# THESIS

# GIS-BASED SOIL EROSION MODELING AND SEDIMENT YIELD OF THE N'DJILI RIVER BASIN, DEMOCRATIC REPUBLIC OF CONGO

Submitted by

Patrick Ndolo Goy

Department of Civil and Environmental Engineering

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Summer 2015

Master's Committee:

Advisor: Pierre Y. Julien

Darrell G. Fontane Lee H. MacDonald Copyright by Patrick Ndolo Goy 2015

All Rights Reserved

#### ABSTRACT

# GIS-BASED SOIL EROSION MODELING AND SEDIMENT YIELD OF THE N'DJILI RIVER BASIN, DEMOCRATIC REPUBLIC OF CONGO

In the Democratic Republic of Congo, the N'djili River and its tributaries are the most important potable source of water to the capital, Kinshasa, satisfying almost 70% of its demand. Due to increasing watershed degradation from agricultural practices, informal settlements and vegetation clearance, the suspended sediment load in the N'djili River has largely increased in the last three decades. With an area of 2,097 km<sup>2</sup>, the N'djili River basin delivers high suspended sediment concentration, and turbidity levels that cause considerable economic losses, particularly by disrupting the operation in the N'djili and Lukaya water treatment plants, and increasing dramatically the cost of chemical water treatment.

The objectives of this study are to: (1) determine the change in the land cover/use of the N'djili River basin for 1995, 2005 and 2013; (2) predict and map the annual average soil losses at the basin scale and determine the effects of land cover/use change on the soil erosion; (3) estimate the sediment yield and the sediment delivery ratio at the water intake of the N'djili water treatment plant; and (4) quantify the effects of ash concentration on water turbidity in order to understand the high turbidity observed at the beginning of the rainy season.

The Revised Universal Soil Loss Equation (RUSLE) model was implemented in a Geographic Information System (GIS) to estimate the spatially distributed soil loss rates in the N'djili basin under different land uses. RUSLE model parameters were derived from digital

ii

elevation model (DEM), average annual precipitation, soil type map and land cover maps (1995, 2005, 2013) obtained from Landsat images.

The land cover/use change analysis shows that bare land/burned grass/agricultural land cover represented almost 22% of the N'djili basin area in 2013 whereas it was covering only 6% of the basin area in 1995. Settlements, which covered about 8% of the basin area in 1995, represented about 18% of the N'djili Basin area in 2013. The expansion of settlements, bare land, burned areas and agricultural lands was realized at the expense of the forest, grass, and shrubs cover. The annual average soil loss rate of the N'djili River Basin is estimated to be 7 tons/acre/year for 1995, 8.7 tons/acre/year for 2005 and 16 tons/acre/year for 2013. In 2013, bare land, burned areas and rainfed crops produced about 60% of the soil loss. The analysis of the relationship between probability of soil erosion and annual average soil loss rates indicated that up to 82, 79, and 73% of the basin area are in the range of tolerable soil erosion (0 - 5 tons/acre)/year) in 1995, 2005 and 2013 respectively. Based on the gross erosion and sediment yield observed in 2005 and 2013, the sediment delivery ratio of 4.6% and 4.1% were predicted in 2005 and 2013, suggesting that most of the soil eroded from upland areas of the basin is trapped on flood plains covered by grass, shrubs and trees. Regarding the effects of ash concentration on turbidity, this study found that turbidity increased as a power function of ash concentration.

#### ACKNOWLEDMENTS

First, I would like to express my deepest gratitude to my advisor, Dr. Pierre Julien for his support and encouragement throughout my time at CSU. I really feel honored to have had the opportunity to work on my thesis under his guidance. I would like to extend my gratitude to my Master's degree committee members Dr Darrell Fontane and Lee MacDonald for their comments and suggestions that helped me to improve this thesis.

I would like to extend my appreciation to those who shared their knowledge and time during the thesis process: Ahmad Shukran Sahaar and Dr. David Gwenzi. I also would like to thank those who helped me with the data: Steve Lemba Dieto,, Michael Strobel and Linda Scheffe from USDA-NRCS. A special thanks go to the general manager of REGIDESO and his staff members for granting me access to turbidity data.

I would also like to extend a special thanks to my friend Dieudo Mulamba, the Abyssinian Christian Church members, Reverend David Williams and Debbie Minor Williams for their precious support. I acknowledge all stars of Dr Julien's Dream Team, including Hwayoung Kim, Ken Lai, Haider Haddab and Dr Jaeon Lee for their friendship. I am deeply grateful to other CSU members including Laurie Alburn, Linda Hinshaw and Dr. Jorge Ramirez.

I would like to express my gratitude to Dr. Tozin of the Civil Engineering Department of the University of Kinshasa and the Fulbright Program of the U.S. Department of State's Bureau of Educational and Cultural Affairs for their financial support.

Finally, I would like to extend my deepest gratitude to my family. To my lovely wife, Clément Pfingu and my little boy, Jean-Pierre. Without their love and encouragement, I could not have finished this thesis.

iv

| ABST   | RAC       | Γ                                                                             | ii     |
|--------|-----------|-------------------------------------------------------------------------------|--------|
| ACKN   | IMO       | LEDMENTS                                                                      | iv     |
| TABL   | E OF      | CONTENTS                                                                      | v      |
| LIST ( | OF TA     | ABLES                                                                         | vii    |
| LIST ( | OF FI     | GURES                                                                         | viii   |
| LIST ( | OF SY     | MBOLS                                                                         | xi     |
| LIST ( | OF AG     | CRONYMS                                                                       | xiii   |
| Chapte | er 1 : ]  | INTRODUCTION                                                                  | 1      |
| Ove    | rview     | ·                                                                             | 1      |
| Obje   | ective    | S                                                                             | 8      |
| Chapte | er 2 : ]  | LITERATURE REVIEW                                                             | 10     |
| Intro  | oducti    | on                                                                            | 10     |
| 2.1    | Ov        | erview of erosion                                                             | 10     |
| Ν      | atura     | l or Geologic Erosion                                                         | 11     |
| Н      | [uman     | -Induced or Accelerated Erosion                                               | 11     |
| 2.2    | Soi       | l Erosion Process                                                             | 12     |
| 2.3    | Soi       | l Erosion Models                                                              | 13     |
| 2.4    | Pos       | st-fire Recovery and Restoration                                              | 15     |
| 2.5    | Tu        | rbidity – Wildfire Impact on Turbidity                                        | 17     |
| 2.6    | Sec       | diment yield – Sediment rating curve                                          | 21     |
| 2      | .8.1.     | Daily sediment load or sediment rating curve                                  | 21     |
| 2      | .8.2.     | Annual sediment load                                                          | 21     |
| 2.7    | Spe       | ecific Degradation of the N'djili River Basin                                 | 22     |
| 2.8    | Sec       | diment Delivery Ratio                                                         | 22     |
| 2      | .8.1.     | Sediment delivery ratio based on United States Soil conservation Service (197 | /1).23 |
| 2      | .8.2.     | Sediment delivery ratio after Renfro (1975)                                   | 24     |
| 2      | .8.3.     | Sediment delivery ratio after Boyce (1975)                                    | 24     |
| 2.9    | Ge        | ographic Information System and Soil Erosion Modeling                         | 25     |
| Chapte | er 3 : \$ | SITE DESCRIPTION AND DATASET                                                  | 27     |
| Intro  | oducti    | on                                                                            | 27     |
| 3.1    | Ov        | erview of the study area                                                      | 27     |
| 3.2    | Da        | ta set of the N'djili basin                                                   | 29     |

# TABLE OF CONTENTS

| 3.2.1.                                                          | Digital Elevation Model                                                       |         |  |  |
|-----------------------------------------------------------------|-------------------------------------------------------------------------------|---------|--|--|
| 3.2.2.                                                          | Precipitation Data                                                            |         |  |  |
| 3.2.3.                                                          | Soil Classification Map                                                       |         |  |  |
| 3.2.4.                                                          | Satellite images                                                              |         |  |  |
| 3.2.5.                                                          | Turbidity, Sediment and Stream Flow Data                                      |         |  |  |
| 3.3 Sur                                                         | nmary                                                                         |         |  |  |
| Chapter 4 : M                                                   | METHODOLOGY, PARAMETER ESTIMATION AND MAPPING                                 | 45      |  |  |
| Introductio                                                     | on                                                                            |         |  |  |
| 4.1. RU                                                         | SLE parameter estimation                                                      | 45      |  |  |
| 4.1.1                                                           | Rainfall-Runoff Erosivity Factor (R)                                          | 47      |  |  |
| 4.1.2                                                           | Soil Erodibility Factor (K)                                                   |         |  |  |
| 4.1.3                                                           | Slope Length and Slope Steepness Factor (LS)                                  | 59      |  |  |
| 4.1.4                                                           | Cover Management Factor (C)                                                   |         |  |  |
| 4.1.5                                                           | Support Practice Factor (P)                                                   |         |  |  |
| 4.1.6                                                           | Effect of ash concentration on turbidity in the N'djili River                 | 91      |  |  |
| 4.2. Sun                                                        | nmary                                                                         |         |  |  |
| Chapter 5 : A                                                   | APPLICATION AND RESULTS                                                       |         |  |  |
| Introduction                                                    | Dn                                                                            |         |  |  |
| 5.1. The                                                        | e Annual Average Soil Loss Rate (A)                                           | 96      |  |  |
| 5.2. Sed                                                        | iment yield – Sediment rating curve                                           |         |  |  |
| 5.2.1.                                                          | Daily sediment load or sediment rating curve of the N'djili River             | 105     |  |  |
| 5.2.2.                                                          | Annual sediment load of the N'djili River                                     |         |  |  |
| 5.3. Spe                                                        | cific Degradation of the N'djili River Basin                                  |         |  |  |
| 5.4. Sed                                                        | iment Delivery Ratio                                                          | 111     |  |  |
| 5.5. Dis                                                        | cussion of results and Limitations                                            |         |  |  |
| 5.6. Sun                                                        | nmary:                                                                        |         |  |  |
| Chapter 6 : S                                                   | SUMMARY AND CONCLUSIONS                                                       | 118     |  |  |
| Chapter 7 : F                                                   | RECOMMENDATIONS AND PERSPECTIVES                                              | 121     |  |  |
| REFERENC                                                        | ES                                                                            |         |  |  |
| Appendix A:                                                     | Rainfall, Turbidity and Discharge Dataset                                     | 131     |  |  |
| Appendix B:                                                     | Rainfall-Runoff Erosivity Factors & Cross validation of interpolation methods | ods 163 |  |  |
| Appendix C: Short Term C-Factor & Classification error analysis |                                                                               |         |  |  |
| Appendix D:                                                     | Pictures of Laboratory Experiment                                             |         |  |  |
| Appendix E:                                                     | Annual Average Soil Loss Maps, Sediment rating curves, Annual Sediment        | t Load. |  |  |
|                                                                 |                                                                               |         |  |  |

# LIST OF TABLES

| TABLE $1.1$ - Total losses caused by pumping disruption due to high turbidity in 2013      |    |
|--------------------------------------------------------------------------------------------|----|
| (LUKAYA TREATMENT PLANT)                                                                   | 7  |
| TABLE 2.1 - GENERAL SEDIMENT DELIVERY RATIOS (BASED ON UNITED STATES SOIL                  |    |
| CONSERVATION SERVICE (1971)).                                                              | 24 |
| TABLE 3.1 - RAINFALL GAUGE STATIONS OF THE N'DJILI BASIN                                   | 32 |
| TABLE 3.2 - SOIL CLASSIFICATION OF THE N'DJILI RIVER BASIN                                 | 35 |
| TABLE 3.3 - FEATURES OF DOWNLOADED IMAGES                                                  | 38 |
| TABLE 4.1 - RAINFALL-RUNOFF EROSIVITY FACTOR                                               | 52 |
| TABLE 4.2 - SOIL ERODIBILITY FACTOR (K) (SCHWAB ET AL. 1981)                               | 57 |
| TABLE 4.3 - SOIL ERODIBILITY FACTOR (K) OF THE N'DJILI RIVER BASIN                         | 58 |
| TABLE 4.4 - INFORMATIONAL CLASSES USED FOR THE IMAGE CLASSIFICATION                        | 72 |
| TABLE 4.5 - Area covered by each land cover/use type in the N'djili River Basin (1995      | _  |
| 2013)                                                                                      | 73 |
| TABLE 4.6 - C-FACTOR ESTIMATE FOR LAND COVER "SETTLEMENTS"                                 | 79 |
| TABLE 4.7 - PERCENT OF BARE SOIL FOR THE BURNED AREAS BASED EQUATIONS $4.12$ and $4.13$ in | ſ  |
| THE CASE OF TIME-VARIANT OPTION.                                                           | 80 |
| TABLE $4.8 - MONTHLY C$ values for the burned areas                                        | 82 |
| TABLE $4.9 - MONTHLY C$ values for the burned areas                                        | 83 |
| TABLE $4.10 - Annual$ cover management factor for the land cover "Bare land/burne"         | D  |
| GRASS/PLOWED LAND/RAINFED CROPS"                                                           | 85 |
| TABLE 4.11 - COVER MANAGEMENT FACTOR FOR DIFFERENT LAND COVER TYPES                        | 85 |
| TABLE 4.12 – EFFECT OF ASH ON WATER TURBIDITY                                              | 93 |
| TABLE 5.1 - ANNUAL AVERAGE SOIL LOSS RATE FOR 1995, 2001 AND 2013                          | 97 |
| TABLE 5.2 - ANNUAL AVERAGE SOIL LOSS BASED ON THE LAND COVER IN 1995      1                | 03 |
| TABLE 5.3 - ANNUAL AVERAGE SOIL LOSS BASED ON THE LAND COVER IN 2001    1                  | 03 |
| TABLE 5.4 - ANNUAL AVERAGE SOIL LOSS BASED ON THE LAND COVER IN 2013    1                  | 04 |
| TABLE 5.5 - Specific degradation values of the N'djili River Basin in 2005 and 20131       | 10 |
| TABLE 5.6 - SEDIMENT DELIVERY RATIOS 1                                                     | 12 |
| TABLE 5.7 - SENSITIVITY ANALYSIS OF SOIL EROSION AND SLOPE (A); SLOPE LENGTH (B) (OUYANG   | G  |
| AND BARTHOLIC 2001)1                                                                       | 15 |

# LIST OF FIGURES

| FIGURE 1.1 – LOCATION OF THE DEMOCRATIC REPUBLIC OF CONGO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | l      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| FIGURE 1.2 – MAP OF KINSHASA AREA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3      |
| FIGURE $1.3 - D$ ISCHARGE OF HIGHLY TURBID WATER IN THE LUKAYA RIVER DURING A RAINSTORM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1      |
| FIGURE 1.4 – WATER TREATMENT PLANTS IN THE N'DJILI RIVER BASIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5      |
| FIGURE 1.5 – NUMBER OF WATER PUMPING DISRUPTIONS PER YEAR AT THE N'DJILI WATER<br>TREATMENT PLANT DUE TO HIGH TURBIDITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ń      |
| FIGURE 1.6 – EXCEEDANCE PROBABILITY CURVES OF TURBIDITY AT THE INTAKE OF THE N'DUILI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | í      |
| WATER PLANT FOR THE PERIODS 2000-2005 AND 2006-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5      |
| FIGURE 1.7 – CLEANING OPERATIONS OF DIVERSION CANAL OF THE LUKAYA WATER PLANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ĺ      |
| (PICTURE: REGIDESO, 2013)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3      |
| FIGURE 2.1 – THE MECHANISMS OF SOIL EROSION (USACE 1985)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2      |
| FIGURE 2.2 - SEDIMENT YIELD VS PERCENT BARE SOIL FOR RAINFALL SIMULATIONS, BOBCAT FIRE (MACDONALD 2012)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5      |
| FIGURE 2.3 - PERCENT BARE SOIL VS TIME SINCE BURNING, BOBCAT FIRE (MACDONALD 2012) 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7      |
| FIGURE 2.4 - A, MEAN DAILY DISCHARGE IN 2011 AND HISTORICAL MEAN DAILY DISCHARGE,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
| FOURMILE CREEK. B, DAILY PRECIPITATION. DATA FROM MURPHY ET AL., 2012. 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )      |
| FIGURE 2.5 - STREAM DISCHARGE AT 5-MINUTE INTERVALS AND SELECTED WATER QUALITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |
| CHARACTERISTICS IN 2010-2011 MEASURED IN FOURMILE CREEK, COLORADO, AT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| MONITORING STATIONS FCCR, FCLM, AND FCBC (WRITER ET AL., 2012)20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | )      |
| FIGURE 2.6 – PROCEDURES OF RUSLE IMPLEMENTATION IN ARCGIS (AFTER OMAR 2010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5      |
| FIGURE 3.1 - MAP OF THE N'DJILI RIVER BASIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3      |
| FIGURE 3.2 - MONTHLY RAINFALL IN THE N'DJILI BASIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | )      |
| FIGURE 3.3 – DIGITAL ELEVATION MODEL (DEM) OF THE N'DJILI RIVER BASIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3      |
| $FIGURE \ 3.4-LOCATION \ OF \ THE \ CLIMATIC \ STATIONS \ IN \ AND \ AROUND \ THE \ N'DJILI \ RIVER \ BASIN \ \ 34-LOCATION \ OF \ THE \ CLIMATIC \ STATIONS \ IN \ AND \ AROUND \ THE \ N'DJILI \ RIVER \ BASIN \ \ 34-LOCATION \ OF \ THE \ CLIMATIC \ STATIONS \ IN \ AND \ AROUND \ THE \ N'DJILI \ RIVER \ BASIN \ \ 34-LOCATION \ OF \ THE \ CLIMATIC \ STATIONS \ IN \ AND \ AROUND \ THE \ N'DJILI \ RIVER \ BASIN \ \ 34-LOCATION \ OF \ THE \ CLIMATIC \ STATIONS \ IN \ AND \ AROUND \ THE \ N'DJILI \ RIVER \ BASIN \ \ 34-LOCATION \ OF \ THE \ CLIMATIC \ STATIONS \ IN \ AND \ AROUND \ THE \ N'DJILI \ RIVER \ BASIN \ \ 34-LOCATION \ STATIONS \ IN \ AND \ AROUND \ THE \ N'DJILI \ RIVER \ BASIN \ \ 34-LOCATION \ STATIONS \ IN \ AND \ AROUND \ THE \ AROUND \ THE \ N'DJILI \ RIVER \ BASIN \ \ \ \ \ \ \ \ $ | 1      |
| FIGURE 3.5 – SOIL MAP OF THE N'DJILI RIVER BASIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5      |
| FIGURE 3.6 – FALSE COLOR COMPOSITE IMAGE OVER THE N'DJILI RIVER BASIN (OUTLINED IN RED)<br>ON 2013/08/13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3      |
| FIGURE 3.7 – FALSE COLOR COMPOSITE IMAGE OVER THE N'DJILI RIVER BASIN (OUTLINED IN RED)<br>ON 2001/04/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )      |
| $FIGURE \ 3.8-FALSE \ COLOR \ COMPOSITE \ IMAGE \ OVER \ THE \ N'DJILI \ RIVER \ BASIN \ (OUTLINED \ IN \ RED)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |
| ON 1995/02/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | )      |
| FIGURE 3.9 -: OBSERVED VALUES OF TURBIDITY IN 2005 AND 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | l      |
| FIGURE 3.10 -: TURBIDITY EXCEEDANCE PROBABILITY CURVES FOR YEARS 2000, 2005 AND 20134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | l      |
| FIGURE 3.11 - SEDIMENT CONCENTRATION VS TURBIDITY IN 2005 AND 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2      |
| FIGURE 3.12 - FLOW RATING CURVE AT THE N'DJILI STATION 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3      |
| FIGURE 3.13 - OBSERVED FLOW IN 2005 AND 2013 AT N'DJILI STATION 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3      |
| FIGURE 4.1 - COMPARISON OF EROSIVITY FACTOR (R) BETWEEN USA AND N'DJILI BASIN STATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3      |
| FIGURE 4.2 - PRECIPITATION MAP OF THE N'DJILI RIVER BASIN (MM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1      |
| FIGURE 4.3 - RAINFALL-RUNOFF EROSIVITY FACTOR MAP OF THE N'DJILI RIVER BASIN (HUNDREDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5      |
| FILIDIS.IIV ACKE, I EAK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,<br>7 |
| I = J = J = J = J = J = J = J = J = J =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1      |

| FIGURE 4.5 - SOIL ERODIBILITY MAP OF THE N'DJILI RIVER BASIN (TON ACRE H $(100)^{-1}$ ACRE <sup>-1</sup> F        | T <sup>-1</sup> |
|-------------------------------------------------------------------------------------------------------------------|-----------------|
| TONF <sup>-1</sup> INCH)                                                                                          | 59              |
| FIGURE 4.6 - SCHEMATIC SLOPE PROFILES OF RUSLE APPLICATIONS (RENARD ET AL., 1997)                                 | 60              |
| FIGURE 4.7 - DETERMINING THE ACCUMULATION OF FLOW                                                                 | 62              |
| FIGURE 4.8 – HISTOGRAM OF SLOPE DISTRIBUTION IN THE N'DJILI RIVER BASIN                                           | 63              |
| FIGURE 4.9 - LS factor derived from Moore and Burch Equation $(1985)$ – Exponent N                                | =               |
| 1.2                                                                                                               | 64              |
| FIGURE 4.10 - LS FACTOR DERIVED FROM MOORE AND BURCH EQUATION (1985) – EXPONENT I                                 | N =             |
| Figure $1.1 - Si$ ode MAD of the N'DIII i BASIN IN DEDCENT DISE                                                   | 05              |
| FIGURE 4.11 – SLOTE MAL OF THE IV DIEL DASH IN TERCENT RISE.                                                      | 00              |
| FIGURE 4.12 – LS FACTOR MALOF THE INDIAL DASIN IN TERCENT RISE.                                                   | 07              |
| FIGURE 4.15 - I INELINE OF THE CROPPING ROTATION SCENARIO IN THE IN DJILL BASIN                                   | 07              |
| AND CAMPAGNA 2013)                                                                                                | тек<br>71       |
| FIGURE 4.15 - LAND COVER MAP OF THE N'DUILL BASIN IN 1995                                                         | 74              |
| FIGURE 4.16 - LAND COVER MAP OF THE N'DILL BASIN IN 2001                                                          | 75              |
| FIGURE 4.17 - LAND COVER MAP OF THE N'DILL BASIN IN 2001                                                          | 75              |
| FIGURE 4.17 EARD COVER MALOF THE IN DIEL DASIN IN 2013.                                                           | 005             |
| = 2013)                                                                                                           | 775             |
| FIGURE $4.19 - PERCENT OF BARE I AND IN BURNED AREAS$                                                             | 81              |
| FIGURE 4.17 TERCENT OF DARE EARD IN DORNED AREAS                                                                  | 01              |
| FIGURE 4.20 – MONTHET C VALUES FOR THE BORNED AREAS                                                               | 02              |
| LAND/DAINEED COORS"                                                                                               | 8/              |
| EXAMPLE CROTS $(1200 \text{ MAD}) = 1000 \text{ MAD}$                                                             | 0-              |
| FIGURE 4.22 – C FACTOR MAP OF THE N DJILI BASIN IN 1993                                                           | 07              |
| FIGURE 4.25 – C FACTOR MAP OF THE N DJILI BASIN IN 2001                                                           | 00              |
| FIGURE 4.24 – C FACIOR MAP OF THE IN DJILI BASIN IN 2015                                                          | 07              |
| 2013)                                                                                                             | 91,<br>91       |
| FIGURE 4.26 - TURRIDITY MEASUREMENT DURING THE LABORATORY EXPERIMENT                                              |                 |
| FIGURE 4.20 TORDIDIT T MEASUREMENT DURING THE EABORATOR TEXTERIMENT.                                              | 92<br>Q/        |
| FIGURE 5.1 DEDIVATION OF THE AVERAGE ANNUAL SOIL LOSS DATE MAD OF THE N'DIH L RIVE                                |                 |
| PIGURE 5.1 – DERIVATION OF THE AVERAGE ANNUAL SOIL LOSS RATE MAP OF THE IV DILL RIVE<br>BASIN                     | л<br>09         |
| EXCLUDE 5.2 A VED A CE ANNULAL SOIL LOSS DATE MAD OF THE N'DILLE DIVED BASIN FOD                                  |                 |
| FIGURE $3.2 - AVERAGE ANNUAL SOIL LOSS KATE MAP OF THE IN DJILL RIVER DASIN FOR CONDITIONS IN 2013$               | 00              |
| FIGURE 5.2 A VEDACE ANNUAL SOILLOSS DATE MAD OF THE N'DILLI DIVED BASIN FOR                                       | , , ,           |
| $\frac{100 \text{Ke} \text{ 5.5} - \text{Average annual sold loss rate may of the N dilli river dasin for}{2001}$ | 100             |
| EXCLUDE 5 $\Lambda$ A ved a ce annulat soli loss date mad of the N'dull Pived Basin for                           | .100            |
| TIGURE 5.4 – AVERAGE ANNUAL SOIL LOSS RATE MAP OF THE IN DJILL RIVER DASIN FOR                                    | 101             |
| EXCLUDE 5.5 EVALUATION OF SOLL LOSS DATE TO LEDANCE IN THE N'DIH L $\mathbf{P}$ as in since 1005                  | 102             |
| FIGURE 5.5 - EVOLUTION OF SOIL LOSS RATE TOLERANCE IN THE IN DJILLI DASIN SINCE 1995                              | .102            |
| TTOURE J.U - ANNUAL AVERAGE SUIL LUSS KATE BASED ON THE LAND COVER IN THE IN DJILLI DA<br>SINCE 1995              | 102             |
| FIGURE 5.7 – LOCATION OF N'DIILI STATION 2                                                                        | 105             |
| FIGURE 5.8 - SEDIMENT RATING CURVE OF THE N'DUIL I RIVER (2005)                                                   | 108             |
| FIGURE 5.9 - SEDIMENT RATING CURVE OF THE N'DILL RIVER (2005)                                                     | 108             |
| FIGURE 5.10 - SEDIMENT CONCENTRATION OF THE N'DILL RIVER (2015).                                                  | 108             |
| FIGURE 5.10 SEDIMENT CONCENTRATION OF THE N DILL RIVER (2003)                                                     | 108             |
| <b>1 1 0 0 1 1 1 0 1 1 1 1 1 1 1</b> 1                                                                            | .100            |

| FIGURE 5.12 - FLOW DURATION CURVES OF THE N'DJILI RIVER FOR YEARS 2005 AND 2013   | .109 |
|-----------------------------------------------------------------------------------|------|
| FIGURE 5.13 - SPECIFIC DEGRADATION (AFTER KANE AND JULIEN, 2007) VERSUS A) ANNUAL |      |
| RAINFALL; AND B) DRAINAGE AREA (JULIEN, 2010)                                     | .111 |
| FIGURE 5.14 - SEDIMENT DELIVERY RATIO OF THE N'DJILI RIVER BASIN                  | .113 |

# LIST OF SYMBOLS

| А                 | Average annual soil loss (ton * acre <sup>-1</sup> * yr)                                         |
|-------------------|--------------------------------------------------------------------------------------------------|
| As                | Specific catchment area $(m^2 * m^{-1})$                                                         |
| A <sub>T</sub>    | Gross erosion per unit area (tons * acre <sup>-1</sup> * yr <sup>-1</sup> )                      |
| С                 | Cover management factor (dimensionless)                                                          |
| C <sub>mg/l</sub> | Sediment concentration (mg/l)                                                                    |
| E                 | Storm energy (ft. * tons * acre <sup>-1</sup> )                                                  |
| I <sub>30</sub>   | Maximum 30-min intensity (in*h <sup>-1</sup> )                                                   |
| K                 | Soil erodibility factor (ton acre h [hundreds of acre-ft tons in-1]                              |
| L                 | Slope length factor (dimensionless)                                                              |
| М                 | Ranked position                                                                                  |
| m                 | a variable slope length exponent                                                                 |
| n                 | a variable slope steepness exponent                                                              |
| ОМ                | Organic matter (%)                                                                               |
| Р                 | Support practice factor (dimensionless)                                                          |
| Р                 | Annual precipitation (mm * year <sup>-1</sup> )                                                  |
| р                 | Exceedance probability (% of time)                                                               |
| Q                 | Water discharge (m <sup>3</sup> )                                                                |
| Qs                | Sediment discharge (ton*day <sup>-1</sup> )                                                      |
| R                 | Average annual erosivity factor (hundreds of ft * tons * acre <sup>-1</sup> * yr <sup>-1</sup> ) |
| S                 | Slope steepness factor (dimensionless)                                                           |
| SD                | Specific degradation (tons * km <sup>-2</sup> * yr <sup>-1</sup> )                               |
| SDR               | Sediment delivery ratio                                                                          |
| SLR               | Soil loss ratio (dimensionless)                                                                  |
| Т                 | Time since burning (years)                                                                       |
| TSS               | Total Suspended Solid (mg/l)                                                                     |
| $X_h$             | Horizontal slope length (ft)                                                                     |

Y Sediment yield (tons yr-1)

# Greek Symbols

| 3 | Rill erosion coefficient (dimensionless) |
|---|------------------------------------------|
| σ | Slope gradient (percentage)              |
| θ | Slope angle (degree)                     |

# LIST OF ACRONYMS

| ANSWERS    | Areal Nonpoint Source Watershed Environmental Resources Simulation                                        |
|------------|-----------------------------------------------------------------------------------------------------------|
| ASTER      | Advanced Spaceborne Thermal Emission and Reflection Radiometer                                            |
| BCEOM      | Bureau Central d'Études pour les Équipements d'Outre-Mer                                                  |
| CASC2D-SED | CASCade 2 Dimensional SEDimentation                                                                       |
| CIA        | Central Intelligence Agency                                                                               |
| CREAMS     | Chemicals, Runoff, and Erosion from Agricultural Management System                                        |
| CSU        | Colorado State University                                                                                 |
| DEM        | Digital Elevation Model                                                                                   |
| DOC        | Dissolved Organic Carbon                                                                                  |
| DRC        | Democratic Republic of Congo                                                                              |
| ESRI       | Environmental System Research Institute                                                                   |
| GAMES      | Guelph Model for evaluating the effects of Agriculture Management<br>Systems on Erosion and Sedimentation |
| GDEM       | Global Digital Elevation Model                                                                            |
| GIS        | Geographic Information System                                                                             |
| IDW        | Inverse Distance Weighting                                                                                |
| ISRIC      | International Soil Reference and Information Centre                                                       |
| METTELSAT  | Agence Nationale de Météorologie et de Télédétection par satellite                                        |
| METI       | Ministry of Economy, Trade and Industry                                                                   |
| MUSLE      | Modified Universal Soil Loss Equation                                                                     |
| NASA       | National Aeronautics and Space Administration                                                             |
| NRCS       | Natural Resources Conservation Service                                                                    |
| NTU        | Nephelometric Turbidity Unit                                                                              |
| REGIDESO   | Régie de Distribution des Eaux                                                                            |
| RUSLE      | Revised Universal Soil Loss Equation                                                                      |
| SAFRICAS   | Société Africaine de Constructions                                                                        |
| SD         | Specific Degradation                                                                                      |

| SDR      | Sediment Delivery Ratio                                              |
|----------|----------------------------------------------------------------------|
| SHE      | Système Hydrologique Européen                                        |
| SLC      | Scan Line Corrector                                                  |
| SLR      | Soil Loss Ratio                                                      |
| SOGREAH  | Société Grenobloise d'Études et d'Applications Hydrauliques          |
| SOTERCAF | Soil and TERrain of Central AFrica                                   |
| SRTM     | Shuttle Radar Topography Mission                                     |
| TREX     | Two dimensional, Runoff, Erosion, and Export                         |
| UNEP     | United Nations Environmental Program                                 |
| UN-FAO   | Food and Agriculture Organization of the United Nations              |
| U.S.     | United State of America                                              |
| USDA     | U.S. Department of Agriculture                                       |
| USGS     | U.S. Geological Survey                                               |
| USLE     | Universal Soil Loss Equation                                         |
| USPED    | Unit Stream Power based Erosion Deposition                           |
| WASP/IPX | Water Quality Analysis Simulation Program/ In-Place Pollutant Export |
| WEPP     | Water Erosion Prediction Project                                     |

## **CHAPTER 1 : INTRODUCTION**

# **Overview**

The Democratic Republic of Congo (known as Zaïre between 1971 and 1997) is located in Central Africa. It borders the Republic of the Congo, the Central African Republic, and South Sudan to the north, Uganda, Rwanda, Burundi and Tanzania to the east, Zambia and Angola to the south and the Atlantic Ocean to the west (Figure 1.1).



