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ABSTRACT 

Application of a Site-Calibrated Parker-Klingeman  
Bedload Transport Model 

 

Little Granite Creek, Wyoming 
 

 
by Mark R. Weinhold, P.E. 

Chairperson of the Supervisory Committee: Professor Pierre Y. Julien 
Department of Civil Engineering 

 

The hiding effect between non-uniform sediment particles on a streambed is numerically 

quantified by an expression called the hiding factor, which relates critical Shields stresses 

to a ratio of particles sizes in the mixture of the bed.  This hiding factor contains two 

parameters (P-K exponent and D50 reference shear) that will vary from stream to stream. 

This variability is what allows a bedload transport model, Parker-Klingeman in this case, 

to be site-calibrated using actual bedload measurements. The optimized value of the P-K 

exponent was found to be 0.973 at Little Granite Creek, compared to a value of unity for 

equal mobility. The value of the D50 reference shear, previously considered a constant, 

was shown to vary with discharge as a power function. 

Common empirical bedload models of Meyer-Peter and Müller, Einstein-Brown, and 

Parker-Klingeman all over predict measured transport rates at Little Granite Creek. This 

occurs primarily because the models predict bed-material transport capacity while the 

majority of the measured bedload at Little Granite Creek is washload (i.e. supply 

limited). Using the site-calibrated hiding factor to define the critical Shields stress, both 

the Parker-Klingeman and Meyer-Peter Müller models predict bedload transport rates 
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more similar to those measured in Little Granite Creek, despite the fact that the measured 

load is primarily washload. 

A resampling technique (bootstrapping) was used to evaluate the number of bedload 

samples required for model calibration. The results suggest that much of the prediction 

variability is eliminated with a minimum of 10 to 15 bedload samples. This estimate can 

be refined using cumulative frequency distributions to select the sample size based on an 

acceptable error from “true” values from the entire data set. 
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C h a p t e r  1 :  I n t r o d u c t i o n  

1.1 General 

Estimating bedload transport in gravel-bed rivers is notoriously problematic and 

often inaccurate. Methods for predicting include empirical formulas, measuring using 

hand-held samplers, measuring the entire load caught in slot traps or settling ponds, 

tracking grain movement with tracer gravels, or by constructing local sediment budgets. 

With the exception of the empirical formulas (in most cases), all the listed methods for 

developing a sediment rating curve require considerable effort and expense. The trade-off 

is that these methods are typically more accurate than the “off the shelf” empirical 

models because they are based on measurements taken at the site of interest. A potential 

solution to this dilemma is to use locally collected data specific to the watershed in 

question to calibrate an empirical formula. This typically occurs in most empirical 

models in the form of a characteristic sediment size and hydraulic characteristics of the 

stream.  

What will be discussed here is using actual bedload samples (by size class) and a 

complete size distribution of the riverbed material to calibrate an empirical model. One 

such method was developed by David Dawdy and described in the literature by Bakke et 

al. (1999). This method makes use of the Parker-Klingeman bedload transport model, 

hereafter referred to as the P-K model (Parker and Klingeman, 1982). For clarity, the site-

calibrated model described in Bakke et al. (1999) is referred to as the PKD model. The 
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transport function proposed by Parker and Klingeman contains empirical constants which 

vary with local hydraulic and sediment characteristics. These constants can be determined 

for each site by an optimization algorithm that minimizes the difference between 

measured bedload transport rates (model input) and predicted transport rates (model 

output). With such site calibration, the P-K model can be used in some cases that may be 

very different from those for which it was developed. 

1.2 Study Objectives  

The study has two primary objectives. The first is to evaluate the accuracy of 

prediction of the PKD model, typically using subsets of data by year of collection. The 

calibrated model predictions are compared to the measured data for that year as well as 

the entire data set. Additionally, predictions are compared to other conventional empirical 

bedload transport models. 

The second objective is to evaluate the effects of the number of bedload samples 

chosen to calibrate the PKD model. The intent is to determine the variability of prediction 

based on subsample size and to develop a scheme to select a sample size based on an 

acceptable error and an exceedence probability. 
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C h a p t e r  2 :  T h e o r e t i c a l  B a c k g r o u n d  

2.1 Initiation of Motion of Uniform Coarse Grains 

A primary step in calculating bedload transport rates is determining the conditions 

at which individual particle sizes begin to move. This occurs when the hydraulic shear 

stress on the streambed exceeds some critical value required to set an individual particle 

in motion. Many researchers have attempted to define the shear stress required to entrain 

a given size particle from a bed of sediment. Most of this work has been done in 

laboratory flumes in order to facilitate the identification of the beginning of motion. 

Shields (1936) arrived at a dimensionless shear stress that incorporated the major 

parameters related to initiation of motion of a sediment particle. These parameters are the 

density of the sediment ρs, the grain diameter Di, the fluid density ρ, the kinematic fluid 

viscosity ν, and the shear stress of the flow τ, along with the acceleration due to gravity. 

This dimensionless shear stress is referred to as the Shields stress and is given as 

         τ*
i   =   τ / ( ρs - ρ ) g Di                                          ( 1 ) 

                                    
This term essentially represents a ratio of the relative magnitudes of the inertial force and 

the gravitational force on a sediment grain acted upon by flowing water. Shields 

determined that τ*
i was solely a function of the grain Reynolds number Re*, which is 

defined as  

                Re* = u* Di / ν        ( 2 ) 

where u* = √τ/ρ  is the shear velocity. 
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Shields (1936) reported on a series of flume experiments conducted to determine 

the critical shear stresses for particles ranging from 0.36 to 3.44-mm with varying 

densities. For each experiment the bed was horizontal and the particles were of near 

uniform size. Critical Shields stress values were determined by measuring τ* throughout a 

range of small transport rates and then extrapolating the relation back to a near-zero 

transport rate. When the dimensionless shear stress function from Equation (1) represents 

the condition for the threshold of motion it is referred to as the critical Shields stress τ*
ci. 

Based upon his experiments and those of several others, Shields constructed a graph of 

τ*
ci versus Re* over a range of particle Reynolds numbers from about 2 to 500. The data 

are represented by a narrow band, below which τ* was less than τ*
ci and no significant 

sediment transport occurred. Above the band defined by the data, τ* is greater than τ*
ci 

and sediment would be in motion. The actual threshold for the beginning of sediment 

motion exists within the band. Later researchers modified the band to a single line, thus 

making use of the plot more direct (Vanoni, 1964). For grain Reynolds numbers greater 

than 100, the value of τ*
ci approached a constant value of 0.06. Although these 

experiments used only uniform bed material of sand size and smaller, the results have 

been widely used to characterize entrainment of gravel-sized and larger particles from a 

non-uniform riverbed.  

Miller, McCave and Komar (1977) revisited the empirical threshold curve of 

Shields using published data that met the following criteria: (1) experiments were 

performed in laboratory flumes with parallel side walls under conditions of uniform, 

steady flow over an initially flattened bed. Flume side wall corrections were considered 
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in calculating bed shear stresses; (2) particles were non-cohesive, rounded or spherical, 

natural or artificial grains of nearly uniform size; (3) each investigator used a consistent 

definition of incipient motion; and (4) sufficient data were presented to allow calculations 

of all required parameters.   

The curve developed by Miller et al. resembles the original curve proposed by 

Shields but differs in several important respects. This curve expands the range of the 

original curve at both higher and lower grain Reynolds numbers by over three orders of 

magnitude. While the curve is generally the same shape, albeit longer, the slope of the 

curve at low values of grain Reynolds numbers has a flatter slope. Miller et al. suggested 

that at large values of the grain Reynolds number the fluid viscosity  becomes 

unimportant in the threshold condition. The net result is that in the range of values of Re* 

> 500, the value of τ*
ci approached a constant value of 0.045, significantly less than the 

value of 0.06 originally suggested by Shields. Similar values have been reported by 

Meyer-Peter and Müller (1948) and Yalin and Karahan (1979). Consequently, critical 

values of the Shields stress of around 0.045 are common in engineering practice. 

2.2 Initiation of Motion for Non-Uniform Coarse Grains 

Critical Shields stress values reported in the literature for any given grain size 

within a mixture vary significantly. Part of the variation is explained by the lack of a 

consistent definition of the beginning of motion. The functional definitions range from a 

single grain in motion to ‘significant transport’. Also, for sand-sized particles, the 

presence of bedforms can significantly affect the shear stress required to initiate motion 

compared to a plane bed.  
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 Another cause for variation in the reported values of Shields stress is the effect of 

non-uniform bed material sizes and how this affects the beginning of motion for 

neighboring particles. A bed of near-uniform grains can be visualized where each grain 

on the surface has similar exposure to the flow. As such, any grain is equally likely to be 

entrained, depending on other local conditions. Beds of non-uniform materials are not so 

consistent as relative protrusion above/below the average bed level becomes important. 

Fenton and Abbott (1977) examined the effects of different degrees of particle exposure 

above a flume bed on initiation of particle motion. The flume bed was composed of 2.5-

mm particles glued in place. A test grain was mounted on a threaded rod and inserted 

through the bottom of the flume and the shear stress was measured. They found that when 

the test grain was on top of the bed material (more exposed to the flow), the critical 

Shields stress was lower than that predicted for a bed of uniform grains. Conversely, 

when the test grain was slightly below the bed level (somewhat hidden from the flow) the 

critical Shields stress was much higher than that predicted for a bed of uniform grains. 

Even though this experiment involved only a single grain size, it showed the significant 

effect of particle exposure on the critical Shields stress. 

