulent
Prandtl number in terms of relevant length scales, time scales and the gradient
Richardson number. The turbulent Prandtl number formulation we have presented
is more general than previous formulations in that it is not restricted to stationary
homogeneous flows. We have exploited the detailed information available from DNS
of stably stratified homogeneous turbulence to infer the behaviour of the turbulent
Prandtl number for weakly and strongly stratified flows and have then formulated
a model for the turbulent Prandtl number as a function of Ri. We note that new
DNS with an expanded Reynolds number range is necessary to check the validity
of the relationships between the length scales Ly and Lg, time scales 7, and 7,
and the mixing efficiency for large Ri. A natural extension of this work is to also
explore the applicability of the formulation presented for Pr; to inhomogeneous
stratified flows. The results reported here may be applicable to the development of
improved turbulence models including subgrid scale parameterizations for large-eddy
simulations of stably stratified turbulent flows.
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