Figure 1.1 – Location of the Democratic Republic of Congo

The Democratic Republic of Congo (DRC) is the second largest country in Africa by area and the eleventh largest in the world. With a population of over 75 million (CIA 2014), the DRC is the most populous officially Francophone country, the fourth most populous nation in Africa, and the nineteenth most populous country in the world. The DRC is extremely rich in natural resources, especially in fresh water resources. With an estimated 52 % of Africa's surface water reserves (rivers, lakes and wetlands), the D.R.C. occupies almost 62% of the Congo River Basin. The Congo River boasts the largest discharge volume in Africa (1,260 km<sup>3</sup>), equivalent to 15 times the mean annual runoff the Nile River and second in the world after the Amazon River (UNEP 2011). With high precipitation, the highest frequency of thunderstorms in the world and the annual rainfall varying between 800 mm/year and 2000 mm/year, DRC sustains the Congo Rainforest, the second largest rain forest in the world (after Amazon), which is surrounded by plateaus merging into savannas in the south and southwest, by mountainous terraces in the west, and dense grasslands extending beyond the Congo River to the north (UNEP 2011).

More than 60% of the DRC population live in rural areas whereas the rest lives in the numerous cities across the country. Kinshasa, the capital city, is the largest city of Congo. Its population is continually increasing since the independence of country in 1960. As with other major African cities, the growing population between 1960 and 1996 was due to rural-urban migration. With about 200,000 people in 1960, the population of Kinshasa city was about 2 million people in 1996. Between 1996 and 2013, the population of Kinshasa city increased from about 2 million to over 9 million people, essentially because of the civil wars which happened in the country between 1996 and 2003. Indeed, people from the inland country were fleeing to Kinshasa city and its neighborhood, which was the only safe place during this troubled period.

Kinshasa area (Figure 1.2) relies on 3 main watersheds for potable water: N'djili basin, Lukunga basin and N'sele basin. The N'djili River and its tributaries (Lukaya River) are the most important potable water resource of Kinshasa city, satisfying almost 70% of its demand (about 365,000 m<sup>3</sup>/day of potable water) (BCEOM 2006).



Figure 1.2 – Map of Kinshasa area

With the increasing of the population during the last decades, the national water utility (REGIDESO) is continuously required to update the water supply in order to satisfy the population needs, despite several political, economic, technical and environmental constraints. Over the last three decades, a critical environmental issue erupted, making the water abstraction operations from the alluvial rivers of the Kinshasa area erratic during and/or after heavy rainfalls. Indeed, increasingly high turbidity levels are observed since the beginning of the 1980s in the three rivers that provided potable water to the Kinshasa city: N'djili, Lukaya and Lukunga Rivers (UNEP 2011). Specifically for the N'djili River, which drains water from an area of 2,097 km<sup>2</sup>, the average daily turbidity level was less than 30 NTU in 1970's at the intake of the N'djili water treatment plant. Nowadays, it typically varies between 100 and 400 NTU with peak values as

high as 1000 and 6000 NTU during rainstorms (UNEP 2011). Those high turbidity levels and suspended sediment concentrations are also observed in the Lukaya River, which is the main tributary of the N'djili River. Figure 1.3 shows turbid water discharge in the Lukaya River after a rainstorm in 2011.



# Figure 1.3 – Discharge of highly turbid water in the Lukaya River during a rainstorm.

According to the guidelines of the raw water pumping operations in the N'djili and Lukaya water treatments plants (Figure 1.4), pumping operations are stopped when turbidity values reach or exceed 500 NTU. Figure 1.5 is based on data from REGIDESO. It provides the number of disruptions of pumping operations due to high turbidity events.



Figure 1.4 – Water treatment plants in the N'djili River Basin

Furthermore, using turbidity measurements from 2000 to 2013, two turbidity exceedance probability curves were constructed for the periods 2000 – 2005 and 2006 – 2013 respectively (Figure 1.6). Looking at these turbidity exceedance probability curves, it can be noticed that the value of 500 NTU had 2.7 % of chance to be equaled or exceeded between 2000 and 2005; between 2006 and 2013, the chance to equal or exceed this turbidity value had practically doubled to 5.14 %.

Those high levels of turbidity contribute a lot to the disruption of pumping operations and increase dramatically the cost of chemical water treatment for the water treatment plants located in the N'djili River Basin. To illustrate the economic losses caused by excessive turbidity levels, Table 1.1 presents summary of those losses at the Lukaya water treatment plant due to the

disruption of water pumping operations. Figure 1.7 shows the cleaning of the diversion canal of water coming from the Lukaya River to the water plant.



Figure 1.5 – Number of water pumping disruptions per year at the N'djili water treatment plant due to high turbidity



Figure 1.6 – Exceedance probability curves of turbidity at the intake of the N'djili water plant for the periods 2000-2005 and 2006-2013

| Month                     | Jan     | Feb | Mar | Apr  | May | Jun |
|---------------------------|---------|-----|-----|------|-----|-----|
| Disruption hours          | 32      | 17  | 46  | 44   | 11  | 7   |
|                           |         |     |     |      |     |     |
| Month                     | Jul     | Aug | Sep | Oct  | Nov | Dec |
| Disruption hours          | 0       | 0   | 6   | 34.5 | 32  | 47  |
|                           |         |     |     |      |     |     |
| Total hours of disruption | 276.5   |     |     |      |     |     |
| Hourly Capacity (m3/h)    | 1,700   |     |     |      |     |     |
| Total Losses (m3)         | 470,050 |     |     |      |     |     |

Table 1.1 - Total losses caused by pumping disruption due to high turbidity in 2013(Lukaya Treatment Plant)

In its Post-Conflict Environmental Assessment report on DRC (2011), the United Nations Environmental Program (UNEP) monitored the environmental degradations throughout the country and especially in the N'djili River Basin. According to this report, watershed degradations due to the rapid population growth, deforestation, unplanned and anarchic urban development, and agricultural practices like burning are consistently cited as the main causes of elevated sediment concentration in the main rivers of the N'djili basin (UNEP 2011). Although this high suspended sediment concentration and turbidity issue is a threat for a safe drinking water supply for Kinshasa City, there is no study that relates the effects of watershed degradation on the turbidity in the N'djili River during the last decades.



Figure 1.7 – Cleaning operations of diversion canal of the Lukaya water plant (Picture: Regideso, 2013)

# **Objectives**

The overall objective of this thesis is to quantify the effects of watershed changes on gross soil erosion, which ultimately affects the turbidity in the N'djili River. The soil erosion rates for different land use and land cover scenarios in the N'djili River Basin will be predicted and the sediment yield at the intake of the N'djili water treatment plant estimated. The soil erosion rate prediction will be based on the Revised Universal Soil Loss Equation (RUSLE) model in a GIS-based environment. The specific objectives are:

- 1. Determine the change in land cover/use of the N'djili basin for 1995, 2005 and 2013.
- 2. Predict and map the annual average soil loss rate at the basin scale and determine the effects of land cover/use change on soil erosion.
- Estimate the sediment yield and the sediment delivery ratio at the water intake of the N'djili water treatment plant.

4. Quantify the effects of ash concentration on the turbidity in order to understand the high turbidity values observed at the beginning of the rainy season.

Chapter 2 reviews soil erosion processes, soil erosion models, post-fire recovery, wildfire impact on turbidity, Geographic Information Systems (GIS) and sediment delivery ratio. A short description of the N'djili River Basin along with the data set needed for the soil erosion prediction and the sediment yield computation is given in Chapter 3. Chapter 4 describes the procedure to estimate the annual average soil loss rate using the RUSLE model parameters. In Chapter 5, soil erosion rates at different dates due to different land cover/use scenarios will be presented and discussed. Chapter 6 presents the conclusions.

### **CHAPTER 2 : LITERATURE REVIEW**

#### Introduction

This chapter gives a brief overview of erosion in section 2.1, soil erosion process in section 2.2 and erosion models in section 2.3. In section 2.3, sediment delivery ratio is discussed while remote sensing and image interpretation are presented in section 2.4. The last section (section 2.5) presents an overview on the Geographic Information System (GIS) in which the Revised Universal Soil Loss Equation (RUSLE) model will be implemented for soil erosion prediction.

# 2.1 Overview of erosion

In the past century, a distinction between natural (geological) erosion and human-induced (or accelerated) erosion was widely admitted, regarding the latter as a mainly local phenomenon (Vanoni 1975). Nowadays, this view is outdated. Analyzing the estimated annual global volumes of erosion due to various agents, Hooke (1994) came to the conclusion that humans can be considered as the "most important geomorphic agent currently shaping the surface of the Earth." However, other authors like Valdiya (1998) demonstrated that geological erosion in mountains, such as the one that taking place in the Himalayas, continues to produce enormous sediment volumes.

The distinction between natural erosion process and those due to human influences is often difficult. Although some erosional processes like gullying and landslides appear natural, they may have been triggered or aggravated by overgrazing, infiltration of irrigation water, or deforestation (MacArthur et al. 2008).

# **Natural or Geologic Erosion**

The main causes of the natural erosion are tectonic uplift, weathering, chemical decomposition and the long-term action of water, wind, gravity, and ice (MacArthur et al. 2008). Based on the average rates of natural erosion estimated for major world drainage basins by Summerfield and Hutton (1994), rates of geologic erosion vary widely over regions and time, and tend to be slow in terms of human lifetime. For some projects, the control of this natural erosion can be necessary, though it is often difficult or impractical because of large distributed areas involved in such erosion type and divided among multiple owners. Prior natural erosion rates can be dramatically accelerated by poorly designed and implemented land or water use projects.

#### **Human-Induced or Accelerated Erosion**

Human activities are the major cause of the accelerated erosion. The impacts of human activities start slowly but can lead to dramatic rapid changes in morphology, sediment production, and deposition (MacArthur et al. 2008). Whereas humans possessed a relatively limited impact on geologic landscape prior to the nineteenth century, the degradation of the global landscape and the environment was accelerated by the human activities in the nineteenth and twentieth centuries (Hatheway 2005). Some of these activities often lead to environmental degradation and damage habitat, while causing sedimentation problems and impacting constructed facilities. There are multiple causes of accelerated erosion including agricultural activities, forest activities, urbanization, roads, railways, bridges, and levees, mining activities, dams and river regulation, warfare and population migrations (MacArthur et al. 2008).

# 2.2 Soil Erosion Process

As shown in Figure 2.1, several erosion processes can be identified. The first one, the splash erosion, starts when raindrop impact on the ground surface detaches particles (Julien 2002). After been detached, particles are transported to the rills by a thin overland flow. Rill erosion is an erosion process that occurs when water from the sheet erosion combines to form small concentrated channels (Fortuin 2006). This is the most common type of surface erosion and is small enough to be removed by normal tillage operation. When water in rills concentrates to form larger channels, it results in gully erosion (Fortuin 2006). Stream channel erosion takes place when concentrated water which forms from rills and gullies, and contains sediment removed from streambed and stream bank (Fortuin 2006). When the amount of detached soil overcomes the transport capacity, only the sediment corresponding to the transport capacity will be carried downslope and the rest will be deposited in the channel.



Figure 2.1 – The mechanisms of soil erosion (USACE 1985)

# 2.3 Soil Erosion Models

In order to understand and to predict upland soil and stream erosion, as well as the transport and deposition of sediment, several erosion models have been developed. Most of the soil erosion prediction methods were first developed in the US, based on different equations. Over the years, these equations were improved by adding new variables and factors.

One of the first rational soil erosion equation was developed by Smith and Whitt and its goal was to estimate soil losses from fields of claypan soils (Smith and Whitt 1947). The factors in this equation are the specific rotation, slope length, slope steepness, row direction, soil erodibility and support practice.

One of the major innovation in soil and water conservation during the past century was the development of the Universal Soil Loss Equation (USLE), which is an empirical model used around the world to estimate soil erosion by raindrop impact and surface runoff. In 1965, Wischmeier and Smith developed the USLE model, based on the data collected from more than 10,000 test plot-years across the US in 20 years (Wischmeier and Smith 1965). These test plots were designed to accurately estimate soil erosion under different conditions. Each experimental plot was 6 feet wide by 72.6 feet long, representing 1% of an acre. In this research, a variety of factor affecting soil erosion including precipitation, slope steepness, slope length, soil type, type of crops, and conservation practices were studied. An updated of this model was published in 1978 in Agriculture Handbook 537.

Successive efforts have been made by researchers in the last 3 decades to upgrade and improve the USLE model. Many erosion models represent great improvements of the original model, among of them the Modified Universal Soil Loss Equation (MUSLE) developed by Williams in 1975, the Areal Nonpoint Source Watershed Environmental Resources Simulation

(ANSWERS) (Beasley et al. 1980), the Guelph Model for evaluating the effects of Agriculture Management Systems on Erosion and Sedimentation (GAMES) (Rudra et al. 1986), the Unit Stream Power – based Erosion Deposition (USPED) (Mitasova et al. 1996), and the Revised Universal Soil Loss Equation (RUSLE) (Renard et al. 1997).

The Revised Universal Soil Loss Equation (RUSLE) is a computerized version of the USLE. It incorporates improvements in many of the factor estimates including a new procedure to calculate cover factor, new algorithms to reflect rill to interill erosion in slope length and steepness factors. Also, the climatic factors based on extended database of rainfall-runoff in Western US was added in the RUSLE model. Further-enhanced Windows version of the software, known as RUSLE2, was recently released for guiding conservation planning, inventory erosion rates and estimate sediment delivery.

In 1985, the USDA initiated the Water Erosion Prediction Project (WEPP) model for soil erosion prediction. This model is used in soil and water conservation planning and assessment (Foster and Lane 1987). The WEPP model is a process-based, distributed parameters, capable of doing both single-event and continuous simulation erosion prediction. This model relies on the fundamentals of stochastic weather generation, infiltration theory, hydrology, soil physics, plant science, hydraulics and erosion mechanics (Flanagan et al. 1995). Although this model does not implement the USLE for parameter estimation, it can predict soil erosion, sediment transport, and deposition across the landscape by using a steady-state sediment continuity equation for predicting rill and interill erosion processes. WEPP model can be used for small watersheds or hillslopes.

CASC2D or CASCade of planes in 2-Dimensions, was initially developed at Colorado State University in Fort Collins, Colorado (Julien and Saghafian 1991; Julien et al. 1995).

Further, it was modified at the University of Connecticut (Ogden 1998; Ogden and Julien 2002). CASC2D is a physical based model that simulates water and sediment in two-dimensional overland grids and one-dimensional channels and has both single-event and long-term continuous simulation capabilities.

Based on SHE, the European Hydrological System (Abbott et al. 1986a; 1986b), MIKE SHE (Refsgaard and Storm 1995) is a comprehensive, distributed, and physically based model that simulates water, sediment, and water-quality parameters in two-dimensional overland grids, one-dimensional channels, and one-dimensional unsaturated and three saturated flow layers. As the CASC2D model, MIKE SHE can perform both single-event and long-term continuous events. The model was developed by a consortium of the U.K. Institute of Hydrology, the French consulting firm SOGREAH, and the Danish Hydraulic Institute (Borah et al. 2007).

Two-dimensional Runoff Erosion and Export (TREX) model is a watershed models developed at Colorado State University in Fort Collins, Colorado. It combines surface hydrology and sediment transport features from CASC2D watershed model with chemical transport feature from the WASP/IPX series of water quality models to simulate chemical transport and fate process at the watershed scale (Velleux et al. 2008; England et.al. 2007; Ambrose et al. 1993; Velleux et al. 2001).

# 2.4 Post-fire Recovery and Restoration

According to MacDonald (2012), high-severity wildfires increase runoff and sediment production rates by several orders of magnitude. Accordingly, sediment production rates from high-severity sites are nearly an order of magnitude higher than sites burned at moderate or low severity. Also, MacDonald (2012) found that percent ground cover is the most important control

on post-fire erosion rates (Figure 2.2), and seeding and scarification do not increase ground cover or reduce erosion rates.



Figure 2.2 - Sediment yield vs percent bare soil for rainfall simulations, Bobcat Fire (MacDonald 2012)

Moreover, results from MacDonald (2012) demonstrates that the percentage of bare soil (and so the gross soil erosion) tends to decrease when the time since burning increases (Figure 2.3) and the percentage of bare soil varies tremendously with the time since burning.



Figure 2.3 - Percent bare soil vs time since burning, Bobcat Fire (MacDonald 2012)

# 2.5 Turbidity – Wildfire Impact on Turbidity

Turbidity is the amount of cloudiness or relative clarity of a liquid. It is an optical property of fluid containing particles, expressed as the amount of light that is scattered by particles in the fluid. In case of water, high turbidity is observed in a river full of mud and silt where it would be impossible to see through the water while low turbidity is observed in spring water which appears to be completely clear. Turbidity is usually measured in Nephelometric Turbidity Units (NTU) or Jackson Turbidity Units (JTU), or even in Formazin Turbidity Unit (FTU). Turbidity can be caused by:

- Clay, silt, sand and mud;
- Bacteria and other germs;

- Algae, soluble colored organic compound, plankton and other microscopic organisms;
- Chemical precipitates.

Burned watersheds are subject to increased flooding and erosion, with consequences on water quality, drinking-water treatment processes and water-supply reservoirs. After 2010 Fourmile Canyon fire near Boulder, Colorado, US Geological Survey initiated a study to assess the impacts of this wildfire (Writer et al. 2012). Principal findings from the first year of research demonstrated that stream discharge and nitrate concentrations increased downstream of burned area. Also, during and after high-intensity thunderstorms, turbidity, dissolved organic carbon, nitrate and some metals increased by 1 to 4 orders of magnitude within and downstream of the burned area. These findings are illustrated in Figures 2.4 and 2.5. Figure 2.4 presents the discharge observed at the most downstream point of the Fourmile creek and caused by daily precipitation since the fire date (September 6<sup>th</sup> to 10<sup>th</sup>) the discharge. Figure 2.5 shows the waterquality response to post-fire precipitation events. In this figure, it can be noticed that the thunderstorms on July 7 and July 13, 2011 transported huge amount of sediment from hillslopes to Fourmile Creek leading to large increases in concentration of DOC (greater than 70 mg/L) and of nitrate (greater than 9 mg/L) and in turbidity (as much as 50,000 NTU) (Murphy et al. 2012; Writer et al. 2012)



Figure 2.4 - A, Mean daily discharge in 2011 and historical mean daily discharge, Fourmile Creek. B, Daily precipitation. Data from Murphy et al., 2012.



Figure 2.5 - Stream discharge at 5-minute intervals and selected water quality characteristics in 2010-2011 measured in Fourmile Creek, Colorado, at monitoring stations FCCR, FCLM, and FCBC (Writer et al., 2012).

# 2.6 Sediment yield – Sediment rating curve

Sediment yield by a stream or the stream sediment load is the total sediment delivered past a point of interest or the watershed outlet during any given time (Borah et al. 2007). The stream sediment load can be determined using either a short-term or a long-term analysis. The short-term analysis of sediment load is performed generally on a daily basis expressing often the magnitude and variability of sediment transport during rainstorm or snowmelt events (Julien 2010). On the other hand, the long-term sediment load analysis estimates the amount of sediment yielded by a stream. On an annual basis, it gives the mean annual sediment load of a stream (Julien 2010). The long-term sediment is utilized for reservoir sedimentation, sediment budget and degradation studies.

## 2.8.1. Daily sediment load or sediment rating curve

The sediment rating curve or daily total sediment discharge in tons per day is the product of the daily mean water discharge, the flux-averaged total sediment concentration, and a unit conversion factor, as expressed by Equation 2.1 (Julien 2010).

$$Q_{s}(\text{metric tons/day}) = 0.864 C_{mg/l}Q(\text{in m}^{3}/\text{s})$$
(Eq 2.1)

Where:

 $Q_s$  = the total sediment discharge in tons per day;

 $C_{mg/l}$  = the flux averaged total sediment concentration in mg/l;

Q = the daily mean water discharge in m<sup>3</sup>/s.

#### 2.8.2. Annual sediment load

Two basic approaches can be used to determine the long-term average sediment load of a river: (1) the summation approach; and (2) the flow duration curve approach. The summation approach utilizes the mass curves method to determine the cumulative sediment load as function
of time in years. The second approach combines a sediment-rating curve between total sediment discharge or flux-averaged concentration, and water discharge; and a flow-duration curve (Julien 2010)

# 2.7 Specific Degradation of the N'djili River Basin

As defined, sediment yield Y is the total sediment delivered past a point of interest or the basin outlet over a specified period of time and it is generally measured in tons per year. For a given watershed or basin, the specific degradation SD is obtained by dividing the yield Y by the drainage area A of the watershed. Therefore:

$$SD = \frac{Y}{A}$$
(Eq 2.2)

Where:  $SD = specific degradation in metric tons/km^2.year$ ,  $A = drainage area in km^2$ .

### 2.8 Sediment Delivery Ratio

The sediment delivery ratio  $(S_{DR})$  is the ratio of the sediment yield Y at a given stream cross-section to the gross erosion  $A_T$  from the watershed upstream of the measuring point (Julien 2010). The gross erosion  $A_T$  is the total soil eroded in a drainage area or watershed through interrill, rill, gully, and stream erosion processes. Therefore, the sediment delivery ratio is given by the expression:

$$S_{\rm DR} = \frac{Y}{A_{\rm T}}$$
(Eq 2.3)

Where:  $S_{DR}$  = sediment delivery ratio,  $A_T$  = gross erosion from the watershed upstream of the measuring point.

The sediment delivery ratio can be considered as the fraction of the gross erosion that is expected to be delivered to the point of the watershed under consideration. It is dependent upon drainage area size, watershed characteristics such as relief and stream length, sediment source and its proximity to the stream, transport system, and texture of the eroded material (Borah et al. 2007). Therefore, the sediment delivery ratio decreases with larger drainage areas which have more chance to trap sediment in lakes, reservoirs, and flood plains, reducing the amount of sediment reaching the streams. Also, for example, watershed with steep slope is more likely to have higher sediment delivery ratio than a watershed with mild to low slope. Moreover, watersheds with more bare soil are more likely to have a higher sediment delivery ratio compared to the same watershed with a forest cover. Taking into account the previous considerations, no generalized sediment delivery ratio relationship can be applied successfully to every situation. However, many studies established trends in the sediment delivery ratio for specific areas. The most common trend for sediment delivery ratio and basin area. The following lines present different S<sub>DR</sub> curves from The United States Soil Conservation Service (1971), Boyce (1975) and Renfro (1975).

#### 2.8.1. Sediment delivery ratio based on United States Soil conservation Service (1971)

In 1971, the United States Soil Conservation Service developed a general sediment delivery ratio versus drainage area relationship from data of earlier studies, showing that the sediment delivery ratio varies approximately inversely as the 0.2 power of the drainage area in acres. Additional variables affect this relationship, since wide scatter of data has been used in this relationship. Table 2.1 shows some estimates of the delivery ratios.

Some considerations regarding other factors that may affect the values at a particular location lead to consider the sediment delivery ratios of Table 2.1 with caution. So, a higher delivery ratio should be used when the eroding soil is fine-textured (high in silt or clay content) and a lower one if the eroding soil is a coarse-textured (high in sand content).

 Table 2.1 - General Sediment Delivery Ratios (Based on United States Soil Conservation Service (1971)).

| Drainage Area (km²) | Sediment delivery ratio |
|---------------------|-------------------------|
| 0.05                | 0.58                    |
| 0.10                | 0.52                    |
| 0.50                | 0.39                    |
| 1                   | 0.35                    |
| 5                   | 0.25                    |
| 10                  | 0.22                    |
| 50                  | 0.15                    |
| 100                 | 0.13                    |
| 500                 | 0.08                    |
| 1000                | 0.06                    |

## **2.8.2.** Sediment delivery ratio after Renfro (1975)

In 1975, Renfro developed a relationship based on the Maner's (1962) equation, relating  $S_{DR}$  with drainage area. This relationship was derived from the sediment yield observation of 14 watersheds in the Blackland Prairie, Texas. The correlation between  $S_{DR}$  and drainage area ( $R^2 = 0.92$ ) is expressed by:

$$\log(S_{DR}) = 1.7935 - 0.14191 \log(A)$$
(Eq 2.4)

Where A is the drainage area in  $km^2$ , and  $S_{DR}$  is the sediment delivery ratio in percentage (%).

# 2.8.3. Sediment delivery ratio after Boyce (1975)

Boyce (1975) developed a relationship between sediment delivery ratio and drainage area by compiling and analyzing sediment yield observation from five areas in continental US. This relationship is:

$$S_{DR} = 0.41 A_T^{-0.3}$$
 (Eq 2.5)

Where  $A_T$  is the drainage area in km<sup>2</sup>, and  $S_{DR}$  is the sediment delivery ratio.

## 2.9 Geographic Information System and Soil Erosion Modeling

Geographic Information System (GIS) is a computerized system that can execute some spatial tasks including capturing, storing, integrating, analysis and visualization of data linked to coordinates or locations (ESRI 2005). GIS combines geostatistical analysis, database and cartography functions that allows the user to identify geographic information, relationships, patterns, and trends (Omar 2010).

GIS has been utilized the environmental management field since 1970s (Kim 2006). About twenty years later, GIS application began in hydrologic and hydraulic modeling as well as in flood mapping. According to Renschler and Harbor (2002), the Geographic Information System has emerged as a powerful decision-making tool allowing to handle spatial information and interaction with erosion models to help solve erosion problems.

The GIS software used in this study is ArcGIS 10.2. Because of satellite image treatment capabilities, the software Idrisi Selva 17.02 is coupled with ArcGIS 10.2 to implement the RUSLE factors and model the soil erosion rate in the N'djili River Basin. Figure 2.6 shows the procedures of the RUSLE implementation in ArcGIS and Idrisi.



Figure 2.6 – Procedures of RUSLE implementation in ArcGIS (after Omar 2010)

### **CHAPTER 3 : SITE DESCRIPTION AND DATASET**

### Introduction

This chapter describes briefly the study area and the dataset used to perform the erosion and sedimentation study in the N'djili basin. Acquisition and pre-processing of topographic, precipitation, soil type and satellite image data are presented in detail.

## **3.1** Overview of the study area

The N'djili River Basin is located in the western part of the Democratic Republic of Congo, between - 4° 21' to - 4° 55' latitude and 15° 07' to 15° 36'longitude (Figure 3.1). Covering an area of about 2,097 km<sup>2</sup>, the N'djili River basin lies between two districts of the Kinshasa City: Tshangu district (eastern part of Kinshasa City) and Mont Amba district (south western part of the Kinshasa city).

The N'djili River basin has several rivers, and the most important are the N'djili River and one of its tributaries, the Lukaya River. With two water supply plants built along the N'djili and the Lukaya Rivers and another one in project, the N'djili basin is the main potable water source of Kinshasa city (BCEOM 2006), providing almost 70% of its demand (about 365,000  $m^{3}/day$  of potable water).

The average, maximum and minimum elevations of the N'djili basin are 428 m, 744 m(south eastern part of the basin) and 274 m respectively (at the basin outlet). In the meanwhile, the average, maximum and minimum slope are 16.2%, 148.4% and 0%, respectively. Maximum and minimum temperature ranges observed in the N'djili River are  $28^{\circ}$  C –  $38^{\circ}$ C and  $16^{\circ}$  C –  $21^{\circ}$ C, respectively.



Figure 3.1 - Map of the N'djili River Basin

The precipitation rate in the N'djili basin is evenly distributed throughout the entire basin. The average annual precipitation is about 1470 mm. A tropical climate is observed over the basin, with 8 months of rain season and 4 months of dry season. More than 90% of the annual precipitation is during the rainy season (Figure 3.2).





The N'djili River is one of the most important tributaries of the Congo River in Kinshasa (Van Caillie 1983), flowing with an average discharge of 22 m<sup>3</sup>/s through the eastern part of the Kinshasa city, from the south to the north where it enters the Congo River.