 Subsequent researchers (Parker et al., 1982; Andrews, 1983; Bathurst 1987; 

Wiberg and Smith, 1987) have found that, for a given grain size on a bed, the size 

distribution of the surrounding materials has an effect on the shear stress required to 

entrain that particle. However, common engineering practice for the selection of a critical 

Shields stress often does not differentiate between uniform and non-uniform beds. This 

may or may not be justified, depending on the particle size of interest. Andrews (1983) 

summarized several previous evaluations of critical Shields stress for entrainment of 
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gravel and cobbles from a natural riverbed. The values ranged from 0.020 to 0.25. The 

mean value for all the observations was approximately 0.060, the same value suggested 

by Shields (1936). Andrews suggests that this apparent agreement among several 

investigations of particle entrainment for both uniform and non-uniform beds has been 

used to justify neglecting the effects of particle size distribution. 

 Einstein’s (1950) work, which forms the basis of the Parker-Klingeman transport 

model, considered the effects of mixed grain sizes on the transport rate of a given particle 

size. He developed an empirical relation that described the hiding effect that large 

particles have on smaller particles. This “hiding factor” is a function of the ratio of the 

particle diameter of interest to a characteristic particle diameter for the mixture. The 

characteristic particle diameter depends on the thickness of the laminar sublayer and the 

D65 (sixty fifth percentile size) of the bed material. Although this concept was not used 

specifically to identify critical conditions for particle entrainment, it was used to describe 

the reduction in fluid forces on a particle owing to the presence of larger nearby particles. 

 Egiazaroff (1965) also tried to account for differences in critical shear stress due 

to other particles in a non-uniform mixture. He derived a theoretical equation based on 

the forces acting on the grain during its initiation of movement. The equation took the 

form  

  τ*
ci = 0.1 / [log(19Di / Davg)]2      (3) 

Where τ*
ci = the average critical Shields stress for particles of size Di; Davg = grain size of 

the sediment mixture that determines the roughness of the bed surface. Although Komar 

(1987b) describes the derivation as questionable, it still shows the history behind the 
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notion of relating incipient motion criteria to the effects of mixed grain sizes of the bed 

material. 

Parker and Klingeman (1982) used the “hiding factor” concept to predict 

reference values of the Shields stress for a given particle size relative to the median 

diameter of the subsurface bed material. They developed a relationship for each size class 

of bedload between a dimensionless transport rate W*
i, and the Shields stress. Reference 

values (rather than ‘critical’) of Shields stress for each size class were taken from this 

plot corresponding to W*
i = 0.002, a small but measurable transport rate. These reference 

values were then plotted on a log-log scale against the ratio of Di/ D50. The equation of the 

resulting line defines their hiding factor relationship for that site and takes the form  

                τ*
ri  = τ*

r50  ( Di / D50 ) -exp                                              (4) 

  τ*
ri  = 0.0876  ( Di/ D50 ) –0.982              for Oak Creek, OR                          (5) 

Where τ*
ri = the reference Shields stress only slightly above the critical value for particles 

of size class i; Di = geometric mean particle diameter for size class i; D50 = median 

particle diameter of the subpavement; τ*
r50 = the reference Shields stress associated with 

D50; and exp = Parker-Klingeman exponent, as discussed below. Equation (5) was 

computed for ratio of particle size to median diameter in the subsurface bed material 

ranging from 0.045 to 4.2 

 Andrews (1983) and Andrews and Erman (1986) also proposed a hiding factor 

relationship based on field measurements that took the same basic form of Equation (4) 

where 

( τ*
ci /τ*

c50 ) = ( Di/ D50 ) -exp                                    (6) 

Where τ*
c50 = the critical Shields stress associated with D50; and exp = an exponent. The 
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only difference from Equation (4) is in how closely the critical value of the Shields stress 

relates to the reference value used by Parker and Klingeman. 

Andrews (1983) computed the critical Shields stress for a given particle size from 

published bedload discharge measurements and shear stress values in three self-formed 

rivers with naturally sorted gravel and cobble beds. From the bedload data collected over 

a range of discharges, Andrews assumed that the calculated bed shear stress was the 

critical value for the largest particle in motion, as long as larger particles were still 

available on the riverbed. The actual dimensions of the largest particles in motion were 

not measured directly during the original data collection. Consequently, the geometric 

mean of the largest size class collected was taken to be the diameter of the maximum 

particle in transport. Calculated values of the Shields stress, assumed the critical value for 

the largest particle in motion, were plotted against the ratio of the particle size in motion 

and the median diameter of the subsurface material. The log-log plot yields a linear 

relationship for bed material sizes between 0.3 to 4.2 times the median diameter of the 

subsurface bed material. The average critical Shields stress was presented as                      
  
 τ*

ci  = 0.0834 ( Di/ D50 ) -0.872                                                                        (7)               

where D50 is the median diameter of the subsurface material.  

The values of τ*
ci were determined to depend significantly on the size distribution 

of the riverbed material. As mentioned earlier, previous investigators have reported 

critical Shields stress values ranging from 0.25 to 0.020 for coarse sediment. Andrews’ 

analysis suggests that virtually all of the variation is due to differences in the subsurface 

bed material distribution. The analysis shows that τ*
ci varies almost inversely with the 
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particle diameter for a non-uniform bed material with the conclusion that most bed 

particles are entrained at nearly the same discharge. 

Later work by Andrews and Nankervis (1995) and Komar (1987a) have shown 

that the values of τ*
r50 and exp vary between streams. For example, Andrews (1983) 

originally found exp = 0.872 relative to the subpavement but subsequent analyses have 

found that the exponent can approach a value of unity as the bedload size distribution 

approaches that of the subpavement. Komar (1987b) used field data from several sources 

to show that exp = 0.7 for conditions of unequal mobility. 

Although the variations of τ*
r50 and exp between streams are rather small, the 

subsequent effects on predicted bedload transport rates are proportionally large. While 

both exp and τ*
r50 have an effect on the amount of bedload predicted, τ*

r50 has a greater 

influence on the total quantity, whereas exp has more of an effect on the predicted 

bedload size distribution (Bakke et al., 1999). Thus, determining these empirical 

constants for an individual location allows for a site-specific calibration of the Parker-

Klingeman bedload transport function. 

The value of τ*
ri (or τ*

ci) can be determined relative to either the pavement or 

subpavement particle size distribution. In theory, either approach is equally valid 

although the subpavement is often used since the bedload size distribution tends to more 

closely match that of the subpavement over time (Hollinghead, 1971; Andrews and 

Parker, 1987). Also, the subpavement size distribution is often easier to reliably 

characterize due to the smaller maximum particle sizes. Andrews (1983) evaluated both 

surface and subsurface distributions in predicting initiation of motion and concluded that 

the subsurface D50 is more closely correlated with critical conditions for motion. 
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2.3 Parker-Klingeman Bedload Transport Model 

 The P-K bedload transport model (Parker and Klingeman, 1982) was developed 

from data collected by Milhous (1973) at Oak Creek, Oregon. A key assumption within 

the model is that the riverbed develops a coarsened surface layer (pavement) that is 

present at all discharges. This pavement layer then regulates the exchange between the 

bed material and the bedload. The model is clearly described by Bakke and others (1999) 

and summarized below. 

The site-specific hiding factor relationship (Equation 4) is used in the P-K model 

as part of the normalized Shields stress, Φi, which Parker and Klingeman define as 

  Φi  = τ*
i /τ*

ri             
                                                                                 (8) 

Where τ*
i is the Shields stress for a particle of size class i, defined as 

  τ*
i = τ / (ρs - ρ) g Di          (1) 

and 
 τ = γdS = local bed shear stress  
 ρs = mass density of the sediment 
 ρ = mass density of water 
 d = depth of water at location of interest 
 S = energy slope of the river 
 Di = diameter of sediment particle of interest 
 

Parker and Klingeman (1982) then defined a dimensionless bedload transport rate 

ratio, G, as  

  G = W*
i / W*

ref         (9) 

Where W*
ref = a reference dimensionless bedload transport rate, chosen by Parker and 

Klingeman to represent a small but measurable transport rate of 0.002. Also, W*
i is the 

dimensionless bedload transport rate for size class i defined as 
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  W*
i = (sg-1) qbvi / (fi g1/2 (dS)3/2)                                                                       (10) 

where 
 qbvi = volumetric bedload transport rate per unit width in size class i; 
 sg = specific gravity of sediment particles; 
 fi = fraction of bed material (pavement or subpavement) in size class i. 
 
These definitions facilitated a collapse of the measured data onto a single curve, which is 

fitted to the following bedload transport function  

  G = 5.6 x 103 (1 – 0.853/ Φi ) 4.5                                                       (11) 

This relationship, along with that for the hiding factor and the definitions of Φi 

and W*
i, constitute the P-K bedload transport model (Parker and Klingeman, 1982). By 

rearranging the equations above, the weight sediment transport rate per unit width in size 

class i is determined for each point in the channel cross section as 

  qbwi = (fi g1/2 (d S)3/2) W*
ref G γ sg / (sg – 1)    (12) 

Calculated unit transport rates are then multiplied by their width increment and summed 

across the cross section to yield a total bedload transport rate by size class. Though not 

obvious from the final form, Equation (12) contains the hiding factor relationship 

discussed previously. This is what allows site calibration of the P-K model to local 

conditions. 

 Sample bedload calculations using the Parker-Klingeman model are included in 

Appendix A. 
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C h a p t e r  3 :  S t u d y  S i t e  

3.1 General 

Little Granite Creek is a 55 square kilometer watershed in SW Wyoming. The 

study site is located near the mouth of Little Granite Creek, just prior to its confluence 

with Granite Creek, a tributary to the Hoback River. The study site is at approximately 

1948 meters in elevation, with the highest point in the basin over 3,400 meters in 

elevation. The terrain is generally steep and forested with areas of ridge top meadows. 

