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ABSTRACT OF DISSERTATION 

 
 
 

TRANSPORT VELOCITIES OF BEDLOAD PARTICLES IN ROUGH OPEN 
CHANNEL FLOWS 

 
 
 

This dissertation aims at defining the bedload particle velocity in smooth and rough 

open channels as a function of the following variables: bed slope Sf, flow depth y, 

viscosity of the fluid ν, particle size ds, bed roughness ks, particle specific gravity G, and 

gravitational acceleration g. 

Sets of aluminum plates were placed on the bottom of an experimental plexiglass-

tilting flume, with trapezoidal cross-section, to form a smooth bed. A layer of sand or 

gravel was glued onto aluminum plates to form bed roughness. Bedload particles used in 

the experiments were stainless steel ball bearings, glass marbles, and natural quartz 

particles. The experiments were performed to provide 529 average bedload particle 

velocities. The analysis of the laboratory measurements showed that: (1) for a smooth bed 

(ks = 0), the rolling bedload particle velocity Vp increases with particle sizes ds; (2) for a 

rough bed (ks > 0), particle velocity decreases with particle density G, thus lighter 

particles move faster than heavier ones; and on a very rough boundary Vp decreases with 

particle sizes; (3) bedload particles move at values of the Shields parameter τ*ds = u*
2/(G-

1)gds below the critical Shields parameter value of τ*dsc = 0.047; (4) few of the observed 

particles moved at values of Shields roughness parameter τ*ks = u*
2/(G-1)gks less than 

0.01; (5) particles are observed to move at values of the Shields roughness parameter 0.01 
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< τ*ks < 0.15; (6) the ratio of particle velocity Vp to mean flow velocity uf lies in the range 

of 0.2 to 0.9, while Kalinske (1942) suggested 0.9 to 1.0; and (7) the ratio of particle 

velocity Vp to shear velocity u* lies in the range of 2.5 to 12.5, compared to the values 

cited in the literature 6.0 < Vp/u* < 14.3. 

New methods for predicting transport velocity of bedload particles in rough and 

smooth open channels are examined. Two approaches for transport velocities of bedload 

particles were considered. The first approach combines dimensional analysis and 

regression analysis to define bedload particle velocity as a power function of the Shields 

parameter τ*ds, boundary relative roughness ks/ds, dimensionless particle diameter d*, and 

excess specific gravity (G-1). The second approach considers the transport velocity of a 

single particle on a smooth bed. The reduction in particle velocity due to bed roughness is 

then examined through a theoretical and empirical analysis. Results show that the 

bedload particle velocity on smooth beds is approximately equal to the flow at the center 

of the particle; and the bed roughness gradually decreases the transport velocity of the 

rolling bedload particles. Comparatively, The first approach gives satisfactory results, 

except when ks equals 0, then Vp goes to ∞; and when ks is large, Vp does not stop 

(unbounded); for the second approach Vp = Vpmax when ks equals 0, and when Vp equals 0 

(no motion), then ks follows the criteria a and b described in Chapter 5 (section 5.4). 

The analysis shows that the proposed formula, Eq. (5.34) provides much better 

predictions than the existing formulas. The discrepancy ratio distributions using Eq. 

(5.34) are normally distributed and have higher density (close to perfect agreement) than 

all other formulas. In addition, the proposed formula, Eq. (5.34) is also verified with the 
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devastating flood of the Avila Mountain in Venezuela in December 1999. The results 

give realistic estimates of particle velocities. 
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CHAPTER 1  

INTRODUCTION 

1.1. PROBLEM STATEMENT 

The study of rolling bedload particle velocity in rough open channel flows is a basic 

subject in the field of river mechanics and sediment transport. This study aims at the 

determination of the velocity of rolling bedload particles in rough open channel flows. 

1.2. BACKGROUND 

Three major approaches for the study of bedload transport are often found in the 

literature: (1) deterministic approach; (2) empirical approach; and (3) statistical-

mechanical approach. The deterministic approach, which is based on some physical laws, 

studies the relation between bedload transport rates and the corresponding stream power, 

flow momentum, or other flow properties. The results are expressed in terms of average 
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flow conditions. A representative of this type of work is the Bagnold stream power 

function (Chien and Wan, 1983). The empirical approach relates measured bedload rates 

with their corresponding flow conditions. The results of many observations provide the 

basis for engineering applications, but sometimes give conflicting estimates when applied 

to rivers. The statistical-mechanical approach proposed by Einstein (1950), is a 

combination of the above two approaches. It considers both flow stochastic and 

deterministic properties of particle motion. The Einstein bedload function (Einstein 1950) 

shows that individual particle mechanics is one important aspect in this type of approach. 

Since bedload particle movement can be divided into rolling, sliding and saltation, this 

proposed research concentrates on the rolling motion, i.e., the motion of a single particle 

rolling over a rough open channel bed. The primary interest of this research has been to 

quantitatively examine the velocity of individual particles moving as rolling bedload on 

rough beds. 

1.3. OBJECTIVES 

The specific objectives address in this study are: (1) to compile a large database 

including observed bedload particle velocity measurements on smooth and rough beds; 

(2) to analyze the database using existing bedload particle velocity formulas; (3) to 

develop new functions that computes bedload particle velocity in rough open channel 

flows using dimensional and regression analysis, and theoretical analysis; (4) to 

determine threshold conditions; and (5) to test the new functions with laboratory 

measurements and select the best function for field applications representative of very 

large floods. 
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1.4. METHODS 

To achieve the objective, an extensive compilation of existing laboratory 

measurements at CSU and other laboratory data from literature has been done. The 

theoretical and empirical analyses have been studied, and new theoretical and empirical 

equations were developed and tested with a database including data from Meland and 

Norrman (1966), Fernandez Luque and van Beek (1976), Steidtmann (1982), Bridge and 

Dominic (1984), CSU (1995), and Bigillon (2001). 

1.5. OUTLINE 

This dissertation includes 7 chapters. Chapter 1 briefly introduces the subject and 

states the objective. Chapter 2 includes a literature review, presented as a highlight of a 

few of the major papers written on the particle velocity approximations. Chapter 3 

describes the CSU experimental set-up and data analysis. Chapter 4 provides a 

dimensional and regression analyses and testing of empirical formulas. Chapter 5 

describes the theoretical development leading to a particle velocity formula. Chapter 6 

describes laboratory and field applications of the proposed formulas. Finally, Chapter 7 

summarizes the main results of this research. 
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CHAPTER 2  

LITERATURE REVIEW 

The purpose of this chapter is to review the pertinent information available from 

experimental studies on this subject. This material is presented as a highlight of a few of 

the major papers written on the bedload particle velocity on smooth and rough beds. 

2.1. EARLIER STUDIES 

Krumbein (1942) studied the effect of particle shape on sediment transportation 

with experiments conducted in flumes. Krumbein related the observed behavior to the 

settling velocities of particles. His experiments were confined to the bed movement of 

single particles of different shapes, over a hydraulically smooth bed, for turbulent flow 

conditions. Through dimensional analysis, Krumbein determined a relationship between 

sphericity and the ratio of particle velocity to mean flow velocity, , as a function fp uV /
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of the Froude number. Krumbein noticed that the curves followed an exponential type of 

equation, and proposed: 

 ( )exp(1
0

bFr
u
V

u
V

f

p

f

p −−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ) (2.1) 

where: Vp = particle velocity (m/s);  = mean flow velocity (m/s); b = constant; Fr = 

Froude number. In a discussion of Krumbein’s paper, Kalinske (1942) noted that all of 

Krumbein’s experiments were made at a constant flow depth of 131 mm, which allowed 

the Froude number to be written as a function of mean flow velocity: 

fu

 f
f u

u
Fr 88.0

131.081.9
=

×
=  

For the case of spheres, Eq. (2.1) can then be written as: 

 [ )85.1exp(188.0 f
f

p u
u
V

−−= ] (2.2) 

Therefore, Krumbein’s equation is not more than a plot of  vs. . He did not 

make any attempts either to correlate against variables other than Fr, or to find a physical 

basis for his empirical equation. Moreover, the nominal diameter of all particles tested 

was kept constant, so that size effects were not taken into account. Finally, even though 

the flow was turbulent, all of Krumbein’s experiments were done over a smooth bed, and 

therefore have less applicability to real world situations. 

fp uV / fu

Kalinske (1942) reported that the Froude number Fr  has no physical significance 

in regard to the movement of particles on the bed. Kalinske proposed that the particle 
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velocity Vp should be equal, or at least proportional to cuu −' . where:  = the velocity of 

the fluid acting on the particle (m/s);  = critical velocity for that particle. As  is 

proportional to , Kalinske obtained the following expression 

'u

cu 'u

fu

 ( )cfap uucV −=  (2.3) 

where: ca = constant;  = mean flow velocity (m/s); Vfu p = particle velocity (m/s);  = 

critical velocity (m/s). Kalinske applied his model to Krumbein’s data and found the best 

agreement for . No mention is made regarding how to obtain the critical 

velocity for a given particle. 

cu

0.19.0 << ac

Ippen and Verma (1955) analyzed the motion of small spheres over beds of 

different roughness in flume experiments, for turbulent flow conditions. Upon plotting 

the ratio  against the Reynolds number, Re, they found that after a transition of 

variable length (proportional to grain density),  reached an ultimate value that 

remained constant over a wide range of Re and that the particle velocity increased 

directly with size, and attributed this to the fact that larger particles protrude into higher 

velocities than smaller ones. Assuming that the nearly constant ratio  is governed 

by the following variables: (G -1), , and , they obtained the following equation 

as a best fit to the data: 

pf Vu /

pf Vu /

pf Vu /

ss dk / S/1
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where: G = the specific gravity of grains; ds = particle size (mm); ks = roughness size 

(mm); S = energy grade line; Eq. (2.4) is explicitly dependent on the particle size, and 

shows an increase in particle velocity with size. From the definition of shear velocity  

and mean bed shear stress τ

*u

o: 

 
ρ

τ ou =*  (2.5) 

 hSo γτ =  (2.6) 

one can obtain: 

 
gh
u

S
2

*=  (2.7) 

and replacing Eq. (2.7) into Eq. (2.4) leads to: 
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V
u

s

s
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p

f  (2.8) 

where: ( ) ghGcb 1
12
1

−= , a constant for a given flow depth and grain material (m/s);  

= shear velocity (m/s); V

*u

p = particle velocity (m/s);  = mean flow velocity (m/s); Eq. 

(2.8) clearly shows that particle velocity is directly related to both particle size and shear 

velocity, while inversely related to roughness size. 

fu

Meland and Norrman (1966) represent the most complete up-to-date approach to 

generate information about single grain transport velocities. Most recent theoretical 

papers on sediment transport rates rely heavily on Meland and Norrman for data in order 
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to validate their models. Meland and Norrman investigated the interactive effects of 

water velocity, bed roughness, and particle size on the transport rate of single particles 

over rough beds by turbulent flows, keeping particle shape, density and bed packing 

constant. Meland and Norrman used glass beads only, rolling on top of a bed made from 

the same beads. Upon analyzing their results, in which particle velocity is plotted against 

particle size for different values of shear velocity, it can be clearly seen that, for a given 

bed roughness and shear velocity, larger particles move faster than smaller ones, as 

concluded by Ippen and Verma (1955). Meland and Norrman give two main reasons for 

this behavior: First, larger particles ride higher off the bed, being thus exposed to the 

greater velocities; and second, the rolling resistance decreases when the ratio of particle 

size to roughness size is increased. They also found that the influence of size upon 

transport velocity decreases with increasing shear velocity and with decreasing bed 

roughness size. In other words, at high shear velocities and small bed roughness, the 

particle velocity tends to be constant with size. 

 m
s

n
s

mm
s

p b
k

dua
k
V a

−= *  (2.9) 

where:  = shear velocity (m/s); V*u p = particle velocity (m/s); ks = roughness size (mm); 

; 75.0=m
26.0

*

014.0
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

u
k

n s
a ; am = 7.05; and bm = 5.1. This empirical equation applies 

only to Meland and Norrman’s experiments; the constants appearing in the equation are 

of no particular importance. Vp is directly related to  and d*u s, and inversely related to ks. 