## **3.2** Data set of the N'djili basin

Several factors such as rainfall distribution and intensity, watershed topography, soil types, land cover and land use influence directly the soil erosion process. Because of institutional weaknesses and recurrent armed conflicts, data availability and quality for hydrologic and/or hydraulic study is a critical issue in the Democratic Republic of Congo. Since the N'djili River is one of the many ungauged rivers in Congo, this study relies on turbidity data measured at the intake of the N'djili water plant by National Water Utility (REGIDESO) and discharge data derived from measurements carried up by the Agriculture (Kabuya 2005) and Civil Engineering

colleges of the University of Kinshasa, and by a private company, Opti-Plus. Moreover, some data such as land cover and land use maps for the DRC are available with coarse resolution (at least 1 km by 1 km) that does not fit most of watershed studies. Therefore, satellite images are used in this study to derive land cover and land use maps with the appropriate resolution (30 m by 30 m), rather than coarse land cover/use maps published by UN agencies.

To predict soil erosion and sediment delivery ratio in the N'djili River basin, the following dataset are required:

- 1) Digital elevation model (Data source: METI/NASA/USGS)
- 2) Average daily, monthly and annual precipitation Data (Source: METTELSAT)
- 3) Soil type map (Data source: SOTERCAF)
- 4) Satellite images (Source: NASA/USGS)

5) Turbidity and stream flow data (water surface level, sediment concentration, flow rating curve) (Data source: REGIDESO, Opti-Plus, COLLEGES of AGRICULTURE and NATURAL SCIENCES of the University of Kinshasa)

#### **3.2.1. Digital Elevation Model**

The DEM of the N'djili basin is presented in Figure 3.3. With a spatial resolution of 30 m x 30 m, this DEM is derived from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model Version 2 (GDEM V2), released jointly on October 17, 2011 by the Ministry of Economy, Trade, and Industry (METI) of Japan and the United States National Aeronautics and Space Administration (NASA). This version 2 of ASTER GDEM has less voids than the previous one (ASTER GDEM V1) and gives better results than the SRTM DEM for flat areas (Guosong et al. 2010), like the major part of the

N'djili basin. Also, the spatial resolution of 30 m x 30 m is the determinant advantage for ASTER GDEM V2 over the SRTM DEM, which has a poor spatial resolution (90 m x 90 m).

According to Figure 3.3, the terrain elevation of the N'djili basin ranges from 274 m to 744 m, with an average of 428 m. Several basin and stream features can be determined from the DEM such as: elevation, slope steepness and slope length factors of the RUSLE model, drainage area, stream relief ratio, etc.

#### **3.2.2.** Precipitation Data

Daily average precipitation data were provided by the National Meteorological agency, (Agence Nationale de Météorologie et de Télédétection par satellite, METTELSAT), which is in charge of collecting precipitation data for the entire country since 1950s. For the N'djili basin, daily average precipitation data from 10 manual gauging stations located around (6 gauging stations) and inside of (5 gauging stations) the basin were obtained and processed to compute the rainfall runoff erosivity factor of the RUSLE method. The table 3.1 shows summarized information about these 10 stations: name, identification number, location, available recorded years and average annual precipitation.

According to Wischmeier and Smith (1978), at least 20 years of rainfall records should be used to compute the rainfall runoff erosivity factor of the RUSLE model in order to accommodate the variation of the climate. Also, the correct assessment of this rainfall runoff erosivity factor requires rain gauge recording at short time intervals (for example 1-10 min) no more than 30 minutes. So, since the data provided by METTELSAT are daily average and some gauging station for the N'djili basin show recording time less than 20 years, some limitation on calculating the rainfall runoff erosivity factor appears in this study. Figure 3.4 presents the location of the rain gauge stations around and inside of the N'djili River Basin.

| Station_Id | Rainfall station | Longitude | Latitude | Available recorded year | Average<br>Precipitation<br>(mm/year) |
|------------|------------------|-----------|----------|-------------------------|---------------------------------------|
| 64210      | N'djili          | 1.544     | -4.39    | 1961-2006               | 1497                                  |
| 64220      | Binza            | 1.524     | -4.36    | 1961-2012               | 1468                                  |
| 64211      | Ndolo            | 1.532     | -4.32    | 1962-2004               | 1348                                  |
| -          | Rifflart         | 1.535     | -4.42    | 1957-1983               | 1472                                  |
| -          | Kimwenza         | 1.529     | -4.46    | 1957-1965               | 1491                                  |
| -          | Luzumu           | 1.536     | -4.66    | 1956-1968               | 1486                                  |
| -          | Kasangulu        | 1.517     | -4.59    | 1955-1990               | 1462                                  |
| -          | Luila            | 1.505     | -4.54    | 1957-1984               | 1389                                  |
| -          | Kisembo          | 1.517     | -4.66    | 1957-1977               | 1491                                  |
| -          | Kindamba         | 1.514     | -4.75    | 1957-1981               | 1394                                  |

Table 3.1 - Rainfall Gauge Stations of the N'djili basin

The Appendix A gathers detailed information about the annual average and monthly

average rainfall by climatic stations.



Figure 3.3 – Digital elevation model (DEM) of the N'djili River Basin



Figure 3.4 – Location of the climatic stations in and around the N'djili River Basin

#### **3.2.3.** Soil Classification Map

The soil classification map of the N'djili River Basin is based on the 1:2,000,000 map for the Democratic Republic of Congo compiled from the Soil and Terrain database of Central Africa (SOTERCAF, version 1.0) completed in November 2006. The SOTERCAF compilation has been jointly developed by the Soil Science Laboratory of the University of Ghent (Belgium) and the International Soil Reference and Information Centre (ISRIC) - World Soil Information, Wageningen under contract with the Food and Agriculture Organization of the United Nations (FAO), with the assistance of the Royal Museum for Central Africa (Tervuren, Belgium) and data holders in the DRC. The SOTERCAF derived physiographic units from SRTM grid data based on the Soil and Terrain (SOTER) landform definitions (FAO 2002).

ArcGIS layers were downloaded from the SOTERCAF and clipped over the N'djili River Basin. Using the Conversion tools of ArcToolbox, layers were converted to raster with a spatial resolution of 30 m x 30 m to meet the spatial resolution of other thematic maps used in the RUSLE model.

Based on the clipped soil classification map of the SOTERCAF presented in figure 3.5, three soil regions are encountered in the N'djili River Basin. The table 3.2 gives information about classification and soil texture of the N'djili Basin. The most prevalent texture in the basin is the sandy clay loam, covering about 88.7 % of the basin.

 Table 3.2 - Soil classification of the N'djili River Basin

| No | Soil classification | Soil texture    | (%) of<br>Sand | (%) of<br>Silt | (%) of<br>Clay | Covered<br>Area (%) |
|----|---------------------|-----------------|----------------|----------------|----------------|---------------------|
| 1  | Haplic Acrisols     | Sandy clay loam | 64             | 10             | 26             | 88.7                |
| 2  | Ferralic Arenosols  | Loamy sand      | 81             | 7              | 12             | 7.9                 |
| 3  | Ferralic Arenosols  | Sand            | 95             | 4              | 1              | 3.4                 |



Figure 3.5 – Soil map of the N'djili River Basin

## **3.2.4.** Satellite images

As briefly mentioned in the introduction of point 3.2, a land cover map covering the N'djili Basin is available from the FAO database, but with coarse resolution that doesn't fit the RUSLE modeling of a mid-size basin like the N'djili Basin. Therefore, the choice of creating N'djili Basin Land Cover Maps from the free satellite images became obvious.

To assess the impact of land cover variation over the N'djili basin, satellite images from the Landsat program – which is the longest enterprise for acquisition of satellite imagery of Earth - were selected.

With 8 Earth observation satellites launched since the beginning of the program in 1972, the instruments on the Landsat satellites have acquired millions of archived images which are a

unique resource for global change research and applications in agriculture, cartography, geology, forestry, regional planning, surveillance and education (NASA 2000).

To closely study the effect of the temporal variation of land cover on the gross soil erosion in the N'djili basin, several Landsat scenes taken at different dates are required. Unfortunately, because of important percentage of cloud coverage over the N'djili basin and mainly the issue of the scan line corrector which affects the Landsat 7 mission since May 2003 (Chen et al. 2011), only few satellite images of acceptable quality are available over the basin. Since the scan line corrector failed on Landsat 7, images from this mission show gaps that can be corrected using the SLC-Off/SLC-Off Gap-filled Methodology (Chen et al. 2011), but this correction methodology may affect soil erosion prediction in an area like the N'djili Basin which experienced rapid land cover changes over a year.

Taking into account the constraints above mentioned, 3 Landsat scenes covering the N'djili basin (Path: 182, Row: 063) were downloaded from the USGS Earth Explorer. The table 3.3 presents the features of the downloaded images. It should be mentioned that the images were Level 1 products, preprocessed by the USGS before downloading. Figures 3.6, 3.7 and 3.8 show the false color composite images (Bands 3, 4, 5) of the downloaded scenes as assembled in ArcGIS. To perform a consistent analysis of the increase of soil erosion in the N'djili Basin, the 3 Landsat scenes should have been taken at the same date. Unfortunately, due to the issues previously developed, the last condition is not met.

#### **3.2.5.** Turbidity, Sediment and Stream Flow Data

As mentioned before, the N'djili River is an ungauged river. The only stream flow data and sediment data available were collected by some punctual projects or studies, such as the study carried out by the Agriculture College of the University of Kinshasa (Kabuya 2005), the

rehabilitation project of the N'djili water treatment plant (SAFRICAS 2005), and the feasibility project for a new bridge across the N'djili River (Opti-Plus 2013). Turbidity data are collected by the National Water Utility (REGIDESO) on a daily basis.

| # | Date<br>Acquired | Landsat Sensor                   | Landsat Scene identifier | Cloud<br>cover<br>(%) | Observations                                                                 |
|---|------------------|----------------------------------|--------------------------|-----------------------|------------------------------------------------------------------------------|
| 1 | 2013/08/13       | L8 OLI_TIRS                      | LC81820632013225LGN00    | 1.87                  |                                                                              |
| 2 | 2001/04/30       | L7 ETM + SLC –<br>on (1999-2003) | LE71820632001120EDC00    | 54.14                 | The cloud cover<br>percentage over<br>the N'djili basin<br>is less than 10%. |
| 3 | 1995/02/01       | L4-5 TM                          | LT51820631995032XXX01    | 30                    | The cloud cover<br>percentage over<br>the N'djili basin<br>is less than 10%. |

 Table 3.3 - Features of downloaded images



Figure 3.6 – False color composite image over the N'djili River Basin (outlined in red) on 2013/08/13



Figure 3.7 – False color composite image over the N'djili River Basin (outlined in red) on 2001/04/30



Figure 3.8 – False color composite image over the N'djili River Basin (outlined in red) on 1995/02/01

## Turbidity and Sediment Data

Maximum, minimum and average daily turbidity data have been collected by the National Water Utility (REGIDESO) since the construction of the N'djili and Lukaya Water Treatment Plants respectively in 1970s and 2011. Unfortunately, sediment concentration vs turbidity curves are available only for the years 2005 and 2013. The 2005 - Sediment Concentration vs turbidity curve is derived from the Kabuya study for the Agriculture College (Kabuya 2005), while the 2013- relationship has been established by the College of Science of the Kinshasa University (Tshibangu 2014). Figures 3.9 and 3.10 present, respectively, the observed values of the turbidity in 2005 and 2013 and the turbidity exceedance probability curves for years 2000, 2005 and 2013. Figure 3.11 shows the sediment concentration vs turbidity curves for the same years. Two regression relationships between the turbidity and the TSS are derived from Figure 3.11 (Equations 3.1 and 3.2)

| Log TSS = 0.9269 log NTU + 0.613, for 2005  | (Eq 3.1) |
|---------------------------------------------|----------|
| Log TSS = 0.9327 log NTU + 0.6306, for 2013 | (Eq 3.2) |
| Where:                                      |          |

TSS = total suspended solid expressed in mg/l;

NTU = the turbidity, expressed in Nephelometric Turbidity Unit

More details on observed values of turbidity are presented in Appendix A, including the turbidity exceedance probability curves for each year since 2000.



Figure 3.9 -: Observed values of turbidity in 2005 and 2013



Figure 3.10 -: Turbidity exceedance probability curves for years 2000, 2005 and 2013



Figure 3.11 - Sediment concentration vs Turbidity in 2005 and 2013

#### Stream Flow Data

Water depth data have been collected by the Kabuya study (Kabuya 2005) and the Congolese Engineering firm SAFRICAS (SAFRICAS 2005) during the rehabilitation project of the water intake of the N'djili Water treatment plant in 2005. Using the flow rating curve of this section, discharge values related to these water depths have been computed. In 2013, a local private company, Opti-Plus, conducted 2 flow measurement campaigns at the N'djili Station 2 and upstream at the location selected for the new bridge across the N'djili River. Figure 3.12 shows the flow rating curve at the intake section (N'djili Station 2). Figure 3.13 presents the observed values at the N'djili Station 2 derived from the measured water depth using the flow rating curve at this section.



Figure 3.12 - Flow rating curve at the N'djili Station 2



Figure 3.13 - Observed flow in 2005 and 2013 at N'djili Station 2

# 3.3 Summary

Chapter 3 describes the area of study and the datasets available for the study: topography, daily, monthly and average annual precipitation, soil types, satellite images, turbidity and stream flow data. These data are the input for the soil erosion modeling with the RUSLE equation. Chapter 4 will presents the use of DEM data to compute the slope length – slope steepness factor (LS) map, the development of the rainfall-runoff erosivity factor (R) map from the average annual precipitation, the derivation of the soil erodibility factor (K) map from the soil type map and the land cover classification map from Landsat images to predict the cover management factor (C). Chapter 4 will also present the methodology used to conduct a laboratory experiment whose the goal was to study the effect of ash concentration on the water turbidity.

#### **CHAPTER 4 : METHODOLOGY, PARAMETER ESTIMATION AND MAPPING**

#### Introduction

This chapter describes the concepts of the RUSLE model and the methods to estimate the annual average soil loss rate using the RUSLE equation in a GIS environment. Section 4.1 presents the methods for the RUSLE parameter estimation, the mapping procedures used to derive maps of the soil erosion parameters, and the methodology used to perform a laboratory experiment for measuring the effect of ash concentration on turbidity. In section 4.2, a summary and discussion on the results obtained in section 1 are presented.

#### 4.1. **RUSLE** parameter estimation

The main factors affecting soil erosion are topography, climate, soil, vegetation, land use, and man-made developments (Shen and Julien 2013). Of these, climate is assumed to be beyond human control, and vegetation – and to a lesser extent soil and topography – may be controlled through management (Borah et al. 2008). Predictions of soil erosion and sediment yield are necessary for guiding the making of rational decisions in conservation planning. Therefore, soil erosion prediction equations are developed to enable planners to predict the average rate of soil erosion for alternative combinations of cropping systems, management techniques, and erosioncontrol practices on any particular site (Borah et al. 2008). These equations combine the factors representing these erosion-influencing characteristics. One of these equations is the Universal Soil Loss Equation (USLE) developed originally by Wischmeier and Smith (1965; 1978). The relationships in the USLE are based on thousands of plot-years of data from runoff plots and small watersheds. The USLE predicts soil loss from sheet or interrill erosion and rill erosion from roughly planar hillslope areas (Borah et al. 2008). Using this equation, land management planners can estimate average annual soil erosion rates from upland slopes for a wide range of

rainfall, slope, soil, cover, and management conditions. This equation is a good asset for land management planners to select alternative cover and management combinations that would limit erosion rates to acceptable levels.

In 1997, a revised version of the USLE (RUSLE) was developed (Renard et al. 1997). This revised version is widely used in computer applications and allows more detailed consideration of farming practices and topography for soil erosion prediction. The RUSLE model also represents the impact of climate, soil, topography, and land use combination on rill and interril soil erosion caused by raindrop impact and surface runoff (Renard et al. 1997). In the RUSLE model, it is assumed that soil detachment and deposition are controlled by the sediment load in the flow. Also, it assumed that the erosion, which is not source limited, is only limited by the flow capacity. Under this condition, soil detachment can no longer occur once the sediment load exceeds the sediment flow capacity. The following equation is used by both USLE and RUSLE to compute average annual soil erosion expected on upland (field) slopes:

$$\mathbf{A} = \mathbf{R} \cdot \mathbf{K} \cdot \mathbf{L} \cdot \mathbf{S} \cdot \mathbf{C} \cdot \mathbf{P} \tag{Eq 4.1}$$

Where:

A = computed spatial and temporal average soil loss per unit area, expressed in the units selected for K and for the period selected for R. In practice, K and R are selected so that A is expressed in tons/acre/year or tons/ha/year.

R = rainfall-runoff erosivity factor – the rainfall erosion index plus a factor for any significant runoff from snowmelt.

K = soil erodibility factor – the soil-loss rate per erosion index unit for a specific soil as measured on a standard plot, which is defined as a 72.6-ft (22.1-m) length of uniform 9% slope in continuous clean-tilled fallow.

L = slope length factor – the ratio of soil loss from the field slope length to soil loss from a 72.6ft length under identical conditions. S = slope steepness factor – the ratio of soil loss from the field slope gradient to soil loss from a 9% slope under otherwise identical conditions.

C = cover-management factor - the ratio of soil loss from an area with specified cover and management to soil loss from an identical area in tilled continuous fallow.

P = support practice factor – the ratio of soil loss with a support practice such as contouring, strip cropping, or terracing to soil loss with straight-row farming up and down the slope.

L and S are the topographic-influencing factors of the soil erosion, while C and P are the cropping and management systems factors of influence of the soil erosion. L, S, C and P are dimensionless and normalized with respect to the unit plot conditions along with R and K factors, in accordance with the Agriculture Handbook 703.

#### 4.1.1 Rainfall-Runoff Erosivity Factor (R)

The rainfall-runoff erosivity factor R quantifies the effects of raindrop impact and reflects the amount and rate of runoff likely to be associated with rain (Renard et al. 1997). By holding factors other than rainfall constant, field data indicate that soil losses from cultivated fields are directly proportional to the total storm energy (E) times the maximum 30-min intensity I<sub>30</sub> (Borah et al 2008). Accordingly, the long-term average product of the total storm energy (E) and the maximum 30-min rainfall intensity (I<sub>30</sub>) is, by definition, the R factor. The R factor used to estimate average annual soil loss A, must include the cumulative effects of the many moderatesized storms as well as the effects of the occasional severe ones.

To compute the rainfall-runoff erosivity factor using the original method described by Wischmeier and Smith (1978) and by Renard et al. (1994), extended pluviographical records over a period of 20 years at least, with temporal resolution less than or equal to 30 minutes are strictly required to accommodate apparent cyclical rainfall patterns. However, in many parts of

the world like in Central Africa, this kind of information is difficult to obtain and its processing is time-consuming and hardworking (Bertoni and Neto 1990).

For areas without data and/ or resources required to compute the R-factor values, a general approach has been used by several researches over the world to compute this factor using monthly or annual precipitation data, easier to obtain in most parts of the world. This general approach is based on the extrapolated relationship between R-values estimated from climatic stations having the required data and the associated precipitation data (monthly or annual precipitation data). Renard and Freimund (1994) summarized this general approach in the four following steps:

- R-factor values are computed by the original prescribed method (Wischmeier and Smith, 1978; Renard and Freimund 1994) for stations with recording rain gages;
- a relation between the computed R-values and more readily available types of precipitation data (monthly or annual totals) is established;
- (3) the relation is extrapolated and R-values estimated for stations with the associated precipitation data;
- (4) isolines are drawn between stations and R-values for sites between isoerodents are estimated by linear interpolation.

Several authors have used this approach to develop R-value selection guidelines or isoerodents maps for many parts of the world (Stocking and Elwell, 1976; Rose, 1977; Arnoldus, 1977; Bollinne et al., 1980; Smithen and Schulze, 1982; Lo et al., 1985, Bertoni and Lombardi Neto, 1990; Renard and Freimund, 1994; Yu and Rosewell, 1996; Mikhailova et al., 1997; Torri et al., 2006).

For the N'djili River basin case for which no rainfall intensity or rainfall-runoff erosivity data are available, this study focuses on relationships developed by Renard and Freimund (1994), and Rose (1977) to derive rainfall-runoff erosivity factor for estimating the annual average soil loss of the basin.

The Renard and Freimund's method (1994) for estimating the R-values for climatic stations without long-term rainfall intensity data was developed after analyzing available Rfactor from isoerodent maps and the annual precipitation data from 155 gauge stations in continental USA. The method proposed the following equations for estimating the R-factor:  $R = 0.04830 P^{1.610}$ , P < 850 mm (Eq 4.2)  $R = 587.7 - 1.219P + 0.004105P^2$ ,  $P \ge 850 mm$  (Eq 4.3)

Where:

R = the annual rainfall erosivity, expressed in Mj  $\cdot$  mm  $\cdot$  ha<sup>-1</sup>  $\cdot$  h<sup>-1</sup>  $\cdot$  year<sup>-1</sup>; P = the annual precipitation (mm).

The results obtained using the Renard and Freimund relationship are presented in the table 4.1. In 1977, Rose derived a simple relation between the average annual R and the average annual rainfall P for West Africa. This relationship is based on rain gage records over 5 - 10 years period from 20 meteorological stations in Ivory Coast, Burkina Faso, Senegal, Niger, Chad, Cameroon and Madagascar. The derived relationship is:

$$R = \alpha P \tag{Eq 4.4}$$

With:

$$0.45 \le \alpha \le 0.55$$
 (Eq 4.5)

Where:

R = the annual rainfall erosivity, expressed in ft  $\cdot$  tons  $\cdot$  inch  $\cdot$  acre<sup>-1</sup>  $\cdot$  h<sup>-1</sup>  $\cdot$  year<sup>-1</sup>; P = the annual precipitation (mm).

The Rose relationship is not valid for stations in mountainous regions, for stations directly on the coast, or for stations in the tropical zones between unimodal and bimodal annual rainfall distributions. Since the stations used to derive the rainfall-runoff erosivity factor of the N'djili basin meet the Rose's relationship conditions, the results found by applying his equations can be found in the table 4.1. The table 4.1 gives the results obtained to derive the rainfall-runoff erosivity factor using the Renard and Freimund's method both in SI and US customary units, and the Rose equation in US customary units.

R-values of the N'djili basin from the Renard and Freimund's equation along with those derived from the Rose's expression have been verified for reasonability before using them in the RUSLE model. Due to the similar annual average precipitation and climatic patterns to the N'djili basin, 475 values from the Database of USDA Natural Resources Conservation Service (NRCS) of the rainfall-runoff erosivity factor of counties in states of Alabama, Arkansas, Georgia, Louisiana, Mississippi, Puerto Rico, South Carolina and Tennessee were selected to perform this verification (Figure 4.1). By analyzing the results presented in Figure 4.1, it can be noted that the R values computed using the relationships developed by Renard and Freimund are similar to values of rainfall-runoff erosivity factor from the eight states, in contrast of R-values derived using the Rose's equation. It can also be noticed that the values computed with the Rose's equation are greater than those observed in the eight states for the same amount of annual precipitation.

Based on the reasonability verification performed using the results plotted in Figure 4.1, the R-factor values computed for the stations of the N'djili basin using the Renard and Freimund's equations will be used throughout this study. Results obtained by applying the Precipitation – Erosivity Factor relationships from Bols (1978), Yu and Rosewell (1996),

Mikhailova et al. (1997), Torri et al. (2006) on the N'djili data have been added to Figure 4.1. The Appendix B presents detailed information on these relationships and on the data from the eight states used for the reasonability verification.

To use the R-factor values derived for the N'djili basin for the soil erosion prediction in the ArcGIS environment, an interpolated surface must be created from the R-values at each station. Two sets of interpolation methods can be used for this purpose: deterministic interpolation methods and geostatistical interpolation methods. Deterministic interpolation refers to non-statistical methods that use the measured values at each point to determine values at the remaining locations across the surface. On the other hand, geostatistical interpolation methods use statistics based on measured points to statistically predict the remaining locations' values across the surface. The main advantage of geostatistical methods is that they provide standard error values to indicate the accuracy of the predictions (Krivoruchko 2011). The geostatistical interpolation technique widely used is the Kriging method. Before applying this method for spatial interpolation, some assumptions related to the method must be verified. Unfortunately, normal distribution and stationarity assumptions for data are not verified for the N'djili R-values.

Since the Kriging method is not appropriate for the N'djili Basin data, deterministic interpolation methods have been selected to create an interpolated surface of R-values for the N'djili basin. Using cross validation criteria based on the mean and the root-mean-square, the Inverse Distance Weighting method (IDW) appears to be the best deterministic method. Inverse distance weighting is a commonly used deterministic interpolation method. It predicts cell values at unknown locations based on the distance between the unknown cell and the known points. In this method, a power option can be used to limit the influence of distant points.

| Station_Id Rainfall_ |           | Longitude Latitud | Latitude | ude Average                | Reinard and Freimund (1994) |                      | Rose (1977)                     |                                 |
|----------------------|-----------|-------------------|----------|----------------------------|-----------------------------|----------------------|---------------------------------|---------------------------------|
|                      | station   |                   |          | Precipitation<br>(mm/year) | R-factor SI<br>Units        | R-factor US<br>Units | Maximum<br>R-factor<br>US Units | Minimum<br>R-factor<br>US Units |
| 64210                | Ndjili    | 1.544             | -4.39    | 1497                       | 7962                        | 468                  | 823                             | 674                             |
| 64220                | Binza     | 1.524             | -4.36    | 1468                       | 7645                        | 449                  | 807                             | 661                             |
| 64211                | Ndolo     | 1.532             | -4.32    | 1348                       | 6404                        | 376                  | 741                             | 607                             |
| -                    | Rifflart  | 1.535             | -4.42    | 1472                       | 7688                        | 452                  | 810                             | 662                             |
| -                    | Kimwenza  | 1.529             | -4.46    | 1491                       | 7896                        | 464                  | 820                             | 671                             |
| -                    | Luzumu    | 1.536             | -4.66    | 1486                       | 7841                        | 461                  | 817                             | 669                             |
| -                    | Kasangulu | 1.517             | -4.59    | 1462                       | 7580                        | 445                  | 804                             | 658                             |
| -                    | Luila     | 1.505             | -4.54    | 1389                       | 6814                        | 400                  | 764                             | 625                             |
| -                    | Kisembo   | 1.517             | -4.66    | 1491                       | 7896                        | 464                  | 820                             | 671                             |
| -                    | Kindamba  | 1.514             | -4.75    | 1394                       | 6865                        | 403                  | 767                             | 627                             |

# Table 4.1 - Rainfall-runoff erosivity factor



Figure 4.1 - Comparison of Erosivity Factor (R) between USA and N'djili Basin stations

Since this method doesn't make statistical assumptions about the data, it can replace more advanced interpolation methods where they are not appropriate (Krivoruchko 2011). In Appendix B, the assessment of different deterministic methods applied for the N'djili R–values is presented. The optimized surface derived from this process using IDW served to build the isohyetal and isoerodent map of the N'djili river basin. It should be noticed that the raster surfaces from which these maps are derived were built by setting up a cell size grid of 30 m to accommodate the spatial resolution of other thematic maps required to build the RUSLE model of the N'djili Basin.

Figure 4.2 and 4.3 present isohyetal and isoerodent maps of the N'djili river basin respectively. From the annual average precipitation distribution in the basin as shown in Figure 4.2, the maximum value of 1494 mm is observed in the northeastern part of the basin which is under the influence of the "Pool Malebo", while the minimum value of 1362 mm is observed in the northwestern part of the basin. From Figure 4.3, the rainfall-runoff erosivity factors (R) range from 385 to 466 throughout the basin.



Figure 4.2 - Precipitation map of the N'djili River Basin (mm)



Figure 4.3 - Rainfall-Runoff erosivity factor map of the N'djili River Basin (hundreds ft.tons.in/acre.year)

# 4.1.2 Soil Erodibility Factor (K)

Soil erodibility is a measure of a soil's resistance to the erosive powers of rainfall energy and runoff. Practically, in the RUSLE, soil erodibility is an integration of the impacts of rainfall and runoff on soil loss for a given soil (Haan et al. 1994). Experimentally, the soil erodibility factor (K) is the rate of soil loss per rainfall erosion index unit for a specific soil as measured on a unit plot, which is defined as being 72.6 ft (22.1 m) long, with a width of 6 ft (1.83 m), 9% slope, and in a continuously clean-tilled fallow condition with tillage performed up and down slope (Wischmeier and Smith 1978). Under these conditions, L, S, C and P in the equation (4.1) are all equal to 1.0 and the soil erodibility factor K is equal to the ratio of the measured erosion (average annual erosion) to the rainfall-runoff erosivity factor R. Several researches concluded that the best erodibility factors are obtained from long-term direct soil loss measurement on natural plots. Although the minimum adequacy of the observation period for soil erodibility is taken as two years, better results due to covering broader range of climatic and soil condition changes are obtained for longer periods (Morgan 2011). Moreover, researchers have worked on estimating soil erodibility from soil properties such as particle size distribution, organic matter content, soil structure and permeability (Wischmeier et al. 1971). Figure 4.4 presents the nomograph developed by Wischmeier et al (1971). This nomograph is used to determine the K factor for a soil, based on its percentage of silts and percentage of very fine sand (0.002 - 0.1 mm), percentage of sand (0.1 - 2.0 mm), percentage of organic matter, soil structure and permeability.

From the nomograph of the Wischmeier and the results of Goldman, Jackson, and Bursztynsky (1986), the soil erodibility factor ranges in value from 0.02 to 0.69. Due to their resistance to detachment, soils with high clay content have low K values ranging from 0.05 to 0.15. Coarser texture soils, such as sandy soil, have low K values ranging from 0.05 to 0.2. Although these soils have easily detachable particles, the low surface runoff caused by excessive infiltration is responsible of the low values of K observed for this type of soil. For medium texture soils, such as the silt loam soils, K values typically range from 0.25 to 0.4. It can be assumed that these K values are due to moderate runoff and easier detachment of medium texture soils.