The dominant vegetation consists primarily of spruce and fir on north and east aspects, 

and meadows with aspen and sagebrush along with lodge pole pine on south and west 

aspects. The geology of the area is primarily sandstones reworked by glaciation, with 

local areas of granite. The dominant soils in the forested areas are fine sandy loams and 

those in the open areas tend to be silty loams or silty clay loams. 

The streamflow regime is dominated by snowmelt, with a peak typically 

occurring in late May or early June. The Idaho district of the U.S. Geological Survey 

operated a stream gaging station at the site from 1981 through 1992 (station number 

13019438). The hydrograph of the mean daily discharges for the period of record is 

shown in Figure 4. The stage discharge data for the sediment cross section are tabulated 

in Table 6 in Appendix A. Other relevant hydrologic characteristics at the gage site as 

summarized by Emmett (1998 and 1999) are listed below: 
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Bankfull discharge      229   cfs 
Bankfull discharge return period    1.6   years 
Bankfull width     23.6   feet 
Bankfull depth       1.8   feet 
Bankfull velocity      5.5   ft/sec 
Average annual streamflow   29.5   ft3/sec 
Depth of average annual runoff  19.0   inches 
Average annual bedload   17.2   tons/sq.mi 

 
The water surface slope is used to approximate the energy slope. The US Forest 

Service Rocky Mountain Research Station measured this value for Little Granite Creek in 

1997 on three occasions. The measured slope at the sediment sampling site varied from 

0.018 to 0.020 for flows near bankfull to approximately 150% of bankfull.  

A longitudinal profile of the study site and cross sections at the gage location and 

the sediment sampling location are included in Appendix C. 

3.2 Hydraulics 

Stage-discharge information for the period of record for the Little Granite Creek 

gage was retrieved from the USGS. A mathematical relationship was then developed that 

took the form 

 Q = P(GH – e)b        (13) 

Where Q = water discharge in cubic feet per second, GH = gage height of water surface 

in feet, and P, e, and b are constants determined by methods outlined by Rantz (1982). 

Using the rating curve at the gage site presented a problem since the stream gage cross 

section and reach gradient are quite different from the cross section and reach gradient at 

the sediment sampling site. In other words, the stage-discharge relationship for the gage 

location did not accurately reflect the stage-discharge relation (and shear stress) at the 

sediment sampling location. Using several known stage-discharge data pairs at the  
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sediment cross section, a new rating curve was reconstructed for the sediment sampling 

cross section. The final rating curve was 

 Q = 37(GH-96.10)2.36            (14) 

 One assumption inherent in the multi-year analysis is that the cross section has 

remained relatively unchanged over time. Annual changes in the cross section would 

affect the relationship between discharge and shear, and subsequently the optimization 

process within the PKD model (see Chapter V). A cursory review of the cross sectional 

data available for Little Granite showed only minor changes over time. Cross sectional 

changes are not expected to be a significant source of error in this analysis. 

Flow duration information was also obtained from the Idaho District of the USGS for 

the period of record at the Little Granite Creek gage. 

3.3 Bed Material Measurements  

The bed material distributions for Little Granite Creek are very coarse, the 

distributions of which are shown in Figure 1 and Appendix B. Common percentiles for 

the composite subpavement and pavement bed material distributions and the surface 

pebble count are summarized in Table 1. Also reported are the gradations of the sediment 

mixtures, defined as the square root of the ratio of the D84 and D16 (Julien, 1995).  

Table 1. Bed material sampling percentile summary for Little Granite Creek. 
Sample Method D16 D50 D84 (D84/D16)1/2

Subpavement Volumetric 2.8 20.8 97 5.9 
Pavement Volumetric 23.0 107 209 3.0 
Pavement Pebble Count 17.8 74 181 3.2 

 
Volumetric samples of the riverbed pavement and subpavement were sampled and 

sieved during the fall of 1999. The intent was to characterize the bed material sediment in 

the vicinity of the cross section used for bedload sampling. Bed material sampling was 
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done just upstream of the bedload sampling cross section, but still within the same 

hydraulic control. Sample locations were chosen that were representative of the reach 

being evaluated, typically a riffle or run. Pools, deposits behind boulders, etc. were 

avoided in the sampling layout. Samples of both the pavement and subpavement were 

collected using a three-sided plywood shield instead of a barrel sampler.  
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Figure 1. Cumulative distributions of bed material samples. 

The extent of the pavement layer was defined by the largest vertically oriented 

depth of any exposed surface particle within the sampling area. This is referred to as the 

embedded depth. See Figure 2. Once the pavement was removed, this same depth was 

used to define the limit of the subpavement sample. 
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Usually the volumes of pavement and subpavement collected at a given sample 

site were not equal. This occurred for a couple of reasons. First of all, the submerged bed 

material will not stand vertically. Consequently, the sampling hole became cone-shaped 

as it became deeper, thus reducing the volume of the subpavement sample relative to the 

pavement. Secondly, the pavement depth was measured from the plane of embeddedness 

(Figure 2), not the top of the large surface particles. Since these large particles extend 

past this plane, the volume of the pavement sample was larger than the subpavement by 

an amount proportional to the volume of pavement particles which extend beyond that 

plane.  

 

 

 

 

 

Figure 2. Determination of sampling depth for pavement and subpavement. Dp and Ds are 
the depth of the pavement and subpavement, respectively. 
 

To compensate for differing sample sizes, the distributions were evaluated as 

proportions by weight. Individual samples were composited by both weight and 

proportion. Because of the variations in embedded depths, there were slight differences in 

the distributions composited by weight and by proportion for Little Granite Creek. Bed 

material measurements are summarized in the following table. Size distributions for each 

individual bed material sample are shown in Appendix B. 

Since the stream reach had very coarse bed material, selecting a sample size large 

enough to avoid bias was a concern. The arbitrary presence or absence of large particles 
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in bed material samples not only affects the total sample mass, but it will affect the 

particle size distribution as well. To avoid sampling bias from the arbitrary 

presence/absence of the largest particles, sample masses must be large enough to 

representatively sample all size classes present. 

Table 2. Pavement and subpavement sampling summary. 
Bed Material Sampling Summary 

Location Sample ID Embedded Depth (cm) Sample Weight ( kg ) 
Little Granite Creek 1-Pavement 10   88.7 
 2-Pavement 13 141.2 
 3-Pavement 7   68.7 
 4-Pavement 9   74.8 
 5-Pavement 13 135.9 
 TOTAL  509.3 
Little Granite Creek 1-Subpavement 10   44.6 
 2-Subpavement 13   73.4 
 3-Subpavement 7   52.0 
 4-Subpavement 9   46.9 
 5-Subpavement 13   67.0 
 TOTAL  283.9 

 
In the literature, the necessary sample mass is usually depicted as a function of a 

bed material particle size D, where D is a characteristic large particle size percentile, 

usually the Dmax or D95 (Bunte and Abt, 1999). Church and others (1987) empirically 

determined that the mass of the largest particle in the sample should not exceed about 

0.1% of the total sample mass. This translates into a minimum sample mass of 1000 

times the mass of the Dmax particle size and yields very large sample sizes for material 

greater than 32-mm. Consequently, they modified the mass criteria as the maximum 

particle size increased. For coarse gravel with Dmax between 32 and 128-mm, the largest 

particle may account for one percent of the total sample mass. Similarly, for Dmax greater 

than 128-mm the largest particle may account for up to five percent of the total sample 

mass. Figure 3.9 in Church et al. (1987) summarizes these criteria as a plot of log(sample 
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size in kg) versus log(b-axis of largest stone in mm). This plot may be summarized with 

the following formulas. 

 Dmax (kg) / Sample mass (kg) < 0.001  for Dmax < 32-mm  (15) 

 Dmax (kg) / Sample mass (kg) < 0.01  for 32 < Dmax < 128-mm (16) 

 Dmax (kg) / Sample mass (kg) < 0.05  for Dmax > 128-mm  (17) 

At Little Granite Creek, the largest particles in both the subpavement and 

pavement samples were 128-mm or larger. Thus the “five percent” criterion was applied 

in determining the sample size. The largest subpavement particle sampled was 9,980 

grams, which accounted for 3.5 percent of the total sample size. The largest pavement 

particle was 30,230 grams, which constituted 5.9 percent of the total sample size. So even 

with a sample size of nearly 510 kilograms, the maximum size particle in the pavement 

still slightly exceeds the sample size criterion.  

For subsequent model calibration and other calculations, only the subpavement 

distribution is used. For the subpavement, the largest particles were well represented in 

the samples and no individual particles were large enough to create significant bias in the 

distributions based on the criteria by Church et al. (1987). 

A 400-sample pebble count (Wolman, 1954) was also done to describe the 

pavement material. A sampling grid was used to more objectively select particles for 

measurement. The grid consisted of a 600-mm square frame with elastic bands forming a 

matrix of 3 rows by 3 columns. The intersections of these bands form four “crosshairs” 

that identify the particle to be selected. The frame was moved at equal increments across 

the stream and placed diagonally for sampling at each sample location. This was repeated 
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for four cross sections within the sampling reach to attain the minimum of 400 samples. 

The data are shown in Appendix D and summarized previously in Table 1 and Figure 1.  