In other words, Vp is directly related to the ratio  of particle size, i.e., larger 

particles roll easier than smaller ones over a given bed, or a given particle rolls more 

ss dk /
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easily over a smooth than a rough bed. They also observed that transport velocities were 

lower on beds of loosely packed glass beads than in corresponding fixed, solid beds. This 

effect was most noticeable at high transport stages, and decreased, or was even reversed 

for low shear velocities. Eq. (2.9) gives a better results when applied the constants am = 4, 

and bm = 5.8 (see Figs. 2.1 and 2.2). 

Parson (1972) reported measurements on the rates of travel of several sizes of sand 

grains and glass beads in laminar sheet flow (i.e., overland flow) at different discharges 

and slopes, over a smooth bed. Parson found that particles moving in contact with the bed 

(i.e., rolling and sliding motion) travel at speeds approximately one-half the velocity of 

water in unobstructed flow, at a distance from the bed equal to the radius of a sphere of 

equal volume. For some tests with a large number of grains thrown at the same time, 

Parson overlooked a significant difference in speed. For glass beads, he found good 

agreement with the following equation: 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

o

coso
p

d
V

τ
τ

µ
τ

1
4

 (2.10) 

where: Vp = particle velocity (m/s); µ = fluid dynamic viscosity (kg-s/m2); ds = grain 

diameter (mm); τo = bed shear stress (kg/m2); τoc = critical bed shear stress required for 

the glass beads to roll (kg/m2). Using Eq. (2.5), one can express τo and τoc as: 

  (2.11) 2
*uo ρτ =

  (2.12) 2
*coc uρτ =
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replacing (2.11) and (2.12) into Eq. (2.10), and defining
µ
ρ

4
=cc  (s/m2), results in: 

 ( )2
*

2
* cscp uudcV −=  (2.13) 

where:  = shear velocity (m/s);  = critical velocity (m/s). Eq. (2.13) not only shows 

that V

*u cu*

p depends directly on ds, but also that Vp is proportional to the difference between a 

velocity and a critical velocity. In this case, it is shear velocity squared. 

Ikeda (1971) made a theoretical analysis of the mechanics of the motion of a single 

spherical grain rolling on the bed, by considering the four main forces acting on the 

particle: drag, lift, gravity and friction with the bed. The resulting equation is as follows: 

 ( )
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u
u

u
V s

DL

fp

µ
µ  (2.14) 

where: Vp = particle velocity (m/s);  = shear velocity (m/s);  = fluid velocity at the 

center of the spherical grain (m/s); c

*u fu

µ = sliding friction coefficient; G = particle specific 

gravity; g = gravitational acceleration (m/s2);  and  = the drag and lift coefficients 

respectively; However, Ikeda did not give a method to specify the values of c

DC LC

µ,  and DC

LC , which makes this formula inapplicable in practice. Besides, Ikeda assumed that the 

particle velocity is always behind the fluid velocity. This is not true for the case of steep 

slopes at very low fluid velocities. 

Francis (1973) studied the motion of solitary grains along the bed of a flume. 

Francis’ investigation was limited to particles moving over a fixed-plane bed made out of 

particles of the same type as those being transported, and he did not consider the effects 
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of grain size relative to roughness size. Francis found a satisfactory correlation between 

Vp (m/s) and the particle settling velocity, w (m/s). He also found a considerable 

difference in Vp for grains of different shapes. Specifically, he concluded that rounded 

particles always roll faster than angular ones. 

The effect of grain size on Vp was always accounted for by using the regression 

with w, but shape effects could not be reduced. Francis performed the experiments with 

spherical particles traveling over a bed consisting of cylinders of the same diameter as the 

grains laid perpendicular to the flow. In this case, spherical particles traveled faster than 

any natural grains. Finally, he observed marked grains moving in the company of many 

other grains, in order to test the applicability of results derived from single grain 

experiments. In this case, speed was reduced 5% on average below that corresponding to 

solitary grains. This effect was most noticeable for low transport stages, and disappeared 

altogether for very high shear velocities. 

Fernandez Luque and van Beek (1976) used a different approach than the one in 

previous studies, by using a loose bed for all of their experiments. They measured particle 

velocities as a function of bed shear stress in a closed-flow rectangular flume. The 

measured grains were scoured from the bed and then rolled on top of it. The average 

transport velocity of particles, which were saltating, or even in suspension, for most of 

the time was found to be equal to the average fluid velocity for turbulent flow without 

bed load at about three particle diameters above the bed surface minus a constant 

proportional to , as shown below: cu*

 ( )cp uucV ** 7.0−=  (2.15) 
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where:  = critical shear velocity at Shields condition for entrainment (m/s); Vcu* p = 

particle velocity (m/s);  = shear velocity (m/s) and c = constant (11.5). Eq. (2.15) is 

valid over a wide range of slopes. The form of this equation is quite misleading, since it 

seems that V

*u

p will decrease with size (because  is higher for larger particles), but this 

is not the case because the points through which the equation was plotted correspond to 

all different experiments. Thus, in Eq. (2.15),  is also a function of size; because in 

experiments with larger particles, larger shear velocities were required not only to entrain 

grains, but also to keep them moving. As in Francis (1973), the particles were rolling on 

top of a bed made from the same material, so that the effect of size cannot be described. 

cu*

*u

Romanovskiy (1977) not only shows his own experimental results, but he also 

discusses previous approaches to the problem of modeling grain transport velocity. In 

particular, he presents Goncharov’s (1938) empirical equation: 

 cp uuV 11 −=  (2.16) 

where: Vp = particle velocity (m/s);  = flow velocity at the height of the particle center 

(m/s);  = critical value at the threshold of motion (m/s). Assuming a logarithmic 

velocity profile, it is possible to relate  to the mean flow velocity, , through a 

constant, so that one obtains: 

1u

cu1

1u fu

 ( )cfap uucV −=  (2.17) 

where: ca = constant;  = mean flow velocity (m/s);  = critical velocity (m/s). This is 

identical to Kalinske’ Eq. (2.3). One considers the shear velocity as: 

fu cu

 12



 fufu
8* =  (2.18) 

where: f = Darcy-Weisbach coefficient;  = shear velocity (m/s); we can write Eqs. (2.3) 

and (2.17) in terms of shear velocities: 

*u

 ( )cp uucV ** −=  (2.19) 

where: , which is assumed constant;  = critical shear velocity (m/s). The 

later equation is quite similar to the form of Fernandez Luque and van Beek’s (1976) Eq. 

(2.15). Romanovskiy (1977) made a simplified analysis of the forces acting on a rolling 

grain and proposed: 

2/1)8/( fc = cu*

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

µ

α
m

uucV cfep
tan  (2.20) 

where: tanα = dynamic friction coefficient; mµ = static friction coefficient;  = mean 

flow velocity (m/s); c

fu

e = constant;  = critical velocity (m/s). For a particle at repose, cu

αtan  = mµ; and if  is allowed to increase slowly from zero, at a certain velocity 

, the particle will be entrained. From his experimental work he concluded that the 

form of Eq. (2.20) adequately represents the data. 

fu

cf uu =

Abbott and Francis (1977) continued the investigations reported by Francis (1973). 

More experiments were carried out and the following equation was found to represent all 

data sets with very low scatter: 

 ( )cp uucV ** −=  (2.21) 
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where:  = shear velocity (m/s);  = critical shear velocity (m/s); and c = constant 

parameter (13.5 < c < 14.5); A particle riding on top of the bed has a far lower threshold 

of motion than one nested into it. Abbott and Francis obtained , based on actual 

measurements of overriding grains. Thus, instead of using Shields’ criterion, the critical 

shear velocity was derived assuming a Shields parameter value of 

*u cu*

cu*

02.0=oθ . 

Bridge and Dominic (1984) made an extensive analysis of bed load grain transport 

velocity data in order to calibrate their proposed physically based model to estimate 

sediment transport rates. On theoretical grounds they showed that: 

 ( )cp uucV ** −=  (2.22) 

where: αtan* wcu c = ; w = the settling velocity of particles (m/s); tanα = dynamic 

friction coefficient; 6 < c < 14.3;  = shear velocity (m/s);  = critical shear velocity 

(m/s); Application of this model to the existing data sets on single grain transport 

velocities yielded good results. 

*u cu*

Wiberg and Smith (1987) developed an expression for the critical shear stress in 

non-cohesive sediment derived from the balance of forces on individual particles at the 

surface of a bed. The resulting equation, for a given grain size and density, depends on 

near bed drag force, the lift force to drag force ratio, and the particle angle of repose. 

Calculated values of the critical shear stress for uniformly sized sediment correspond 

closely to those determined from Shields’ diagram. The initial motion problem for mixed 

grain sizes additionally depends on the relative protrusion of the grains into the flow and 

the particle angle of repose. The latter decreases when the diameter of a moving grain, ds, 
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is larger than the length scale of the bed roughness, ks ) , and increases when 

, producing a corresponding decrease or increase in critical shear stress. Using 

the Miller and Byrne (1966) experimental relationship between , and particle angle 

of repose, which is consistent with Shields’ definition of initial motion, Wiberg and 

Smith obtain results that are in good agreement with the available experimental critical 

shear stress data for heterogeneous beds. Wiberg and Smith used a physically based 

model of bedload sediment transport and data sets from Francis (1973), Fernandez Luque 

and van Beek (1976) and Abbott and Francis (1977) to derive the semi-empirical 

equation: 

1/( >ss kd

1/ <ss kd

ss kd /
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 (2.23) 

where: τ = mean bed shear stress (kg/m2); τc = shear stress at threshold of motion 

(kg/m2); Vp = particle velocity (m/s); and  = shear velocity (m/s). *u

Jan (1992) addressed the relative contribution of the stresses developed in granular 

fluid flows (viscosity, collision and friction stresses). Jan determined how much each of 

the examined stresses contributed to the total stress acting on a rolling sphere. 

Experiments were conducted for the steady movement of a sphere rolling down smooth 

and rough inclines in air, water and salad oil. An equation was derived expressing the 

velocity of a sphere rolling down a roughened incline without acceleration or deceleration 

based on the principle of conservation of momentum. Jan ’s average terminal velocity Vp 

was derived as the following: 
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)cos(sin)(
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=  (2.24) 

where: fs ρρ ,  = particle and fluid densities (kg-s2/m4);  = drag coefficient; θ = bed 

slope angle; d

DC

s = particle diameter (mm); g = gravitational acceleration (m/s2);  = 

collision coefficient (0.667); and n

cf

µ = bulk friction coefficient (0.13). Both f and nµ  were 

determined via regression analysis using experiment data. Jan’ experiments were 

performed for situations where the tested particle was identical to those comprising the 

roughness over which it rolled. Roughness particles were tightly spaced in a single layer 

on a smooth wooden bed of a tilting flume. Several conclusions were made as a result of 

the experiments and analysis. First, velocity is independent of rolling particle density. 

Second, collision stresses increase with increased bed inclination. Third, side wall friction 

from particles interacting with the side boundaries of the flume is negligible. 