As mentioned previously, silt content is an important factor of soil erodibility. Since they are easily detached, silts tend to crust and produce high rates of runoff, soils with high silt content are the most erodible of all soils. Accordingly, their soil erodibility factors are greater than 0.4. Organic matter has a measurable effect on soil erosion. It reduces erodibility, decreases susceptibility to soil detachment, and increases infiltration rates. High infiltration rates reduce runoff and erosion.



Figure 4.4 - Soil erodibility nomograph (after Wischmeier and Smith 1978)

Schwab et al. (1981) results summarized these observations in a soil erodibility factor

(K) table (Table 4.2).

| Table 4.2 - Soil Erodibility | Factor (K) | (Schwab et al. | 1981) |
|------------------------------|------------|----------------|-------|
|------------------------------|------------|----------------|-------|

|                      | Organic Matter Content<br>(%) |      |  |
|----------------------|-------------------------------|------|--|
| Textural Class       | 0.5                           | 2    |  |
| Fine sand            | 0.16                          | 0.14 |  |
| Very fine sand       | 0.42                          | 0.36 |  |
| Loamy sand           | 0.12                          | 0.10 |  |
| Loamy very fine sand | 0.44                          | 0.38 |  |
| Sandy loam           | 0.27                          | 0.24 |  |
| Very fine sandy loam | 0.47                          | 0.41 |  |
| Silt loam            | 0.48                          | 0.42 |  |
| Clay loam            | 0.28                          | 0.25 |  |
| Silty clay loam      | 0.37                          | 0.32 |  |
| Silty clay           | 0.25                          | 0.23 |  |
Based on table 4.2 and the soil erodibility nomograph of Figure 4.4, the soil erodibility factor (K) of the N'djili River basin is determined for each soil texture class. Assuming an organic matter content of 0.5%, corresponding K values have been assigned to the soil texture class in the N'djili basin. Table 4.3 presents the results of K values in the N'djili basin. These values range from 0.12 to 0.27. To derive the K-value of sandy clay loam from the soil erodibility nomograph (after Wischmeier and Smith 1978), it was assumed that this soil texture has 2% of organic matter, medium or coarse granular, and its permeability is moderate.

Table 4.3 - Soil erodibility factor (K) of the N'djili River Basin

| No | Soil classification | Soil texture    | (%)<br>of<br>Sand | (%)<br>of<br>Silt | (%)<br>of<br>Clay | Covered<br>Area (%) | K<br>Factors | Source                         |
|----|---------------------|-----------------|-------------------|-------------------|-------------------|---------------------|--------------|--------------------------------|
| 1  | Haplic Acrisols     | Sandy clay loam | 64                | 10                | 26                | 88.7                | 0.10         | Soil<br>nomograph              |
| 2  | Ferralic Arenosols  | Loamy sand      | 81                | 7                 | 12                | 7.9                 | 0.12         | Schwab et<br>al., 1981         |
| 3  | Ferralic Arenosols  | Sand            | 95                | 4                 | 1                 | 3.4                 | 0.15         | <i>S</i> chwab et<br>al., 1981 |

To create the soil erodibility map of the N'djili basin, the soil map shape file of the N'djili basin derived from the SOTERCAF database was added as a layer into ArcGIS and a lookup table was created to link the K values of Table 4.3 to the attribute table of soil map shape file by the joining attribute table functions of ArcGIS. Then, the shape file was converted to raster using the conversion tool "Feature to Raster" of the ArcToolbox, with a cell size of 30 m. Figure 4.5 shows the soil erodibility (K) map of the N'djili basin.



Figure 4.5 - Soil erodibility map of the N'djili River Basin (ton acre h (100)<sup>-1</sup> acre<sup>-1</sup> ft<sup>-1</sup> tonf<sup>-1</sup>inch)

# 4.1.3 Slope Length and Slope Steepness Factor (LS)

The slope length factor (L) and the steepness factor (S) account for the effects of topography on soil erosion modeling in RUSLE. In general, as slope length (L) increases, erosion increases due to a progressive accumulation of runoff in the downslope direction. As slope steepness (S) increases, soil erosion also increases as a result of the increase in velocity.

Slope length (L) is defined as the horizontal distance from the origin of overland flow to the point where either the slope gradient (steepness) decreases enough so that deposition begins or runoff becomes concentrated in a defined channel (Wischmeier and Smith 1978). Slope length (L) is also defined as the ratio of soil loss from the field slope length to that from a 72.6 ft length under otherwise identical conditions. Figure 4.6 presents the schematic profile of the slope length. For cropping land, L is evaluated by the equations used in RUSLE (McCool et al., 1987; McCool et al., 1997; Renard et al., 1997):

$$L = \left(\frac{X_h}{72.6}\right)^m \tag{Eq 4.6}$$

Where:

 $X_h$  = the horizontal slope length in ft

m = a variable slope length exponent

m is related to the ratio  $\varepsilon$  of rill erosion to interrill erosion by the following equation:

$$m = \frac{\varepsilon}{1 + \varepsilon}$$
(Eq 4.7)

 $\epsilon$  is computed for conditions when the soil is moderately susceptible to both rill and

interrill erosion using the following equation:

$$\varepsilon = \frac{\sin \theta}{0.0896 \left[ 3.0(\sin \theta)^{0.8} + 0.56 \right]}$$
(Eq 4.8)

Where:

 $\theta$  = the slope angle.



Figure 4.6 - Schematic slope profiles of RUSLE applications (Renard et al., 1997)

The slope steepness (S) is defined as the ratio of soil loss from the field slope to that from a 9% slope under identical conditions. The RUSLE slope steepness equations is given by (McCool et al., 1987; McCool et al., 1997; Renard et al., 1997):

 $S = 10.8 x \sin \theta + 0.03$   $\sigma \le 9\%$  (Eq 4.9)  $S = 16.8 x \sin \theta - 0.50$   $\sigma > 9\%$ 

Where:

 $\theta$  = the slope angle;

 $\sigma$  = the slope gradient in percentage.

The slope length factor (L) is more difficult to compute than the slope steepness factor (S) (Ouyang and Bartholic 2001). Fortunately, the soil loss equation is much less sensitive to L than S. For typical slope conditions, a 10% error in slope length results in a 5% error in computed soil loss. In contrast, a 10% error in slope steepness will result in about 20% error in computed soil loss (Morgan 2011).

The L and S factors can be determined in ArcGIS from the Digital Elevation Model (DEM) using the approach developed by Moore and Burch (1985). They developed an equation similar to Equation 4.5 to compute length-slope factor:

$$LS = \left(\frac{A_S}{22.13}\right)^m x \left(\frac{\sin\theta}{0.0896}\right)^n \tag{Eq 4.10}$$

Where:

m = 0.4 - 0.6 and n = 1.2 - 1.3.

LS = computed LS factor.

 $A_S$  = specific catchment area, i.e. the upslope contributing area per unit width of contour (or rill), in m<sup>2</sup>/m. It is calculated in ArcGIS using the function called "flowaccumulation" multiply by the squared cell size and divided by the cell size. The "flowaccumulation" is a function of the Hydrology - Spatial Analyst Tool included in ArcToolbox.

 $A_s$  = (Calculated flow accumulation) x 30.76 x 30.76/30.76 (for cell size = 30.76 m, from the N'djili basin DEM)

 $\theta$  = slope angle in degrees. It is calculated in ArcGIS using the function called "slope" with option "percent rise" which is 100 times Tan $\theta$ . Then  $\theta$  is calculated using "Atan" function in ArcGIS. The function "slope" with the option "percent rise" is a function of the Surface - Spatial Analyst Tool included in ArcToolbox. "Atan" function can be used from the raster calculator of the Map Algebra Tool of ArcToolbox.

Tan  $\theta$  = slope (in percent rise)/100

 $\theta = A \tan (T \tan \theta)$ 

The "flow accumulation" function in ArcGIS is a tool which computes accumulated flow as the accumulated weight of all cells flowing into each downslope cell in the output raster. With this function, the value of cells in the output raster is the number of cells that flow into each cell (O'Callaghan and Mark 1984). In Figure 4.7, the top left image shows the direction of travel from each cell while the top right shows the number of cells that flow into a cell. The bottom left indicates the possible direction of flow which can be in either one of the cardinal direction (i.e. N, S, E, W) or the diagonal directions (i.e. NE, SE, SW, NW) using a colored direction coding.



Figure 4.7 - Determining the accumulation of flow

Another important function used in the determination of the LS factor grid in ArcGIS is the function "slope" with the option "percentrise". Slope is the first derivative of a digital elevation model (DEM). It represents the rate of change of elevation for each DEM. The inclination of slope can be output as either a value in degrees or percent rise. Figure 4.8 shows the histogram of slope distribution in the N'djili River Basin.

Equation 4.9 has been plotted in Figures 4.9 and 4.10 to assess the sensitivity of the exponents m and n on the computation of the LS factor. From Figures 4.9 and 4.10, it can be noticed that the LS factor is highly sensitive to a variation of the exponent m and less sensitive to a variation of the exponent n. For example, when the exponent m varies from 0.4 to 0.6 while keeping constant the exponent n and the slope angle, the LS factor increases from about 8% to 85%, depending on the value of the specific catchment area. In contrast, when the exponent n varies from 1.2 to 1.3 while keeping the other parameters, except the specific catchment area, the LS factor is increased by 11%. To predict the soil erosion loss in this study, values of m = 0.5 and n = 1.25 have been selected.

Figures 4.11 and 4.12 present the slope map in percent rise and the LS factor map of the N'djili basin respectively. All of these maps are derived from a 30 meter resolution DEM and have the same resolution, accordingly. From the LS factor map, LS value ranges from 0 to 61.



Figure 4.8 – Histogram of slope distribution in the N'djili River Basin

63



Figure 4.9 - LS factor derived from Moore and Burch Equation (1985) – Exponent n = 1.2



Figure 4.10 - LS factor derived from Moore and Burch Equation (1985) – Exponent n = 1.3



Figure 4.11 - Slope map of the N'djili Basin in percent rise



Figure 4.12 – LS factor map of the N'djili Basin in percent rise

## 4.1.4 Cover Management Factor (C)

The Cover Management Factor (C) represents the effect of vegetation, soil cover, belowground biomass, cropping, soil-disturbing activities and management practices on soil erosion. The C factor is essentially a soil loss ratio (SLR) which is defined as the ratio of soil losses under actual conditions to losses experienced under the clean-tilled continuous fallow reference conditions. This soil loss ratio is the result of multiplying subfactor values that depend on previous cropping and management, vegetative canopy, surface cover and roughness, and, in some cases, soil moisture (Laflen et al. 1985).

The density of protective cover of crops or vegetation on the land surface affects directly the soil erosion rates. Therefore, the cover management factor (C) value will be 1 in the case of continuous bare fallow with no vegetation coverage (in standard plot condition) and lower in case of more vegetation or crop cover producing lower amount of soil erosion. In case of dense and mature forest with trees canopy and undergrowth vegetation covering between 75 to 100% of the land area, C value is close to 0.001. In this last case, erosion prevention actions are not required.

To estimate C factor in the RUSLE model, two options can be used: the time-variant and the time-invariant option (Kuenstler 1998). The time-variant option is used when plant and/or soil conditions change enough to significantly affect erosion during the year, during a rotation cycle, or over an extended period. This option is typically used for croplands and/or rangelands where cover changes significantly during the year such as from grazing, burning, or herbicide application. It is also applied for sites regenerating following soil-disturbing activities on forest lands and recovery following construction or earth moving activities (Jones et al. 1996). In the time-variant option, the SLR values area calculated frequently enough over the course of a year

68

or a crop rotation to provide an adequate measure of how they change. In RUSLE1, these calculations were performed for half-month periods; in RUSLE2, they are performed for on a daily time-step (Borah et al 2008). The time-invariant option is used where constant conditions can be assumed mainly in the case of range and pasture land. In the time-invariant option, average annual values of soil erosion are predicted.

Luboya (2002) and Semeki (2003) give several indications about the vegetation and the cropping rotation scenario in the N'djili river basin. From the information given by Luboya (2002), the timeline of cropping rotation scenario has been established in Figure 4.13.

| Soil preparation for<br>crops, burning of<br>grassland, tillage and<br>seeding | Period of growing<br>plants,<br>Harvest at the end of<br>the period | Second tillage and<br>seeding period of the<br>agricultural season | Second harvest<br>season |    |
|--------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------|----|
| lune Au                                                                        | igust J                                                             | anuary N                                                           | Vay Ju                   | ne |

Figure 4.13 - Timeline of the cropping rotation scenario in the N'djili basin

From Figure 4.13, two distinct agricultural seasons can be determined over a year: the first season between August and January and the second one between January and June. During these two seasons, the vegetation cover changes slightly and can therefore be assumed to be time-invariant. Between June and August, the vegetation cover changes dramatically due to burning and tillage practices, although precipitation in this period represents a fraction of about 0.01 of the annual precipitation. With a low precipitation volume representing a fraction of about 0.01 of the annual precipitation, the period between June and August doesn't really contribute to the soil erosion rates. On the other side, all the vegetation cover degradation made during this period affect the erosion rate specifically during the first agricultural season (between August and January) because the burning areas not used for seeding recover slowly.

Land cover maps with adequate spatial resolution are needed to derive C values over a river basin. For the N'djili river basin, since the existing land cover maps are not available with the appropriate resolution, satellite images form the Landsat missions have been downloaded and classified in order to derive land cover maps of the basin.

## 4.1.4.1. Multispectral classification of the N'djili basin Landsat images

The objective of image classification procedures is to automatically categorize all pixels in an image into land cover classes or themes (Lillesand et al. 2008). This classification is normally performed with multispectral data. Multispectral classification usually requires some knowledge of the scene. The information about the scene may come from personal knowledge of the area, field trips and aerial photography. Since classification is also a grouping or generalization of the data, it is important to differentiate between spectral classes and informational classes. The spectral classes are the groups in the data; informational classes are the map classes, the groups the analyst would like to identify using classification procedures (Warner and Campagna 2013).

There are numerous classification methods. From the perspective of the image classification analyst, two main methods can be identified: the supervised and unsupervised classification. In the supervised classification, the image analyst "supervises" the pixel categorization process by specifying, to the computer algorithm, numerical descriptors of the various land cover types present in a scene. In this process, representative sample sites of known cover type, called "training areas", are used to compile a numerical "interpretation key" that describes the spectral attributes for each feature type of interest. The classification algorithm then classifies each pixel in the rest of the image based on comparisons with training data, or more commonly, summary properties of the training data. In the unsupervised classification, the image

70

data are first classified by aggregating them into the natural spectral groupings, or "clusters", present in the scene. Then the image analyst determines the land cover identity of these spectral groups by comparing the classified image data to ground reference data.

The Landsat Thematic Mapper data of the area including the N'djili basin have been classified using the software Idrisi by Clarks Labs (Clark University). The unsupervised classification technique was utilized to classify the Landsat scenes captured on 02-01-1995, 04-30-2001 and 08-13-2013 by employing the Isoclust method in Idrisi following the sequence of operations presented in Figure 4.14.



Figure 4.14 - Overview of unsupervised classification in IDRISI (derived from Warner and Campagna 2013)

Based on knowledge of the area, study results from Luboya (2002) and Semeki (2003)

and an examination of the false color composite image, a list of informational classes (Table 4.4)

was established in order to determine the likely classes that might be discriminated. Then the

Isoclust method was performed in Idrisi to group pixels into spectral classes and the other

operations listed in Figure 4.14 are executed.

| Class Number | Name                                                 | Color in 345 false color<br>composite |
|--------------|------------------------------------------------------|---------------------------------------|
| 1            | Water                                                | Dark blue                             |
| 2            | Forest                                               | Dark green                            |
| 3            | Grass and shrubs                                     | Green                                 |
| 4            | Bare land/burned grass/plowed<br>land/ rainfed crops | Light yellow                          |
| 5            | Settlements                                          | Pink                                  |

| Tab | le 4 | 4.4 - | Informational | classes | used for | the image | e classification |
|-----|------|-------|---------------|---------|----------|-----------|------------------|
|-----|------|-------|---------------|---------|----------|-----------|------------------|

Since the vegetation cover changes dramatically between June and August, moving from bare or burning lands to plowed land or rainfed crops, these nad types were gathered for anlysis purpose. A unique informational class corresponding to these lands has been defined and named "Bare land/burned grass/plowed land/ rainfed crops".

After the classification process is done in Idrisi, the land cover raster were exported to ArcGIS, then converted from raster to shape files. Figures 4.15, 4.16 and 4.17 show the land cover map resulting from the classification performed in Idrisi and ArcGIS.

Table 4.5 presents the percentage of area covered by each land cover/use type. It shows that:

- The forest area decreased by about 32 % from 1995 to 2001 and by 50% from 2001 to 2013. In 2013, the area covered by the forest represented only 5 % of the N'djili river basin area whereas the forest was covering about 15% of the basin area in 1995. According to Luboya (2002), this forest mainly degraded into grass and shrubs cover during these periods.
- The area covered by grass and shrubs decreased by 1.4% from 1995 to 2001, and by about 14% between 2001 and 2013. The 322 km<sup>2</sup> area of grass and shrubs areas lost between 1995 and 2013 have been essentially turned into settlements and bare land/crop land.

- The bare land/burned grass/ plowed land/ rain-fed crop area increased dramatically between 1995 and 2013 by about 273%, gaining areas from grass, and shrubcovered areas.
- The settlement area increased by about 39% from 1995 to 2001, by 54% between 2001 and 2013. The total expansion of settlement area between 1995 and 2013 is estimated to be 113%.

Loss of forest, and grass and shrubs area for the benefit of settlement, and bare land/burned grass/ plowed land/ rain-fed crop area is likely due to the civil wars of 1996-1997 and 1998-2003 that brought millions of persons in the Kinshasa neighborhood from the eastern part of the Congo. It should be mentioned here that the derivation of the land cover using a satellite image of August 2013 introduces a bias in estimating the area of each land cover type. Indeed, the Landsat image of August 2013 was taken during the dry season in which burning practices, brush cutting and tillage mainly occur. So, a satellite image taken over the N'djili Basin during the dry season is more likely to generate more bare, burned and plowed land than the ones taken during the rainy season.

|                                                       | 199     | 5    | 200     | )1   | 2013    | }    |
|-------------------------------------------------------|---------|------|---------|------|---------|------|
| Land cover/use type                                   | A (km2) | % A  | A (km2) | % A  | A (km2) | % A  |
| Water                                                 | 21.95   | 1.0  | 21.93   | 1.0  | 21.92   | 1.0  |
| Forest (open cover)                                   | 312.87  | 14.9 | 213.03  | 10.2 | 105.31  | 5.0  |
| Grass and shrubs (cover > 60%)                        | 1466.56 | 69.9 | 1436.94 | 68.5 | 1144.56 | 54.6 |
| Bare land/burned grass/plowed land/<br>rain-fed crops | 122.41  | 5.8  | 185.30  | 8.8  | 456.27  | 21.8 |
| Settlements                                           | 173.03  | 8.3  | 239.81  | 11.4 | 368.71  | 17.6 |
|                                                       |         |      |         |      |         |      |
| Total                                                 | 2096.8  | 100  | 2097    | 100  | 2096.8  | 100  |

Table 4.5 - Area covered by each land cover/use type in the N'djili River Basin (1995 –2013)

Figure 4.18 illustrates the evolution of the area covered by different land cover/use types in the N'djili River basin from 1995 to 2013.



Figure 4.15 - Land cover map of the N'djili basin in 1995



Figure 4.16 - Land cover map of the N'djili basin in 2001



Figure 4.17 - Land cover map of the N'djili basin in 2013



Figure 4.18 - Area covered by each land cover/use type in the N'djili River Basin (1995 – 2013)

## 4.1.4.2.Derivation of C factor

To derive the C factor of the N'djili River Basin for conditions in 1995, 2001 and 2013, an approach in three steps has been developed. Firstly, the time-invariant option was used to determine the C factor for the informational classes "water", "Forest", "grass and shrubs" and "settlements". Secondly, the C factor of the informational class "bare land/burned grass/ plowed land/ rain-fed crop" was estimated using the time-variant option.

4.1.4.2.1. C factor for the informational classes "Forest", "grass and shrubs" and "settlements"

The C values for the classes "Forest", "grass and shrubs" and "settlements" were estimated using the studies by Wischmeier and Smith (1978), Luboya (2002), Semeki (2003), Bakker et al. (2008), and Teh (2010).

a. C factor of the informational class "Forest"

According to Luboya (2002) and Semeki (2003), the forest encountered in the N'djili basin is an open cover natural forest (20% - 60%) with the main species: *Manilkara, Berlinia, Mitragyna, Milletia drastica* and *Hymenocardia acida*. The average canopy height of this open cover natural forest ranges between 20 and 25 m (Semeki 2003). Therefore, based on the Bakker et al. (2008) study, a C factor of 0.01 has been assigned to "Forest" land.

b. C factor of the informational class "grass and shrubs"

According to Luboya (2002), the shrub and grassland formations in the N'djili River Basin result from the degradation of the dense natural forest cover observed before the 1950s. The average canopy height of shrubs encountered in this basin range between 2.0 and 4.0 m (Luboya 2002) and the cover that contacts the soil surface is estimated to be greater than 80% of the ground surface. So, based on the Wischmeier and Smith (1978) findings on croppingmanagement factor for permanent pasture, range, and idle land, a factor of 0.012 has been selected for this informational class.

c. C factor of the informational class "settlements"

For the land cover "Settlements", a weighted-average-C-factor has been computed based on the August 2013 land cover and C-values defined by Huey Teh (2010) for different urban cover types. The C-factor for the "settlement" land cover is calculated with the following expression:

$$C = \frac{\sum C_i A_i}{A} \tag{Eq 4.11}$$

Where C = the cover management factor for the land cover "Settlements";

 $C_i$  = the cover management factor for each type of Urban land cover (low density, medium density or high density);

 $A_i$  = area of each urban land cover type;

A = the total area of land cover "settlements".

78

The C-factor estimate for the land cover "settlements" is presented in Table 4.6.

|                        | C (after Huey Teh 2010) | Area (km2) | Settlement C-<br>factor |
|------------------------|-------------------------|------------|-------------------------|
| Urban (Low density)    | 0.25                    | 123.2      |                         |
| Urban (Medium density) | 0.15                    | 141.4      | 0.12                    |
| Urban (High density)   | 0.05                    | 191.6      | 0.13                    |
| Total                  |                         | 456.2      |                         |

Table 4.6 - C-factor estimate for land cover "settlements"

4.1.4.2.2. C factor for the informational class "bare land/burned grass/ plowed land/ rain-fed crop"

The time-variant option was used to estimate the annual C value of the informational class "bare land/burned grass/ plowed land/ rain-fed crop" by employing a three-step methodology. During the first step, the percent of bare soil for the burned areas was estimated and the monthly C values for the same areas were evaluated. In the second step, the monthly C values were computed for the class "bare land/burned grass/ plowed land/ rain-fed crop". During the third step, the annual C-value of the informational class "bare land/burned grass/ plowed land/ rain-fed crop" was determined.

a. Step 1: Percent of bare soil for burned areas - Monthly C values of Burned area

To compute the percent of bare soil for burned areas in the N'djili River Basin, it was assumed a vegetation regrowth rate similar to the one observed after the Bobcat fire, as studied by MacDonald (2012). Since the wildfire severity observed in the N'djili basin can be classified from moderate to high (Ntale 2010), the percent of bare soil for burned areas can be estimated from Equation 4.11 for moderate severity fire and Equation 4.12 for high severity fire.

| Percent Bare Soil = $-21.86 \ln T + 45.75$ | (Eq 4.12) |
|--------------------------------------------|-----------|
| Percent Bare Soil = $-26.09 \ln T + 70.03$ | (Eq 4.13) |
| Where:                                     |           |

T = the time since burning (years)

Referring to the timeline of cropping rotation scenario in the N'djili Basin (Figure 4.13), Table 4.7 was established from Equations 4.12 and 4.13, assuming a regrowth rate similar to the one in Bobcat watershed. Hence, the percentage of bare soil for the burned areas increases since the end of May (45 - 70%) to reach the maximum value during the burning and tillage period (75 - 95%) at the end of August). Since the end of August, the percentage of bare soil in burned locations decreases with the vegetation regrowth to reach its lower value (from 75 - 95% to 45 - 70%) at the end of the agricultural season.

Table 4.7 - Percent of bare soil for the burned areas based equations 4.12 and 4.13 in the case of time-variant option.

| Land cover type | Period    | Monthly variability in<br>Percent of bare soil (%) |
|-----------------|-----------|----------------------------------------------------|
|                 | September | 70 - 95                                            |
|                 | October   | 65 – 93                                            |
|                 | November  | 61-88                                              |
|                 | December  | 57 – 84                                            |
|                 | January   | 55 – 80                                            |
| Burned areas    | February  | 52 – 78                                            |
| Duilleu di eas  | March     | 50 – 75                                            |
|                 | April     | 48 – 72                                            |
|                 | May       | 45 – 70                                            |
|                 | June      | 75 – 95                                            |
|                 | July      | 75 – 95                                            |
|                 | August    | 75 – 95                                            |



Figure 4.19 presents the minimum and the maximum percent of bare soil, as estimated using the equations for the percent of bare soil after the Bobcat fire.

#### Figure 4.19 – Percent of bare land in burned areas

Since the precipitation rate over the N'djili River Basin is largely greater than the one over the Bobcat watershed, it can be inferred that the vegetation regrowth rate in the N'djili Basin is much faster than the regrowth rate in Bobcat watershed. Moreover, since grass doesn't burn at high severity, only the percent of bare soil derived using the moderate severity condition can be retained. Therefore, although it obvious that the percent of bare soil really observed in the N'djili Basin should be lower than the minimum of the one obtained after the Bobcat fire, the minimum of bare soil percentage, derived in Figure 4.19 using the Bobcat fire equations, is considered for estimating the percent of bare soil in the N'djili Basin.

The burned grass can be assimilated to a cover with no appreciable canopy. So, using the Wischmeier and Smith (1978) findings on cropping-management factor and the minimum percent of bare soil for burned areas previously determined, the monthly C values for these areas

were estimated in Table 4.8. Figure 4.20 shows the plot of the monthly C values for the burned areas.

| Month    | January | February | March     | April   | May      | June     |
|----------|---------|----------|-----------|---------|----------|----------|
| C values | 0.14    | 0.13     | 0.12      | 0.11    | 0.1      | 0.24     |
| Month    | July    | August   | September | October | November | December |
|          |         |          |           |         |          |          |

Table 4.8 – Monthly C values for the burned areas



Figure 4.20 – Monthly C values for the burned areas

 b. Step 2: Monthly C values of the class "bare land/burned grass/ plowed land/ rain-fed crop"

The calculation of the monthly C-values for the land cover "bare land/burned grass/ plowed land/ rain-fed crop" is based on the ratios of the bare land area, crop land area and burned grass area over the total area of the land cover "bare, burned and crop areas" as determined from the Landsat image of August 13<sup>th</sup>, 2013 over the N'djili Basin taken in dry season. Assuming that the rainfed crops and the bare land areas remain constant, and the bare land remains bare over the year, the C-factor assigned to the bare lands and the crop areas are invariant with time and selected according to the results from Wischmeier and Smith (1978). Table 4.9 presents these ratios and these time-invariant C values for the bare land, crop land and burned grass area.

| Tuble 4.9 Wohling C values for the burned areas |            |       |                            |  |  |  |
|-------------------------------------------------|------------|-------|----------------------------|--|--|--|
|                                                 | Area (km2) | Ratio | Constant C-values          |  |  |  |
| Bare land                                       | 45.6       | 0.1   | 0.5                        |  |  |  |
| <b>Rainfed Crop Land</b>                        | 177.9      | 0.39  | 0.35                       |  |  |  |
| Burned areas                                    | 232.7      | 0.51  | Variable C-value (Monthly) |  |  |  |

Table 4.9 – Monthly C values for the burned areas

The monthly C values for the land cover "Bare land/burned grass/plowed land/rainfed crops" are calculated using the expression:

$$C = \frac{\sum C_i A_i}{A} \tag{Eq 4.14}$$

Where C = the monthly cover management factor for the land cover "Bare land/burned grass/plowed land/rainfed crops";

 $C_i$  = the cover management factor for each type of land cover (bare land, rainfed crop or burn areas);

 $A_i$  = area of each land cover type;

A = the total area of land cover "Bare land/burned grass/plowed land/rainfed crops". Tables presenting the detailed calculations of the monthly C values for the land cover "Bare land/burned grass/plowed land/rainfed crops" can be found in Appendix C. Figure 4.21 is the plot of these monthly C values.



Figure 4.21 – Monthly C values for the cover "Bare land/burned grass/plowed land/rainfed crops"

c. Step 3: Mean Annual C Factor of the class "bare land/burned grass/ plowed land/ rain-fed crop"

Since the precipitation distribution over the year is the most determining factor affecting the regrowth rate in the N'djili Basin, the mean annual C-factor for the land cover "bare land/burned grass/ plowed land/ rain-fed crop" was normalized by percent of annual precipitation using the weighted –average expression:

$$C = \frac{\sum C_i P_i}{\sum P_i} \tag{Eq 4.15}$$

Where C = the annual cover management factor for the land cover "Bare land/burned grass/plowed land/rainfed crops";

 $C_i$  = the monthly cover management factor for each period (from Figure 4.20);

 $P_i$  = Average monthly precipitation.

The results of calculations in accordance with Equation 4.15 are presented in Table 4.10.

Table 4.10 – Annual cover management factor for the land cover "Bare land/burned grass/plowed land/rainfed crops"

| Period    | С    | Monthly P (mm) | <b>C</b> <sub>i</sub> <b>P</b> <sub>i</sub> | C - long term |
|-----------|------|----------------|---------------------------------------------|---------------|
| January   | 0.26 | 171.5          | 44.6                                        |               |
| February  | 0.25 | 134.6          | 33.6                                        |               |
| March     | 0.25 | 185.2          | 46.3                                        |               |
| April     | 0.24 | 193.6          | 46.5                                        |               |
| Мау       | 0.24 | 128.7          | 30.9                                        |               |
| June      | 0.31 | 15.7           | 4.9                                         | 0.26          |
| July      | 0.42 | 9.2            | 3.9                                         | 0.20          |
| August    | 0.42 | 13.4           | 5.6                                         |               |
| September | 0.29 | 63.8           | 18.5                                        |               |
| October   | 0.27 | 141.1          | 38.1                                        |               |
| November  | 0.27 | 227.2          | 61.3                                        |               |
| December  | 0.26 | 186            | 48.4                                        |               |
| Σ         |      | 1470           | 382.6                                       |               |

Table 4.11 presents the cover management factors for all the informational classes.