3.4 Bedload Measurements 

For this analysis, bedload is defined as that part of the river’s total sediment load 

that is moving on, or near, the bed by rolling, saltating or sliding. Bedload samples 

(summarized by full phi size class) were collected at Little Granite Creek from 1982 to 

1993, and again in 1997 using a 76-mm (3-inch) Helley-Smith hand held sampler. With 

the exception of 1997, all data were collected by the Idaho District of the U.S. Geological 

Survey. The 1997 data were collected by the US Forest Service Rocky Mountain 

Research Station. Bedload measurements cover a range of stream discharges from 

approximately 10 to 180 percent of bankfull flow. 

The bedload sampling scheme generally consisted of two transects of 20 verticals 

for 30 seconds each. The first three years of data have only one transect for each 

measurement, so subsequent years typically show each transect as a separate 

measurement. Dual transects were composited back into a single measurement for this 

analysis, giving a total sample size of 133 measurements. The data are analyzed in annual 

groups, except for data year 1992 since this consisted of only three measurements at very 

low discharges. The data set from 1982 – 1993 had several measurements above bankfull 

discharge (estimated at 229 cfs) but primarily characterized transport rates at lower 

discharges. The 1997 data are comprised of measurements almost entirely above bankfull 

discharge. Bedload data are summarized in Appendix E. 

A noteworthy feature of the bedload data set is that it was collected entirely with a 

76-mm (3-inch) Helley-Smith sampler by either wading or via a constructed footbridge. 
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Both the pavement and subpavement have a large portion of their distribution that would 

not readily fit into the sampler. This is likely mitigated by the small probability of 

catching a large sized particle within the relatively short sampling period and the limited 

width being sampled for each vertical. However, anecdotal accounts indicate that much 

of the bed of Little Granite Creek was mobile at discharges around two hundred percent 

of bankfull. 

The sediment rating curves for all data years, including the least squares 

regression line of all the data, are shown in Figure 3. Considerable variability exists 

among the yearly rating curves; some fall below the overall regression line and several lie 

above.  

Bedload Rating Curves By Data Year
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Figure 3. Annual measured bedload rating curves for Little Granite Creek. 
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The variability inherent in bedload discharge measurements is logically attributed 

to such factors as sampling variability, changes in sediment supply with subsequent 

changes is bed material gradation, relative “packing” of the bed material, and even the 

passing of bedload waves. Unfortunately, much of this information is not available for 

Little Granite Creek.  

Sampling variability is not likely a major cause of the annual variation in the 

rating curves. All data for years prior to 1997 were collected by the Idaho District of the 

USGS. Essentially the same crew used the same methodology year after year. The 1997 

data were collected by a different crew but the sampling protocol was the same.  

There are no data for landslide volumes or other large sediment inputs for Little 

Granite Creek to evaluate changes in sediment supply. Similarly, there is no data set that 

characterizes changes in the bed material distribution or packing over time.  

Reid and others (1985) suggest that the condition of the streambed will account 

for a large variation in transport rates at the same discharge. Long periods of inactivity 

encourage the channel bed to consolidate and produce lower bedload transport rates than 

those beds that were recently disturbed. Conversely, high flows result in a disruption of 

the streambed so that the bed material is comparatively loose and offers less resistance to 

entrainment. 

To examine these conditions in Little Granite Creek, mean daily flows were 

plotted for the period of record in Figure 4. In general, annual bedload rating curves (See 

Figure 3) for which the previous season had mean daily flows in excess of bankfull 

discharge typically plotted above the overall regression line. For example, high stream 

flows that occurred in 1982-1984, 1986 and 1996 were followed by years that had higher 
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than average bedload transport rates for a given discharge. For this discussion, ‘average’ 

is characterized by the least squares regression line through the entire data set. 

Antecedent flow conditions for data year 1997 were determined from the gage on the 

Gros Ventre River at Zenith, WY (station number 13015000). 

Conversely, bedload sampling years 1986, 1988, 1991, and 1993 were all 

preceded by years where the largest mean daily flows were less than bankfull discharge. 

This generally resulted in rating curves that predicted lower than average bedload 

transport rates. This presumably occurred because the bed was coarser and more tightly 

armored in the absence of bed-disturbing discharges or increased sediment supply from 

the previous year.  
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Figure 4. Mean daily flows for the period of record at Little Granite Creek. 
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Figure 5 gives additional evidence of this segregation of data based on antecedent 

stream flows. The bedload data set for Little Granite is split into two groups. One group 

is bedload measurements that had mean daily flows greater than bankfull discharge the 

prior year. The second group of data points consists of bedload measurements that had 

mean daily flows less than bankfull discharge the prior year. Data year 1982 is not 

included in this plot since no data were readily available for antecedent flows. The center 

portion of the data set, on either side of the least squares regression line, has an overlap of 

the two groups. However, the highest transport rates at a given discharge are generally 

associated with high flow antecedent conditions. Similarly, the lowest transport rates at a 

given discharge are generally associated with low flow antecedent conditions.  

Bedload Measurements Stratified by Antecedent Conditions
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Figure 5. Stratification of Little Granite Creek bedload samples by antecedent flows. 
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The physical meaning of Figure 5 becomes more clear when the measured 

bedload is viewed as separate components based on either supply or transport capacity 

limitations. The component of the bedload that is determined primarily by supply 

limitations from upstream sources is considered washload. Washload is characterized by 

fine particles with low abundance in the riverbed (Julien, 1995). Bed-material load, on 

the other hand, is the capacity limited portion of the bedload that is hydraulically derived 

from disturbing the pavement layer. The rate of bed-material load in transport is 

determined by the capacity of the flow to move the particle sizes commonly found in the 

bed. The variability of the transport rates in Figure 5 with antecedent conditions (i.e., 

supply) suggests that a significant portion of the bedload in Little Granite Creek is 

washload. This notion is examined in more detail in Chapter IV with an effort to quantify 

the grain sizes that make up washload in Little Granite Creek. 

The other implication from Figure 5 is that basing a bedload rating curve on only 

one or two years of data may be an inaccurate representation of the system. If washload is 

a significant component of the bedload, multiple years of sampling with different 

antecedent conditions is likely necessary to capture the potential range of bedload 

transport rates possible at a given discharge. This is particularly important when selecting 

bedload samples to calibrate the PKD model. 
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C h a p t e r  4 :  B e d l o a d  P r e d i c t i o n s  W i t h  
T r a d i t i o n a l  M o d e l s  

 
4.1 Meyer-Peter and Müller 

 
Meyer-Peter and Müller (1948) developed a bedload transport function for gravel-

sized material from flume data. The experiments to develop the equations were done with 

effective diameter of sediments between 6.4 and 30 mm, and specific gravity for 

sediments from 1.25 to over 4. The formula is considered applicable to coarse sediments 

with little suspended load (Chang, 1998). The original equation took the form 

(ks/kr)3/2 (Qf/Q) (γ/(γs-γ)) (RS/Di) = 0.047 + 0.25 (γ/g)1/3 (gs
2/3/(γs-γ)Di))          (18) 

  
where   

Di = the geometric mean grain size diameter 
 S = slope 
 R = hydraulic radius 
 ks/kr = ratio of grain resistance to total bed resistance 
 Qf/Q = ratio of the bed sub-area discharge to the total discharge 
 gs = bedload transport rate [dimensions of M/T3] 

γs and γ = unit weights of the sediment and water, respectively 
 

For plane bed conditions ks/kr = 1 and for channels with width/depth ratios greater 

than ten to fifteen, Qf/Q = 1. Making the above approximations for gravel-sized materials, 

Equation (18) reduces to  

gs = 8[(ρs - ρ)gDi]1.5 [     γRS       - 0.047]1.5                                                            (19) 
                  ρ0.5                 (ρs - ρ)gDi
where  
 ρ = mass density of water 
 ρs = mass density of sediment 
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At the point where the bedload transport, gs, is zero, equation (19) indicates that 

the critical Shields stress was taken to be 0.047. Julien (1995) provides a version of this 

equation based on the work of Chien (1956) for the unit volumetric bedload transport 

rate, which takes the form 

qbvi = 8 (τ* - τ*
c) 3/2 [(sg-1) g Di

3] 1/2        (20) 

Calculations using Equation (20) and the hydraulic data from Little Granite Creek 

were performed to predict bedload transport rates. Calculations were done in small width 

increments across the channel so that changes in bed configuration were represented by 

changes in shear, rather than using an average depth or hydraulic radius. Transport rates 

were computed using the median diameter of both the pavement and subpavement bed 

material. The value of τ*
c was initially set to 0.047, the value first suggested by Meyer-

Peter and Müller. The predicted total transport rates are shown in Figure 6, along with the 

measured data for Little Granite Creek.  

Sample bedload calculations using the Meyer-Peter and Müller equation are 

shown in Appendix A.  

4.2 Einstein-Brown 

Einstein (1942, 1950) conducted extensive work in sediment transport based on 

fluid mechanics and probability using data from both flume studies and field 

measurements. Although the original research was tested using sand sized material, 

Einstein (1950) described the bedload function as being applicable to coarse sediment.  