Meier (1995) completed the literature review on the existing formulas of transport 

velocity, in which he analyzed seventeen equations. Most of the equations can be written 

in the following form: 

 )( ** cp uucV −= α  (2.25) 

where: Vp = particle velocity (m/s);  = shear velocity (m/s);  = critical shear 

velocity (m/s); and c

*u cu*

α = proportionality constant. The differences between various 

investigators is how they correlate cα and  with the flow parameters. A shortcoming of 

this type of equation is that it does not apply for a steep bed slope. 

cu*
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Steidtmann (1982) conducted an experiment to assess the effects of size and 

density, with sand-size spheres of two densities being transported and deposited under 

controlled flume conditions. Observations on the motion of discrete particles show that 

grains smaller than bed roughness grains move continuously and have the same transport 

velocities regardless of density. For grains near and slightly larger than the roughness, 

movement is intermittent; and, for a given size, heavy particles move more slowly than 

light particles. For grains much larger than bed roughness grains, movement is 

continuous over the rough surface, and light and heavy grains have nearly the same 

transport velocities. Steidtmann’s analysis of bulk sediment deposited from plane-bed 

transport, show that the size and proportion of heavy grains decrease and that of light 

grains increase with distance transported. For ripple bed transport, the size relations 

between associated light and heavy grains remains essentially unchanged with transport 

distance and the proportion of light and heavy grains is extremely variable. The results 

suggest that size-density sorting in plane-bed transport is a function of the transportability 

identified in the discrete grain studies but that sorting in ripple-bed transport is related to 

deposition on, and recycling through, the bed forms. 

Bigillon (2001) conducted an experiment in a tilted, narrow, glass-sided channel, 

2m in length and 20 cm in height. The channel inclination ranged from 0° to 12°. Two 

types of spherical particles were used in the experiments: glass beads and steel beads, the 

particle density was 2500 and 7750 kg/m3 respectively. The water supply at the channel 

entrance was controlled by an electromagnetic flow meter provided by Krohne (France). 

The flow depth was a few particle diameters. Most of the time, channel slope was in 

excess of 1°, the water flow regime was supercritical, that is the Froude number exceeded 
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unity. The channel bed was made up of regularly juxtaposed half-cylinders of equal size. 

Bigillon selected three sizes of cylinder: their radius are 1.5 mm, 3 mm, and 4 mm. The 

motion of mobile beads was recorded using the Pulnix camera. A single particle was 

dropped from above into the water stream 1 m upstream from the measuring window. 

Bigillon filmed the motion of the particle with the Pulnix camera. For each flow 

condition (uf,θ), the variability of the results was evaluated by repeating the run between 

three and five times, and only the average value was reported. The standard deviation was 

low relative to the mean (less than 5%) when the particle rolled. Bigillon noted that, these 

mean velocities cannot be rigorously assimilated to asymptotic velocities Vp, they 

provide a reasonable approximation of Vp. Fifty experimental data points were collected 

and the variability for hydraulic and particle parameters include: the range of shear 

velocity u* = 0.018-0.038 m/s, Twater = 20°C, νwater = 1.004×10-6 m2/s, particle diameter ds 

= 1.5 mm and 3 mm, G = 2.5 (glass bead) and 7.75 (steel bead), ks = 1.5 mm and 3 mm, 

bed slope Sf = 0.02 and 0.05, mean flow velocity uf = 0.223-0.492 m/s, flow depth y = 

2.13-28.65 mm, and observed bedload particle velocity Vpobs = 0.076-0.496 m/s. 

2.2. DATA COMPILATION 

A complete set of the experimental and data measurements is provided in Chapter 

3. It includes the laboratory data of Meland and Norrman (1966), Fernandez Luque and 

van Beek (1976), Steidtmann (1982), Bridge and Dominic (1984), CSU (1995), and 

Bigillon (2001). A summary of this database is given in Table 2.1. It is comprised of 6 

data sets containing a total of 1038 data points. These data are limited to the particle sizes 
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with median diameters in the range of 0.21 to 29.3 mm, bed roughness in the range of 

0.19 to 7.76 mm, average flow velocity in the range of 0.22 to 1.00 m/s, shear velocity in 

the range of 0.0097 to 0.1108 m/s, flow depth in the range of 2.13 to 180 mm, and slope 

in the range of 0.00073 to 0.05. Details on the variability of hydraulic and bedload 

particle parameters are given in the appendices. Table 2.2 to 2.4 provides the summary of 

literature review, including existing equations, data sources and previous and recent 

studies. 
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Table 2.1: Variability of Hydraulic and Bedload Particle Parameters 
Existing Experiments Data Recent Experiments 

Data 

Variables 

Meland 

and 

Norrman 

(1966) 

Fernandez 

Luque and 

van Beek 

(1976) 

Steidtmann 

(1982) 

Bridge and 

Dominic 

(1984) 

CSU 

(1995) 

Bigillon 

(2001) 

(1) (2) (3) (4) (5) (6) (7) 

Number 

Sf

 

T (°C) 

ν×10-6 (m2/s) 

y (mm) 

u* (m/s) 

 

uf (m/s) 

ks (mm) 

ds (mm) 

ds/ks

Shape of Particles 

120 

- 

 

20 

1.004 

- 

0.0172-

0.1108 

0.25-1.0 

2.09-7.76 

2.09-7.76 

1.0 

Spherical 

85 

- 

 

22 

1.26 

- 

0.0122-

0.0641 

- 

0.9-3.3 

0.9-3.3 

1.0 

Angular 

330 

- 

 

18-22 

0.98-1.095 

180 

0.0172-

0.0277 

0.29-0.44 

0.35 

0.21-1.25 

0.6-3.57 

Spherical  

77 

- 

 

20 

1.004 

- 

0.0122-

0.0641 

- 

0.19-3.5 

0.19-3.5 

1.0 

Spherical 

Angular 

356 

0.00073-

0.011 

17.25-21.5 

0.968-1.08 

50.3-71.15 

0.0097-

0.0641 

0.25-0.89 

1.2-3.4 

2.4-29.3 

2.02-24.4 

Spherical 

Angular 

50 

0.02-0.05 

 

20 

1.004 

2.13-28.65 

0.018-

0.038 

0.22-0.49 

1.5-3 

1.5-3 

1.0 

spherical 
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Table 2.2: Summary of Literature Review 
Sources Equations Notes 

Krumbein 

(1942) 
( )85.1exp(188.0 f

f

p u
u
V

−−= ) where: Vp = particle velocity;  

= mean flow velocity; b = constant; 

Fr = Froude number  

fu

Kalinske 

(1942) 

( )cfap uucV −=  where: ca = constant;  = mean 

flow velocity; V

fu

p = particle 

velocity;  = critical velocity; 

Kalinske applied his model to 

Krumbein’s data and found the 

best agreement for 

cu

0.19.0 << ac  

Ippen and Verma 
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 = shear velocity, V*u p =particle 

velocity and  = mean flow 
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fu

Meland and Norrman 

(1966) 
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Where: u* = shear velocity, Vp = 

particle velocity, ks = roughness 

size, m = 0.75 and 
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 where, Vp = particle velocity,  = 

shear velocity, = fluid velocity 

*u

fu
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at the center of the spherical grain, 

cµ = sliding friction coefficient, G 

= the particle specific gravity, g = 

gravitational acceleration, and CD 

and CL = drag and lift coefficients 

Parson 

(1972) 

( )22
* cscp uudcV −=  where,  = shear velocity, = 

critical velocity, d

*u cu

s = grain size and 

cc = ρ/4µ. 

Fernandez Luque and van Beek 

(1976) 

( )cp uucV ** 7.0−=  Where: = critical shear 

velocity at Shield’s condition for 

entrainment, V

cu*

p = particle velocity 

and  = shear velocity, and c = 

11.5; 

*u

Romanovskiy 

(1977) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

µ

α
m

uucV cfep
tan  

Where: tanα = dynamic friction 

coefficient, mµ = static friction 

coefficient,  = mean flow 

velocity, c

fu

e = constant and  = 

critical velocity 

cu

Abbott and Francis 

(1977) 

( )cp uucV ** −=  Where:  = shear velocity,  = 

critical shear velocity and 

*u cu*

3.145.13 << c , c = constant 

parameter. 

Bridge and Dominic 

(1984) 

( )cp uucV ** −=  αtan* wuc ch = , w = the 

settling velocity of particles, 

tanα = the dynamic coefficient 
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friction, 6< c <14.3,  = shear 

velocity and  = critical shear 

velocity 

*u

cu*

Wiberg 

(1987) 
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Where: τ = mean bed shear stress, 

τc = shear stress at threshold of 

motion, Vp = particle velocity and 

 = shear velocity *u

Jan 

(1992) fDs

sfs
p

Cf

ngd
V

ρρ

θθρρ µ

4
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)cos(sin)(

+

−−
=

 Where: ρs, ρf = particle and fluid 

density, CD = drag coefficient, θ = 

bed slope angle, ds = particle 

diameter, g = gravitational 

acceleration, f = collision 

coefficient, and nµ  = bulk friction 

coefficient 

Meier 

(1995) 

)( ** cp uucV −= α  Where: Vp = particle velocity,  

= shear velocity,  = critical 

shear velocity, and c

*u

cu*

α = 

proportionality constant 
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Table 2.3: Existing Database 
Sources Number of Data Points Bed-load Particle Size Notes 

Meland and Norrman 

(1966) 

120 ds=2.09, 3.15, 3.93, 5.1, 

5.95, 7.0 and 7.76mm; 

ks=2.09 and 7.76mm 

Glass spheres 

G=2.65 

Fernandez Luque and van 

Beek 

(1976) 

85 dwalnut=1.5mm 

0.9mm<dsand<1.8mm 

dgravel=3.3mm 

dmagnetite=1.8mm 

Walnut, sand (I), sand 

(II), gravel and 

magnetite; G=2.64  and 

4.58 

Shape, density,… 

Steidtmann 

(1982) 

330 0.21mm<dsand<1.25mm 

ks=0.35mm(Glass sphere) 

Sand-size spheres (ds) 

Glass spheres (ks) 

154 with Gs=4.5 

176 with Gs=2.5 

Bridge and Dominic 

(1984) 

77  Glass spheres 

G=2.56 

Wiberg 

(1987) 

115 ds = 0.35, 0.5, 0.8, 1.5, 

2.0, 2.5, 5, 10, 28.6mm 

Shape, density,… 

Rakoczi 

(1991) 

100 ds1=5-10mm, ds2=10-

15mm, ds3=15-20mm; 

ds4=20-25mm and 

ds5=25-36mm 

Gravel 

G=2.65 

Jan 

(1992) 

158 13.5mm<dglass <24.1mm 

dsteel = 13.5mm 

dgolf = 42.5mm 

13.5mm<ks<42.5mm 

Golf, steel balls; water, 

air and salad oil  

CSU 

(1995) 

356 1.57mm<dsteel<19.04mm 

dtin=4.375mm 

Glass, natural and steel 

spherical and angular 
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14.48mm<dglass<29.3mm 

1.2mm<dnatural<13.6mm 

ks=1.2,1.7,2.4 and 3.4mm  

shapes 

Bigillon 

(2001) 

50 1.5mm<dsteel<3mm 

1.5mm<dglass<3mm 

ks=1.5 and 3mm 

Glass and steel spherical 

shape 
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Table 2.4: Summary of Previous and Recent Studies 
Author 

 

Equation 

 

Data 

 

Particle 

Size 

 

Particle 

Shape 

 

Particle 

Density 

 

Smooth 

Bed 

Rough 

Bed 

Still 

Fluid 

Flowing 

Fluid 

Meland 

and 

Norrman 

(1966) 

Yes Yes Yes Spherical   Yes  Yes 

Fernandez 

Luque 

and van 

Beek 

(1976) 

Yes Yes Yes Angular Yes  Yes  Yes 

Steidtman 

(1982) 

 Yes Yes Spherical Yes Yes Yes  Yes 

Bridge 

and 

Dominic 

(1984) 

Yes Yes Yes Spherical, 

Angular 

  Yes  Yes 

Wiberg 

(1987) 

Yes Yes Yes Spherical, 

Angular 

Yes  Yes  Yes 

Jan 

(1992) 

Yes Yes Yes Spherical Yes Yes Yes Yes  

CSU 

(1995) 