Table 4.11 - Cover management factor for different land cover types

| Land cover/use type                                     | Cover Management Factor (C) | Source                                        |
|---------------------------------------------------------|-----------------------------|-----------------------------------------------|
| Water                                                   | 0                           |                                               |
| Forest (open cover)                                     | 0.01                        | Bakker et al. (2008)                          |
| Grass and shrubs (cover > 80%)                          | 0.012                       | Wischmeier and Smith (1978)                   |
| Bare land/burned<br>grass/plowed land/ rainfed<br>crops | 0.26                        | Wischmeier and Smith (1978)<br>+ calculations |
| Settlements                                             | 0.13                        | Teh (2010) + calculations                     |

To produce the C-factor map, a look up table containing two fields about the land cover types and the C-values corresponding had been created and joined to the attribute table of the land cover shape files derived from the Landsat image classification. Then, the land cover shape files had been converted to raster using the "To Raster" tool of the Conversion Tools included in ArcToolbox and the column of C-values. Figures 4.22, 4.23 and 4.24 show the C-factor maps of the N'djili River Basin derived in ArcGIS for the conditions in 1995, 2001 and 2013.



Figure 4.22 – C factor map of the N'djili basin in 1995



Figure 4.23 – C factor map of the N'djili basin in 2001



Figure 4.24 – C factor map of the N'djili basin in 2013

## 4.1.5 Support Practice Factor (P)

The P factor takes into account support practice effects on soil erosion. These practices generally affect the amount, flow pattern, rate or direction of surface runoff (Reynard and Foster 1983). Contouring (tillage and planting on, or near the contour), strip cropping, terracing, and subsurface drainage are used as support practices for cultivated land. Soil-disturbing practices oriented on or near the contour that result in storage of moisture and reduction of runoff are also considered as support practices for dryland or rangeland areas. For construction and mine reclamation areas, support practices include contour plowing and diversions.

The P-factor value results from the product of P subfactors that takes into account individual support practices, some of which are used in combination. P-factor values were obtained from experimental data by Renard et al. (1997). These results are supplemented by analytical experiments involving scientific observation of known cause-and-effect relationships in physically based models such as CREAMS (Knisel 1980). P-values range from 0 to 1. The P-factor value is equal to 1 for farming upslope and downslope, and less than 1 when the above mentioned support practices are implemented.

Although some terracing support practices are used for some rainfed crops in the N'djili River basin (Figure 4.25), it can be assumed that there are no support practices implemented in the basin, since the area concerned represents less than 1% of the basin area. Therefore, a value of 1 is assigned to the P factor in this study. To simulate or forecast different erosion prevention measures, the P-value could be adjusted accordingly.

90



Figure 4.25 - Terraced rainfed crops in the N'djili River Basin (photo by P. Ndolo Goy, 2013)

# 4.1.6 Effect of ash concentration on turbidity in the N'djili River

Watersheds in Central Africa are vulnerable to wildfires. With increasing human activities, wildfire size, fire severity, and length of burning season have increased since the beginning of the 1980s (Boko et al. 2007). Following the findings from Writer et al. (2012), it can be assumed that burning practices that occur between June and August in the N'djili River Basin can lead to increasing stream discharge, turbidity, and dissolved organic carbon, during and after high-intensity thunderstorms. Specifically, turbidity is caused by detached soil particles and ash during the first storms after burning that are washed away by water.

Turbidity is one of the most visible water quality effects of wildfires. After wildfire, surface water turbidity can increase due to the suspension of ash and silt-to-clay-sized particles.

To measure the impact of ashes in water turbidity, a simple experiment (Figure 4.26) was conducted in organic chemistry Laboratory of the Science Department of the University of Kinshasa in July 2014. Using water from N'djili River and ashes from a burned area in the N'djili basin, the experiment goal was to measure the impact of ash concentration on water turbidity.



Figure 4.26 - Turbidity measurement during the laboratory experiment.

Different concentrations of ashes had been added to water from N'djili River. Turbidity had been measured for those different concentrations immediately after mixing, 24 hours and 48 hours after mixing. The initial turbidity of water was 0.5 NTU. Table 4.12 presents the results from this experiment. Turbidity measurements performed 24 and 48 hours after mixing had been done on some selected concentrations. Figure 4.27 illustrates the results from this experiment on a logarithmic scale. Pictures from that experiment are provided in Appendix D.

| Ash<br>Concentration<br>(mg/l) | Turbidity<br>(NTU) -<br>0h | Turbidity<br>(NTU) -<br>24h | Turbidity<br>(NTU) -<br>48h |
|--------------------------------|----------------------------|-----------------------------|-----------------------------|
| 0                              | 3.5                        | 2.8                         | 1.9                         |
| 5                              | 4.35                       |                             |                             |
| 10                             | 6.01                       | 4.35                        | 3.1                         |
| 15                             | 8                          |                             |                             |
| 20                             | 8.98                       | 5.5                         | 4.27                        |
| 30                             | 11.74                      |                             |                             |
| 50                             | 17.42                      |                             |                             |
| 75                             | 21.5                       | 15.4                        | 9.23                        |
| 100                            | 25.93                      |                             |                             |
| 150                            | 38.78                      |                             |                             |
| 200                            | 42.82                      | 28.1                        | 17.61                       |
| 500                            | 82                         |                             |                             |
| 1000                           | 228.55                     | 105                         | 52                          |
| 2000                           | 350                        |                             |                             |
| 3000                           | 415                        | 187                         | 68                          |
| 5000                           | 465                        | 205                         | 84                          |

Table 4.12 – Effect of ash on water turbidity

Results from the experiment shows that water turbidity varies with the ash concentration following a power relationship which is given in Equation 4.15. This experiment reveals that relatively small quantity of ashes affect tremendously the water turbidity. For example, given ash concentration of only 5g per liter, the threshold limit of turbidity (500 NTU) – which is the turbidity value beyond which pumping operations are stopped – is almost reached. So, this experiment explains indirectly high turbidity values observed due to the combined effect of ashes and soil particles washed away after wildfires.

The power relationship between the ash concentration and the water turbidity is given in Equation 4.16.  $NTU = 1.0361 C^{0.7347}$  (Eq 4.15)
Where:

NTU = Turbidity, expressed in Nephelometric Turbidity Unit (NTU);

C = ash concentration, expressed in mg/L.



Figure 4.27 - Effect of ash concentration on water turbidity.

#### 4.2. Summary

Chapter 4 presents the procedure and methodology employed to estimate the six parameters of the RUSLE: rainfall-runoff erosivity (R), soil erodibility (K), slope length and steepness or topographic factor (LS) or, cover management (C), and support practice factor (P).

In the N'djili River Basin, the annual R value ranges from 385 to 466 (100 ft tons inch acre<sup>-1</sup> h<sup>-1</sup> year<sup>-1</sup>) based on the location of rainfall stations. The maximum rainfall-runoff erosivity factor is estimated in the northeastern region of the basin with a value of 466. Soil erodibility (K) is estimated based on the soil classification and varies from 0.10 to 0.15, with the maximum value (0.15) assigned in areas where the soil texture is sandy. The topographic factor LS is

estimated using the DEM and the approach developed by Moore and Burch (1985) based on the concept of flow accumulation in ArcGIS. LS values range from 0 to 61. The cover management factor (C) is obtained from the land cover map derived from Landsat scenes of the N'djili Basin, based on results from MacDonald (2012) and Wischmeier and Smith (1978). C-factor range from 0 to 0.26. C-values of 0.26 is assigned to bare land, burned grass, and rain-fed crops areas. Based on these C-values, those areas are prone to severe erosion. Although some terracing support practices are observed in the N'djili River basin it is assumed that there are no support practices implemented in the basin, since the area concerned represents less than 1% of the basin area; therefore the support practice factor (P) is assigned a value of 1. The laboratory experiment on the effect of ash concentration over the water turbidity has come to the conclusion that water turbidity varies with the ash concentration following a power relationship.

#### **CHAPTER 5 : APPLICATION AND RESULTS**

#### Introduction

This chapter presents, in Section 5.1, discussion about the annual average soil loss rate distribution of the N'djili River Basin in 1995, 2001 and 2013 and the mid/long term effect of some watershed degradations like burning practices and deforestation on the predicted soil erosion rate. The Section 5.2 presents the calculations of sediment yield based on sediment rating curves for years 2005 and 2013 and makes some comparative analysis based on the results. Section 5.3 is related to specific degradation of the N'djili River Basin. In Section 5.4, the sediment delivery ratio is estimated using different methods.

#### 5.1. The Annual Average Soil Loss Rate (A)

To estimate the annual average soil loss rate for the N'djili basin in 1995, 2001 and 2013, the raster grids representing the RUSLE parameters were multiplied in the raster calculator tool of ArcGIS, using the C-factor raster corresponding. Table 5.1 presents the annual average soil loss rate obtained for 1995, 2001 and 2013. The annual average soil loss is estimated to be 7 tons/acre/year (1,570 tons/km<sup>2</sup>/year) in 1995, 8.7 tons/acre/year (1,950 tons/km<sup>2</sup>/year) in 2001 and 16 tons/acre/year (3,650 tons/km<sup>2</sup>/year) in 2013. Figures 5.1, 5.2, 5.3 and 5.4 present the annual average soil loss rate maps for years 2013, 2001 and 1995, respectively.

In agricultural context, the term "soil loss tolerance" denotes the maximum rate of soil erosion that can occur and still permit crop productivity to be sustained economically (Borah et al. 2007). For most of the soils, this maximum rate is set to 5 ton/acre/year and soil erosion rate ranging between 0 and 5 ton/acre/year is considering as tolerable. So, up to 82% of basin area are subjected to a tolerable erosion in 1995, 79% of basin area in 2001 and 72% in 1995. Figure 5.5 illustrates the evolution of soil loss tolerance in the N'djili Basin since 1995. From this figure, it

can be noticed that, in general, the portion of basin area subjected to tolerable soil loss erosion tends to decrease whereas the portion with higher soil erosion rate increases.

| 1 able 5.1 - Annual average soll loss rate for 1995, 2001 and | 1 2013 |
|---------------------------------------------------------------|--------|
|---------------------------------------------------------------|--------|

| Parameters                                                 | 1995  | 2001  | 2013  |
|------------------------------------------------------------|-------|-------|-------|
| Annual average soil loss rate (tons/acre/year)             | 7     | 8.7   | 16    |
| Annual average soil loss rate (tons/km <sup>2</sup> /year) | 1,570 | 1,950 | 3,650 |

Tables 5.2, 5.3 and 5.4 provide the annual soil rate based on the land cover types of the basin for years 1995, 2001 and 2013 respectively. The total annual average soil loss of the N'djili river Basin is approximately 0.75 million tons/year in 1995, 0.875 million tons/year in 2001 and 1.8 million tons/year in 2013. Grass and shrub areas comprise between 62 and 77% of total annual average soil loss in 1995 and 2001, whereas the bare land/burning grass/rainfed crops area comprises about 60% of total annual average soil loss in 2013. Figure 5.6 illustrates the evolution of soil loss rate in the N'djili Basin per land cover since 1995.



Figure 5.1 – Derivation of the average annual soil loss rate map of the N'djili River Basin.



Figure 5.2 – Average annual soil loss rate map of the N'djili River Basin for conditions in 2013.



Figure 5.3 – Average annual soil loss rate map of the N'djili River Basin for conditions in 2001



Figure 5.4 – Average annual soil loss rate map of the N'djili River Basin for conditions in 1995



Figure 5.5 - Evolution of soil loss rate tolerance in the N'djili Basin since 1995.



Figure 5.6 - Annual average soil loss rate based on the land cover in the N'djili Basin since 1995.

## Table 5.2 - Annual average soil loss based on the land cover in 1995

| 1995                                              |         |                           |                                    |                                             |                                               |                                                   |  |  |
|---------------------------------------------------|---------|---------------------------|------------------------------------|---------------------------------------------|-----------------------------------------------|---------------------------------------------------|--|--|
| Land cover/use type                               | A (km2) | Portion<br>of Area<br>(%) | Soil loss rate<br>(tons/acre/year) | Soil loss rate<br>(metric<br>tons/km2/year) | Annual soil<br>loss<br>(million<br>tons/year) | Portion<br>of total<br>annual<br>soil loss<br>(%) |  |  |
| Water                                             | 22      | 1                         | 0                                  | 0                                           | 0                                             | 0                                                 |  |  |
| Forest (open cover)                               | 313     | 15                        | 0.26                               | 59                                          | 0.020                                         | 2.53                                              |  |  |
| Grass and shrubs (cover > 80%)                    | 1467    | 70                        | 1.75                               | 391                                         | 0.570                                         | 76.2                                              |  |  |
| Bare land/burned grass/plowed land/ rainfed crops | 122     | 6                         | 2.91                               | 653                                         | 0.080                                         | 10.64                                             |  |  |
| Settlements                                       | 173     | 8                         | 2.10                               | 465                                         | 0.080                                         | 10.64                                             |  |  |
|                                                   |         |                           |                                    |                                             |                                               |                                                   |  |  |
| Total                                             | 2097    | 100                       |                                    |                                             | 0.75                                          | 100                                               |  |  |

## Table 5.3 - Annual average soil loss based on the land cover in 2001

|                                                   |         | 2001                      |                                    |                                             |                                               |                                                   |
|---------------------------------------------------|---------|---------------------------|------------------------------------|---------------------------------------------|-----------------------------------------------|---------------------------------------------------|
| Land cover/use type                               | A (km2) | Portion<br>of Area<br>(%) | Soil loss rate<br>(tons/acre/year) | Soil loss rate<br>(metric<br>tons/km2/year) | Annual soil<br>loss<br>(million<br>tons/year) | Portion<br>of total<br>annual<br>soil loss<br>(%) |
| Water                                             | 22      | 1                         | 0                                  | 0                                           | 0                                             | 0                                                 |
| Forest (open cover)                               | 213     | 10                        | 0.21                               | 47                                          | 0.010                                         | 1.1                                               |
| Grass and shrubs (cover > 80%)                    | 1437    | 69                        | 1.70                               | 379                                         | 0.545                                         | 62.3                                              |
| Bare land/burned grass/plowed land/ rainfed crops | 185     | 9                         | 3.90                               | 869                                         | 0.161                                         | 18.4                                              |
| Settlements                                       | 240     | 11                        | 3.00                               | 662                                         | 0.159                                         | 18.2                                              |
|                                                   |         |                           |                                    |                                             |                                               |                                                   |
| Total                                             | 2097    | 100                       |                                    |                                             | 0.875                                         | 100                                               |

# Table 5.4 - Annual average soil loss based on the land cover in 2013

|                                                   |         | 2013                      |                                    |                                             |                                               |                                                   |
|---------------------------------------------------|---------|---------------------------|------------------------------------|---------------------------------------------|-----------------------------------------------|---------------------------------------------------|
| Land cover/use type                               | A (km2) | Portion<br>of Area<br>(%) | Soil loss rate<br>(tons/acre/year) | Soil loss rate<br>(metric<br>tons/km2/year) | Annual soil<br>loss<br>(million<br>tons/year) | Portion<br>of total<br>annual<br>soil loss<br>(%) |
| Water                                             | 22      | 1                         | 0                                  | 0                                           | 0                                             | 0                                                 |
| Forest (open cover)                               | 105     | 5                         | 0.11                               | 24                                          | 0.002                                         | 0.1                                               |
| Grass and shrubs (cover > 80%)                    | 1145    | 55                        | 1.36                               | 306                                         | 0.350                                         | 19.7                                              |
| Bare land/burned grass/plowed land/ rainfed crops | 456     | 22                        | 10.51                              | 2353                                        | 1.074                                         | 60.3                                              |
| Settlements                                       | 369     | 17                        | 4.30                               | 964                                         | 0.355                                         | 20.0                                              |
|                                                   |         |                           |                                    |                                             |                                               |                                                   |
| Total                                             | 2097    | 100.0                     |                                    |                                             | 1.781                                         | 100                                               |

#### 5.2. Sediment yield – Sediment rating curve

For the N'djili River Basin, a short-term and a long-term sediment analysis were used to determine the daily and the annual sediment load from turbidity and sediment concentration measurements performed at the station 2 as shown in Figure 5.7.



Figure 5.7 – Location of N'djili Station 2

## 5.2.1. Daily sediment load or sediment rating curve of the N'djili River

For the N'djili River Basin, Equation 2.1 was used to compute the daily sediment load of the N'djili River at station 2 from the sediment concentration, turbidity and daily flow measurements performed at the station 2 (section 3.2.5 of Chapter 3).

The plots of Figures 5.8 and 5.9 present the daily sediment load vs the daily mean water discharge for years 2005 and 2013, while Figures 5.10 and 5.11 illustrate the sediment concentration relationship as function of discharge. Equations 5.1, 5.2, 5.3 and 5.4 give the regression equations derived from the plots of Figure 5.8 to 5.11. The detailed results obtained from the equation 5.1 are presented in appendix E.

$$Q_s = 0.0409 \ Q^{2.902}$$
, for 2005 (Eq. 5.1)  
 $Q_s = 0.0418 \ Q^{2.887}$ , for 2013 (Eq. 5.2)  
 $C = 0.473 \ Q^{1.902}$ , for 2005 (Eq. 5.3)

 $C = 0.4838 Q^{1.887}$ , for 2013 (Eq. 5.4)

Where:

 $Q_s$  = the total sediment discharge in tons per day;

Q = the daily mean water discharge in m<sup>3</sup>/s.

C = the daily sediment concentration in mg/L.

It can be noted that the Equations 5.3 and 5.4 giving the daily sediment concentration are very similar.

## 5.2.2. Annual sediment load of the N'djili River

In the case of the N'djili River Basin, the flow duration curve approach was employed to determine the annual sediment loads in 2005 and 2013. This approach combines the sediment-rating curve and the flow-duration curve.

To determine the flow-duration curves of the N'djili River at station 2 for years 2005 and 2013, the following operations have been performed using an Excel spreadsheet:

 Sort the daily discharge by magnitude from largest to smallest using the "sort" command in Excel;

- Determine the rank of each discharge in the period of record (one year) using the "rank" function in Excel;
- Calculate the exceedance probability (P) as follows:

$$p = 100 \frac{M}{n+1}$$
 (Eq. 5.5)

p = the probability that a given flow will be equaled or exceeded (% of time)

M = the ranked position on the listing (dimensionless)

n = the number of events for period of record (dimensionless)

• Graph the exceedance probability versus the discharge.

Figure 5.12 presents the flow duration curves of the N'djili River, at station 2 for years 2005 and 2013 respectively.

The general procedure followed to determine the annual sediment load of the N'djili River at the station 2, using a spreadsheet, is as follows:

- Build the first column with the time interval in %;
- Create column (2) with the interval midpoint in %;
- Create the column (3) representing the duration of each time period in %;
- Derive column (4) from the flow-duration curve, considering abscissa of the column (2);
- Create the column (5) for sediment concentration following Equations 5.4 and 5.5 developed in section 5.2.1
- Create column (6) by multiplying columns (3) and (4);
- Create column (7) by multiplying columns (5) and (6).



Figure 5.8 - Sediment rating curve of the N'djili River (2005)



Figure 5.10 - Sediment concentration of the N'djili River (2005)



Figure 5.9 - Sediment rating curve of the N'djili River (2013)



Figure 5.11 - Sediment concentration of the N'djili River (2013)



Figure 5.12 - Flow duration curves of the N'djili River for years 2005 and 2013

The results obtained using this procedure are illustrated in Tables presented in Appendix E. From those results, the estimated annual sediment load for 2005 is 189,030 metric tons/year while it is about 315,000 metric tons/year for 2013. So from 2005 to 2013, the annual sediment load increased by about 67%.

#### 5.3. Specific Degradation of the N'djili River Basin

Specific degradation values of the N'djili River basin for years 2005 and 2013 are presented in Table 5.5.

| Year                                           | 2005    | 2013    |
|------------------------------------------------|---------|---------|
| Sediment Yield (metric tons/year)              | 189,030 | 315,000 |
| Drainage area (km2)                            | 2,097   | 2,097   |
| Average Annual rainfall (mm)                   | 1470    | 1470    |
| Specific Degradation SD (metric tons/km2.year) | 90.1    | 150.2   |

Table 5.5 - Specific degradation values of the N'djili River Basin in 2005 and 2013.

Kane and Julien (2007) compiled several field measurements of sedimentation in US reservoirs to determine relationship between SD and drainage area A of watershed in one hand, and relationship between SD and mean annual rainfall R in the other hand. Those results served to compare and validate the sediment yield data derived from the sediment rating curves computed in the previous paragraph. Hence, the values of SD presented in Table 5.8 have been plotted with respect to the average annual rainfall and the drainage area on the log normal specific degradation plots (Figure 5.13) derived by Kane and Julien (2007).

From Figure 5.13, it can be noticed that the specific degradation values of the N'djili River Basin computed from 2005 and 2013 sediment data are within 95% confidence intervals specified by Kane and Julien (2007).



Figure 5.13 - Specific Degradation (after Kane and Julien, 2007) versus a) Annual Rainfall; and b) Drainage Area (Julien, 2010)

## 5.4. Sediment Delivery Ratio

As defined in paragraph 2.8, the sediment delivery ratio ( $S_{DR}$ ) is the ratio of the sediment yield Y at a given stream cross-section to the gross erosion  $A_T$  from the watershed upstream of the measuring point (Julien 2010). At this point, for the N'djili River Basin, the annual sediment yields for years 2005 and 2013 are available, as well as the soil gross erosion for conditions in 1995, 2001 and 2013. Therefore, the sediment delivery ratio for 2005 was computed for gross soil loss conditions in 2001 and using the sediment data of 2005. For 2013, the sediment delivery ratio was estimated using the gross soil erosion of 2013 and the annual sediment yield calculated for the same year. Table 5.6 presents values of sediment delivery ratio observed at the station N'djili 2, and the ratios calculated using the relationships after Renfro (1975) and Boyce (1975).

| Year | N'djili<br>Basin<br>Area | Sediment<br>Yield     | Soil Los         | Sedime                 | nt Deliver | y Ratio (%) |          |
|------|--------------------------|-----------------------|------------------|------------------------|------------|-------------|----------|
|      | (km2)                    | (metric<br>tons/year) | (tons/acre/year) | (metric tons/km2/year) | Renfro     | Воусе       | Observed |
| 2005 | 2,097                    | 189,030               | 8.7              | 1,957                  | 21         | 4.1         | 4.6      |
| 2013 | 2,097                    | 315,000               | 16               | 3,650                  | 21         | 4.1         | 4.1      |

**Table 5.6 - Sediment Delivery Ratios** 

The results from Table 5.6 are plotted in the Boyce (1975) graph presented in Figure 5.14. The results show that the sediment delivery ratio observed at the N'djili Station 2, is almost equal to the mean  $S_{DR}$  derived by Boyce (1975). Moreover, the sediment delivery ratio estimates in 2005 (4.6 %) and 2013 (4.1 %) are almost equal. These low values of sediment delivery ratio can be due to the following reasons:

- Soil eroded from upland areas is trapped on flood plains covered by grass, shrubs and trees and in small ponds made for the artisanal sandpit along of the N'djili river and its tributaries;
- b. Soil types encountered in the N'djili basin have high percentage of sand in their texture. Since sand is coarser than clay and loam, it can be inferred that a relatively high proportion of sand is deposited over flood plains and stream bed, and sediment yield is mainly constituted by clay, loam and fine sand particles. This hypothesis shall be verified by laboratory experiments such as sieving test and hydrometer analysis to be performed on sediment yield samples.



Figure 5.14 - Sediment Delivery Ratio of the N'djili River Basin

### 5.5. Discussion of results and Limitations

RUSLE method is known to be dependent on the accuracy of its parameter estimation. The accurate estimation of the RUSLE parameters depends on availability and quality of data. For the N'djili River Basin, there are some limitations due to the availability and quality of data.

## 1. Rainfall-runoff erosivity factor (R):

The rainfall-runoff erosivity factor in the RUSLE should be calculated using the maximum rainfall 30-min intensity (I<sub>30</sub>). Since only average daily precipitation data are available for the N'djili Basin, the Renard and Freimund equation (1993) based on average annual precipitation was used, despite that this equation was derived from US precipitation data. The second limitation for computing the R-factor is the spatial distribution of the climatic stations over the N'djili Basin. Most of the precipitation stations are located in the north-western part of the basin, so this data exhibit a spatial clustering which wasn't impossible to correct before performing the spatial interpolation. Nevertheless, a spatial interpolation has been performed giving that the

great discrepancies between interpolated and measured values, as shown by the prediction standard error incorporated with precipitation uncertainty map of the N'djili River Basin in Appendix B. Lastly, for the computation of the R-factor, the spatial interpolation performed on precipitation data didn't take into account the topography of the basin.

2. Soil Erodibility Factor (K):

The 1:2,000,000 soil map developed by Soil and Terrain database of Central Africa (SOTERCAF, version 1.0) and on which the K-factor is based, doesn't accommodate local variability of soil type in the basin. Therefore, K-factor is limited based on the current data availability and may change when more detailed soil map will be available.

3. Slope Length and Slope Steepness Factor (LS):

The slope length factor (L) and the steepness factor (S) account for the effects of topography on upland soil erosion. Terrain attributes are readily estimated from DEMs, but the estimated values are sensitive to DEM accuracy (Sasowsky et al., 1992; Bolstad and Stowe, 1994; Giles and Franklin, 1996; Hunter and Goodchild, 1997; Holmes et al., 2000) and grid size (Thieken et al., 1999; Thompson et al., 2001). For the N'djili River basin, the ASTER GDEM V2 was selected for this study at the expense of ASTER GDEM V1 and SRTM DEMs because it is more accurate and has the smallest cell size of the DEMs actually available for the N'djili basin. According to Erskine et al. (2007), estimates of slope is more sensitive to DEM accuracy due to the data source than to grid size. So, it can be inferred that when more accurate DEMs will be available for the N'djili Basin River, factor L and particularly factor S won't remain equal to those computed in this study. Indeed, Ouyang and Bartholic (2001) demonstrated in Table 5.7 that the soil erosion is more sensitive to the slope steepness than to slope length, while other RUSLE factors remain the same.

#### Table 5.7 - Sensitivity analysis of soil erosion and slope (a); slope length (b) (Ouyang and

| Slope (%)                | 1    | 3    | 6    | 8    | 10   | 14   | 16    | 20   |
|--------------------------|------|------|------|------|------|------|-------|------|
| Soil erosion             | 1.14 | 2.38 | 4.09 | 5.04 | 6.37 | 9.50 | 10.93 | 13.8 |
| (tons/acre/yr.)          |      |      |      |      |      |      |       |      |
|                          |      |      |      |      |      |      |       |      |
| Slope length (ft.)       | 25   | 50   | 100  | 150  | 200  | 250  | 300   | 400  |
| Soil erosion (tons/acre/ | 1.14 | 1.24 | 1.33 | 1.43 | 1.52 | 1.62 | 1.62  | 1.71 |
| yr.)                     |      |      |      |      |      |      |       |      |

#### **Bartholic 2001**)

It might be useful to study the effect of DEM accuracy and grid size on the soil erosion in the N'djili Basin.

The second limitation is about the maximum slope allowed in RUSLE (60%). Fortunately, only 0.5% of the basin area has a slope greater than 60%. These locations with very steep slopes may produce large amount of soil erosion so caution should be used while interpreting these results.

4. Cover Management Factor (C):

The C factor is designed to reflect the effect of cropping and management practices on erosion rates, and is the factor used most often to compare the relative impacts of management options on conservation plans. The N'djili Basin River does not have a locally-developed C-factor table to be used in RUSLE. Also, available land cover maps covering the N'djili Basin have coarse resolution that doesn't fit the RUSLE modeling of a mid-size basin like the N'djili Basin. Therefore, the option of creating land cover maps from Landsat image classification was adopted. Due to technical issues experienced by the Landsat 7 mission since May 2003, images from 2003 to 2011 are almost useless , unless to perform a time consuming mosaicking operation which doesn't often reflect the real land cover in place. So, to predict the average annual soil erosion in 2005, the most appropriate image scene close to this date, with a less cloud cover percentage was the one taken on 2001/04/30. Hence, the erosion prediction for 2005 has been based on image classification of 2001 scene, introducing a bias in the gross soil erosion analysis.

With a scene of 2005, the average annual soil erosion predicted in this study for 2005 might change. Another bias in the gross soil erosion estimation was introduced when the satellite images to use for this study were selected. Indeed, to be consistent in the trend analysis of the soil gross erosion, images taken at relatively the same period of the year should have been used during the study. Unfortunately, due to Landsat 7 issue as explained in Chapter 3 and to the cloud coverage over the N'djili Basin, images from different periods of the year were selected for years 1995, 2001 and 2013. Another limitation regarding the C-factor is about the classification method used to derive the land cover/use maps for the N'djili River from satellite images. Indeed, a simple classification method was used in this study: the isoclust method from an unsupervised classification. The accuracy of classification performed in this study is presented in Appendix C. If sophisticated classification methods are used to derive these land cover/use maps, the annual average soil losses predicted in this study might be different from the ones predicted using sophisticated classification methods to derive the land cover/use of the N'djili River from the N'djili River from the ones predicted using sophisticated classification methods to derive these land cover/use maps, the annual average soil losses predicted in this study might be different from the ones predicted using sophisticated classification methods to derive the land cover/use of the N'djili River Basin.

Moreover, the estimate of the C factor of burned areas in Chapter 4 was performed using the equations giving the percent of bare soil after the Bobcat fire in Colorado (USA). Since the vegetation regrowth rate is much faster in the N'djili River Basin than in the Bobcat watershed, the real percent of bare soil for the burned areas should be lower than the one estimated in paragraph 4.1.4, reducing therefore the amount of the eroded soil.