This original work has served as the basis for much further research, including 

what is referred to as the Einstein-Brown equation (Brown, 1950). This formulation is 

unique in that it does not use a critical shear stress or critical dimensionless shear stress.  
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Julien (1995) summarizes the Einstein-Brown equation, which gives the contact sediment 

discharge in volume of sediment per unit width and time as 

qbvi = K qbv
*          (21) 

 
where  

qbv
* = dimensionless volumetric unit sediment discharge 

K = ω0 Di = [(sg-1) g Di
3]1/2  {[2/3 + 36υ2 / ((sg -1) g Di

3)]1/2 – [36 υ2 / ((sg -1) g Di
3)]1/2 } 

ω0 = Rubey’s (1933) clear-water fall velocity 
υ = kinematic viscosity of water 
Di = sediment particle size of concern 
sg = specific gravity of sediment 

 
The parameter definitions above require a consistent set of units. The value of the 

dimensionless volumetric unit sediment discharge is calculated in one of three ways, 

depending on the value of the Shields stress τ*, as 

qbv
* = 2.15 e – 0.391 / τ*       when τ* < 0.18     (22) 

 
qbv

* = 40 τ* 3        when 0.18 < τ* < 0.52    (23) 
 

qbv
* = 15 τ* 1.5        when τ* > 0.52           (24) 

 
Calculations were again done with the same small width increments across the 

channel. Transport rates were computed by full phi size class by using the geometric 

mean particle diameter as Di. These transport rates were scaled by fi, the proportion of 

each size class found in either the pavement or subpavement particle size distribution. 

Transport rates by size class were summed to yield total transport rates. The predicted 

bedload transport rates using Einstein-Brown, along with the measured data, are shown in 

Figure 6.  

Sample bedload calculations using the Einstein-Brown equations are also shown 

in Appendix A.  
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4.3 Parker-Klingeman 

 The Parker and Klingeman (1982) bedload transport equations, described in detail 

in Chapter II, are also used to predict bedload transport in Little Granite Creek. This 

method does account for the hiding factor but uses the values from Oak Creek, OR, 

which takes the form 

 τ*
r = 0.0876 (Di / D50) –0.982         (5) 

This formulation is relative to the subsurface bed material and was developed 

specifically for gravel-sized material. The predicted bedload transport rates using Parker-

Klingeman, along with the measured data, are shown in Figure 6.  

Sample bedload calculations using the Parker-Klingeman equation are also shown 

in Appendix A.  

4.4 Bedload Model Prediction Summary 

The bedload transport models by Meyer-Peter and Müller (1948), Einstein via the 

Einstein-Brown equation (Brown, 1950), and Parker and Klingeman (1982) all grossly 

over predict the measured transport rates at Little Granite Creek. This is not surprising 

since Little Granite Creek has a steeper gradient and coarser bed material than the 

conditions under which the other models were developed.  Also, these predictive 

equations are for bed-material load and assume an unlimited supply of material for 

transport. In reality, the coarse pavement layer at Little Granite Creek limits the 

availability of finer grained particles until that layer is disturbed. Consequently, while the 

equations are predicting bed-material load with unlimited supply, the bedload in Little 

Granite appears to be largely supply limited (washload). 

 

 29



Bedload Rating Curve Model Predictions
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Figure 6. Bedload predictions with conventional models.  

Although washload is often associated with very fine particles such as silts and 

clays, the size range changes based on the distribution of the bed material. Einstein 

(1950) and Julien (1995) delineate washload as particles sizes Di < D10, where D10 is the 

tenth percentile particle size on the bed surface. Figure 7 shows the distribution of the bed 

material and the average size distributions of the measured bedload at discharges of 25, 

200 and 350 cfs. Based on the pavement D10 of approximately 11 mm, all of the 

measured bedload at 25 cfs would be considered washload. Similarly, 65–70 percent of 

the measured bedload at discharges of 200 and 350 cfs would be considered washload. 

 Another method for delineating washload is by visually examining curves of the 

sediment supply and the transport capacity. The point at which the sediment supply and 
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the sediment transport capacity curves intersect separates washload and bed-material load 

(Julien, 1995).  

Bedload and Bed Material Size Distribution Summary
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Figure 7. Bed material and bedload size distribution summary. 

The sediment transport capacity is calculated for each grain size (assuming 

uniform grains) using the Meyer-Peter Müller model with the default value of τ*
c = 0.047. 

Bed-material transport capacity rates are plotted against grain size in Figure 8 for stream 

discharges of 20 and 250 cfs. Around a discharge of 250 cfs, particles similar in size to 

the pavement D50 are at incipient motion. At this point, finer grained material from the 

subpavement would be exposed and available for transport. The availability of this fine-

grained material would be indistinguishable from sources of washload. Consequently, 

discharges above 250 cfs are not used in this graphical delineation of washload and bed-

material load.  
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The rate of sediment supply to the stream is more problematic to quantify, 

particularly by particle size. Since the intent here is to roughly quantify the particle sizes 

associated with washload, a simplifying assumption is made. That is, the rate of sediment 

supply to the stream is approximated by the measured bedload transport rates. Also, 

rather than evaluating the supply by size fraction (which have limited data), the sum of all 

size classes is used to represent the supply. This approximation is not expected to result 

in significant error since the slopes of the transport capacity curves are so steep in the 

area of concern that an order of magnitude change in supply results in a modest change in 

grain size in Figure 8. 

Transport Capacity and Supply Curves 
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Figure 8. Transport capacity and supply curves for Little Granite Creek. 

At a discharge of 250 cfs, the measured bedload transport rate was as high as 50 

tons per day, which intersects the transport capacity curve between the 128 and 180-mm 
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particle sizes. This suggests that bedload finer than approximately 128-mm might be 

considered washload. Similarly, for a measured transport rate of 0.5 tons/day at 20 cfs, 

the intersection with the transport capacity curve is between 45 and 64-mm. At a 

discharge of 20 cfs, washload might include grain sizes less than 45-mm. 

  Based on these two methodologies, the bedload for Little Granite Creek 

can be roughly partitioned as follows: 

 Ds < 11-mm   washload 

 11-mm < Ds < 128-mm washload or bed-material load 

 Ds > 128-mm   bed-material load 

This delineation suggests that most of the measured bedload at Little Granite Creek could 

be classified as washload. As such, transport rates would be governed primarily by 

sediment supply rather than the transport capacity of the stream and could not be 

accurately predicted by the conventional bed-material transport models. 
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C h a p t e r  5 :  S i t e - C a l i b r a t e d  ( P K D )  M o d e l  

5.1 Model Operation 
 
 The PKD model is an adaptation of the Parker and Klingeman (1982) bedload 

transport equations in which site-specific values in the hiding factor relationship are used. 

The entire optimization and prediction model consists of two FORTRAN programs. 

SEDCOMP is the first program that will optimize the two parameters in the hiding factor 

equation (reference Shields shear stress associated with D50 and exponent) by 

incrementally adjusting each of those two parameters until the predicted bedload in the 

Parker-Klingeman equation is equal to the measured bedload used in the input file. The 

optimum values of the D50 reference shear and exponent are those values that produce the 

minimum squared error (by total and size class) between the measured and predicted 

bedload transport rates. See Section 5.3 for a detailed description of the parameter 

optimization process.  

 The second program is FLOWDUR, which uses the previously optimized 

parameters to predict bedload transport rates for a range of discharges that are defined in 

a user supplied flow duration table. FLOWDUR also computes annual loads, distribution 

of bedload by size class, and thresholds for particle motion.  

5.2 Model inputs 

The data requirements for the model to run consist of a cross section and stage-

discharge rating curve, bed material size distribution (subpavement in this analysis), 
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bedload samples reported by size class, local energy slope and a flow duration curve. 

Since energy slope is a key component of shear stress, the user of the SEDCOMP has the 

option to limit the energy slope to that related only to grain resistance, not form 

resistance. The resistance parameter for grain resistance is calculated, based on the 

surface material D50 or D84, with a modification of the Limerinos (1970) equation as 

adapted by Burkham and Dawdy (1976). From this parameter, the energy slope can be 

back calculated from either the Manning or the Darcy-Weisbach equation. This 

adjustment was initially used at Little Granite Creek but created more scatter in the 

optimization process than by using the single measured slope value. This slope limitation 

was not used in the optimization process. 

5.3 Parameter Optimization Process 

5.3.1  Model Algorithm 

The algorithm that the SEDCOMP model follows is described below, and 

summarized in the flow chart shown in Figure 9. Sample calculations of the optimization 

process are shown in Appendix F. SEDCOMP sample input files and definitions of terms 

are shown in Appendix G.  

For a given bedload sample at a given discharge, or a group of samples at the 

average discharge, initial values of the hiding factor parameters (τ*
r50 and exp) are 

assumed. The cross section is then broken into verticals based on the input file 

elevation/offset points.  

For each vertical in the cross section, the depth is calculated from the rating 

curve. From the depth and known energy slope the bed shear stress is calculated as 

    τ = γ d S      (25) 
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For the geometric mean grain size of each size class the Shields stress τ*
i, is 

calculated as 

    τ*
i = τ / (ρs - ρ) g Di     (1) 

Since values of reference shear (τ*
r50 ) and P-K exponent (exp) are known, based 

on initial values and set increments, the reference Shields stress relative to the 

subpavement D50 for each particle size is calculated as 

    τ*
ri = τ*

r50 (Di/D50) -exp     (4) 

The Shields stress ratio is calculated for each size class as 

                        Ф i = τ*
i / τ*

ri      (8)  

The unit bedload transport rates by weight (qbwi) for each vertical are then 

calculated with Equations (11) and (12). 

Repeat this process for all other size classes. 

Repeat this process for all other verticals (flow depths). 

The total transport rate is calculated for each size class by summing qbwi across all 

the verticals in the cross section. All transport rates by size class are summed to yield the 

total transport rate. The calculated transport rates are compared to the measured rates and 

the average squared error is determined for the prediction. At this point, for the τ*
r50 being 

used, a measured and calculated transport rate and squared error are known. The value of 

τ*
r50 is incremented upward, still at the same exp, and the calculations repeated. Once τ*

r50 

has run through the selected range by the selected increment, the reference shear that 

gave the lowest average squared error, while matching the total measured and predicted 

loads (zero bias), is reported.  
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Figure 9. Flow Chart of SEDCOMP program algorithm.  