Yes Yes Yes Spherical, 

Angular 

Yes Yes Yes Yes Yes 

Bigillon 

(2001) 

Yes Yes Yes Spherical Yes  Yes  Yes 
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2.3. APPLICATION OF EXISTING METHODS 

Figs. 2.1 to 2.6 show the application of the equations of Meland and Norrman 

(1966), Fernandez Luque and van Beek (1976), and Bridge and Dominic (1984) to their 

own database. The results show that the equations of Meland and Norrman, Fernandez 

Luque and van Beek, and Bridge and Dominic predict very well with their own data. 
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Figure 2.1: Vp/ks

m vs. u*ds
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Figure 2.2: Comparison between Calculated and Observed Vp using Eq. (2.9) 
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Figure 2.3: Vp vs. (u*-0.7u*c) 
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Figure 2.4: Comparison between Calculated and Observed Vp using Eq. (2.15) 
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Figure 2.5: Vp vs. (u*-u*c) 
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Figure 2.6: Comparison between Calculated and Observed Vp using Eq. (2.22) 
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2.4. SUMMARY 

The existing methods, i.e., Meland and Norrman, Fernandez Luque and van Beek, 

and Bridge and Dominic compare well with their own data. There is a shortage of 

laboratory data on particle specific gravity G (density), particle shape, bed roughness ks, 

particle size ds, etc., therefore more extensive physical experiments are needed to cover a 

greater range of variability for hydraulic and particle parameters. 
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CHAPTER 3  

DATA COMPILATION 

Julien, Meier, and Blackard (1995) conducted experiments at the Engineering 

Research Center (ERC) of Colorado State University on transport velocities of bedload 

particles in smooth and rough open channel flows. This chapter represents the 

descriptions of the flume, plates, particles, set up, experiments, and methodology used in 

the experiments. 

3.1. THE FLUME 

A 9.77m long plexiglass tilting flume shown in Fig. 3.1, with trapezoidal cross-

section was used for the experiment. The bed slope has a range of approximately 0% to 

4%, although 1% was the largest slope used (run 18, 20, 28 and 37). The side walls of the 

flume are adjustable, allowing for the channel cross-section to be varied. In these 

experiments the side walls were kept fixed at a 3 H to 1 V ratio, in order to minimize 
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their influence on the flow. A 2 m long test reach near the downstream end of the flume 

was used to measure particle velocities. 

The location of the test reach was chosen by visual inspection as that portion of the 

flume with most uniform flow conditions. An adjustable weir located at the downstream 

end of the flume was used in some of the runs to control the test reach water levels. Many 

runs with higher flow rates were performed with the weir removed as long as the flow 

was steady and uniform in the test section. The system re-circulated water collected at the 

downstream end of the flume in a stilling tank with a pump driven by an electric motor. 

The motor has three speed settings (slow, medium, and fast) and the return pipe has 

a valve for fine adjustment of the flow rate. Three point gages were used to measure flow 

depths. Two gages were located at the beginning and end of the test section, the third was 

used to record flow depth over the weir. Flow rates were measured using an orifice plate 

located in the water return pipe. Pressure taps on each side of the construction were 

connected to two manometers in parallel, with water and mercury as manometric fluids. 

The mercury manometer was needed for the higher flow rates. 

 33



 
Figure 3.1: Three Point Gages used to Measure Water Depth. 

3.2. THE PLATES 

Sand or gravel was glued to aluminum plates to achieve various bed roughnesses. 

Four sets of plates with rounded sand and gravel were used, one set with angular gravel 

and one smooth aluminum plate (bed roughness ks=0). Grain sizes used as bed roughness 

are shown in Table 3.1. Two 12-ft long plates were used for each bed roughness 

condition. The upstream plate used the same roughness as the downstream plate in order 

to establish the velocity profile of the stream. The test reach was located over the 

downstream plate. 
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Table 3.1: Gravel Gradations for Roughened Plane Surfaces 
Sieve Retained 

(mm) 

Sieve Passed 

(mm) 

Bed Roughness 

(mm) 

No gravel No gravel 0 

1.0 1.4 1.2 

1.4 2.0 1.7 

2.0 2.8 2.4 

2.0 2.8 2.4(angular) 

2.8 4.0 3.4 

 

Various adhesives were used to bond the sand and gravel to the plates. The first set 

of plates was produced using a spray lacquer made by Krylon to glue 2.4 mm (angular) 

gravel particles. This attempt failed as the gravel did not stick to the plates well. A vanish 

substitute called “EnviroTex Lite pour-on” made by Environmental Technology, Inc. was 

then used; the particles of gravel adhered much better. A contact cement from DAP was 

also used. It performed as well as the EnviroTex and the contact cement avoided the 

difficulty in producing a uniform layer of gravel without having “clumps” on the plates. 

For the 1.2 mm sand, a waterproof paint was used (Tile Clad II from Sherwin Williams). 

This held the sand in place very well, although clumping was difficult to prevent with this 

paint as well. 

In the early runs, particles had a tendency to roll off the sides of the plates. To solve 

this problem extra sand/gravel was glued to the sides, creating small ridges that acted as 

“guard rails” to keep the particles on the plate. The roughened plates are shown in Fig. 

3.2, 3.3, 3.4, 3.5 and 3.6 
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Figure 3.2: Form Roughened Plates 

 

 

 
Figure 3.3: Plate at Roughness ks = 1.2 mm 
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Figure 3.4: Plate at Roughness ks = 1.7 mm 

 

 

 
Figure 3.5: Plate at Roughness ks = 2.4 mm 
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Figure 3.6: Plate at Roughness ks = 3.4 

3.3. THE PARTICLES 

Three types of particles were run in the experiment: stainless steel ball bearings, 

glass marbles and natural quartz particles. The steel ball bearing and glass marbles were 

used because of their precise spherical shape. Using steel and glass also gave results for 

particles of two different densities. The quartz particles were used to emulate conditions 

closer to natural conditions for slope and density, and also to examine the effects of 

particle angularity. 

As can be seen from Fig. 3.7 and Table 3.2, a large number of particle types and 

diameters were tested. Not all of them moved in every run. For the lower transport rates, 

most steel particles didn’t move at all, or did so only for short distances before halting, 

because of their high density. The natural particles also rolled very little at low transport 
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stages, tending to sit on their flatter sides. For the higher transport stages the smaller steel 

and natural particles simply disappeared when dropped in the water, presumably whisked 

away in suspension. The glass marbles were the most consistent across all transport 

stages. Almost every run used all five marbles. Many different particles were used for 

each size. The particles were sieved and categorized accordingly. For example, the 3.4 

mm diameter “particle” was in fact a set of particles, all passing though the 4.00 mm 

sieve and retained in the 2.8 mm sieve. 
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Figure 3.7: Particles used in the Experiment 

 

 
Figure 3.8: The Experiment 
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Table 3.2: Particle Size used in the Experiments 
Type G Diameter 

(mm) 

Sieve Retained 

(mm) 

Sieve Passed 

(mm) 

19.04 

15.88 

14.28 

9.50 

7.90 

6.34 

4.75 

3.14 

Steel 8.02 

1.57 

  

29.30 

25.17 

21.70 

15.97 

Glass 2.60 

14.48 

  

13.60 11.2 16.0 

9.60 8.0 11.2 

6.80 5.6 8.0 

4.80 4.0 5.6 

3.40 2.8 4.0 

2.40 2.0 2.8 

1.70 1.4 2.0 

Natural 2.65 

1.20 1.0 1.4 
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3.4. EXPERIMENTAL SET UP 

Establishing the desired hydraulic conditions for each run involved setting the bed 

slope, pump, valve and (optionally) adjusting the weir in order to reach a predetermined 

value of shear velocity u*. In general, a bed slope and pump setting were selected, then 

the valve and weir adjusted until the two point gages in the test section indicated 

approximately the same flow depth. If the flow depth was too shallow (<50 mm), or if the 

value of u* undesirable, bed slope and/or pump setting were changed and the process 

started over. Adjustments were made until the difference in flow depths between point 

gages was smaller than 15% of the drop in bed elevation between the point gages (due to 

the bed slope). 

After the hydraulic conditions were set (and recorded) for a given run, the particles 

were released upstream and their times measured over the 2 m test section. Notes were 

taken on any non-uniform particle motion, such as surging of particles, suspension or 

halting. If a particle ran off the plate, that measurement was discarded and repeated. Each 

particle was run at least 15 times. Hydraulic conditions were measured and recorded at 

the middle and end of each run, allowing an average over three readings for flow depths, 

top flow widths, and manometer readings. A total of 49 runs have been completed on 

plates with six different roughness. For each roughness, a range of values of shear 

velocity  = (τ*u ο/ρ)1/2 were used in the range where the particles are expected to be in 

motion and in contact with the bed. A summary of the runs is presented in Tables 3.3 and 

Table 3.4. One set of plates had no roughness and the experiments for the 2.4 mm gravel 

were repeated using rounded versus angular material to identify possible differences 

owing to the angularity of the surface material. Fig. 3.9 Shows a linear relationship 
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between settling velocity w, and [(G-1)gds]1/2, the plot indicated that w ≅ 0.9423 [(G-

1)gds]1/2 with R2 = 1.0. 
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Figure 3.9: w vs. [(G-1)gds]1/2
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Table 3.3: Classification of Experimental Runs 
Run Number u* 

(m/s) 

Roughness 
(mm) 

Run Number u* 
(m/s) 

Roughness 
(mm) 

1 0.0111 0 26 0.0501 3.4 (rounded) 

2 0.0176 0 27 0.055 3.4 (rounded) 

3 0.016 0 28 0.0625 1.7 (rounded) 

4 0.0119 0 29 0.0593 1.7 (rounded) 

5 0.0141 0 30 0.0516 1.7 (rounded) 

6 0.0152 0 31 0.048 1.7 (rounded) 

7 0.0194 0 32 0.0419 1.7 (rounded) 

8 0.0249 0 33 0.0359 1.7 (rounded) 

9 0.0299 0 34 0.0242 1.7 (rounded) 

10 0.0176 0 35 0.0285 1.7 (rounded) 

11 0.0356 0 36 0.0186 1.7 (rounded) 

12 0.0097 0 37 0.0616 2.4 (rounded) 

13 0.0301 2.4 (angular) 38 0.0558 2.4 (rounded) 

14 0.0386 2.4 (angular) 39 0.0514 2.4 (rounded) 

15 0.025 2.4 (angular) 40 0.0467 2.4 (rounded) 

16 0.0339 2.4 (angular) 41 0.0378 2.4 (rounded) 

17 0.0506 2.4 (angular) 42 0.0317 2.4 (rounded) 

18 0.0641 2.4  43 0.019 2.4 (rounded) 

19 0.0424 0 44 0.0248 2.4 (rounded) 

20 0.0623 3.4 (rounded) 45 0.019 1.2 (rounded) 

21 0.024 3.4 (rounded) 46 0.027 1.2 (rounded) 

22 0.0231 3.4 (rounded) 47 0.036 1.2 (rounded) 

23 0.0298 3.4 (rounded) 48 0.044 1.2 (rounded) 

24 0.0362 3.4 (rounded) 49 0.051 1.2 (rounded) 

25 0.0438 3.4 (rounded)    
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The voluminous data set in Appendix A provides a substantial compilation of 

particle velocity information for each size fraction for plane surfaces of different 

roughnesses and particles of different size, density and angularity. 

3.5. PRELIMINARY RESULTS 

The data set shows the following overall characteristics: (1) under given hydraulic 

and surface roughness conditions, coarse particles generally roll faster than fine particles; 

(2) exceptions to (1) were observed, either when smaller particles were partly in saltation, 

or when the standard deviation of repeated particle velocity measurements were large 

compared to the mean velocity; (3) the most convincing results are found on runs 3 and 5 

for a smooth plate, and runs 34, 36, and 44 for rough plates; (4) at a given roughness size, 

particles roll slightly faster on a plane boundary of rounded particles as opposed to 

angular particles; and (5) as shear velocity  increases, the smaller particles enter 

saltation and tend to move faster than coarse particles. 