5. Sediment delivery ratio (C):

The sediment delivery ratio for year 2005 was estimated using the gross soil erosion for conditions in 2001 and the annual sediment yield of 2005. Following the trend of gross soil erosion in the N'djili Basin, the amount of eroded soil in 2005 would be greater than the one

estimated in 2001. Thus, the sediment delivery ratio estimated for year 2005 would be much closer to the one calculated for year 2013, confirming that all the assumptions made for this modeling are appropriate. Nevertheless, the sediment delivery ratios found for years 2005 (4.6%) and 2013 (4.1%) validate the soil erosion modeling done for the N'djili River Basin using the RUSLE.

#### 5.6. Summary:

Annual average soil loss rate of the N'djili River Basin is estimated to be 7 tons/acre/year (1,570 metric tons/km<sup>2</sup>/year) in 1995, 8.7 tons/acre/year (1,950 metric tons/km<sup>2</sup>/year) in 2001, and 16 tons/acre/year (3,650 metric tons/km<sup>2</sup>/year) in 2013.

The estimation of sediment yield at the intake of the N'djili water treatment plant (N'djili Station 2), which is close to the basin outlet, is based on turbidity, sediment concentration and flow discharge measurements performed in 2005 and 2013 by different agencies. Using the sediment rating curve method, the sediment yield at the N'djili station 2 is almost equal to 189,030 metric tons/year for year 2005, while it is about 315,000 metric tons/year for 2013. So from 2005 to 2013, the annual sediment load increased by about 67%.

The specific degradation values of the N'djili River Basin computed from 2005 (SD =  $90.1 \text{ metric tons/km}^2/\text{year}$ ) and 2013 (SD =  $150.2 \text{ metric tons/km}^2/\text{year}$ ) sediment data are within 95% confidence intervals specified by Kane and Julien (2007).

The estimated values of the sediment delivery ratio in 2005 (4.6 %) and 2013 (4.1 %) are almost equal. They are in the range of sediment delivery ratio models established by Renfro (1975) and Boyce (1975).

#### **CHAPTER 6 : SUMMARY AND CONCLUSIONS**

Accelerated soil erosion by water is a worldwide problem because of its economic and environmental consequences. Especially in the N'djili River Basin, deforestation and indiscriminate land clearing for agricultural, urbanization and informal settlements have resulted in widespread soil erosion over the land surface, and subsequently in high level of turbidity in the N'djili River. To understand the link between deforestation – land clearing and increasing of turbidity in N'djili River during last decades, a comprehensive modeling combining ArcGIS with RUSLE was used to estimate the gross erosion rates and to predict the spatial distribution of soil rates for land use observed in 1995, 2005 and 2013 over the basin. Then, using the turbidity measurements, sediment concentration and flow discharges observed in 2005 and 2013, the sediment delivery ratio of the basin was evaluated and compared with delivery ratio models from Boyce and Renfro. Finally, the effect of ash concentration on turbidity was assessed in a laboratory experiment to understand the role played by the wildfire in the turbidity at the beginning of the rain season.

Specifically, this study came to the following conclusions:

 From image classification performed on satellite images captured in 1995, 2005 and 2013, the bare land/burned grass/agricultural land cover represented almost 22% of the N'djili basin area in 2013 whereas it was covering only 6% of the basin area in 1995. Also, settlements, which covered about 8% of the basin area in 1995, represented about 18% of the N'djili Basin area. The expansion of settlements, bare land, burned areas and agricultural lands was realized at the expense of the forest and grass and shrubs covers. Thereby, the forest cover was reduced from 15% of the basin

area in 1995 to 5% in 2013, while the grass and shrubs lost about 22% of their cover during the same period.

- 2. The annual average soil loss rate of the N'djili River Basin was estimated to be 7 tons/acre/year for 1995, 8.7 tons/acre/year for 2005 and 16.3 tons/acre/year for 2013. In 1995, most of the annual soil loss (about 76%) was produced by grass and shrubs, while bare land/burned areas/rainfed crops were producing about 10 % of the total annual soil loss, for a cover of 5.8 % of the basin area. In 2013, with a percent cover of 21.8% of the basin area, bare land/burned areas/rainfed crops became the first contributor to the annual soil loss, producing about 60% of the soil loss. Also, in 1995, settlements was covering about 8% of the basin area and producing 0.08million tons/year of sediment (10.6% of the annual soil loss in 1995). In 2013, the settlement covering surface was about 17.6% of the basin area and the annual soil loss due to settlement reached 0.36 million tons/year (19.93% of the annual soil loss in 2013). So, the tremendous increasing of sediment production by bare land/burned areas/rainfed crops and settlements are certainly one of the reasons of the increase of turbidity in the N'djili River between 2005 and 2013. The role played by the precipitations in the increase of turbidity might be analyzed in another study. Regarding the spatial distribution of the soil erosion rates in the N'djili River Basin, the analysis of the relationship between probability and annual average soil loss rates indicated that up to 82, 79, and 73% of the mean annual soil loss rates are in the range of tolerable soil (0 - 5 tons/acre /year) in 1995, 2005 and 2013 respectively.
- 3. Using the turbidity measurements, sediment concentration and flow discharges observed in 2005 and 2013, this study predicted a sediment delivery ratio of 4.6% in

2005 and 4.1% in 2013. So, the sediment delivery ratio for the N'djili River Basin is close to the values predicted by Boyce and in the similar range of the ones predicted by Renfro. These relatively low values of sediment delivery ratio suggest that important amount of sediment from upland areas of the basin is trapped on flood plains covered by grass, shrubs and trees and in small ponds made for the artisanal sandpit along of the N'djili river and its tributaries. The particle size distribution of the eroded soil could give indication about the reasons that lower the sediment delivery ratio in the N'djili River Basin.

4. The laboratory experiment carried out to assess the effect of ash concentration on the turbidity reveals that turbidity increases as a power function of ash concentration. So at the beginning of the rain season when ash concentration is relatively high, elevated turbidity values can be observed in the N'djili River.

The results presented and discussed in this thesis can be a big asset for understanding the link between deforestation – land clearing and increasing of turbidity in N'djili River during last decades. Understanding of contribution of dominant factors including land cover, land use, precipitation and topography to the soil erosion in the N'djili River Basin as brought by this thesis could be valuable for Kinshasa municipal and Water Utility authorities to set up plan for mitigating soil erosion in the basin in order to reduce turbidity of the N'djili River and sustain economically and technically the water production from the N'djili River and its tributaries. Several other recommendations including for further studies and soil erosion mitigation can be found in Chapter 6.

#### **CHAPTER 7 : RECOMMENDATIONS AND PERSPECTIVES**

The accuracy of the soil erosion rates estimation for the N'djili River Basin can be improved by additional research based on upgraded data acquisition techniques and other scientific methods developed by several other authors. Specifically:

- 1. The national meteorological agency (METTELSAT) and/or the national water utility (REGIDESO) are required to rehabilitate the existing climatic and stream gauging stations and create several other ones through the N'djili River Basin and at the water treatment plant intakes. Those new and upgraded climatic and stream gauging stations would provide continuous and long-term records of hydrological parameters like 15minute rainfall data from which 30-minute rainfall intensity can be derived. So, since the rainfall-runoff erosivity factor R is a key input of the RUSLE method, improvements in data measurement would certainly increase the accuracy of the soil erosion loss.
- 2. In the computation of C-value maps, methods that derive C-factor from the NDVI (Normalized Difference Vegetation Index) or using the k-NN (k-nearest neighbors) classification can improve the accuracy of C-factor estimate based on satellite images. Also, supervised classification methods relying on an integrated field survey including land use types and soil erosion status across the N'djili Basin can be used to increase the accuracy of soil erosion prediction. Furthermore, surveys should be done to produce detailed soil map of the N'djili Basin.
- 3. A short-term soil erosion model can be developed in order to predict daily turbidity in the N'djili River after a rainstorm event, using the sediment delivery ratio computed for different sub-watersheds, the half-month climate variables, and soil loss ratio

(SLR) calculated for each time period of 15 days. This model could be calibrated with observed turbidity values.

#### REFERENCES

- Abbott, M. B., Bathurst, J. C., Cunge, J. A., O'Connell, P. E., and Rasmussen, J. (1986a). "An introduction to the European Hydrological System—Système Hydrologique Européen, 'SHE.' 1: History and philosophy of a physically based distributed modeling system." *Journal of Hydrology* 87(1–2): 45–59.
- Abbott, M. B., Bathurst, J. C., Cunge, J. A., O'Connell, P. E., and Rasmussen, J. (1986b). "An introduction to the European Hydrological System—Système Hydrologique Européen, 'SHE.' 2: Structure of a physically based distributed modeling system." *Journal of Hydrology* 87(1–2): 61–77.
- Ambrose, R.B., Martin, J.L. and Wool, T.A. (1993). WASP5, A hydrodynamic and water quality model - Model theory, user's manual, and programmer's guide. U.S. Environmental Protection Agency, Office of Research and Development, Environmental Research Laboratory, Athens, Georgia.
- Arnoldus, H.M.J., (1977). Methodology used to determine the maximum potential average annual soil loss due to sheet and rill erosion in Morocco. FAO Soils Bull., 34:39 51.
- Bakker, M.M., Govers, G., Doorn, A.V., Quetier, F., Chouvardas, D., Rounsevell, M., The response of soil erosion and sediment export to land use change in four areas of Europe: The importance of landscape pattern, Geomorphology. Volume 98, Issues 3–4, 15 June 2008, Pages 213-226.
- BCEOM-société Française d'ingénierie. (2006). *Plan directeur de l'alimentation en eau potable de la ville de Kinshasa: Rapport programmation plan directeur*. Technical report, Kinshasa, DRC.
- Beasley, D.B., Huggins, L.F., and Monke, E.J. (1980). ANSWERS: a model for watershed planning. Transactions of the American Society of Agricultural Engineers 23: pp. 938– 44.
- Bertoni, J., Lombardi Neto, F., (1990). *Conservação do solo Ícone Editora*. São Paulo, Brazil 355 pp. Brazilian Institute for Geography and Statistic (IBGE)
- Boko, M., Niang, I., Nyong, A., Vogel, C., Githeko, A., Medany, M., Osman-Elasha, B., Tabo, R., and Yanda, P. (2007). Africa. *Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change*, M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson, Eds., Cambridge University Press, Cambridge UK, 433-467.
- Bollinne, A., Laurant, A., Rosseau, P., Pauwels, J.M., Gabriels, D. and Aelterman, J., (1980). *Provisional rain erosivity map of Belgium*. In: M. DeBoodt and D. Gabriels (Editors), Assessment of Erosion. John Wiley & Sons, Chichester, pp. I 11-120.
- Bols, P. (1978). The Iso-erodent Map of Java and Madura. *Belgian Technical Assistance Project* ATA105, Soil Research Institute, Bogor.

- Bolstad, P.V., and Stowe, T. (1994). An evaluation of DEM accuracy: Elevation, slope, and aspect. Photogramm. Eng. Remote Sens. 60:1327–1332.
- Borah, D. K., Krug, E. C., Yoder, D. (2008). "Watershed Sediment Yield". Sedimentation Engineering: Processes: Measurements, Modeling, and Practice, Manuals and Reports on Engineering Practice No. 110, M. H. Garcia, ed., ASCE, Reston, Virginia.
- Boyce, R. C. (1975). Sediment routing with sediment delivery ratios. In: Present and Prospective Technology for Predicting Sediment Yields and Sources. US Dept. Agric. Publ. ARS-S-40, 61-65.
- CIA (2014). *Democratic Republic of the Congo* in The World Factbook. Langley, Virginia: Central Intelligence Agency. https://www.cia.gov/library/publications/the-world-factbook/geos/cg.html. Accessed on 30<sup>th</sup> Jun 2014.
- Chen, J., Zhu, X., Vogelmann, J.E., Gao, F., Jin, S. (2011): "A simple and effective method for filling gaps in Landsat ETM+ SLC-off images." Remote Sens. Environ., 115(2011), 1053-1064.
- England, J., Velleux, M., and Julien, P.Y. (2007). *Two-dimensional simulations of extreme floods* on a large watershed. Journal of Hydrology, 347(1):229-241.
- Erskine, R. H., Green, T. R., Ramirez, J. A., and MacDonald, L. H. (2007). "Digital Elevation Accuracy and Grid Cell Size: Effects on Estimated Terrain Attributes." Soil Sci. Soc. Am. J. 71:1371-1380.
- FAO (2002). Soil and Terrain Database for Central Africa. [CD-ROM or Data File]. FAO Land and Water Digital Media Series #32.
- Flanagan, D.C., Nearing, M. A., and Laflen, J. M., eds. (1995). USDA-Water Erosion Prediction Project: Hillslope Profile and Watershed Model Documentation. NSERL Report No. 10. West Lafayette, Ind.: USDA-ARS National Soil Erosion Research Lab.
- Fortuin, R. (2006). Soil Erosion in Cameron Highlands, an Erosion Rate Study of Highland Area. Saxion University Deventer.
- Foster, G.R., Lane, L.J. (1987). User Requirements: USDA-Water Erosion Prediction Project (WEPP). NSERL Report No.1. West Lafayette, Ind.: USDA-ARS National Soil Erosion Research Lab.
- Giles, P.T., and Franklin, S.E. (1996). *Comparison of derivative topographic surfaces of a DEM* generated from stereoscopic SPOT images with field measurements. Photogramm. Eng. Remote Sens. 62:1165–1171.
- Goldman S.J, Jackson K, Bursztynsky T.A (1986) 'Erosion and sediment control handbook.' McGraw-Hill Book Company, New York.
- Guosong, Z., Huaiping, X., Feng, L. (2010). Assessment of ASTER GDEM Performance by Comparing with SRTM and ICESat/GLAS Data in Central China. Chinese Academic of Sciences.

- Haan, C.T., Barfield, B.J., and Hayes, J.C. (1994). *Design Hydrology and Sedimentology for Small Catchments*, Academic Press, San Diego, California.
- Hatheway, A. (2005). "George A. Kiersch: Engineering geology applied to anthropogenic problems." *Reviews in Engineering Geology*, 16, 1-6.
- Holmes, K.W., Chadwick, O.A., and Kyriakidis, P.C. (2000). Error in a USGS 30-meter digital elevation model and its impact on terrain modeling. J. Hydrol. 233:154–173.
- Hooke, R. L. (1994). "On the efficacy of humans as geomorphic agents." *GSA Today*, 4(9), 217, 224-225.
- Hunter, G.J., and Goodchild, M.F. (1997). *Modeling the uncertainty of slope and aspect estimates derived from spatial databases*. Geogr. Anal. 29:35–49.
- Jones, D.S., Kowalski, D.G., Shaw, R.B. (1996). Calculating Revised Universal Soil Loss Equation (RUSLE) Estimates on Department of Defense Lands: A Review of RUSLE Factors and U.S. Army Land Condition-Trend Analysis (LCTA) Data Gaps. Center for Ecological Management of Military Lands, Colorado State University.
- Julien, P. Y. (2002). River Mechanics, Cambridge University Press, Cambridge, 454 p.
- Julien, P. Y. (2010). *Erosion and Sedimentation*, 2<sup>nd</sup> ed. Cambridge University Press, Cambridge, 371 p.
- Julien, P. Y., and Saghafian, B. (1991). CASC2D user's manual. Civil Engineering Report, Department of Civil Engineering, Colorado State University, Fort Collins, Colo.
- Julien, P. Y., Saghafian, B. and Ogden, F. L. (1995). Raster-Based Hydrologic Modeling of Spatially-Varied Surface Runoff. JAWRA Journal of the American Water Resources Association, 31: 523–536.
- Kabuya, M. (2005). *Etude du Régime Hydrologique de la Rivière N'djili*. Mémoire de Fin d'études, Faculté des Sciences Agronomiques, Université de Kinshasa.
- Kane, B., and Julien, P.Y. (2007). *Specific degradation of watersheds*. International Journal of Sediment Research, 22(2), 114-119.
- Kim, H. (2006). Soil Erosion Modeling using RUSLE and GIS on the IMHA Watershed, Master's Science Thesis, Colorado State University.South Korea.
- Knisel, W. G., ed. (1980). "CREAMS: A field-scale model for chemicals, runoff, and erosion from agricultural management system." *Conservation Research Rep. 26*, USDA-SEA, Washington, D.C.
- Krivoruchko, K. (2011). Spatial Statistical Data Analysis for GIS Users, Esri Press, Redlands, California, 928 p.
- Kuenstler, W. (1998). "A guidelines for the use of the Revised Universal Soil Loss Equation (RUSLE). Chapter 5.
- Laflen, J. M., Foster, G. R., and Onstad, C. A. (1985). "Simulation of individual-storm soil loss for modeling the impact of soil erosion on crop productivity." Soil Erosion and

Conservation, S.A. El-Swaify, W.C. Moldenhauer, and A. Lo, eds., Soil & Water Conservation Society of America, Ankeny, Iowa, pp. 285–295.

- Lillesand, T. M., Kiefer, R.W., Chipman, J.W. (2008). *Remote Sensing and Image Interpretation*, 6<sup>th</sup> ed. John Wiley & Sons, 756 p.
- Lo, A., El-Swaify, S.A., Dangler, E.W. and Shinshiro, L., (1985). *Effectiveness of El30 as an erosivity index in Hawaii*. In: S.A. E1-Swaify, W.C. Moldenhauer and A. Lo (Editors), Soil Erosion and Conservation. Soil Conservation Society of America, Ankeny, pp. 384 392.
- LP DAAC (2009). ASTER GDEM V2. USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota.
- Luboya, J. K. (2002). Etude Systémique du Bassin Versant de la Rivière N'djili à Kinshasa. Mémoire d'études supérieures spécialisées, Ecole Régionale Postuniversitaire d'Aménagement et Gestion Intégrés de Forêts et Territoires Tropicaux, Université de Kinshasa.
- MacArthur, R. C., Neill, C. R., Hall, B. R., Galay, V. J., and Shvidchenko, A. B. (2008).
  "Overview of Sedimentation Engineering". *Sedimentation Engineering: Processes: Measurements, Modeling, and Practice*, Manuals and Reports on Engineering Practice No. 110, M. H. Garcia, ed., ASCE, Reston, Virginia.
- MacDonald, L. H. (2012). *Post-fire Recovery and Restoration: Soils, Runoff and Erosion*. Watershed Science Program, Dpt of Ecosystem Science and Sustainability, Colorado State University.
- Maner, S. B. (1962). Factors influencing sediment delivery ratios in the Blackland Prairie land resource area. US Dept. of Agriculture, Soil Conservation Service, Fort Worth, Texas, USA.
- McCool, D.K., Brown, L.C. and Foster, G.R., (1987). *Revised slope steepness factor for the Universal Soil Loss Equation*. Transactions of the American Society of Agricultural Engineers, 30: 1387-1396.
- McCool, D.K., Foster, G.R., and Weesies, G.A. (1997). *Slope length and steepness factors (LS)*, Chapter 4, pp. 101-141 in Renard et al. (1997).
- Mikhailova, E.A., Bryant, R.B., Schwager, S.J., Smith, S.D. (1997). Predicting Rainfall Erosivity in Honduras. *Soil Science Society of America journal 61:* pp 273-279.
- Mitasova, H., Hofierka, J., Zlocha, M., and Iverson, R. (1996). *Modeling Topographic Potential* for Erosion and Deposition using GIS. In. Journal of Geographical Information Science 10 (5), 629-641.
- Moore, LD., and Burch, G.J. (1985). *Physical Basis of the Length-slope Factor in the Universal Soil Loss Equation*. Soil Sci. Soc. Am. J. 50: 1294-1298.
- Morgan, R. P. C. (2011). Handbook of erosion modelling. Chichester, West Sussex, UK: Wiley.

- Murphy, S.F., McCleskey, R.B., and Writer, J.W. (2012). Effects of flow regimes on stream turbidity and suspended solids after wildfire, Colorado Front Range, in Wildfire and water quality—Processes, impacts, and challenges, Conference in Banff, Canada, June 2012, Proceedings: Wallingford, Oxfordshire, U.K., International Association of Hydrological Sciences publication 354, p. 51–58.
- NASA (2000). Landsat 7 Science Data Users Handbook. Landsat Project Science Office, Goddard Space Flight Center, Greenbelt, Maryland.
- Ntale, J. P. (2010). Evaluation de la Pression Anthropique sur les Forêts Périurbaines de la Ville de Kinshasa. Mémoire de fin d'études, Faculté des Sciences Agronomiques, Université de Kinshasa.
- O'Callaghan, J. F., and Mark, D. M., (1984). The extraction of drainage networks from digital elevation data: *Computer Vision, Graphics and Image Processing*, Vol. 28, pp. 323-344.
- Omar, C. (2010). Geographic Information System Manual. Tenaga National Berhad.
- Opti-Plus (2013). *Etudes Hydrologiques pour la réhabilitation du Pont sur la rivière N'djili*. Kinshasa, DRC.
- Ouyang, D., and Bartholic, J. (2001). *Web-Based GIS Application for Soil Erosion Prediction*. Proceedings of an International Symposium, Soil Erosion Research for the 21<sup>st</sup> Century, 01, 185-189.
- Refsgaard, J. C., and Storm, B. (1995). "Chapter 23: MIKE SHE." Computer Models of Watershed Hydrology, V. P. Singh, ed., Water Resources Publications, Highlands Ranch, Colo., 809–846.
- Renard, K. G., and Freimund, J. R. (1994). Using monthly precipitation data to estimate the *R* factor in the revised USLE. Journal of Hydrology, 157(1), 287-306.
- Renard, K., Foster, G., Weesies, G., McDool, D., and Yoder, D. (1997). *Predicting Soil Erosion* by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). Agricultural Handbook 703, USDA-ARS.
- Renard, K.G., and Foster, G.R. (1983). Soil conservation: Principles of erosion by water. Dryland Agriculture, pp. 155-176. Agronomy Monogr. 23, Am. Soc. Agron., Crop Sci. Soc. Am., and Soil Sci. Soc. Am., Madison, Wisconsin.
- Renfro, G.W. (1975). Use of Erosion Equations and Sediment-Delivery Ratios for Predicting Sediment. Sediment Yield. ARS-S-40.
- Renschler, C.S., and Harbor, J. (2002). Soil Erosion Assessment Tools from Point to Regional Scales-the Role of Geomorphologists in Land Management Research and Implementation. Geomorphology 47: 189-209.
- Rose, E., (1977). Erosion et Ruissellement en Afrique de l'ouest--vingt années de mesures en petites parcelles expérimentales. Travaux et Documents de l'ORSTOM No. 78, ORSTOM, Paris

- Rudra, R.P., Dickinson, W.T., and Wall, G.J. (1986). *GAMES a screening model of soil* erosion and fluvial sedimentation on agricultural watersheds. Canadian Water Research Journal 11: 58–71.
- SAFRICAS (2005). Projet de Réhabilitation du Captage d'Eau Brute à N'Djili et Renforcement du Système de Transfert d'Eau au Sud de Kinshasa, RDC. Kinshasa, DRC.
- Schwab, G.O., Frevert, R.K., Edminster, T.W., and Barnes, K.K. (1981). "Soil Water
- Conservation Engineering", 3rd ed., Wiley, New York.
- Semeki, J. N. (2003). Impacts de l'Agriculture Itinérante sur Brulis dans la station Phytotechnique de N'djili Brasserie à Kinshasa. Rapport technique, Faculté des Sciences Agronomiques, Université de Kinshasa.
- Shen and Julien, P.Y. (1993). Erosion and sediment transport, in Handbook of Hydrology.
- Smith, D., and Whitt, D. (1947). *Estimating Soil Losses from Field Areas of Claypan Soil*. Soil Science Society of America Proceedings, 12, 485-490.
- Smithen A.A. and Schulze, R.E., (1982). *The spatial distribution in Southern Africa of rainfall erosivity for use in the universal soil loss equation.* Water S. Afr., 8(2): 74-78.
- Stocking, M,A. and Elwell, H.A., (1976a). Erosivity determinations for seven rainfall stations in Rhodesia. Research Bull. No. 21, Department of Conservation and Extension, Salisbury.
- Stocking, M.A. and Elwell, H.A., (1976b). Rainfall erosivity over Rhodesia. Trans. Inst. Br. Geogr., New Ser., 1: 231--245.
- Summerfield, M. A., and Hutton, N. J. (1994). "Natural controls of fluvial denudation rates in major world drainage basins." *J. Geophys. Res.*, 99(B7), 13,871-13,883.
- Teh, Soo Huey (2011). Soil Erosion Modeling Using RUSLE and GIS on Cameron Highlands, Malaysia For Hydropower Development.
- Thieken, A.H., Lucke, A., Diekkruger, B., and Richter. O. (1999). *Scaling input data by GIS for hydrological modelling*. Hydrol. Processes 13:611–630.
- Thompson, J.A., Bell, J.C., and Butler, C.A. (2001). *Digital elevation model resolution: Effects on terrain attribute calculation and quantitative soil-landscape modeling*. Geoderma 100:67–89.
- Torri, D., Borselli, L., Guzzetti, F., Calzolari, C., Bazzoffi, P., Ungaro, F., Bartolini D, Sanchis MP. (2006). Soil erosion in Italy: an overview. In *Soil Erosion in Europe*, Boardman J, Poesen J. eds .Wiley: New York; pp 245-261.
- Tshibangu, D. (2014): Concentration des matières en suspension des eaux de la rivière N'djili en 2013. Rapport de Laboratoire, Laboratoire de Chimie, Faculté des Sciences, Kinshasa, DRC.
- UNEP (2010). Water issues in the Democratic Republic of Congo, Challenges and Opportunities. Technical report. Nairobi. KENYA.

- USGS (1995). Landsat Archive, 1995, Landsat TM+, 30m scene p 1820631995032XXX01, USGS, Sioux Falls, South Dakota.
- USGS (2001). Landsat Archive, 2001, Landsat ETM + SLC on, 30m scene p 1820632001120EDC00, USGS, Sioux Falls, South Dakota.
- USGS (2013). Landsat Archive, 2013, Landsat OLI\_TIRS, 30m scene p 1820632013225LGN00, USGS, Sioux Falls, South Dakota.
- United States Soil Conservation Service (USSCS). (1971). "Section 3, Chapter 6: Sediment sources, yields and delivery ratios." *SCS national engineering handbook*, USDA Soil Conservation Service, Washington, D.C.
- Valdiya, K. S. (1998). Dynamic Himalaya, Universities Press, Hyderabad, India.
- Van Caillie, X. (1983). Hydrologie et érosion dans la région de Kinshasa: Analyse des interactions entre les conditions du milieu, les érosions et le bilan hydrologique (Thèse de doctorat) Dpt de Geografie Geologie, KUL (554p).
- Vanoni, V. A., ed. (1975). *Sedimentation engineering*. Manual 54, American Society of Civil Engineers, New York, 745 p.
- Velleux, M., England, J., and Julien P. (2008). TREX: Spatially Distributed Model to Assess Watershed Contaminant Transport and Fate. Science of the Total Environment, 404(1):113-128.
- Velleux, M., Westenbroek, S., Ruppel, J., Settles, M., Endicott, D. (2001). A User's Guide to IPX, the In-Place Pollutant Export Water Quality Modeling Framework, Version 2.7.4" USEPA ORD, National Health and Environmental Effects Research Laboratory, Large Lakes Research Station, Grosse Ile, Michigan. 179 p. EPA/600/R-01/079.
- Warner, T. A., Campagna, D.J. (2013). *Remote Sensing with IDRISI: A Beginner's Guide*, Clark Labs, Clark University, 308 p.
- Williams, J. (1975). Sediment Yield Prediction with Universal Equation using Runoff Energy Factor. Agricultural Research Service Report ARS-S-40, U.S. Department of Agriculture.
- Wischmeier, W. H., and Smith, D.D., (1965). Predicting rainfall-erosion losses from cropland east of the Rocky Mountains: Guide for selection of practices for soil and water conservation (Vol. 282). Agricultural Research Service, U.S. Department of Agriculture.
- Wischmeier, W. H., and Smith, D.D., (1978). *Predicting Rainfall Erosion Losses A Guide to Conservation Planning*. U.S. Department of Agriculture Handbook No. 537.
- Wischmeier, W. H. (1960). Cropping management factor evaluations for a Universal Soil Loss Equation. Proceedings of Soil Science Society of America, 24, pp. 322-326.
- Wischmeier, W.H. (1975). Estimating the soil loss equation's cover and management factor for undisturbed area. In: Present and Prospective Technology for Predicting Sediment Yield and Sources: Proceedings, Sediment Yield Workshop, USDA Sedimentation Laboratory,
Oxford, Mississippi, and November 28-30, 1972. ARS-S-40. U.S. Department of Agriculture, Washington, D.C., pp. 118-124.

- Wischmeier, W.H., Johnson, C.B., and Cross, B.V. (1971). A soil erodibility nomograph for farmland and construction sites. J. Soil and Water Conserv. 26:189-193.
- Writer, J.H., McCleskey, R.B., and Murphy, S.F. (2012), *Effects of wildfire on source-water quality and aquatic ecosystems, Colorado Front Range*, in Wildfire and water quality—Processes, impacts, and challenges, Conference in Banff, Canada, June 2012, Proceedings: Wallingford, Oxfordshire, U.K., International Association of Hydrological Sciences publication 354, p. 117–122.
- Yu, B., Rosewell, C.J., (1996). Technical Notes: A Robust Estimator of the R-Factor for the Universal Soil Loss Equation. *Transactions of the ASAE: 1996 American Society of Agricultural Engineers, Vol.39:* pp 559-561.