Next, exp is increased by the defined increment and the calculations are repeated 

through all the increments of τ*
r50. The result of all these calculations is a list of all the 

trial exponents (initial value plus all increments) with an associated value of τ*
r50 and 

squared error that matched the total measured and predicted loads. The exponent and τ*
r50 
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grouping that generated the lowest average squared error are the optimized values for that 

discharge.  

5.3.2 Reference Shear Versus Discharge Relationship 

One significant departure of the PKD model from the original Parker-Klingeman 

bedload function relates to the value of the D50 reference shear (τ*
r50) in the hiding factor 

equation. The original data and analysis from Oak Creek yielded a constant value of 

0.0876 relative to the subpavement. Optimization runs using the PKD model for a variety 

of streams have consistently shown the D50 reference shear to systematically vary with 

discharge (Dawdy et al., 1998). The PKD model allows for this variation by predicting 

the reference shear from a user input equation that relates reference shear to discharge. 

This notion will be discussed in more detail in subsequent sections. 

5.3.3 Reoptimization with the Average Exponent 

 Once optimization of the selected samples is complete, optimized pairs of the P-K 

exponent and D50 reference shear result for each discharge. As discussed previously, a 

relation exists between the reference shear and discharge. This is not the case for the P-K 

exponent. Instead, the mean of the reported exponents is determined. This initiates a 

second round of optimization where each sample (or group of samples) is optimized 

again with the mean exponent. This results in a single set of iterations of the incremented 

reference shears, which are adjusted to match the total measured and predicted load for 

the selected mean exponent. 

5.4 Rating Curve Prediction 

Rating curve prediction for each size class and for total transport rates is done 

within the FORTRAN program FLOWDUR. This program is a direct application of the 
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Parker-Klingeman bedload transport model with user input for the previously determined 

site calibrated P-K exponent and the D50 reference shear versus discharge relationship. 

Output gives annual loads by total and by size class as well as rating curves by total or by 

size class. A flow chart outlining the FLOWDUR algorithm is shown below. Sample 

input files and definitions of terms for the FLOWDUR program are listed in Appendix H. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10. Flow Chart of FLOWDUR program algorithm. 

 39



 
5.5 Site Calibration and Bedload Predictions with Annual Data  
 

Annual Site Calibration. Each bedload measurement was optimized to 

determine the D50 reference shear (relative to the subpavement) and P-K exponent that 

had the minimum error when predicting both total transport rate and transport rates by 

size class. Initially, individual years of data were evaluated separately in an attempt to 

examine annual variation relative to the “true” optimized parameters represented by the 

entire data set. For each year’s data an average P-K exponent was determined and a 

power function was fit to the reference shear versus discharge data. The results are 

summarized in the following table. 

Table 3. Optimized hiding factor parameters for each year of bedload data at Little 
Granite Creek. 

Year Avg. Exponent D50 Reference Shear vs. Discharge R 2

1982 0.979 τ*r50 = 0.0681 Q0.306 0.913 
1983 0.975 τ*r50 = 0.0586 Q0.332 0.962 
1984 0.979 τ*r50 = 0.0806 Q0.261 0.962 
1985 0.973 τ*r50 = 0.0610 Q0.322 0.973 
1986 0.981 τ*r50 = 0.0606 Q0.328 0.967 
1987 0.972 τ*r50 = 0.0765 Q0.261 0.935 
1988 0.973 τ*r50 = 0.0597 Q0.333 0.969 
1989 0.976 τ*r50 = 0.0654 Q0.308 0.845 
1991 0.960 τ*r50 = 0.0874 Q0.269 0.911 
1993 0.969 τ*r50 = 0.1537 Q0.158 0.477 
1997 0.972 τ*r50 = 0.0575 Q0.326 0.690 

All Years 0.973 τ*r50 = 0.0680 Q0.302 0.925 
 

The annual P-K exponents are expected to be similar throughout the years of data. 

Multiple comparisons of the annual exponent values were performed using the statistical 

software package SAS. Methods by Tukey, SNK, and REGW showed no statistical 

difference between the annual exponents (alpha = 0.05), with the exception of 1991. Note 
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that all the optimized annual exponents have a magnitude near 1.0, the condition for 

equal mobility.  

As expected, some variability in the reference shear parameters occurs on an 

annual basis. This variability is consistent with that seen in the individual annual bedload 

rating curves. Figure 11 graphically illustrates the inverse relation between annual D50 

reference shear-discharge relations and the actual annual bedload rating curves.  

Optimized Reference Shear by Data Year
Little Granite Creek, WY 
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Figure 11. D50 reference shear over a selected range of discharges at Little Granite Creek. 
 

For example, data years such as 1991 and 1993 had comparatively low measured 

transport rates at a given discharge. Figure 11 shows that this results in high reference 

shear-discharge relationships. Note that a high value of reference shear means that the 

threshold for initiating motion is high. Similarly, data years 1984, 1987, and 1997 had 
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comparatively high measured sediment transport rates at given discharge. Consequently 

they are the three lowest reference shear-discharge relations.  

 All the relations in Figure 11 have the same basic shape of a power function. 

Recall that the value of the D50 reference shear has typically been considered a constant 

value resulting from a curve fit (Andrews, 1983; Parker et al., 1982). The basic form of 

this power function can be mathematically derived by making the approximation that the 

flow depth is equal to the stage. Solving Equation (13) for this term gives 

   (GH-e) ≈ depth = (Q/P)1/b      (26) 
 
Substituting this expression back into the shear relation gives 
 
   τ = γ d S = γ (Q/P)1/b S     (27) 
 
Using this expression in the definition of the Shields stress gives 
 
   τ *i = τ / [γ (sg-1)Di] =  γ (Q/P)1/b S    (28) 
                              γ (sg -1) Di 
 
By making the assumption that the criterion for initiation of motion used by Shields and 

Parker-Klingeman are approximately equal, the previous expression can be equated to the 

hiding factor relation as follows 

 
  τ *i  ≈  τ 

*
ri  →   γ (Qr/P)1/b S    =   τ 

*
r50 (Di/D50) -exp   (29) 

                γ (sg -1) Di 
 
Where Qr is the reference discharge associated with the critical condition of motion for 

some particle size, Di . Solving the above equation for τ 
*

r50  gives 

 
  τ 

*
r50  =   (Qr/P)1/b S   (Di/D50) exp      (30) 

       (sg -1) Di 
 
For any given calculation with a known sediment size (Di) and hiding factor exponent 

(exp), most of equation (30) can be expressed as a constant. Rearranging gives 
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  τ 
*

r50  =   (1/P)1/b  S (Di/D50) exp   (Qr)1/b     (31)  
                              (sg -1) Di 
 
  τ 

*
r50  = constant  (Qr)1/b       (32) 

  
Recall from Equation (14) that the stage-discharge relationship for Little Granite 

yielded b = 2.36. Therefore, the exponent in the D50 reference shear versus discharge 

relationship is 1/b = 0.42. This is a reasonable approximation of the annual values listed 

in Table 3 given that the annual values were optimized from incremental depth 

measurements across the channel while the value from Equation (31) was approximated 

from a single stage reading. Equation (31) is plotted with the individually optimized D50 

reference shear values in Figure 14 for Di = D50. 

 Annual Bedload Predictions. Bedload rating curves are predicted using the 

Parker-Klingeman transport model with known values in the hiding factor relationship. If 

the hiding factor parameters are accurately optimized, the Parker-Klingeman model will 

predict a rating curve that passes directly through the collection of measured bedload 

rates (either total or by size class). An example of total transport rates is shown in Figure 

12 for the 1986 data. Note that the least squares regression line and the predicted PKD 

rating curve are nearly the same. This is typically the case for each year of data. 

The advantage of the PKD prediction over a simple regression approach (with 

limited data values) is that the model provides a coupled prediction between total load 

and load by size class. This coupling occurs through the hiding factor in Equation (4). 

The rating curves by size class for the 1986 data graphically illustrate this point, 

particularly for the larger particle sizes. The largest particles have both a low probability  

of being caught and might even be too large to fit in a Helley-Smith sampler. With these 

two limitations, the prospect of using measured data to predict the rating curve for 
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particles greater than 32-mm is poor. The modified Parker-Klingeman model (with local 

optimization) is able to predict movement of these particles based on their availability in 

the bed and their reference shear calculated as a function of the neighboring particles. 

Measured data and predicted bedload rating curves with the PKD model are shown by 

size class in Figure 13. 

Predicted Bedload Rating Curve for 1986 Data Year
Little Granite Creek, WY
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Figure 12.  Predicted total bedload rating curve for data year 1986 at Little Granite Creek 
 
5.6 Site Calibration and Bedload Prediction with the Entire Data Set  

Site Calibration for All Years. All the optimized D50 reference shear and 

exponent values for each discharge are now collectively analyzed, independent of the 

year of collection. The plot of the optimized reference shear versus discharge shown in 

Figure 14 again takes the form of a power function. The average value of all the 
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optimized P-K exponents is 0.973. The distribution of the values of this exponent is 

approximately normal with a standard deviation of 0.013.  

Predicted Bedload Rating Curve - 1986 Data
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Predicted Bedload Rating Curve - 1986 Data 
Size Class of 16 - 32 mm
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Predicted Bedload Rating Curve - 1986 Data 
Size Class of 64 - 128 mm
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Predicted Bedload Rating Curve -1986 Data
Size Class of 8 - 16 mm
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Predicted Bedload Rating Curve - 1986 Data 
Size Class of 128 - 256 mm
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Figure 13.  Predicted bedload rating curves for selected size classes for data year 1986 at 
Little Granite Creek. 
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For comparison, default hiding factor parameters from the original Parker-

Klingeman model using the Oak Creek, Oregon data are shown below. Predicted bedload 

transport rates using these default values were discussed in Chapter IV. 