*u

A plot of particle velocity against particle diameter for a smooth bed (ks = 0) is 

shown in Fig. 3.10. where larger particles move faster than smaller ones for all values of 

shear velocity. Larger particles protrude higher into the flow, in regions with higher flow 

velocities. There are no clear differences in transport velocities for particles of different 

densities; Fig. 3.11 shows that lighter particles move faster than heavier particles, and 

particle velocity tends to decrease with the increase of the particle size; for natural 

particles, the variability of particle velocity with respect to particle size is high, this may 
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be the effect of particle shape; and for glass particles, larger particles move faster than 

smaller ones. 

Fig 3.12 shows the ratio of particle velocity Vp to shear velocity u* lies in the range 

of 2.5 to 12.5; Fig. 3.13 shows, for glass and natural particles (lighter), Vp ≅ 9.14u*, and 

for steel particles (heavier), Vp ≅ 3.94u*; Fig. 3.14 shows the variation of particle 

velocity, Vp against Shields parameter, τ*ds. Fig. 3.15 shows the ratio of particle velocity 

Vp to mean flow velocity uf lies in the range of 0.2 to 0.9; Fig. 3.16 shows that spherical 

particles move faster than angular particles at the same u*/[(G-1)gds]1/2. 
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Figure 3.10: Vpobs vs ds for ks = 0 
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Figure 3.11: Vpobs vs ds for ks > 0 
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Figure 3.12: Vp/u* vs ds
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Figure 3.13: Vp vs u*, a) Vp(N,G) ~ 9.14u*, and b) Vp(S) ~3.94u*
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Figure 3.14: Vp vs τ*ds
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Figure 3.15: Vp/uf vs ds
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Figure 3.16: Vp/uf vs u*/[(G-1)gds]1/2

From Fig. 3.13, we generated linear equations of the following form, for each bed 

roughness and particle type: 

*21 uCCVp +=                                                  (3.1) 

where: C1 and C2 are constants, these equations were then reduced to the form of Eq. 

(2.19) by introducing the absolute value of C1/C2 as a new positive constant: 

( )21*2 / CCuCVp −=                                               (3.2) 

where: c = C2 and ⏐C1/C2⏐ = u*c. The computed values of c and u*c for different bed 

roughness and particle types is shown in Table 3.4. 
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Table 3.4. Computed Values of c and u*c for different ks and Particle type 
Particle 

Type 

ks

(mm) 

c u*c

(m/s) 

R2

0 NA NA NA 

1.2 15.51 0.0192 0.98 

1.7 14.83 0.0197 0.97 

2.4 14.03 0.0212 0.93 

Natural 

(G = 2.6) 

3.4 14.83 0.0244 0.95 

0 18.61 0.0033 0.94 

1.2 16.29 0.0145 0.98 

1.7 15.39 0.0143 0.99 

2.4 15.87 0.0187 0.95 

Glass 

(G = 2.65) 

3.4 16.33 0.0214 0.98 

0 15.08 0.0044 0.85 

1.2 7.93 0.0213 0.93 

1.7 8.21 0.0251 0.89 

2.4 5.08 0.0152 0.42 

Steel 

(G = 8.02) 

3.4 4 0.0147 0.77 

3.6. STATISTICAL ANALYSIS 

In the statistical analysis, the discrepancy method is adopted to indicate the 

goodness of fit between the calculated and observed results. The discrepancy ratio, Ri

 
)(

)(

ipobs

ipcal
i V

V
R =  (3.1) 
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in which Vpcal(i), Vpobs(i) = calculated and observed bedload particle velocity 

corresponding to data point number in a data set. For a perfect fit, Ri = 1.0. 

3.7. PARAMETRIC ANALYSIS OF CSU DATA 

Fig. 3.17, 3.19, and 3.20 show that τ*ds/0.047 ≈ 0.01 (τ*ds ≈ 0.00047), when ks<ds, 

bedload particles move at values of shear stress below the threshold value given by the 

Shields diagram, and τ*ds = 0.047 when ds = ks. Fig. 3.18 shows the values of τ*ks is in the 

range of 0.01 to 0.15; Fig. 3.20 shows values of Re* > 100; Fig. 3.21 shows Vp/[(G-

1)gds]1/2 < 2, then combined with Fig. 3.9, resulted in Vp/w < 2, and therefore Vp < 2w; 

and Figs. 3.22 and 3.23 show the values of Vp/u* is in the range of 2.5 to 12.5, and the 

threshold value for τ*ks is 0.01; Figs. 3.24 and 3.25 show the values of u*/w < 0.5, which 

is in agreement with the criterion for bedload sediment transport in Julien (1995, p.187, 

Figure 10.4).  
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Figure 3.17: τ*ds vs ds
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Figure 3.18: τ*ks vs ds
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Figure 3.19: τ*ds/0.047 vs ds/ks
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Figure 3.20: τ*ds vs Re*
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Figure 3.21: Vp/[(G-1)gds]1/2 vs τ*ds
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Figure 3.22: Vp/u* vs τ*ds/0.047 
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Figure 3.23: Vp/u* vs τ*ks/0.047 
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Figure 3.24: u*/w vs τ*ks
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Figure 3.25: u*/w vs τ*ks, for different database 

3.8. SUMMARY 

Analysis of the data showed that: (i) for a smooth bed (ks = 0) larger particles move 

faster than smaller ones. In other words, rolling bedload particle velocity increases with 

particle sizes; (ii) for a rough bed (ks > 0) lighter particles move faster than heavier ones; 

(iii) bedload particles move at values of the Shields parameter τ*ds < 0.047 when ds > ks; 

(iv) the ratio of particle velocity Vp to mean flow velocity uf lies in the range of 0.2 to 

0.9, while Kalinske (1942) suggested 0.9 to 1.0; (v) the ratio of particle velocity Vp to 

shear velocity u* lies in the range of 2.5 to 12.5, while Kalinske (1947) suggested 11.0, 

Bagnold (1956, 1973) suggested 8.5, Francis (1973) suggested 8.3 to 11.8, Fernandez 

Luque and van Beek (1976) suggested 11.5, Engelund and Fredsoe (1976, 1982) 
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suggested 6.0 to 10.0, Fleming and Hunt (1976) suggested 9.0, Abbott and Francis (1977) 

suggested 13.5 to 14.3, Mantz (1980) suggested 9.2, and Naden (1981) suggested 11.8; 

(vi) 0.01 < τ*ks < 0.15; (vii) Re* > 100; (viii) Vp < 2w; (ix) the threshold value for τ*ks 

appears to be 0.01; (x) u*/w < 0.5. 
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CHAPTER 4  

DIMENSIONAL AND REGRESSION 

ANALYSIS 

The subject of transport velocity of a single particle over rough open channel flow 

is complicated since it involves several unknown parameters, such as the drag coefficient 

and the friction coefficient. To date, theoretical solutions of particle velocities are 

uncertain at best. The approach of this Chapter is to combine the methods of dimensional 

and regression analysis. Roughness and rolling particle interactions have been proven to 

be highly dependent on geometrical constraints such as: particle sizes (both roughness 

and rolling), relative roughness, and bed slope. 

The challenge becomes one of deriving an equation that encompasses the correct 

variables without being too awkward to use. Ideally, the derived equation should predict 

the desired output relatively well, without the inclusion of empirical coefficients. This 

Chapter first examines the CSU data and particularly the Shields parameter in term of 
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rolling particle diameter ds and boundary roughness ks. The dimensional and regression 

analyses are then presented. An empirical equation is finally tested with data from CSU, 

other laboratories and field measurements. 

4.1. EXAMINATION OF SHIELDS APPROACH 

The simplest empirical form of estimated bedload particle velocity based on 

analysis of CSU data is shown in Fig. 4.1, and is a variation of Vp/[(G-1)gds]1/2 ~ u*
2/(G-

1)gks. 
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Figure 4.1: Vp/[(G-1)gks]1/2 vs τ*ks

From Fig. 4.1, we have 
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The bedload particle velocity can be estimated by 
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Since the Shields parameter is usually written in term of ds, a three-parameter empirical 

model is introduced. The variation of Vp/[(G-1)gds]1/2 with Shields parameter τ*ds = 

u*
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Figure 4.2: Vp/[(G-1)gds]1/2 ~ 30.5τ*ds

1.0(ds/ks)0.583

Using EXCEL multiple regression analysis toolbox, the coefficients a, b, and c can be 

determined using: 
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Similarly, when applied to the entire database, one obtains 
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The rolling bedload particle velocity can be estimated by Eqs. (4.7) and (4.8), 

where: shear velocity u* = [gRhSf]1/2 (m/s), ds = particle size (mm), ks = bed roughness 

(mm), G = particle specific gravity, and g = gravitational acceleration (m/s2). The 

comparison between calculated and observed rolling bedload particle velocity Vp is 

shown in Figs. 4.3 and 4.5; Figs 4.4 and 4.6 show a discrepancy ratio distribution using 

Eqs. (4.7), and (4.8). Since the empirical regression coefficients b and c are quite close to 

unity, the basic form of Eq. (4.1) is found to be representative of laboratory conditions. It 

is concluded that the Shields roughness parameter τ*ks = u*
2/[(G-1)gks] can be useful to 

determine bedload particle velocity.
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Figure 4.3: Comparison between Calculated and Observed Vp using Eq. (4.7) 
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Figure 4.4: Discrepancy Ratio Distribution of Vp using Eq. (4.7) 
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Figure 4.5: Comparison between Calculated and Observed Vp using Eq. (4.8) 
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Figure 4.6: Discrepancy Ratio Distribution of Vp using Eq. (4.8) 
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4.2. DIMENSIONAL ANALYSIS 

Dimensional analysis is adopted to find a functional relationship between the 

parameters affecting bedload particle velocity. The dependent variable is a function of six 

independent variables, with a total n = 7 variables: 

 ( ) 0,,,),1(,* =−= gkdGufV ssp ν  (4.9) 

in which f represents an unspecified function of the shear velocity , particle 

specific gravity (G-1), kinematic viscosity of the fluid ν, bedload particle diameter , 

bed roughness , and gravitational acceleration 
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From π1 to π5, the five dimensionless parameters can thus be written 
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The results from this dimensional analysis indicate that the dimensionless bedload 

particle velocity parameter is a function of the Shields parameter τ*ds, boundary relative 

roughness ks/ds, dimensionless particle diameter d*, and excess particle specific gravity 

(G-1). Further progress can be achieved only through physical understanding or an 

analysis of laboratory or field experiments. The bedload particle velocity is assumed to be 

proportional to the product of the powers of the dimensionless parameters 
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in which a, b, c, d, and e are coefficients to be determined from the multiple regression 

analysis. 
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Figure 4.7: Vp/[(G-1)gds]1/2 vs 11.5τ*ds
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Using EXCEL multiple regression analysis toolbox, the coefficients a, b, c, d, and e can 

be determined as follow 
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Applied to CSU’s (1995) database we have 
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Similarly, applied to the total database, one obtains 
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The comparison between calculated and observed bedload particle velocity using 

Eqs. (4.18) and (4.20) is shown in Figs. 4.8 and 4.10; Figs. 4.9 and 4.11 show a 

discrepancy ratio distribution using Eqs. (4.18) and (4.20). 
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Figure 4.8: Comparison between Calculated and Observed Vp using Eq. (4.18) 
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Figure 4.9: Discrepancy Ratio Distribution of Vp using Eq. (4.18) 

 70



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

Vpobs (m/s)

V
pc

al
 (m

/s
)

+50%

-50%

Natural Particles
Glass Particles
Steel Particles
Steidtmann(I)
Steidtmann(II)
Meland(I)
Meland(II)
Luque
Bigillon
Perfect agreement

 
Figure 4.10: Comparison between Calculated and Observed Vp using Eq. (4.20) 
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Figure 4.11: Discrepancy Ratio Distribution of Vp using Eq. (4.20) 
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The comparison between calculated and observed particle velocity using the 

proposed formula and the values is summarized in Table 4.1. A discrepancy ratio method 

is used to indicate the goodness of fit between calculated and observed results. It can be 

seen that for Eqs. (4.7) and (4.8) the percentages of data falling within the range of 

discrepancy ratios between 0.75 to 1.25 were in the range of 42.5 to 84.5% using the 

CSU database and 22.5 to 47.5% using the Total database; and for Eqs. (4.18) and (4.20) 

the percentages of data falling within the range of discrepancy ratios between 0.75 to 1.25 

were in the range of 60 to 93% using the CSU database and 49 to 56% using the Total 

database. 