APPENDIX A: RAINFALL, TURBIDITY AND DISCHARGE DATASET

| Station               | Precipitation |
|-----------------------|---------------|
| Binza                 | mm/Month      |
| Jan                   | 170           |
| Feb                   | 140           |
| Mar                   | 195           |
| Apr                   | 209           |
| May                   | 142           |
| Jun                   | 6             |
| Jul                   | 3             |
| Aug                   | 7             |
| Sep                   | 39            |
| Oct                   | 142           |
| Nov                   | 248           |
| Dec                   | 167           |
| Mean Annual (mm/year) | 1468          |

| Monthly Rainfall Records by | <b>Climatic Stations</b> |
|-----------------------------|--------------------------|
|-----------------------------|--------------------------|

| Station               | Precipitation |  |
|-----------------------|---------------|--|
| Ndolo                 | mm/Month      |  |
| Jan                   | 157           |  |
| Feb                   | 157           |  |
| Mar                   | 194           |  |
| Apr                   | 177           |  |
| May                   | 136           |  |
| Jun                   | 5             |  |
| Jul                   | 6             |  |
| Aug                   | 4             |  |
| Sep                   | 55            |  |
| Oct                   | 96            |  |
| Nov                   | 186           |  |
| Dec                   | 175           |  |
| Mean Annual (mm/year) | 1348          |  |

| Station               | Precipitation |
|-----------------------|---------------|
| N'djili               | mm/Month      |
| Jan                   | 173           |
| Feb                   | 158           |
| Mar                   | 192           |
| Apr                   | 218           |
| May                   | 142           |
| Jun                   | 8             |
| Jul                   | 5             |
| Aug                   | 7             |
| Sep                   | 38            |
| Oct                   | 145           |
| Νον                   | 246           |
| Dec                   | 165           |
| Mean Annual (mm/year) | 1497          |

| Station               | Precipitation |
|-----------------------|---------------|
| Rifflart              | mm/Month      |
| Jan                   | 189           |
| Feb                   | 152           |
| Mar                   | 171           |
| Apr                   | 173           |
| May                   | 95            |
| Jun                   | 4             |
| Jul                   | 4             |
| Aug                   | 2             |
| Sep                   | 115           |
| Oct                   | 143           |
| Nov                   | 217           |
| Dec                   | 207           |
| Mean Annual (mm/year) | 1472          |

| Station               | Precipitation |
|-----------------------|---------------|
| Kimwenza              | mm/Month      |
| Jan                   | 194           |
| Feb                   | 126           |
| Mar                   | 196           |
| Apr                   | 180           |
| May                   | 137           |
| Jun                   | 4             |
| Jul                   | 3             |
| Aug                   | 24            |
| Sep                   | 42            |
| Oct                   | 125           |
| Νον                   | 252           |
| Dec                   | 208           |
| Mean Annual (mm/year) | 1491          |

| Station               | Precipitation |
|-----------------------|---------------|
| Kasangulu             | mm/Month      |
| Jan                   | 147           |
| Feb                   | 92            |
| Mar                   | 133           |
| Apr                   | 170           |
| May                   | 130           |
| Jun                   | 78            |
| Jul                   | 43            |
| Aug                   | 65            |
| Sep                   | 88            |
| Oct                   | 130           |
| Nov                   | 245           |
| Dec                   | 141           |
| Mean Annual (mm/year) | 1462          |

| Station               | Precipitation |  |
|-----------------------|---------------|--|
| Luzumu                | mm/Month      |  |
| Jan                   | 196           |  |
| Feb                   | 126           |  |
| Mar                   | 172           |  |
| Apr                   | 195           |  |
| May                   | 121           |  |
| Jun                   | 6             |  |
| Jul                   | 3             |  |
| Aug                   | 2             |  |
| Sep                   | 86            |  |
| Oct                   | 186           |  |
| Nov                   | 191           |  |
| Dec                   | 202           |  |
| Mean Annual (mm/year) | 1486          |  |

| Station               | Precipitation |
|-----------------------|---------------|
| Luila (Wolter)        | mm/Month      |
| Jan                   | 130           |
| Feb                   | 114           |
| Mar                   | 179           |
| Apr                   | 206           |
| May                   | 130           |
| Jun                   | 10            |
| Jul                   | 3             |
| Aug                   | 2             |
| Sep                   | 35            |
| Oct                   | 130           |
| Nov                   | 231           |
| Dec                   | 192           |
| Mean Annual (mm/year) | 1362          |

| Station               | Precipitation |
|-----------------------|---------------|
| Kisembo               | mm/Month      |
| Jan                   | 195           |
| Feb                   | 126           |
| Mar                   | 172           |
| Apr                   | 198           |
| May                   | 121           |
| Jun                   | 6             |
| Jul                   | 3             |
| Aug                   | 2             |
| Sep                   | 86            |
| Oct                   | 186           |
| Nov                   | 191           |
| Dec                   | 205           |
| Mean Annual (mm/year) | 1491          |

| Station               | Precipitation |  |
|-----------------------|---------------|--|
| Kindamba              | mm/Month      |  |
| Jan                   | 148           |  |
| Feb                   | 139           |  |
| Mar                   | 200           |  |
| Apr                   | 191           |  |
| May                   | 117           |  |
| Jun                   | 14            |  |
| Jul                   | 3             |  |
| Aug                   | 3             |  |
| Sep                   | 38            |  |
| Oct                   | 112           |  |
| Nov                   | 247           |  |
| Dec                   | 177           |  |
| Mean Annual (mm/year) | 1389          |  |

## **Observed Values of Turbidity**

| Day | NTU - | NTU - | NTU - |
|-----|-------|-------|-------|
|     | 2000  | 2001  | 2002  |
| 1   | 52    | 31    | 45    |
| 2   | 130   | 53    | 40    |
| 3   | 87    | 82    | 72    |
| 4   | 36    | 52    | 190   |
| 5   | 27    | 64    | 160   |
| 6   | 32    | 34    | 58    |
| 7   | 38    | 26    | 40    |
| 8   | 190   | 28    | 35    |
| 9   | 152   | 27    | 35    |
| 10  | 78    | 25    | 58    |
| 11  | 44    | 23    | 35    |
| 12  | 48    | 26    | 38    |
| 13  | 194   | 25    | 156   |
| 14  | 205   | 24    | 150   |
| 15  | 312   | 23    | 160   |
| 16  | 127   | 38    | 85    |
| 17  | 66    | 26    | 70    |
| 18  | 32    | 25    | 79    |
| 19  | 26    | 79    | 130   |
| 20  | 23    | 41    | 56    |
| 21  | 25    | 62    | 32    |
| 22  | 34    | 40    | 39    |
| 23  | 38    | 75    | 34    |
| 24  | 172   | 56    | 28    |
| 25  | 61    | 41    | 25    |
| 26  | 36    | 32    | 125   |
| 27  | 25    | 217   | 72    |
| 28  | 31    | 61    | 64    |
| 29  | 84    | 35    | 350   |
| 30  | 72    | 25    | 200   |
| 31  | 78    | 24    | 76    |
| 32  | 82    | 700   | 55    |
| 33  | 80    | 275   | 52    |
| 34  | 427   | 73    | 28    |
| 35  | 132   | 42    | 4400  |
| 36  | 128   | 150   | 215   |
| 37  | 110   | 120   | 62    |
| 38  | 81    | 83    | 48    |

| Day | NTU -<br>2000 | NTU -<br>2001 | NTU -<br>2002 |
|-----|---------------|---------------|---------------|
| 39  | 58            | 86            | 34            |
| 40  | 42            | 58            | 6600          |
| 41  | 30            | 32            | 85            |
| 42  | 28            | 27            | 610           |
| 43  | 556           | 35            | 155           |
| 44  | 102           | 28            | 60            |
| 45  | 84            | 24            | 42            |
| 46  | 412           | 24            | 232           |
| 47  | 218           | 25            | 50            |
| 48  | 114           | 580           | 39            |
| 49  | 624           | 31            | 310           |
| 50  | 514           | 225           | 168           |
| 51  | 389           | 280           | 79            |
| 52  | 612           | 140           | 55            |
| 53  | 510           | 48            | 78            |
| 54  | 413           | 40            | 49            |
| 55  | 632           | 30            | 172           |
| 56  | 312           | 32            | 85            |
| 57  | 189           | 33            | 219           |
| 58  | 167           | 299           | 255           |
| 59  | 97            | 300           | 450           |
| 60  | 62            | 51            | 98            |
| 61  | 41            | 26            | 77            |
| 62  | 35            | 30            | 60            |
| 63  | 28            | 240           | 30            |
| 64  | 24            | 151           | 272           |
| 65  | 29            | 164           | 94            |
| 66  | 304           | 180           | 100           |
| 67  | 214           | 180           | 90            |
| 68  | 97            | 60            | 30            |
| 69  | 73            | 63            | 29            |
| 70  | 55            | 30            | 28            |
| 71  | 41            | 26            | 24            |
| 72  | 32            | 28            | 22            |
| 73  | 28            | 129           | 2200          |
| 74  | 31            | 450           | 50            |
| 75  | 34            | 380           | 28            |
| 76  | 28            | 138           | 26            |
| 77  | 25            | 140           | 28            |
| 78  | 31            | 155           | 93            |

| Day | NTU - | NTU - | NTU - |
|-----|-------|-------|-------|
|     | 2000  | 2001  | 2002  |
| 79  | 24    | 524   | 58    |
| 80  | 18    | 407   | 26    |
| 81  | 25    | 389   | 28    |
| 82  | 27    | 712   | 32    |
| 83  | 22    | 523   | 268   |
| 84  | 29    | 405   | 350   |
| 85  | 31    | 395   | 56    |
| 86  | 49    | 895   | 44    |
| 87  | 184   | 344   | 82    |
| 88  | 121   | 123   | 150   |
| 89  | 132   | 95    | 58    |
| 90  | 67    | 68    | 69    |
| 91  | 18    | 52    | 85    |
| 92  | 29    | 37    | 45    |
| 93  | 140   | 127   | 114   |
| 94  | 230   | 215   | 200   |
| 95  | 63    | 532   | 1000  |
| 96  | 154   | 610   | 8076  |
| 97  | 142   | 103   | 63    |
| 98  | 83    | 230   | 377   |
| 99  | 110   | 430   | 90    |
| 100 | 66    | 487   | 60    |
| 101 | 85    | 598   | 60    |
| 102 | 83    | 214   | 344   |
| 103 | 52    | 42    | 32    |
| 104 | 48    | 78    | 108   |
| 105 | 40    | 88    | 655   |
| 106 | 63    | 59    | 55    |
| 107 | 300   | 77    | 122   |
| 108 | 52    | 53    | 54    |
| 109 | 47    | 63    | 78    |
| 110 | 98    | 90    | 82    |
| 111 | 220   | 130   | 640   |
| 112 | 116   | 83    | 550   |
| 113 | 120   | 336   | 152   |
| 114 | 60    | 478   | 95    |
| 115 | 78    | 284   | 90    |
| 116 | 85    | 510   | 65    |
| 117 | 88    | 179   | 270   |
| 118 | 81    | 197   | 312   |

| Day | NTU - | NTU - | NTU - |
|-----|-------|-------|-------|
|     | 2000  | 2001  | 2002  |
| 119 | 55    | 522   | 2122  |
| 120 | 54    | 71    | 87    |
| 121 | 48    | 294   | 540   |
| 122 | 35    | 164   | 292   |
| 123 | 28    | 76    | 124   |
| 124 | 46    | 201   | 355   |
| 125 | 45    | 54    | 62    |
| 126 | 31    | 57    | 83    |
| 127 | 28    | 92    | 156   |
| 128 | 68    | 94    | 120   |
| 129 | 50    | 55    | 60    |
| 130 | 230   | 135   | 40    |
| 131 | 84    | 58    | 31    |
| 132 | 132   | 83    | 34    |
| 133 | 132   | 630   | 31    |
| 134 | 69    | 255   | 33    |
| 135 | 99    | 82    | 32    |
| 136 | 126   | 69    | 30    |
| 137 | 44    | 191   | 33    |
| 138 | 30    | 508   | 30    |
| 139 | 28    | 306   | 28    |
| 140 | 95    | 132   | 29    |
| 141 | 35    | 59    | 30    |
| 142 | 58    | 52    | 34    |
| 143 | 51    | 45    | 140   |
| 144 | 57    | 57    | 82    |
| 145 | 25    | 42    | 77    |
| 146 | 23    | 68    | 214   |
| 147 | 31    | 36    | 289   |
| 148 | 27    | 37    | 123   |
| 149 | 19    | 35    | 78    |
| 150 | 22    | 28    | 61    |
| 151 | 18    | 100   | 48    |
| 152 | 30    | 182   | 39    |
| 153 | 28    | 120   | 49    |
| 154 | 25    | 48    | 57    |
| 155 | 27    | 37    | 49    |
| 156 | 29    | 68    | 38    |
| 157 | 30    | 34    | 364   |
| 158 | 31    | 29    | 105   |

| Day | NTU - | NTU - | NTU - | D |
|-----|-------|-------|-------|---|
|     | 2000  | 2001  | 2002  |   |
| 159 | 26    | 29    | 213   |   |
| 160 | 27    | 26    | 89    |   |
| 161 | 23    | 26    | 67    |   |
| 162 | 26    | 25    | 36    |   |
| 163 | 23    | 25    | 32    |   |
| 164 | 22    | 29    | 27    |   |
| 165 | 24    | 25    | 27    |   |
| 166 | 29    | 24    | 28    |   |
| 167 | 34    | 24    | 29    |   |
| 168 | 30    | 25    | 25    |   |
| 169 | 29    | 27    | 27    |   |
| 170 | 22    | 24    | 26    |   |
| 171 | 22    | 24    | 23    |   |
| 172 | 21    | 23    | 28    |   |
| 173 | 21    | 23    | 27    |   |
| 174 | 21    | 23    | 25    |   |
| 175 | 21    | 22    | 26    |   |
| 176 | 21    | 22    | 23    |   |
| 177 | 20    | 23    | 28    |   |
| 178 | 23    | 22    | 26    |   |
| 179 | 23    | 24    | 27    |   |
| 180 | 23    | 23    | 25    |   |
| 181 | 23    | 26    | 26    |   |
| 182 | 21    | 22    | 26    |   |
| 183 | 21    | 26    | 25    |   |
| 184 | 23    | 24    | 26    |   |
| 185 | 22    | 23    | 28    |   |
| 186 | 21    | 22    | 28    |   |
| 187 | 21    | 22    | 25    |   |
| 188 | 22    | 23    | 27    |   |
| 189 | 21    | 22    | 26    |   |
| 190 | 26    | 27    | 28    |   |
| 191 | 22    | 23    | 24    |   |
| 192 | 21    | 22    | 26    |   |
| 193 | 22    | 22    | 26    |   |
| 194 | 20    | 20    | 30    |   |
| 195 | 22    | 21    | 24    |   |
| 196 | 23    | 20    | 27    |   |
| 197 | 23    | 20    | 27    |   |
| 198 | 21    | 23    | 30    |   |

| Day | NTU - | NTU - | NTU -            |
|-----|-------|-------|------------------|
| 100 | 2000  | 2001  | 2002             |
| 200 | 21    | 25    | 23               |
| 200 | 20    | 21    | 24               |
| 201 | 20    | 21    | 27               |
| 202 | 21    | 22    | 30               |
| 203 | 19    | 20    | 29               |
| 204 | 21    | 21    | 29               |
| 205 | 25    | 24    | 29               |
| 200 | 20    | 21    | 24               |
| 207 | 10    | 21    | 25               |
| 200 | 10    | 20    | 23               |
| 209 | 20    | 21    | 24               |
| 210 | 10    | 10    | 24               |
| 211 | 25    | 69    | 22               |
| 212 | 20    | 68    | 22               |
| 213 | 25    | 70    | 22               |
| 214 | 23    | 19    | 21               |
| 215 | 27    | 67    | 23               |
| 210 | 20    | 21    | 22               |
| 217 | 29    | 21    | 20               |
| 219 | 19    | 23    | 25               |
| 220 | 18    | 19    | <u>-</u> 5<br>26 |
| 221 | 17    | 21    | 26               |
| 222 | 16    | 24    | 26               |
| 223 | 18    | 22    | 24               |
| 224 | 16    | 19    | 23               |
| 225 | 16    | 20    | 24               |
| 226 | 18    | 21    | 27               |
| 227 | 20    | 22    | 24               |
| 228 | 21    | 20    | 26               |
| 229 | 20    | 24    | 23               |
| 230 | 18    | 20    | 22               |
| 231 | 18    | 20    | 22               |
| 232 | 18    | 19    | 23               |
| 233 | 18    | 22    | 26               |
| 234 | 20    | 22    | 23               |
| 235 | 25    | 20    | 23               |
| 236 | 22    | 24    | 22               |
| 237 | 25    | 25    | 27               |
| 238 | 25    | 24    | 27               |
|     |       |       |                  |

| Day | NTU - | NTU - | NTU - |  |
|-----|-------|-------|-------|--|
|     | 2000  | 2001  | 2002  |  |
| 239 | 27    | 21    | 23    |  |
| 240 | 23    | 27    | 25    |  |
| 241 | 27    | 26    | 25    |  |
| 242 | 29    | 67    | 22    |  |
| 243 | 32    | 22    | 25    |  |
| 244 | 30    | 22    | 25    |  |
| 245 | 31    | 22    | 27    |  |
| 246 | 28    | 22    | 23    |  |
| 247 | 26    | 24    | 25    |  |
| 248 | 32    | 24    | 24    |  |
| 249 | 33    | 23    | 25    |  |
| 250 | 34    | 22    | 24    |  |
| 251 | 38    | 23    | 23    |  |
| 252 | 32    | 25    | 35    |  |
| 253 | 28    | 25    | 27    |  |
| 254 | 29    | 24    | 25    |  |
| 255 | 168   | 23    | 99    |  |
| 256 | 71    | 23    | 24    |  |
| 257 | 42    | 23    | 288   |  |
| 258 | 54    | 23    | 42    |  |
| 259 | 39    | 23    | 43    |  |
| 260 | 31    | 25    | 35    |  |
| 261 | 28    | 29    | 248   |  |
| 262 | 28    | 25    | 156   |  |
| 263 | 27    | 23    | 60    |  |
| 264 | 29    | 25    | 54    |  |
| 265 | 38    | 24    | 42    |  |
| 266 | 36    | 24    | 31    |  |
| 267 | 44    | 22    | 40    |  |
| 268 | 33    | 22    | 30    |  |
| 269 | 46    | 23    | 64    |  |
| 270 | 32    | 22    | 49    |  |
| 271 | 25    | 22    | 38    |  |
| 272 | 28    | 96    | 124   |  |
| 273 | 25    | 63    | 102   |  |
| 274 | 27    | 62    | 84    |  |
| 275 | 23    | 34    | 61    |  |
| 276 | 29    | 30    | 44    |  |
| 277 | 32    | 28    | 32    |  |
| 278 | 34    | 22    | 30    |  |

| Day | NTU - | NTU - | NTU - |
|-----|-------|-------|-------|
|     | 2000  | 2001  | 2002  |
| 279 | 64    | 22    | 24    |
| 280 | 51    | 150   | 22    |
| 281 | 43    | 285   | 24    |
| 282 | 32    | 72    | 28    |
| 283 | 30    | 38    | 32    |
| 284 | 32    | 29    | 36    |
| 285 | 39    | 32    | 32    |
| 286 | 42    | 32    | 34    |
| 287 | 49    | 31    | 41    |
| 288 | 56    | 25    | 39    |
| 289 | 264   | 25    | 32    |
| 290 | 139   | 26    | 118   |
| 291 | 77    | 35    | 165   |
| 292 | 56    | 265   | 105   |
| 293 | 44    | 245   | 86    |
| 294 | 33    | 150   | 227   |
| 295 | 28    | 45    | 386   |
| 296 | 30    | 35    | 222   |
| 297 | 218   | 35    | 238   |
| 298 | 182   | 410   | 286   |
| 299 | 163   | 171   | 225   |
| 300 | 171   | 150   | 182   |
| 301 | 98    | 44    | 107   |
| 302 | 204   | 30    | 87    |
| 303 | 198   | 29    | 51    |
| 304 | 213   | 144   | 40    |
| 305 | 207   | 47    | 184   |
| 306 | 321   | 27    | 65    |
| 307 | 168   | 29    | 48    |
| 308 | 407   | 23    | 36    |
| 309 | 235   | 24    | 75    |
| 310 | 162   | 23    | 55    |
| 311 | 88    | 64    | 70    |
| 312 | 56    | 235   | 222   |
| 313 | 49    | 162   | 210   |
| 314 | 85    | 60    | 40    |
| 315 | 389   | 46    | 27    |
| 316 | 365   | 44    | 28    |
| 317 | 602   | 31    | 34    |
| 318 | 523   | 28    | 33    |

| Day | NTU - | NTU - | NTU - |
|-----|-------|-------|-------|
|     | 2000  | 2001  | 2002  |
| 319 | 489   | 26    | 400   |
| 320 | 435   | 24    | 120   |
| 321 | 365   | 42    | 85    |
| 322 | 312   | 100   | 110   |
| 323 | 129   | 200   | 120   |
| 324 | 88    | 190   | 400   |
| 325 | 63    | 40    | 171   |
| 326 | 87    | 35    | 210   |
| 327 | 134   | 172   | 312   |
| 328 | 287   | 64    | 340   |
| 329 | 379   | 28    | 130   |
| 330 | 422   | 180   | 80    |
| 331 | 588   | 102   | 55    |
| 332 | 637   | 90    | 400   |
| 333 | 620   | 350   | 140   |
| 334 | 370   | 150   | 146   |
| 335 | 128   | 57    | 146   |
| 336 | 52    | 35    | 80    |
| 337 | 150   | 38    | 52    |
| 338 | 125   | 90    | 120   |
| 339 | 65    | 80    | 120   |
| 340 | 63    | 35    | 355   |
| 341 | 67    | 45    | 246   |
| 342 | 180   | 176   | 120   |
| 343 | 0     | 85    | 243   |
| 344 | 1160  | 95    | 140   |
| 345 | 160   | 47    | 252   |
| 346 | 62    | 60    | 325   |
| 347 | 320   | 470   | 148   |
| 348 | 216   | 225   | 148   |
| 349 | 122   | 85    | 120   |
| 350 | 95    | 50    | 53    |
| 351 | 195   | 85    | 141   |
| 352 | 130   | 132   | 115   |
| 353 | 65    | 190   | 102   |
| 354 | 980   | 190   | 188   |
| 355 | 485   | 62    | 204   |
| 356 | 142   | 160   | 164   |
| 357 | 55    | 140   | 310   |
| 358 | 200   | 48    | 289   |

| Day | NTU -<br>2000 | NTU -<br>2001 | NTU -<br>2002 |
|-----|---------------|---------------|---------------|
| 359 | 190           | 65            | 184           |
| 360 | 40            | 66            | 107           |
| 361 | 31            | 35            | 62            |
| 362 | 31            | 27            | 53            |
| 363 | 35            | 31            | 14            |
| 364 | 49            | 39            | 10            |
| 365 | 51            | 255           | 155           |
| 366 | 40            |               |               |

| Day | NTU - | NTU - | NTU - |
|-----|-------|-------|-------|
|     | 2003  | 2004  | 2005  |
| 1   | 44    | 42    | 77    |
| 2   | 35    | 30    | 32    |
| 3   | 50    | 28    | 269   |
| 4   | 122   | 54    | 57    |
| 5   | 160   | 160   | 190   |
| 6   | 99    | 140   | 140   |
| 7   | 114   | 187   | 40    |
| 8   | 138   | 240   | 165   |
| 9   | 92    | 148   | 99    |
| 10  | 59    | 60    | 49    |
| 11  | 83    | 130   | 82    |
| 12  | 121   | 204   | 120   |
| 13  | 112   | 67    | 51    |
| 14  | 113   | 75    | 218   |
| 15  | 108   | 55    | 92    |
| 16  | 85    | 84    | 66    |
| 17  | 60    | 50    | 75    |
| 18  | 58    | 37    | 159   |
| 19  | 85    | 40    | 60    |
| 20  | 103   | 150   | 108   |
| 21  | 49    | 65    | 55    |
| 22  | 57    | 74    | 59    |
| 23  | 46    | 58    | 49    |
| 24  | 31    | 34    | 32    |
| 25  | 27    | 29    | 30    |
| 26  | 76    | 26    | 57    |
| 27  | 112   | 152   | 115   |
| 28  | 60    | 56    | 82    |
| 29  | 188   | 25    | 51    |
| 30  | 112   | 23    | 35    |
| 31  | 50    | 24    | 51    |
| 32  | 41    | 27    | 30    |
| 33  | 38    | 23    | 24    |
| 34  | 26    | 24    | 25    |
| 35  | 2245  | 90    | 56    |
| 36  | 177   | 138   | 121   |
| 37  | 47    | 32    | 65    |
| 38  | 40    | 32    | 43    |
| 39  | 31    | 27    | 33    |
|     |       |       |       |

| Day | NTU -<br>2003 | NTU -<br>2004 | NTU -<br>2005 |
|-----|---------------|---------------|---------------|
| 40  | 3313          | 25            | 31            |
| 41  | 123           | 160           | 97            |
| 42  | 39            | 140           | 245           |
| 43  | 34            | 320           | 315           |
| 44  | 33            | 260           | 184           |
| 45  | 32            | 80            | 67            |
| 46  | 35            | 55            | 46            |
| 47  | 95            | 220           | 310           |
| 48  | 68            | 85            | 245           |
| 49  | 41            | 50            | 80            |
| 50  | 91            | 62            | 118           |
| 51  | 352           | 54            | 199           |
| 52  | 250           | 54            | 107           |
| 53  | 210           | 33            | 54            |
| 54  | 72            | 26            | 80            |
| 55  | 1900          | 27            | 38            |
| 56  | 500           | 185           | 113           |
| 57  | 156           | 260           | 225           |
| 58  | 84            | 70            | 92            |
| 59  | 86            | 53            | 59            |
| 60  | 0             | 35            | 18            |
| 61  | 300           | 27            | 30            |
| 62  | 160           | 24            | 31            |
| 63  | 52            | 76            | 55            |
| 64  | 47            | 55            | 42            |
| 65  | 40            | 70            | 50            |
| 66  | 52            | 114           | 73            |
| 67  | 130           | 126           | 77            |
| 68  | 52            | 33            | 32            |
| 69  | 35            | 800           | 415           |
| 70  | 276           | 150           | 115           |
| 71  | 34            | 144           | 205           |
| 72  | 33            | 50            | 84            |
| 73  | 32            | 55            | 53            |
| 74  | 29            | 255           | 147           |
| 75  | 89            | 42            | 49            |
| 76  | 170           | 27            | 134           |
| 77  | 126           | 30            | 110           |
| 78  | 50            | 31            | 53            |
| 79  | 392           | 37            | 42            |

| Day | NTU - | NTU - | NTU - |
|-----|-------|-------|-------|
|     | 2003  | 2004  | 2005  |
| 80  | 240   | 35    | 37    |
| 81  | 110   | 27    | 100   |
| 82  | 46    | 31    | 51    |
| 83  | 36    | 25    | 45    |
| 84  | 150   | 23    | 28    |
| 85  | 40    | 28    | 173   |
| 86  | 36    | 55    | 158   |
| 87  | 66    | 50    | 200   |
| 88  | 88    | 25    | 183   |
| 89  | 104   | 150   | 193   |
| 90  | 121   | 172   | 390   |
| 91  | 76    | 66    | 149   |
| 92  | 42    | 38    | 176   |
| 93  | 75    | 35    | 392   |
| 94  | 270   | 340   | 96    |
| 95  | 519   | 38    | 176   |
| 96  | 4065  | 54    | 139   |
| 97  | 47    | 31    | 64    |
| 98  | 205   | 32    | 49    |
| 99  | 62    | 33    | 303   |
| 100 | 44    | 28    | 330   |
| 101 | 43    | 25    | 880   |
| 102 | 185   | 25    | 97    |
| 103 | 29    | 25    | 50    |
| 104 | 67    | 25    | 40    |
| 105 | 350   | 45    | 90    |
| 106 | 71    | 86    | 172   |
| 107 | 95    | 68    | 50    |
| 108 | 62    | 69    | 38    |
| 109 | 84    | 89    | 192   |
| 110 | 76    | 70    | 50    |
| 111 | 337   | 33    | 38    |
| 112 | 348   | 146   | 192   |
| 113 | 89    | 26    | 140   |
| 114 | 190   | 285   | 1074  |
| 115 | 108   | 126   | 815   |
| 116 | 65    | 64    | 282   |
| 117 | 158   | 45    | 82    |
| 118 | 294   | 276   | 50    |
| 119 | 1144  | 166   | 48    |

| Day | NTU - | NTU - | NTU - |
|-----|-------|-------|-------|
|     | 2003  | 2004  | 2005  |
| 120 | /4    | 60    | 304   |
| 121 | 289   | 38    | 717   |
| 122 | 163   | 33    | 80    |
| 123 | 82    | 40    | 43    |
| 124 | 193   | 30    | 39    |
| 125 | 45    | 28    | 30    |
| 126 | 54    | 25    | 28    |
| 127 | 94    | 32    | 25    |
| 128 | 75    | 29    | 32    |
| 129 | 43    | 25    | 29    |
| 130 | 35    | 30    | 25    |
| 131 | 28    | 24    | 30    |
| 132 | 30    | 25    | 24    |
| 133 | 28    | 25    | 25    |
| 134 | 28    | 22    | 25    |
| 135 | 31    | 29    | 22    |
| 136 | 30    | 29    | 29    |
| 137 | 29    | 25    | 29    |
| 138 | 27    | 23    | 25    |
| 139 | 26    | 23    | 23    |
| 140 | 29    | 28    | 23    |
| 141 | 27    | 24    | 28    |
| 142 | 34    | 34    | 24    |
| 143 | 82    | 23    | 34    |
| 144 | 52    | 22    | 23    |
| 145 | 52    | 27    | 22    |
| 146 | 119   | 24    | 27    |
| 147 | 156   | 23    | 24    |
| 148 | 73    | 23    | 23    |
| 149 | 51    | 24    | 23    |
| 150 | 42    | 22    | 24    |
| 151 | 35    | 22    | 22    |
| 152 | 31    | 23    | 22    |
| 153 | 59    | 23    | 23    |
| 154 | 45    | 22    | 23    |
| 155 | 37    | 20    | 22    |
| 156 | 31    | 20    | 20    |
| 157 | 28    | 20    | 20    |
| 158 | 20    | 21    | 20    |
| 159 | 30    | 23    | 21    |