Table 4. Hiding factor parameters for Little Granite Creek, WY and Oak Creek, OR. 
Predictive Equation Data Source P-K Exponent τ*

r50 vs. Q Relation 
Site Calibrated 
PKD Model  
(Bakke et al., 1999) 

Little 
Granite  
Creek, WY 

 
0.973 

 
τ*

r50 = 0.0680 Q0.302

Parker and Klingeman 
(1982) 

Oak Creek, OR 0.982 τ*
r50 = 0.0876 = Constant  

 

Reference Shear-Discharge Relationship for All Data Years
Little Granite Creek, WY
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Figure 14.  D50 reference shear versus discharge for all data points at Little Granite 
Creek. 
 
 Bedload Predictions for All Years. To evaluate the effectiveness of the model’s 

predictions relative to the measured data set, Figure 15 shows a plot of measured and 

calculated transport rates. The measured-calculated pairs are approximately equally 
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distributed above and below the “equal fit” line. This would suggest that the predicted 

rating curve should look very similar to a “best fit” line through the data. 

Bedload Predictions for All Data Years
Little Granite Creek, WY
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Figure 15. Measured and calculated transport rates for entire data set at Little Granite 
 

The predicted bedload rating curves using hiding factor parameters from 

optimizing all the data points are shown in Figures 16 and 17. Predicted rating curves 

using the conventional models are also shown again for comparison. Note that the 

variability in transport rates by size class is relatively small. This condition of near-equal 

mobility is consistent with the P-K exponent value being very close to 1.0. 

The locally calibrated hiding factor parameters effectively adjusted the predicted 

transport rates to match those measured. This is of particular interest since the majority of 

the measured bedload is washload. This significant adjustment in predicted transport rates 
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can also occur within the Meyer-Peter and Müller equation by substituting the previously 

optimized hiding factor parameters for τ*
c. Recall that τ*

c (or τ*
r) is calculated as 

 τ*
r = τ*

r50 (Di / D50) –exp         (4) 

Where exp = 0.973 for Little Granite Creek and the reference Shields stress relative to the 

D50 was previously determined to be 

 τ*
r50 = 0.0680 Q 0.3023                   (33) 

The rating curves determined in this manner are also shown in Figure 16. Note that the 

Meyer-Peter and Müller equation with the default value of τ*
c = 0.047 causes an over 

prediction of orders of magnitude. The Meyer-Peter and Müller predictions (for both 

pavement and subpavement) using the site-specific hiding factor more closely 

approximate the measured data.  

Bedload Rating Curve Model Predictions
Little Granite Creek, WY
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Figure 16.  Total bedload rating curve for all data years at Little Granite Creek 
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Predicted Bedload Rating Curve - All Data 
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Predicted Bedload Rating Curve - All Data 
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Predicted Bedload Rating Curve - All Data 
Size Class of 8 - 16 mm

0.0001

0.001

0.01

0.1

1

10

100

10 100 1000

Discharge ( cfs )

B
ed

lo
ad

 T
ra

ns
po

rt
 R

at
e 

( t
on

s/
da

y 
)

Measured Data

Predicted by PKD Model

Predicted Bedload Rating Curve - All Data 
Size Class of 32 - 64 mm

0.01

0.1

1

10

100

10 100 1000

Discharge ( cfs )

B
ed

lo
ad

 T
ra

ns
po

rt
 R

at
e 

( t
on

s/
da

y 
)

Measured Data

Predicted by PKD Model

 

Predicted Bedload Rating Curve - All Data 
Size Class of 128 - 256 mm
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Figure 17. Predicted bedload rating curves for selected size classes for all years of data at 
Little Granite Creek. 
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C h a p t e r  6 :  E v a l u a t i o n  o f  M o d e l  
S e n s i t i v i t y  t o  B e d l o a d  S a m p l e  I n p u t s  

6.1  Background and Assumptions 
 

The site calibrated PKD model requires a number of input parameters for 

parameter optimization and general hydraulic computations. The input parameter that 

allows the most user judgment is the number and range of actual measured bedload 

samples used to calibrate the model. The intent of this analysis is to examine the 

variability in the model predictability as the input sample size changes. This will be 

accomplished by developing a bootstrapping algorithm to sample with replacement from 

the original bedload data set and develop subsets of data for model calibration. Each 

bootstrap sample set and associated model runs will yield a distribution of the pertinent 

hiding factor parameters, which can then be compared to the “true” values from the entire 

data set.  

 The accuracy of the model prediction will be determined by how well the sampled 

parameters match the “true” values of the P-K exponent, D50 reference shear, and total 

annual load. The “true” P-K exponent for the entire data set at Little Granite was 0.9727. 

The “true” value of the D50 reference shear was determined by recreating Figure 14, 

except that the reference shears were not reoptimized with a common P-K exponent. The 

resulting expression is of the form 

  τ*
r50 = α Q β         (34) 
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where α = 0.0688 and β = 0.3011. The “true” value of total annual bedload is that 

determined from the Parker-Klingeman bedload model using the “true” values for the P-

K exponent and D50 reference shear-discharge relation.  

Bedload subsample sizes of three, six, ten, fifteen, twenty, and thirty were 

selected. A subsample size of three was selected as the minimum, primarily to show the 

variability that can occur from such a small sample size. Thirty was selected as the 

maximum subsample size since that value is often quoted as a minimum necessary to 

construct purely statistical bedload rating curves. 

A fundamental assumption of bootstrapping is that the data are independent. 

However, the parent data sets of both stream flow and sediment discharge are correlated 

on a time series, a common test of data independence. The effects of violating this 

assumption are unknown.   

 A second assumption is that the set of discrete measurements at Little Granite 

Creek are assumed to adequately represent the continuous variables of discharge and 

bedload transport rate.   

 6.1.1 Parameters of Interest 

 Since one of the ultimate goals of using the SEDCOMP model is to predict a 

bedload rating curve, it would follow that the accuracy of the predicted rating curve 

should be used to evaluate the effects of sample size. However, the process involved in 

predicting the rating curve is somewhat iterative and involves more than one software 

package, making a comparison to a “true” value difficult. A surrogate for the bedload 

rating curve was required. The accuracy of the Parker-Klingeman bedload function has 

been shown to depend on accurate selection of the P-K exponent and D50 reference shear 

versus discharge relationship for the site (see Chapter V). Consequently, the sampled 
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values of the P-K exponent, D50 reference shear relationship (α and β), and total annual 

load will be compared to the “true” values for the entire data set, instead of the predicted 

bedload rating curve. 

 A necessary shortcut in this process is the elimination of the final optimization of 

D50 reference shear values to match the average P-K exponent. This iteration was not 

possible within a Minitab macro. The data set for Little Granite Creek suggests that the 

error involved by omitting this second step is slight. For the eleven years of data collected 

and optimized separately, the final regression lines of D50 reference shear and discharge 

for the optimized points and the reoptimized (common P-K exponent) points varied only 

slightly.  

 6.1.2 Bootstrapping 

 Bootstrapping is a sampling method with replacement used to determine the 

accuracy of an estimated parameter based on a sample, rather than an assumed 

distribution (Efron and Tibshirani, 1993).  A bootstrap begins with a random sample of 

size n, which is drawn from an unknown probability distribution. The parent data set (size 

= N) is sampled with replacement B times where each observation has a 1/N chance of 

being selected. The statistic of interest is then calculated for each of the B subsamples. 

 As applied to this specific analysis, B random samples are taken for each 

subsample size of n = 3, 6, 10, 15, 20 and 30. Each individual observation has a 1/133 

chance of being selected for Little Creek. Once the subsample is obtained, the parameters 

of interest (α, β, exp, total annual load) are calculated.  

 To determine the number of bootstrap samples B, the variance of the subsample 

estimates was visually examined for each of the subsample sizes.  The number of 

bootstrap samples was considered adequate when the variance of the subsample estimates  
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became approximately constant with increasing bootstrap iterations (Rudy King, personal 

communication, 2000). The worst-case was for a subsample of three, where the variance 

versus bootstrap iteration relation did not become constant until about 900 iterations. The 

number of iterations required for the larger subsample sizes to reach a steady variance 

was considerably smaller. The number of random samples, B, was conservatively set at 

1000 for this analysis. 

 The statistical software package Minitab was used to do the random sampling, 

curve fits, and variance analysis. A macro was written within Minitab to randomly select 

samples of the previously optimized bedload samples, compute the average P-K 

exponent, and curve fit a power function to the D50 reference shear versus discharge data. 

The sampled values of α, β, and P-K exponent were used to calculate the total annual 

load using the Parker-Klingeman model. The resulting values of α, β, P-K exponent, and 

total annual load define a particular subsample.  