Table 4.1: Comparison between Calculated and Observed Vp using Proposed Formulas 
Data in Range of  

Discrepancy Ratio, Ri (%) 

Equation 

 

 

(1) 

Data 

Sources 

 

(2) 

0.75-1.25 

(3) 

0.5-1.5 

(4) 

0.25-1.75 

(5) 

0-2.0 

(6) 

No. of 

Data 

Points 

(7) 

R2

 

 

(8) 

CSU 84.5 98.5 100 100 356 0.9 Eq. (4.7) 

Total 47.5 58 63.5 100 1018 0.7 

CSU 42.5 79 98 100 356 0.54 Eq. (4.8) 

Total 22.5 49.5 84.5 100 1018 0.69 

CSU 93 96.75 100 100 356 0.96 Eq. (4.18) 

Total 49 56.5 59 100 1018 0.7 

CSU 60 92 98.5 100 356 0.77 Eq. (4.20) 

Total 56 85 97.5 100 1018 0.84 

 

Eqs. (4.7), (4.8), (4.18), and (4.20) can be reduced to a simple form shown in Eq. 

(4.21); From Eq. (4.8), the exponents b and c are close to unity, one can approximate 

with 
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Notice that Vp  ∞ when ks  0; and there is no threshold for Vp  0 other than ks  

∞. Also, when ks = ds at τ*ds =0.047, Eq (4.21) does not reduce to Vp = 0. 

4.3. SUMMARY 

This proposed bedload particle velocity function, Eq. (4.20) is derived through the 

combination of dimensional analysis and regression analysis with a proposed formula in 

power form. Eq. (4.20) accounts for various flow and particle parameters, such as bed 

slope S, flow depth y (mm), viscosity of the fluid ν (m2/s), particle size ds (mm), bed 

roughness ks (mm), specific gravity of the particles G, and gravitational acceleration g 

(m/s2). Results showed that calculated and observed rolling bedload particle velocity fit 

very well when applied to both CSU and the total database. 

The proposed rolling bedload particle velocity Eq. (4.20) predicts very well when ks 

≠ 0, but when ks  0 (smooth bed), then bedload particle velocity Vp  ∞ (unbounded); 

when ds = ks, there is no value of τ*ds (no threshold) as Vp  0. The following Chapter 

provides further analysis to define the maximum bedload particle velocity on smooth bed, 

and also the threshold condition for beginning of motion when ks ≠ ds. 
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CHAPTER 5  

BEDLOAD PARTICLE VELOCITY 

The results of the dimensional and regression analysis in Chapter 4 indicate that: (i) 

when ks  0 (smooth bed), then the bedload particle velocity Vp  ∞; and (ii) there is no 

threshold value (Vp  0) when ks = ds. This Chapter examines the maximum bedload 

particle velocity over smooth beds. A theoretical analysis of particle velocity on smooth 

and rough surfaces are presented. The theoretical equation is then tested with laboratory 

and field databases. Sections 5.1 and 5.2 were modified from Guo (1997). 

5.1. VELOCITY PROFILE NEAR SMOOTH BED 

Since the particle moves near the smooth bed, the determination of the particle 

velocity profile is important. A turbulent flow over a smooth bed is composed of two 

regions: an inner and an outer region. The inner region is influenced by viscous shear, 

while the outer region is influenced by turbulent shear. The inner region is further divided 
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into three layers: the viscous sub-layer, the buffer layer and the log layer. Since the 

bedload movement always occurs near the bed, it relates to the velocity profile in the 

inner region. In the viscous sub-layer, the velocity distribution is 

  (5.1) ++ = yu

in which , ,  is the velocity at distance y from the bed,  is 

the shear velocity, and ν is the water kinematic viscosity. In the log layer, the velocity 

distribution is 

*/ uuu f=+ ν/* yuy =+
fu *u

 5.5ln1
+= ++ yu

κ
 (5.2) 
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Figure 5.1: Velocity Profile In The Inner Region 

In the buffer layer, Spalding’s equation can be used (White, 1991, p.415), which is 
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in which κ = 0.4 and B = 5.5. From equations (5.1) and (5.2), one has 
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From the above expression, a general velocity gradient may be approximated by 
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The above equation satisfies the two asymptotic expressions. The integration of the Eq. 

(5.5) with the boundary condition u+ = 0 at y+ = 0 gives 
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When , the above equation reduces to ∞→+y
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Comparing (5.7) with (5.2) gives 
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π  (5.7b) 

Solving for a gives 
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 47.6=a  (5.7c) 

A plot of Eqs. (5.1) and (5.5) with a = 6.47 is shown in Figure 5.1. 

5.2. MAXIMUM VELOCITY OF A PARTICLE ON SMOOTH BED 

Consider that, for a sphere of diameter ds, the slope angle of the plane is θ. The 

forces acting on the sphere include drag force, , lift force, , submerged weight of 

the sphere , and resistance to the movement of the sphere . 
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Figure 5.2: Forces Acting on a Sphere Rollin

Considering the steady state, one can write the follo

 Ds FW −=θsin

 Ns FW +=θcos

The submerged weight is 
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θ

g down an Inclined Smooth Bed 

wing equilibrium equations 

fF  (5.8) 

LF  (5.9) 



 3)1(
6
1

ss gdGW −= πρ  (5.10) 

Assumed that the fluid moves faster than the particle, the drag force in the flowing fluid 

can be used 

 ( )
42

1 2
2 s

pfDD
d

VuCF
π

ρ −≈  (5.11) 

in which α is an experimental coefficient. The lift force points upward and can be 

calculated 

 ( ) ppfsL VVudF −= 2

3
2 πρ  (5.12) 

The frictional force is 

 Nf FF µ≤  (5.13) 

considering the equilibrium in the z-direction, one has 

 ( ) ppfssLsN VVudgdGFWF −−−=−= 23

3
2cos)1(

6
1cos πρθπρθ  (5.14) 

similarly, considering the equilibrium in the x-direction, one obtains 

( ) ⎥⎦
⎤
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⎡ −−−≤−+− ppfss

s
pfDs VVudgdG

d
VuCgdG )(

3
2cos)1(

6
1

42
1sin)1(

6
1 23

2
23 πρθπρµ

π
ρθπρ

(5.15) 

which shows that the particle accelerates all the time and a steady state is achieved when 

the equal sign is used in (5.15). The above equation can be rearranged in terms of 

, i.e. )( pf Vu −
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solving for  gives )( pf Vu −

 
a

acbbVu pf 2
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=−  (5.17) 

in which 
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a µ
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161−=  (5.18) 
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 )cos(sin)1(
3

4 θµθ −−= s
D

gdG
C

c  (5.20) 

since the fluid goes faster than the particle, the positive value of )( pf Vu −  is the required 

solution, since b>0, the particle velocity is 

 
a

bacbuV fp 2
42 −−

−=  (5.21) 

For an experimental study, assume µ constant,  function of a Reynolds number DC

ν/Re ** sdu= , then the second term on the right hand side of (5.21) has the following 

function form 

 ⎟
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2

u
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bacb sf  (5.22) 
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Considering  at y = d*/ uu f s is also a function of  from the velocity profile equation 

in a smooth bed, and θ has been merged into the shear velocity , the above relation 

should become primarily dependent on Re

*Re

*u

* and to a lesser degree depend on θ, µ, and d* 

 ( θµ ,,,Re **
*

df
u
Vp = )  (5.23) 

As approximation, one can plot Vp/u* vs Re* as shown in Fig. 5.3. Applying Eq. (5.6) 

with a correction factor β, one obtains 
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 (5.27) 

in which κ = 0.4 and a = 6.47, as for Eq. (5.6), Guo (1997) used the Matlab Nonlinear 

Optimization Toolbox to determine that β = 4. The rolling bedload particle velocity for 

smooth bed can be estimated by 

 *

2
**1

88.25
Re1ln

2
1

88.25
Retan47.6 uVp ×

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛++⎟

⎠
⎞

⎜
⎝
⎛= −

κ
 (5.28) 
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Figure 5.3: Vp/u* vs Re* using Eq. (5.28) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

V
pc

al
 (m

/s
)

Vpobs (m/s)

+30%

-30%

Natural Particles
Glass Particles
Steel Particles
Perfect agreement

CSU data 

 
Figure 5.4: Comparison between Calculated and Observed Vp using Eq. (5.28) 
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Figure 5.5: Vp/u* vs Re* using Eq. (5.28) for different values of d*
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Figure 5.6: Vp/u* vs Re* using Eq. (5.28) for different values of θ 
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5.3. SINGLE PARTICLE ROLLING DOWN AN INCLINED ROUGH BED 

Consider a sphere of diameter ds rolling in a flowing fluid over an inclined bed of 

roughness. The slope angle of the plane is θ. The forces acting on the sphere include drag 

force, , lift force, , submerged weight of the sphere , and resistance to the 

movement of the sphere from boundary . 
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Figure 5.7: Forces Acting on a Sphere Rolling down an Inclined Bed of Roughness 

 B
u

V
u
V psmoothp ∆−=

**

 (5.29) 

where the boundary roughness function ),,( ** dkfB dss τ=∆ . A plot of  as a 

function of  and ∆B for both smooth and rough beds is shown in Fig. 5.9. After 

substituting Eq. (5.29) to particle velocity on smooth bed, Eq. (5.29) reduces to 

*/ uVp
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Figure 5.8: Vp/u* vs Re* for Smooth (ks = 0) and Rough Bed (ks >0) 
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Due to the effect of bed roughness ks, particle size ds, shear velocity u*, and fluid 

kinematic viscosity ν, on bedload particle velocity Vp, we can assume that the calculated 

value ∆Bc can be obtained as a function of Shields parameter τ*ds, dimensionless particle 

diameter d*, and relative roughness (ks/ds) as 

 
d
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or 
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the calibration parameters a, b, c, and d are obtained using the EXCEL multiple 

regression analysis toolbox. The analysis is applied to the CSU database 
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Substituting (5.33b) into (5.30), and solving for Vp, one obtains 
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The agreement between ∆B and ∆Bc is shown in Fig. 5.9. There is a reasonable good fit 

(R2 = 0.9) between calculated and observed ∆B. 
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Figure 5.9: ∆Bcal vs ∆Bobs using Eq. (5.33b) for CSU data 
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Figure 5.10: Comparison between Calculated and Observed Vp using Eq. (5.34) 
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Figure 5.11: ∆Bcal vs ∆Bobs using Eq. (5.33b) for total data 
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Figure 5.12: Comparison between Calculated and Observed Vp using Eq. (5.34) 
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Figure 5.13: Discrepancy Ratio Distribution of Vp using Eq. (5.34) 

The analysis is applied to the Total database 
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Substituting (5.33c) into (5.30), and solving for Vp, one obtains 
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where: Re* = u*ds/ν, shear velocity u* = [gRhS]1/2 (m/s), ds = particle size (mm), ks = bed 

roughness (mm), ν = fluid kinematic viscosity (m2/s), G = particle specific gravity, g = 

gravitational acceleration (m/s2), and Shields parameter τ*ds = u*
2/(G-1)gds, and κ = von 

Karman constant (0.4); 
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Figure 5.14: ∆Bcal vs ∆Bobs using (5.33c) for total data 
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Figure 5.15: Comparison between Calculated and Observed Vp using Eq. (5.35) 
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Figure 5.16: Discrepancy Ratio Distribution of Vp using Eq. (5.35) 

The bedload particle velocity can be calculated by Eq. (5.34), Fig. 5.12, shows the 

comparison between calculated and observed rolling bedload particle velocity Vp using 

Eq. (5.34); and Fig. 5.13, shows the discrepancy ratio distribution for Vp using Eq. (5.34). 