With the exception of the subsample size of three, there were enough sampled 

points to reasonably curve fit the reference shear-discharge relation. The subsample size 

of three was small enough that the variability of D50 reference shears at similar discharges 

had a significant weighting effect on the regression line, which caused wildly inaccurate 

predictions. To counter this, an extra line of code was added to the sampling macro (only 

for n=3) that required each measurement to be at least 20 cubic feet per second (cfs) away 

from the other measurements. Even with this stipulation the predictions for a subsample 

size of three were highly variable. 
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6.2 Random Sampling Results  

 The boxplots (Figures 18-21) show the distribution of the resulting estimates of 

the parameters of interest for the 1000 bootstrap iterations. For each individual box, the 

top and bottom represent the 25th and 75th percentiles. The length of the box is the inter-

quartile range (IQR), which contains fifty percent of the data. The whiskers on the ends 

of the box extend out 1.5 times the IQR, if data extend that far. The range is considered 

the length of the box and whiskers combined. Any data point falling outside the range is 

considered an outlier and is denoted by a star. The horizontal line inside the box 

represents the median of the subsamples. To facilitate comparison of the boxplots across 

subsample size, the lengths of the IQR and range are used. A small inter-quartile range is 

desired, which suggests that many of the data are tightly grouped around the median. By 

similar reasoning it is desirable to have a small range as well. 

 Note that two sets of boxplots are shown for the parameters of the power function 

coefficient α and the total annual load. The first boxplots show the relevant statistics for 

all subsample sizes. The second boxplots exclude the subsample sizes of three and six 

because the extreme values predicted with those subsample sizes do not allow the 

variability among the larger subsample sizes to be recognized. 

 It is apparent that relative differences from the “truth” decrease with sample size. 

The improvement is not linear, but rather has somewhat diminishing returns with 

increasing sample sizes. In other words, doubling the subsample size does not halve the 

relative difference of the parameter of concern. This is numerically quantified in the 

following table using the interquartile range, median, and the mean as the basis of 

comparison as sample size changes.  
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Table 5. Variability of bootstrap parameters of interest with subsample size. 
  n = 3 n = 6 n = 10 n = 15 n = 20 n = 30 “Truth” 
P-K Exp IQR 0.0093 0.0067 0.0055 0.0046 0.0038 0.0032  
 Median 0.9737 0.9727 0.9727 0.9729 0.9728 0.9730  
 Mean 0.9732 0.9727 0.9727 0.9728 0.9729 0.9728 0.9727 
α coeff. IQR 0.0400 0.0207 0.0157 .01272 0.0108 0.0082  
 Median 0.0716 0.0703 0.0702 0.0692 0.0695 0.0694  
 Mean 0.1030 0.0767 0.0733 0.0711 0.0707 0.0701 0.0688 
β exponent IQR 0.108 0.060 0.046 0.036 0.030 0.024  
 Median 0.290 0.296 0.296 0.299 0.299 0.300  
 Mean 0.274 0.291 0.293 0.297 0.297 0.298 0.301 
Total Load IQR 130.0   56.2 35.6 28.9 23.0 19.9  
 Median   90.0   58.0 51.7 48.2 47.0 45.7  
 Mean 521.0 130.2 58.2 53.2 50.0 47.8 48.3 

 
In all instances, substantial decreases in both the range and IQR occur from a 

subsample size of three to a subsample size of six. A similar but somewhat smaller 

improvement occurs between subsamples of six and ten. The improvement from ten to 

fifteen, fifteen to twenty, and twenty to thirty are consistent but more modest. For all the 

parameters of concern, the average decrease in the IQR as the sample size increased from 

three to six was 45 percent. The decreases in the IQR as the sample size changed from six 

to ten, ten to fifteen, fifteen to twenty, and twenty to thirty were 26%, 19%, 17% and 

19%, respectively. This depiction of the diminishing returns with sample size might 

suggest a minimum sample size of ten or fifteen as a starting point. At a subsample size 

of 10-15, both the mean and median are a reasonable approximation of the “true” values 

of interest and much of the reduction in IQR has been attained. 

 The distributions of the P-K exponent are the only ones with no skew and very 

few outliers. They represent the closest approximation of a normal distribution. The 

power function coefficient α is right skewed but loses most of its extreme predicted 

values as sample size increases above fifteen. The power function exponent β is slightly 

right skewed with little change in the spread above a sample size of fifteen. The total load  
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Figure 18. Boxplots of 1000 random sample estimates of P-K exponent for Little Granite 
Creek. 
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Figure 19. Boxplots of 1000 random sample estimates of power function exponent β. 
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Figure 20. Boxplots of 1000 random sample estimates of power function coefficient α. 
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Figure 21. Boxplots of 1000 values of computed total annual load for sampled 
parameters. 
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distributions are strongly right skewed since it is bounded by zero load. The possibility of 

very extreme values exists up through a sample size of ten and begins to decrease above 

sample size of fifteen. 

 While the boxplots and Table 5 all give some guidance on selection of an 

appropriate sample size, a more quantitative approach would still be of use. Since the 

parameters of interest do not have normal distributions for all sample sizes, a non-

parametric approach is appropriate. The notion of selecting the sample size based on 

acceptable error is evaluated for the parameters of interest. 

To accomplish this, cumulative distribution functions (CDF) for the relative 

differences of the parameters of interest are generated from the bootstrap data sets. These 

allow a user, knowing the maximum acceptable value of the relative error, to determine 

what percentage of subsamples might meet this requirement. This approach relies on a 

relative frequency concept of probability. 

 The cumulative distribution functions for each parameter of interest are shown on 

Figures 22-25. For clarity, the actual stepped shape of the functions was approximated as 

a continuous smoothed curve through the center of each x-axis bin. Using Figure 22 as an 

example, suppose you wanted to find the sample size that would give a maximum one 

percent relative error for the P-K exponent at least 80 percent of the time. The user would 

enter into Figure 22 on the x-axis at one percent then cross the sample size plots until the 

intersection is above 80% on the y-axis. This would be the sample size that produced a 

relative error of one percent or less, 80 percent of the time in repeated sampling. 

A similar exercise can be done with the figures for α, β and total annual load. 

This, at the very least, provides some loose confidence measures to the sampled 

parameters. A confounding situation arises in that we do not know the effect on the 
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bedload rating curve of the error in the P-K exponent, α or β. This is especially true since 

the relative errors given are absolute values and do not show whether the error is an over 

or under prediction. Consequently, an exhaustive sensitivity analysis of the hiding factor 

parameters on the predicted bedload rating curve would be required.  
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Figure 22. Cumulative distribution of relative error between “true” and sample estimates 
of P-K exponent. 
 

In order to visualize the effects of the spectrum of variation in the hiding factor 

parameters on the predicted bedload rating curve, the total annual load is used. Figure 25 

shows the cumulative distribution function for the total annual bedload in tons. Note that 

the shapes of these distributions are considerably flatter with increasing error than the 

other plots. This suggests that, for a given subsample size and relative error, there is a 

lower probability of that event occurring. This is expected since Figure 25 incorporates 

all the error from the P-K exponent, α, and β. Also, the error is compounded by multiple  
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 Figure 23. Cumulative distribution of relative error between “true” and sample estimates 
of α. 
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Figure 24. Cumulative distribution of relative error between “true” and sample estimates 
of β. 
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Figure 25. Cumulative distribution of relative error between “true” and calculated total 
annual load. 
 
applications of the Parker-Klingeman bedload transport model at all the discharges in the 

flow duration curve. 

 Boxplots and cumulative distribution functions provide a means of selecting an 

input sample size for bedload measurements in the PKD model. The boxplots provide 

some measure of the mean, median and variability of the predicted values. The 

cumulative distribution functions allow the user to select the sample size based on an 

acceptable relative error from the “true” values of the total data set. 
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C h a p t e r  7 :  S u m m a r y  a n d  C o n c l u s i o n s  

1. The hiding factor relationship (Equation 4) includes two parameters, the P-K 

exponent and reference shear associated with the D50, that vary by stream. Incrementally 

adjusting these two parameters, until the measured and predicted loads are equal, allows 

for site-calibration of the Parker-Klingeman bedload transport model. For Little Granite 

Creek, the P-K exponent averaged 0.973 for all data years, compared to a value of 1.0 for 

equal mobility of all sediment sizes. The value of the D50 reference shear (τ*
r50), generally 

considered a constant, was shown to increase with discharge as a power function. 

2. The majority of the measured bedload in Little Granite Creek appears to be 

supply limited. The most conservative estimate, based on the D10 particle size of the 

pavement, suggests that bedload finer than 11-mm is washload. These grain sizes account 

for most of the measured load at low and intermediate discharges. This is supported by 

the observation that years preceded by high flows typically had higher than average 

sediment transport rates at a given discharge. Years preceded by low flows typically had 

lower than average bedload transport rates. Antecedent conditions of the annual 

maximum mean daily flow appear to provide a simple means of checking that both high 

and low bedload transport rates are being sampled for a bedload rating curve. 

3. Traditional predictive equations of Meyer-Peter and Müller, Einstein-Brown, 

and Parker-Klingeman all grossly over predict the measured sediment transport rates for 

Little Granite Creek. These models predict transport capacity of bed-material load and 

assume an unlimited supply of material for transport. The coarse pavement layer at Little 
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Granite Creek effectively limits the availability of finer grained particles until that layer 

is disturbed. Replacing the critical (reference) Shields stress term with the expression for 

the site-calibrated hiding factor in both the Meyer-Peter and Müller and Parker-

Klingeman models cause these equations to predict transport rates similar to those 

measured. This is noteworthy since most of the measured load is washload. 

4. Bootstrapping techniques were used as a mechanism to examine the variability 

of the PKD model predictions as the bedload subsample size changed. As bedload 

subsample size increases, the accuracy of the prediction of the hiding factor parameters 

increases. For Little Granite Creek, the largest reduction in the prediction variability is 

attained by using a minimum of ten to fifteen bedload samples collected over a range of 

discharges and antecedent conditions. A cumulative frequency distribution of total annual 

load provides a method of refining that subsample size based on an acceptable error from 

the “true” value based on the entire data set. 
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