The comparison between calculated and observed particle velocity using the proposed 

formula is summarized in Table 5.1. A discrepancy ratio method is used to indicate the 

goodness of fit between calculated and observed values. It can be seen that the 

percentages of data falling within the range of discrepancy ratios between 0.75 to 1.25 

were at least 60% using the total database. 
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Table 5.1: Summary of Comparison between Calculated and Observed Vp
Data in Range of 

Discrepancy Ratio, Ri (%) 

Equation 

 

 

(1) 

Data 

Sources 

 

(2) 

0.75-1.25 

(3) 

0.5-1.5 

(4) 

0.25-1.75 

(5) 

0-2.0 

(6) 

No. of 

Data 

Points 

(7) 

R2

 

 

(8) 

CSU 80 95 100 100 356 0.93 Eq. (5.34) 

Total(1) 60 75 82 100 1018 0.83 

CSU 59.5 84 93.5 100 356 0.68 Eq. (5.35) 

Total 54 83 92.5 100 1018 0.82 

(1) = Meland (1966) + Luque (1976) + Steidtmann (1982) + Bridge (1984) + CSU (1995) + Bigillon (2001) 
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5.4. ANALYSIS OF THE THRESHOLD CONDITION 

The goal of this section is to find the threshold condition in term of bed roughness 

size required the particle to stop rolling. The first approach is with reference to the CSU 

data, Fig. 5.17 shows τ*ds/0.047 against relative roughness ds/ks for different values of 

Vp/u*. 
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Figure 5.17: τ*ds/0.047 vs ds/ks, for different values of Vp/u*

Very few particles are shown to move at values of shear stress below 

 
s

sds

d
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213.0
047.0
* =

τ
 (5.36) 

this defines beginning of motion as 
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The result describes above (τ*ks)c ≈ 0.01. Fig. 5.17 shows there are a few data points have 

the values of τ*ks < 0.01. 

0 100 200 300 400 500 600 700 800
0

0.01

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

τ *k
s

d*

CSU
Steidtmann
Meland
Luque
Bigillon

 

Figure 5.18: τ*ks vs d* for different databases 

The second approach is to find the bed roughness size ks that correspond to Vp = 0 

in (5.31). Accordingly, threshold condition occurs from Eq. (5.34) when 
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Threshold condition, or Vp = 0 (no motion), is obtained when ks = ksc. Particles move 

when ks < ksc, and stop when ks ≥ ksc. 

5.5. SUMMARY 

Two functions of the transport velocity of a single particle on a smooth bed Eq. 

(5.28) and on a rough bed Eq. (5.34) are defined through theoretical and empirical 

analysis. The results show that the bedload particle velocity on smooth beds is 

approximately equal to the flow at the center of the particles. The roughness function ∆B 

describes the effect of bed roughness on reducing transport velocity of rolling bedload 

particles. This function ∆B varies with bed slope S, flow depth y (mm), viscosity of the 

fluid ν (m2/s), particle size ds (mm), bed roughness ks (mm), specific gravity of the 

particles G, and gravitational acceleration g (m/s2). The proposed bedload particle 

velocity formula, Eq. (5.34) reduces to Eq. (5.28) when ks  0. When ks = ds, Vp ~ (5 -  

11)u*, and τ*ds decreases when Vp  0. Particles reach incipient motion when τ*ks ≈ 0.01, 

or when ks = ksc defined in Eq. (5.38). 
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CHAPTER 6  

LABORATORY AND FIELD 

APPLICATIONS 

In this chapter, a general procedure for the calculation of bedload particle velocity 

is presented. This procedure is illustrated through a detailed example problem, followed 

with field applications. 

6.1. PROPOSED METHOD 

1. Input data 

• Particle diameter ds (mm) 

• Flow depth y (mm) 

• Bed slope Sf 
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• Bed roughness ks (mm) 

• Flow viscosity ν (m2/s) 

• Particle specific gravity G 

2. Calculation of the basic parameters 

• Shear velocity u* = [gRhSf]1/2 (m/s) 

• Shields particle parameter τ*ds = u*
2/(G-1)gds 

• Shields roughness parameter τ*ks = u*
2/(G-1)gks 

• Boundary relative roughness ds/ks, and ks/ds 

• Particle shear Reynolds number Re* = u*ds/ν 

• Dimensionless particle diameter d* = ds[(G-1)g/ν2]1/3 

3. Calculation of bed roughness critical ksc from Eqs. (5.37) and (5.38) to determine 

the motion of the particle. 

4. Calculation of Vpsmooth use Eq. (5.28); Vp use Eqs. (5.34), (5.35), and may also use 

Eq. (4.20). 

6.2. TESTING EXISTING FORMULAS WITH ENTIRE DATABASE 

Figs. 6.1, 6.3 and 6.5 illustrate the comparison between calculated and observed 

bedload particle velocity Vp, by applying the Meland and Norrman (1966), Fernandez 

Luque and van Beek (1976), and Bridge and Dominic (1984) equations to all assembled 

data. Figs. 6.2, 6.4 and 6.6 show a discrepancy ratio distribution for Meland and 
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Norrman, Fernandez Luque and van Beek, and Bridge and Dominic equations 

respectively. Results show that Fernandez Luque and van Beek, and Bridge and Dominic 

predict their own data very well, but none of Meland and Norrman, Fernandez Luque and 

van Beek, and Bridge and Dominic equations compare well with the entire database. 
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Figure 6.1: Comparison between Calculated and Observed Vp using Eq. (2.9) 
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Figure 6.2: Discrepancy Ratio Distribution of Vp using Eq. (2.9) 

 98



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Vpobs (m/s)

V
pc

al
 (m

/s
)

Luque
Steidtmann(I)
Meland(I)
Steidtmann(II)
Meland(II)
Bridge(I)
Bigillon
CSU
Perfect agreement

 
Figure 6.3: Comparison between Calculated and Observed Vp using Eq. (2.15) 
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Figure 6.4: Discrepancy Ratio Distribution of Vp using Eq. (2.15) 
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Figure 6.5: Comparison between Calculated and Observed Vp using Eq. (2.22) 
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Figure 6.6: Discrepancy Ratio Distribution of Vp using Eq. (2.22) 
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In Table 6.1, the discrepancy ratio method indicates the goodness of fit between 

calculated and observed results. The percentages of data falling within the range of 

discrepancy ratios between 0.75 to 1.25 is 83% using Meland and Norrman’s database 

and reduces to 12% when using the total database. Similarly, for Fernandez Luque and 

van Beek (1976), the percentages of data falling within the range of discrepancy ratios 

between 0.75 to 1.25 is 98% using Fernandez Luque and van Beek’s database and 

reduces to 12% when using the total database. For Bridge and Dominic (1984), the 

percentages of data falling within the range of discrepancy ratios between 0.75 to 1.25 is 

68% using Bridge and Dominic’s database and reduces to 8.5% when using the total 

database. There is clear indication that equations of Meland and Norrman, Fernandez 

Luque and van Beek, and Bridge and Dominic fail to predict bedload particle velocity 

when applied the database from other sources. 
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Table 6.1: Summary of Comparison between Calculated and Observed Vp
Data in Range of  

Discrepancy Ratio, Ri (%) 

Equations 

 

 

(1) 

Data 

Sources 

 

(2) 

0.75-1.25 

(3) 

0.5-1.5 

(4) 

0.25-1.75 

(5) 

0-2.0 

(6) 

No. of 

Data 

Points 

(7) 

R2

 

 

(8) 

Meland 83 95 100 100 120 0.95 Meland 

and 

Norrman 

(1966) 

Total(1) 12 17 28 100 1018 -0.4 

Luque 98 100 100 100 85 0.93 Fernandez 

Luque and 

van Beek 

(1976) 

Total(1) 12 20 28 100 1018 -0.096 

Bridge 68 96.5 100 100 77 0.93 Bridge and 

Dominic 

(1984) 

Total(1) 8.5 16 22.5 100 1018 -0.27 

Where: (1) = Meland (1966) + Luque (1976) + Steidtmann (1982) + Bridge (1984) + CSU (1995) + Bigillon (2001) 

6.3. HALFMOON CREEK, COLORADO 

Dixon and Ryan (2000) conducted the data collection on 6/9/2000 at the Halfmoon 

Creek near Leadville, Colorado to observe the bed-load with the underwater video 

camera. The original movie was obtained from Dr. Bunte at the Engineering Research 

Center, Colorado State University. At Halfmoon Creek, they observed slurries of sand 

and pea gravel moving along the bed of the stream. Saltating particles in the coarse sand 

to fine gravel size class were typically moving too quickly to distinguish them when 

observing the video frame by frame. These smaller particles, however, were easily seen 
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while the video was moving at a normal or slow motion speed. Larger particles in the 

medium to coarse gravel size class were moving slower and were easily view frame by 

frame. Occasionally sweeps were observed that would briefly entrain small to medium 

sized gravel. 

In some other cases a larger particle would turn over and come to rest. For example, 

at Halfmoon Creek they observed a relatively large particle (b-axis = 46 mm) move into 

the frame and come to rest behind a similar sized stationary particle (Fig. 6.7). This 

particle adjusted its orientation slightly during the next 17 seconds. The particle then 

rolled over and came to rest downstream against a partially buried large cobble (Fig. 6.8). 

The particle adjusted its position slightly during next 7 minutes and 19 seconds as smaller 

particles filled in and subsequently scoured away both on top and beneath. Just before the 

particle moved out of the view frame, there was a sweep of sediment followed by the 

particle being struck by another particle (b-axis = 26 mm) that initiated its movement out 

of the view frame (Fig. 6.9). 
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Figure 6.7: Track of a single particle at Halfmoon Creek (Dixon and Ryan, 2000); a) 

the particle move into view and comes to rest. 

 

 
Figure 6.8: Track of a single particle at Halfmoon Creek (Dixon and Ryan, 2000); b) 

after 17 seconds the particle moves 23 mm and comes to rest again. 
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Figure 6.9: Track of a single particle at Halfmoon Creek (Dixon and Ryan, 2000); c) 

after being stationary for over 7 minutes, the particle moves out of the view. 

Due to the lack of measured data, assumptions have been made to estimate bedload 

particle velocity conducted by Dixon and Ryan (2000). The estimated flow and sediment 

properties include: 

1. Input data: Particle size ds = 40 mm, bed slope Sf = 0.005, flow rate Q = 5.2 

m3/s, mean flow velocity uf = 1.27 m/s, bed roughness ks = 50 mm, mean flow 

depth y = 480 mm; 

2. Calculation of basic parameters 

• Shear velocity u* = [gRhSf]1/2 = [9.81×0.48×0.005]1/2 = 0.153 m/s 

• Shields particle parameter τ*ds = u*
2/(G-1)gds = (0.153)2/(2.65-1)×9.81×0.04 

= 0.036 

• Shields roughness parameter τ*ks = u*
2/(G-1)gks = (0.153)2/(2.65-

1)×9.81×0.05 = 0.029 
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• Boundary relative roughness ds/ks = 40/50 = 0.8, and ks/ds = 1.25 

• Particle shear Reynolds number Re* = u*ds/ν = 0.153×0.04/1.004×10-6 = 

6096 

• Dimensionless particle diameter d* = ds[(G-1)g/ν2]1/3 = 1009 

3. Calculation of bed roughness critical ksc from Eqs. (5.37) and (5.38) to 

determine the motion of the particle; From Eq. (5.37), one obtains ksc1 = 

(0.153)2/(2.65-1)×9.81×0.01 = 140 mm which is comparable to ksc2 = 110 mm, 

obtained from Eq. (5.38). 

4. Calculation of Vpsmooth = 3.64 m/s by using Eq. (5.28); Vp = 1.4 m/s, and 0.79 

m/s by using Eqs. (4.20), and (5.34) respectively. Similarly, applied the above 

procedures for different ds, ks, and the results is shown in Fig. 6.10. 
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Figure 6.10: Predicted Vp using Eq. (5.34) for different values of ds and ks 

6.4. AVILA MOUNTAIN, VENEZUELA 

Mountain Avila, located on the north of Venezuela, witnessed on December 16th, 

1999, a severe debris flows occurring over an area of about 500 km2. As a faulted-block 

mountain, the Avila region has abundant neotectonic uplift. Altitude steeply ascends from 

sea level to 2000 m within only 6-9 km from the ridge to the beach. Average sediment 

deposition in the river canyon was about 2-3 m and essentially buried most of the 

standing houses to the rafters. Water level marks as high as 7 m were observed in some of 

the buildings. The debris surges destroyed approximately 60% of the structures in the 

town of Tanaguarena and resulted in approximately 100 casualties. The mining operation 

(Cantera Cerro Grande) reports damages in excess of 3 million dollars in lost structures 
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and equipment. Structures in the canyon sustained impact damage from debris and 

boulders in surges. Some structures were completely destroyed by impact, scour and 

exposure to high velocity flows. Foundations were undermined by scour and collapsed. 

High velocity surges with boulders and debris were experienced across the entire canyon 

bottom as the channel conveyance velocity was lost. The structures that remain standing 

were buried in a coarse-grained mixture of boulders, cobbles, sand and debris (Bello et 

al., 2000). Fig. 6.11 shows an aerial view of Caraballeda looking Southwest with newly 

opened channels in the foreground and center right of photograph; Figs. 6.12, and 6.14 

shows road damaged in Los Corales; Fig. 6.13 shows an aerial view of Caraballeda 

looking North with a massive deposition of coarse sediment delivered by debris flows 

and flash floods in Los Corales section; Fig. 6.15 shows a view of Los Corales with 

deposited boulder on the road; Fig. 6.16 shows Big boulders transported by debris flow 

on a fairly smooth bed; Fig. 6.17 Big boulder transported by debris flow in December 

1999 in Caraballeda; Fig. 6.18 shows an aerial view of Los Corales sector of Caraballeda 

with damage to apartment building; Fig. 6.19 shows a view of Los Corales with damage 

to an apartment building; Fig. 6.20 shows a control canal for debris and mudflow at the 

Saint Julian Ravine. 
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Figure 6.11: Aerial view of Caraballeda looking Southwest (Larsen et al., 2000) 

 

 

 

 
Figure 6.12: View of road damaged in Los Corales, Leon and Rojas, 2000 (personal 

communication) 
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Figure 6.13: Aerial view of Caraballeda looking North (Larsen et al., 2000) 

 

 

 

 
Figure 6.14: View of road damaged in Los Corales, Leon and Rojas, 2000 (personal 

communication) 
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Figure 6.15: View of deposited boulders on the road in Los Corales, Leon and Rojas, 

2000 (personal communication) 

 

 

 

Figure 6.16: Big boulder transported by debris flow, Leon and Rojas, 2000 
(personal communication) 

 111



 
Figure 6.17: Boulder transported by debris flow in December 1999 (Larsen et al., 

2000) 

 

 

 

 
Figure 6.18: Aerial view of Los Corales sector of Caraballeda (Larsen et al., 2000) 
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Figure 6.19: View of damaged to apartment building in Los Corales, Leon and 

Rojas, 2000 (personal communication) 

 

 

 

 

 

 

 

 

 

 

Figure 6.20: Control canal for debris flow at the Saint Julian Ravine, Leon and 
Rojas, 2000 (personal communication) 
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This particular example problem is derived from the measurement of field data, due 

to the insufficient of the nature of the database, some assumptions have been made. 

Given a uniform flow with Twater = 20°C, νwater = 1.004×10-6 m2/s, particle diameter ds = 

0.1-3 m, G = 2.65, ks = 0-250 mm, bed slope Sf = 0.01 (Leon and Rojas, 2000, personal 

communication), flow depth y = 3 m (Bello et al., 2000), determine the rolling bedload 

particle velocity, Vpcal = ? 

Solution: 

1) Particle size ds = 2 m, bed slope Sf = 0.01, bed roughness ks = 150 mm, mean flow 

depth y = 3 m; 

2) Calculation of basic parameters 

• Shear velocity u* = [gRhSf]1/2 = [9.81×3×0.01]1/2 = 0.54 m/s 

• Shields particle parameter τ*ds = u*
2/(G-1)gds = (0.54)2/(2.65-1)×9.81×2 = 

0.009 

• Shields roughness parameter τ*ks = u*
2/(G-1)gks = (0.54)2/(2.65-

1)×9.81×0.15 = 0.12 

• Boundary relative roughness ds/ks = 13.33, and ks/ds = 0.075 

• Particle shear Reynolds number Re* = u*ds/ν = 0.54×2/1.004×10-6 = 

1075697 

• Dimensionless particle diameter d* = ds[(G-1)g/ν2]1/3 = 50457 
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3) Calculation of bed roughness critical ksc from Eqs. (5.37) and (5.38) to determine the 

motion of the particle; From Eq. (5.37), one obtains ksc1 = (0.54)2/(2.65-1)×9.81×0.01 = 

1.8 m which is about ten times  ksc2 = 170 mm, obtained from Eq. (5.38). 

4) Calculation of Vpsmooth = 19.85 m/s by using Eq. (5.28); Vp = 0.9 m/s by using Eq. 

(5.34). Similarly, applied the above procedures for different ds, and ks, and the results is 

shown in Fig. 6.21, where, proposed formula Eq. (5.34) gives realistic estimates of 

particle velocity values, and therefore it could help define particle velocities during 

devastating floods. 

0 500 1000 1500 2000 2500 3000
0

5

10

15

20

25

ds (mm)

V
pc

al
 (m

/s
)

ks = 0 mm 

ks = 10 mm 

ks = 50 mm 

ks = 100 mm 

ks = 150 mm ks = 200 mm ks = 250 mm 

Avila Mountain
ds = 0.1 - 3 m
ks = 0 - 250 mm
Sf = 0.01

y = 3 m 

 
Figure 6.21: Predicted Vp using Eq. (5.34) for different values of ds and ks
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CHAPTER 7  

SUMMMARY AND CONCLUSIONS 

This study aims at defining the bedload particle velocity in smooth and rough open 

channels as a function of the following variables: bed slope Sf, flow depth y, viscosity of 

the fluid ν, particle size ds, bed roughness ks, particle specific gravity G, and gravitational 

acceleration g. 

Sources of data used in this analysis include 6 laboratory data sets for a total of 

1018 points collected from different sources. In previous studies documented in the 

literature, 120 points could be obtained from Meland and Norrman (1966), 85 points 

from Fernandez Luque and van Beek (1976), 330 points from Steidtmann (1982), and 77 

points from Bridge and Dominic (1984). Additionally, 356 points were collected at CSU 

on plates with bed roughness set at 1.2 mm, 1.7 mm, 2.4 mm, and 3.4mm, and 50 points 

from Bigillon (2001), with bed roughness set at 1.5 mm and 3 mm. Each set of data 

contains a complete record for flow and bedload particles information. These data are 

limited to the particle sizes with median diameters in the range of 0.21 to 29.3 mm, bed 
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roughness in the range of 0.19 to 7.76 mm, average flow velocity in the range of 0.22 to 

1.00 m/s, shear velocity in the range of 0.0097 to 0.1108 m/s, flow depth in the range of 

2.13 to 180 mm, and slope in the range of 0.00073 to 0.05. 

The existing formulas such as Meland and Norrman (1966), Fernandez Luque and 

van Beek (1976), and Bridge and Dominic (1984) are verified with the laboratory 

measurements. Results show that all of the existing formulas fail to predict Vp when 

applied to the data sources other than their own database. 

The analysis of the data leads to the following conclusions: 

(1) For a smooth bed (ks = 0), the rolling bedload particle velocity Vp increases with 

particle sizes ds; 

(2) For a rough bed (ks > 0), particle velocity decreases with particle density G, thus 

lighter particles move faster than heavier ones; and on a very rough boundary Vp 

decreases with particle sizes; 

(3) Bedload particles move at values of the Shields parameter τ*ds below the critical value 

of τ*dsc = 0.047; 

(4) Very few of the observed particles moved at values of Shields roughness parameter 

τ*ks less than 0.01; 

(5) Particles are observed to move at values of the Shields roughness parameter 0.01 < 

τ*ks < 0.15; 

(6) The ratio of particle velocity Vp to mean flow velocity uf lies in the range of 0.2 to 

0.9, while Kalinske (1942) suggested 0.9 to 1.0; 
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(7) The ratio of particle velocity Vp to shear velocity u* lies in the range of 2.5 to 12.5, 

compared to the values cited in the literature 6.0 < Vp/u* < 14.3; 

New methods for predicting transport velocities of bedload particles in rough and 

smooth open channels are examined. Two approaches for transport velocities of bedload 

particles were considered. The first approach combines dimensional analysis and 

regression analysis to define bedload particle velocity as a power function of the Shields 

parameter τ*, boundary relative roughness ks/ds, dimensionless particle diameter d*, and 

excess specific gravity (G-1). The second approach considers the transport velocity of a 

single particle on a smooth bed. The reduction in particle velocity due to bed roughness is 

then examined through a theoretical and empirical analysis. Results show that the 

bedload particle velocity on smooth beds is approximately equal to the flow velocity at 

the center of the particle. Bed roughness decreases the transport velocity of rolling 

bedload particles. 

Comparatively, The first approach gives satisfactory results, except when ks equals 

0, then Vp goes to ∞, and when ks is large, Vp does not stop (unbounded); for the second 

approach Vpmax when ks equals 0, and when Vp equals 0, then values of ks follow the 

criteria a and b described in Chapter 5 (section 5.4) and there is an insufficient evidence 

to suggest that one criteria is better than other. 

The analysis shows that the proposed formula, Eq. (5.34) provides much better 

predictions than the existing formulas. Plots showing the comparison between calculated 

and observed bedload particle velocity and the discrepancy ratio distribution are shown in 

Figs. 5.12, and 5.13 respectively; the discrepancy ratio for the predictions of bedload 

particle velocity using the newly proposed formula, Eq. (5.34) are normally distributed 
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and have higher density (close to perfect agreement) than all other formulas. Predictions 

with extreme discrepancy ratios (Ri < -1.0 and Ri > 3.0) are very limited in utility; and 

less than 2.5 % of data with discrepancy ratio Ri < 0.75 and Ri > 1.25. The statistical 

results of calculated Vp are shown in Table 5.1, which indicate that the newly proposed 

formula Eq. (5.34) gives the best prediction amongst all formulas. In addition, the 

proposed formula, Eq. (5.34) is also verified with the most current laboratory data from 

Bigillon (2001). Field application to Halfmoon Creek (Dixon and Ryan, 2000), and the 

devastating flood of the Avila Mountain in Venezuela in December 1999 (Leon and 

Rojas, 2000, personal communication), the results give realistic estimates of particle 

velocities. 
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