| Day | NTU - | NTU - | NTU - |
|-----|-------|-------|-------|
|     | 2003  | 2004  | 2005  |
| 160 | 26    | 25    | 23    |
| 161 | 27    | 19    | 25    |
| 162 | 21    | 23    | 19    |
| 163 | 26    | 21    | 23    |
| 164 | 32    | 20    | 21    |
| 165 | 30    | 20    | 20    |
| 166 | 29    | 20    | 20    |
| 167 | 41    | 20    | 20    |
| 168 | 28    | 20    | 20    |
| 169 | 28    | 21    | 108   |
| 170 | 23    | 20    | 102   |
| 171 | 35    | 20    | 35    |
| 172 | 32    | 19    | 32    |
| 173 | 31    | 19    | 29    |
| 174 | 22    | 119   | 28    |
| 175 | 27    | 20    | 27    |
| 176 | 34    | 18    | 32    |
| 177 | 27    | 19    | 35    |
| 178 | 22    | 19    | 28    |
| 179 | 30    | 18    | 29    |
| 180 | 32    | 20    | 29    |
| 181 | 24    | 20    | 30    |
| 182 | 28    | 20    | 30    |
| 183 | 26    | 20    | 32    |
| 184 | 30    | 20    | 32    |
| 185 | 27    | 19    | 30    |
| 186 | 20    | 19    | 33    |
| 187 | 27    | 21    | 32    |
| 188 | 26    | 24    | 32    |
| 189 | 24    | 19    | 30    |
| 190 | 24    | 20    | 32    |
| 191 | 26    | 18    | 34    |
| 192 | 30    | 19    | 25    |
| 193 | 25    | 20    | 30    |
| 194 | 24    | 19    | 29    |
| 195 | 25    | 19    | 28    |
| 196 | 2/    | 19    | 27    |
| 19/ | 25    | 19    | 28    |
| 198 | 20    | 19    | 26    |
| 199 | 25    | 18    | 35    |

| Day | NTU - | NTU - | NTU - |
|-----|-------|-------|-------|
|     | 2003  | 2004  | 2005  |
| 200 | 26    | 18    | 18    |
| 201 | 26    | 18    | 18    |
| 202 | 20    | 17    | 17    |
| 203 | 26    | 18    | 18    |
| 204 | 27    | 17    | 17    |
| 205 | 26    | 20    | 20    |
| 206 | 22    | 20    | 20    |
| 207 | 23    | 19    | 19    |
| 208 | 30    | 115   | 115   |
| 209 | 30    | 116   | 116   |
| 210 | 24    | 19    | 19    |
| 211 | 24    | 19    | 19    |
| 212 | 28    | 20    | 20    |
| 213 | 24    | 21    | 21    |
| 214 | 20    | 20    | 20    |
| 215 | 21    | 18    | 18    |
| 216 | 25    | 18    | 18    |
| 217 | 23    | 18    | 18    |
| 218 | 19    | 18    | 18    |
| 219 | 23    | 20    | 20    |
| 220 | 28    | 20    | 20    |
| 221 | 25    | 19    | 19    |
| 222 | 22    | 20    | 20    |
| 223 | 23    | 18    | 18    |
| 224 | 27    | 19    | 19    |
| 225 | 30    | 30    | 30    |
| 226 | 24    | 118   | 118   |
| 227 | 29    | 22    | 22    |
| 228 | 30    | 20    | 20    |
| 229 | 30    | 19    | 19    |
| 230 | 27    | 18    | 18    |
| 231 | 28    | 17    | 17    |
| 232 | 33    | 16    | 16    |
| 233 | 33    | 18    | 18    |
| 234 | 23    | 16    | 16    |
| 235 | 26    | 16    | 16    |
| 236 | 31    | 18    | 18    |
| 237 | 26    | 22    | 22    |
| 238 | 24    | 20    | 20    |
| 239 | 30    | 23    | 23    |

| Day | NTU - | NTU - | NTU - | Day |   |
|-----|-------|-------|-------|-----|---|
|     | 2003  | 2004  | 2005  |     | _ |
| 240 | 30    | 28    | 28    | 280 |   |
| 241 | 23    | 26    | 26    | 281 |   |
| 242 | 26    | 21    | 21    | 282 |   |
| 243 | 29    | 22    | 22    | 283 |   |
| 244 | 26    | 22    | 22    | 284 |   |
| 245 | 24    | 22    | 22    | 285 |   |
| 246 | 23    | 22    | 22    | 286 |   |
| 247 | 24    | 24    | 24    | 287 |   |
| 248 | 30    | 24    | 24    | 288 |   |
| 249 | 25    | 21    | 21    | 289 |   |
| 250 | 22    | 24    | 24    | 290 |   |
| 251 | 28    | 23    | 23    | 291 |   |
| 252 | 35    | 28    | 28    | 292 |   |
| 253 | 35    | 32    | 32    | 293 |   |
| 254 | 22    | 24    | 24    | 294 |   |
| 255 | 24    | 21    | 21    | 295 |   |
| 256 | 24    | 25    | 25    | 296 |   |
| 257 | 23    | 25    | 25    | 297 |   |
| 258 | 19    | 25    | 25    | 298 |   |
| 259 | 24    | 45    | 45    | 299 |   |
| 260 | 22    | 50    | 50    | 300 |   |
| 261 | 19    | 55    | 55    | 301 |   |
| 262 | 35    | 35    | 35    | 302 |   |
| 263 | 35    | 25    | 23    | 303 |   |
| 264 | 35    | 23    | 160   | 304 |   |
| 265 | 35    | 21    | 150   | 305 |   |
| 266 | 25    | 150   | 36    | 306 |   |
| 267 | 20    | 118   | 29    | 307 |   |
| 268 | 25    | 41    | 79    | 308 |   |
| 269 | 25    | 24    | 30    | 309 |   |
| 270 | 0     | 24    | 30    | 310 |   |
| 271 | 28    | 25    | 24    | 311 |   |
| 272 | 35    | 24    | 23    | 312 |   |
| 273 | 27    | 28    | 24    | 313 |   |
| 274 | 51    | 27    | 63    | 314 |   |
| 275 | 73    | 26    | 254   | 315 |   |
| 276 | 65    | 24    | 68    | 316 |   |
| 277 | 40    | 27    | 22    | 317 |   |
| 278 | 25    | 25    | 25    | 318 |   |
| 279 | 24    | 26    | 21    | 319 |   |

| Day | NTU -<br>2003 | NTU -<br>2004 | NTU -<br>2005 |
|-----|---------------|---------------|---------------|
| 280 | 23            | 24            | 24            |
| 281 | 23            | 260           | 107           |
| 282 | 25            | 130           | 32            |
| 283 | 22            | 288           | 24            |
| 284 | 35            | 134           | 27            |
| 285 | 30            | 51            | 46            |
| 286 | 26            | 33            | 431           |
| 287 | 21            | 36            | 420           |
| 288 | 22            | 31            | 89            |
| 289 | 53            | 32            | 36            |
| 290 | 65            | 56            | 230           |
| 291 | 60            | 37            | 517           |
| 292 | 32            | 120           | 105           |
| 293 | 62            | 200           | 1000          |
| 294 | 28            | 368           | 486           |
| 295 | 24            | 240           | 310           |
| 296 | 22            | 69            | 70            |
| 297 | 50            | 45            | 45            |
| 298 | 24            | 47            | 33            |
| 299 | 75            | 41            | 150           |
| 300 | 50            | 30            | 148           |
| 301 | 30            | 71            | 150           |
| 302 | 145           | 188           | 135           |
| 303 | 164           | 142           | 50            |
| 304 | 67            | 83            | 608           |
| 305 | 32            | 82            | 132           |
| 306 | 37            | 65            | 92            |
| 307 | 22            | 43            | 985           |
| 308 | 425           | 56            | 820           |
| 309 | 200           | 70            | 166           |
| 310 | 118           | 38            | 230           |
| 311 | 89            | 46            | 94            |
| 312 | 100           | 65            | 49            |
| 313 | 73            | 35            | 230           |
| 314 | 160           | 35            | 143           |
| 315 | 85            | 120           | 90            |
| 316 | 320           | 280           | 130           |
| 317 | 232           | 224           | 57            |
| 318 | 96            | 156           | 109           |
| 319 | 63            | 87            | 90            |

| Day | NTU - | NTU - | NTU - |  |
|-----|-------|-------|-------|--|
|     | 2003  | 2004  | 2005  |  |
| 320 | 75    | 46    | 85    |  |
| 321 | 120   | 37    | 28    |  |
| 322 | 128   | 797   | 598   |  |
| 323 | 44    | 496   | 380   |  |
| 324 | 97    | 196   | 250   |  |
| 325 | 165   | 97    | 156   |  |
| 326 | 255   | 260   | 70    |  |
| 327 | 162   | 216   | 172   |  |
| 328 | 105   | 53    | 110   |  |
| 329 | 270   | 76    | 70    |  |
| 330 | 170   | 50    | 43    |  |
| 331 | 70    | 53    | 39    |  |
| 332 | 69    | 36    | 130   |  |
| 333 | 240   | 67    | 110   |  |
| 334 | 120   | 158   | 166   |  |
| 335 | 56    | 84    | 75    |  |
| 336 | 37    | 312   | 278   |  |
| 337 | 35    | 247   | 840   |  |
| 338 | 27    | 87    | 304   |  |
| 339 | 30    | 280   | 72    |  |
| 340 | 35    | 135   | 180   |  |
| 341 | 37    | 88    | 150   |  |
| 342 | 94    | 69    | 170   |  |
| 343 | 80    | 39    | 88    |  |
| 344 | 91    | 47    | 63    |  |
| 345 | 93    | 130   | 80    |  |
| 346 | 75    | 56    | 730   |  |
| 347 | 75    | 48    | 152   |  |
| 348 | 268   | 65    | 49    |  |
| 349 | 70    | 29    | 45    |  |
| 350 | 58    | 134   | 190   |  |
| 351 | 50    | 71    | 94    |  |
| 352 | 88    | 192   | 55    |  |
| 353 | 47    | 250   | 36    |  |
| 354 | 164   | 126   | 51    |  |
| 355 | 54    | 67    | 118   |  |
| 356 | 126   | 53    | 280   |  |
| 357 | 120   | 57    | 86    |  |
| 358 | 85    | 121   | 156   |  |
| 359 | 53    | 197   | 340   |  |

| Day | NTU -<br>2003 | NTU -<br>2004 | NTU -<br>2005 |
|-----|---------------|---------------|---------------|
| 360 | 28            | 90            | 152           |
| 361 | 25            | 46            | 66            |
| 362 | 0             | 26            | 51            |
| 363 | 0             | 62            | 123           |
| 364 | 33            | 43            | 53            |
| 365 | 80            | 220           | 360           |
| 366 |               | 124           |               |

| Day | NTU - | NTU - | NTU - |
|-----|-------|-------|-------|
| 1   | 112   | 40    | 2000  |
| 2   | 34    | 47    | 32    |
| -   | 510   | .34   | 32    |
| 4   | 60    | 36    | 30    |
| 5   | 220   | 50    | 26    |
| 6   | 140   | 46    | 27    |
| 7   | 80    | 38    | 160   |
| 8   | 89    | 218   | 105   |
| 9   | 50    | 103   | 106   |
| 10  | 38    | 180   | 45    |
| 11  | 33    | 333   | 60    |
| 12  | 36    | 195   | 45    |
| 13  | 34    | 106   | 96    |
| 14  | 360   | 40    | 98    |
| 15  | 128   | 35    | 95    |
| 16  | 47    | 35    | 84    |
| 17  | 100   | 36    | 35    |
| 18  | 280   | 138   | 36    |
| 19  | 80    | 366   | 105   |
| 20  | 65    | 152   | 74    |
| 21  | 44    | 80    | 275   |
| 22  | 44    | 270   | 476   |
| 23  | 40    | 81    | 205   |
| 24  | 30    | 44    | 98    |
| 25  | 31    | 520   | 130   |
| 26  | 88    | 211   | 56    |
| 27  | 77    | 330   | 48    |
| 28  | 108   | 265   | 78    |
| 29  | 77    | 94    | 69    |
| 30  | 47    | 44    | 44    |
| 31  | 78    | 38    | 41    |
| 32  | 33    | 340   | 54    |
| 33  | 24    | 152   | 36    |
| 34  | 25    | 92    | 35    |
| 35  | 22    | 325   | 35    |
| 36  | 104   | 215   | 34    |
| 37  | 9/    | 64    | 48    |
| 38  | 53    | 45    | 3/    |
| 39  | 38    | 43    | 33    |

| Day | NTU - | NTU - | NTU - |
|-----|-------|-------|-------|
|     | 2006  | 2007  | 2008  |
| 40  | 36    | 131   | 35    |
| 41  | 33    | 43    | 34    |
| 42  | 350   | 33    | 250   |
| 43  | 310   | 810   | 54    |
| 44  | 108   | 104   | 38    |
| 45  | 54    | 82    | 36    |
| 46  | 37    | 45    | 51    |
| 47  | 400   | 38    | 47    |
| 48  | 405   | 565   | 31    |
| 49  | 110   | 72    | 212   |
| 50  | 173   | 38    | 279   |
| 51  | 343   | 45    | 140   |
| 52  | 160   | 257   | 51    |
| 53  | 74    | 340   | 66    |
| 54  | 133   | 79    | 35    |
| 55  | 48    | 58    | 35    |
| 56  | 40    | 41    | 1000  |
| 57  | 190   | 37    | 175   |
| 58  | 114   | 35    | 275   |
| 59  | 64    | 64    | 109   |
| 60  | 48    | 66    | 318   |
| 61  | 32    | 33    | 55    |
| 62  | 37    | 178   | 57    |
| 63  | 34    | 142   | 50    |
| 64  | 28    | 33    | 33    |
| 65  | 30    | 25    | 160   |
| 66  | 31    | 25    | 148   |
| 67  | 28    | 61    | 84    |
| 68  | 30    | 174   | 3200  |
| 69  | 30    | 170   | 6980  |
| 70  | 80    | 83    | 95    |
| 71  | 265   | 193   | 68    |
| 72  | 117   | 74    | 464   |
| 73  | 50    | 52    | 211   |
| 74  | 39    | 71    | 73    |
| 75  | 55    | 55    | 56    |
| 76  | 241   | 150   | 288   |
| 77  | 190   | 109   | 352   |
| 78  | 75    | 61    | 152   |
| 79  | 47    | 36    | 82    |

| Day | NTU - | NTU - | NTU - | [ | Da |
|-----|-------|-------|-------|---|----|
|     | 2006  | 2007  | 2008  |   |    |
| 80  | 39    | 40    | 55    |   |    |
| 81  | 173   | 134   | 150   |   |    |
| 82  | 71    | 68    | 77    |   |    |
| 83  | 64    | 133   | 149   |   |    |
| 84  | 33    | 59    | 66    |   |    |
| 85  | 317   | 41    | 47    |   |    |
| 86  | 260   | 130   | 146   |   |    |
| 87  | 349   | 81    | 91    |   |    |
| 88  | 340   | 53    | 59    |   |    |
| 89  | 235   | 51    | 58    |   |    |
| 90  | 140   | 55    | 62    |   |    |
| 91  | 231   | 90    | 101   |   |    |
| 92  | 176   | 113   | 127   |   |    |
| 93  | 392   | 119   | 134   |   |    |
| 94  | 96    | 118   | 133   |   |    |
| 95  | 390   | 132   | 149   |   |    |
| 96  | 139   | 87    | 98    |   |    |
| 97  | 64    | 193   | 217   |   |    |
| 98  | 49    | 232   | 261   |   |    |
| 99  | 303   | 71    | 80    |   |    |
| 100 | 330   | 126   | 142   |   |    |
| 101 | 880   | 134   | 150   |   |    |
| 102 | 97    | 58    | 65    |   |    |
| 103 | 50    | 603   | 679   |   |    |
| 104 | 40    | 100   | 113   |   |    |
| 105 | 90    | 272   | 306   |   |    |
| 106 | 172   | 200   | 225   |   |    |
| 107 | 50    | 119   | 134   |   |    |
| 108 | 38    | 76    | 86    |   |    |
| 109 | 192   | 92    | 104   |   |    |
| 110 | 140   | 89    | 101   |   |    |
| 111 | 1074  | 42    | 214   |   |    |
| 112 | 815   | 43    | 155   |   |    |
| 113 | 282   | 99    | 220   |   |    |
| 114 | 82    | 130   | 281   |   |    |
| 115 | 50    | 350   | 165   |   |    |
| 116 | 48    | 348   | 131   |   |    |
| 117 | 304   | 170   | 322   |   |    |
| 118 | 717   | 53    | 85    |   |    |
| 119 | 80    | 41    | 293   |   |    |

| Day | NTU - | NTU - | NTU - |
|-----|-------|-------|-------|
|     | 2006  | 2007  | 2008  |
| 120 | 43    | 58    | 183   |
| 121 | 39    | 49    | 295   |
| 122 | 69    | 47    | 51    |
| 123 | 520   | 35    | 104   |
| 124 | 374   | 36    | 147   |
| 125 | 43    | 51    | 89    |
| 126 | 805   | 40    | 118   |
| 127 | 575   | 36    | 85    |
| 128 | 265   | 55    | 106   |
| 129 | 147   | 124   | 110   |
| 130 | 60    | 50    | 68    |
| 131 | 49    | 138   | 200   |
| 132 | 46    | 105   | 118   |
| 133 | 45    | 40    | 152   |
| 134 | 36    | 42    | 153   |
| 135 | 40    | 156   | 157   |
| 136 | 41    | 218   | 64    |
| 137 | 39    | 230   | 58    |
| 138 | 42    | 65    | 62    |
| 139 | 40    | 37    | 33    |
| 140 | 40    | 54    | 185   |
| 141 | 36    | 43    | 43    |
| 142 | 33    | 42    | 227   |
| 143 | 34    | 32    | 315   |
| 144 | 36    | 35    | 136   |
| 145 | 46    | 147   | 75    |
| 146 | 33    | 171   | 38    |
| 147 | 38    | 55    | 49    |
| 148 | 35    | 390   | 33    |
| 149 | 33    | 100   | 37    |
| 150 | 32    | 33    | 34    |
| 151 | 35    | 32    | 27    |
| 152 | 34    | 30    | 26    |
| 153 | 36    | 28    | 135   |
| 154 | 30    | 25    | 31    |
| 155 | 30    | 35    | 29    |
| 156 | 31    | 32    | 27    |
| 157 | 30    | 30    | 26    |
| 158 | 29    | 35    | 27    |
| 159 | 35    | 30    | 24    |

| Day | NTU - | NTU - | NTU - | Day |
|-----|-------|-------|-------|-----|
|     | 2006  | 2007  | 2008  |     |
| 160 | 38    | 63    | 23    | 20  |
| 161 | 29    | 33    | 24    | 20  |
| 162 | 31    | 31    | 23    | 20  |
| 163 | 30    | 31    | 26    | 20  |
| 164 | 29    | 29    | 24    | 20  |
| 165 | 33    | 26    | 40    | 20  |
| 166 | 32    | 28    | 28    | 20  |
| 167 | 36    | 24    | 24    | 20  |
| 168 | 80    | 26    | 23    | 20  |
| 169 | 108   | 27    | 38    | 20  |
| 170 | 102   | 30    | 24    | 2:  |
| 171 | 35    | 27    | 22    | 2:  |
| 172 | 32    | 55    | 22    | 2:  |
| 173 | 29    | 30    | 50    | 2:  |
| 174 | 28    | 26    | 24    | 2:  |
| 175 | 27    | 26    | 23    | 2:  |
| 176 | 32    | 25    | 23    | 2:  |
| 177 | 35    | 28    | 42    | 2:  |
| 178 | 28    | 27    | 23    | 2:  |
| 179 | 29    | 24    | 21    | 2:  |
| 180 | 29    | 31    | 22    | 22  |
| 181 | 30    | 23    | 22    | 22  |
| 182 | 30    | 21    | 23    | 22  |
| 183 | 32    | 24    | 21    | 22  |
| 184 | 32    | 22    | 26    | 22  |
| 185 | 30    | 22    | 22    | 22  |
| 186 | 33    | 20    | 20    | 22  |
| 187 | 32    | 22    | 21    | 22  |
| 188 | 32    | 23    | 19    | 22  |
| 189 | 30    | 20    | 21    | 22  |
| 190 | 32    | 20    | 21    | 23  |
| 191 | 34    | 24    | 63    | 23  |
| 192 | 25    | 23    | 35    | 23  |
| 193 | 30    | 22    | 20    | 23  |
| 194 | 29    | 22    | 18    | 23  |
| 195 | 28    | 24    | 17    | 23  |
| 196 | 27    | 23    | 21    | 23  |
| 197 | 28    | 23    | 51    | 23  |
| 198 | 26    | 21    | 19    | 23  |
| 199 | 35    | 21    | 19    | 23  |

| Day | NTU - | NTU - | NTU - |
|-----|-------|-------|-------|
|     | 2006  | 2007  | 2008  |
| 200 | 29    | 21    | 18    |
| 201 | 24    | 19    | 18    |
| 202 | 20    | 23    | 18    |
| 203 | 23    | 27    | 19    |
| 204 | 20    | 23    | 28    |
| 205 | 23    | 26    | 18    |
| 206 | 100   | 180   | 14    |
| 207 | 21    | 23    | 19    |
| 208 | 72    | 29    | 17    |
| 209 | 72    | 27    | 16    |
| 210 | 25    | 30    | 22    |
| 211 | 24    | 28    | 19    |
| 212 | 23    | 26    | 20    |
| 213 | 23    | 25    | 17    |
| 214 | 22    | 23    | 21    |
| 215 | 17    | 15    | 17    |
| 216 | 17    | 15    | 17    |
| 217 | 16    | 14    | 16    |
| 218 | 17    | 15    | 17    |
| 219 | 17    | 14    | 16    |
| 220 | 17    | 14    | 16    |
| 221 | 17    | 15    | 17    |
| 222 | 18    | 15    | 17    |
| 223 | 18    | 17    | 19    |
| 224 | 19    | 18    | 20    |
| 225 | 23    | 16    | 18    |
| 226 | 68    | 18    | 20    |
| 227 | 20    | 18    | 20    |
| 228 | 24    | 28    | 32    |
| 229 | 17    | 15    | 17    |
| 230 | 29    | 39    | 44    |
| 231 | 27    | 36    | 41    |
| 232 | 21    | 25    | 29    |
| 233 | 19    | 19    | 21    |
| 234 | 17    | 17    | 19    |
| 235 | 17    | 18    | 20    |
| 236 | 18    | 18    | 20    |
| 237 | 19    | 16    | 18    |
| 238 | 20    | 19    | 35    |
| 239 | 20    | 17    | 27    |

| Day | NTU - | NTU - | NTU - | Day |
|-----|-------|-------|-------|-----|
| 240 | 2000  | 16    | 2008  | 28  |
| 241 | 21    | 16    | 26    | 28  |
| 242 | 19    | 16    | 29    | 28  |
| 243 | 19    | 16    | 27    | 28  |
| 244 | 26    | 29    | 26    | 28  |
| 245 | 23    | 24    | 29    | 28  |
| 246 | 24    | 25    | 26    | 28  |
| 247 | 23    | 22    | 33    | 28  |
| 248 | 25    | 26    | 23    | 28  |
| 249 | 32    | 42    | 26    | 28  |
| 250 | 42    | 59    | 24    | 29  |
| 251 | 31    | 38    | 24    | 29  |
| 252 | 35    | 42    | 22    | 29  |
| 253 | 29    | 26    | 24    | 29  |
| 254 | 24    | 24    | 27    | 29  |
| 255 | 22    | 22    | 33    | 29  |
| 256 | 25    | 25    | 24    | 29  |
| 257 | 26    | 27    | 42    | 29  |
| 258 | 25    | 25    | 29    | 29  |
| 259 | 40    | 34    | 32    | 29  |
| 260 | 40    | 29    | 26    | 30  |
| 261 | 40    | 24    | 125   | 30  |
| 262 | 18    | 0     | 49    | 30  |
| 263 | 27    | 30    | 27    | 30  |
| 264 | 92    | 23    | 31    | 30  |
| 265 | 155   | 160   | 26    | 30  |
| 266 | 93    | 150   | 28    | 30  |
| 267 | 33    | 30    | 24    | 30  |
| 208 | 54    | 29    | 25    | 30  |
| 209 | 30    | 20    | 20    | 21  |
| 270 | 25    | 26    | 24    | 31  |
| 271 | 23    | 20    | 27    | 31  |
| 272 | 25    | 21    | 23    | 31  |
| 274 | 44    | 25    | 63    | 31  |
| 275 | 141   | 28    | 254   | 31  |
| 276 | 45    | 21    | 68    | 31  |
| 277 | 23    | 23    | 22    | 31  |
| 278 | 26    | 27    | 25    | 31  |
| 279 | 23    | 24    | 21    | 31  |
|     |       | 1     | 1     |     |

| Day | NTU - | NTU - | NTU - |
|-----|-------|-------|-------|
|     | 2006  | 2007  | 2008  |
| 280 | 27    | 30    | 24    |
| 281 | 68    | 28    | 107   |
| 282 | 29    | 25    | 32    |
| 283 | 26    | 27    | 24    |
| 284 | 25    | 22    | 27    |
| 285 | 33    | 20    | 46    |
| 286 | 227   | 23    | 431   |
| 287 | 224   | 28    | 420   |
| 288 | 59    | 29    | 89    |
| 289 | 30    | 23    | 36    |
| 290 | 126   | 22    | 262   |
| 291 | 271   | 25    | 517   |
| 292 | 70    | 35    | 105   |
| 293 | 513   | 26    | 1000  |
| 294 | 256   | 26    | 486   |
| 295 | 173   | 35    | 310   |
| 296 | 50    | 29    | 70    |
| 297 | 37    | 29    | 45    |
| 298 | 28    | 23    | 33    |
| 299 | 89    | 28    | 150   |
| 300 | 110   | 72    | 148   |
| 301 | 89    | 27    | 150   |
| 302 | 143   | 151   | 135   |
| 303 | 47    | 44    | 50    |
| 304 | 327   | 45    | 608   |
| 305 | 285   | 438   | 132   |
| 306 | 89    | 86    | 92    |
| 307 | 813   | 640   | 985   |
| 308 | 487   | 153   | 820   |
| 309 | 118   | 70    | 166   |
| 310 | 196   | 162   | 230   |
| 311 | 391   | 687   | 94    |
| 312 | 325   | 600   | 62    |
| 313 | 230   | 230   | 420   |
| 314 | 143   | 143   | 237   |
| 315 | 90    | 90    | 190   |
| 316 | 130   | 130   | 206   |
| 317 | 57    | 57    | 78    |
| 318 | 109   | 109   | 72    |
| 319 | 90    | 90    | 67    |

| Day | NTU - | NTU - | NTU - |  |
|-----|-------|-------|-------|--|
|     | 2006  | 2007  | 2008  |  |
| 320 | 85    | 85    | 53    |  |
| 321 | 419   | 810   | 51    |  |
| 322 | 818   | 1037  | 93    |  |
| 323 | 240   | 100   | 105   |  |
| 324 | 555   | 859   | 75    |  |
| 325 | 416   | 675   | 800   |  |
| 326 | 94    | 118   | 146   |  |
| 327 | 344   | 515   | 53    |  |
| 328 | 513   | 915   | 489   |  |
| 329 | 700   | 1330  | 752   |  |
| 330 | 70    | 96    | 204   |  |
| 331 | 61    | 82    | 249   |  |
| 332 | 127   | 123   | 245   |  |
| 333 | 246   | 382   | 860   |  |
| 334 | 458   | 750   | 185   |  |
| 335 | 83    | 90    | 190   |  |
| 336 | 255   | 232   | 133   |  |
| 337 | 456   | 71    | 102   |  |
| 338 | 207   | 110   | 92    |  |
| 339 | 59    | 45    | 181   |  |
| 340 | 430   | 680   | 97    |  |
| 341 | 276   | 402   | 178   |  |
| 342 | 148   | 126   | 409   |  |
| 343 | 294   | 500   | 394   |  |
| 344 | 110   | 156   | 179   |  |
| 345 | 73    | 65    | 49    |  |
| 346 | 448   | 165   | 160   |  |
| 347 | 132   | 112   | 200   |  |
| 348 | 53    | 57    | 107   |  |
| 349 | 123   | 200   | 45    |  |
| 350 | 188   | 185   | 90    |  |
| 351 | 80    | 65    | 75    |  |
| 352 | 49    | 43    | 48    |  |
| 353 | 36    | 36    | 38    |  |
| 354 | 43    | 34    | 370   |  |
| 355 | 76    | 34    | 85    |  |
| 356 | 157   | 34    | 51    |  |
| 357 | 60    | 33    | 300   |  |
| 358 | 93    | 29    | 400   |  |
| 359 | 187   | 33    | 52    |  |

| Day | NTU -<br>2006 | NTU -<br>2007 | NTU -<br>2008 |
|-----|---------------|---------------|---------------|
| 360 | 91            | 30            | 43            |
| 361 | 58            | 50            | 222           |
| 362 | 42            | 32            | 130           |
| 363 | 78            | 33            | 59            |
| 364 | 42            | 30            | 42            |
| 365 | 195           | 29            | 38            |
| 366 |               |               | 35            |

| Day | NTU - | NTU - | NTU - |  |
|-----|-------|-------|-------|--|
|     | 2009  | 2010  | 2011  |  |
| 1   | 192   | 43    | 361   |  |
| 2   | 122   | 920   | 0     |  |
| 3   | 67    | 130   | 117   |  |
| 4   | 38    | 60    | 158   |  |
| 5   | 54    | 420   | 122   |  |
| 6   | 300   | 90    | 71    |  |
| 7   | 77    | 54    | 94    |  |
| 8   | 40    | 75    | 45    |  |
| 9   | 553   | 71    | 33    |  |
| 10  | 155   | 252   | 216   |  |
| 11  | 600   | 81    | 267   |  |
| 12  | 170   | 910   | 742   |  |
| 13  | 41    | 145   | 750   |  |
| 14  | 37    | 80    | 265   |  |
| 15  | 37    | 35    | 742   |  |
| 16  | 175   | 125   | 37    |  |
| 17  | 48    | 115   | 29    |  |
| 18  | 460   | 52    | 133   |  |
| 19  | 870   | 170   | 42    |  |
| 20  | 85    | 775   | 208   |  |
| 21  | 40    | 217   | 450   |  |
| 22  | 282   | 525   | 425   |  |
| 23  | 191   | 450   | 3230  |  |
| 24  | 145   | 100   | 371   |  |
| 25  | 225   | 89    | 96    |  |
| 26  | 38    | 566   | 179   |  |
| 27  | 38    | 178   | 174   |  |
| 28  | 528   | 96    | 55    |  |
| 29  | 303   | 51    | 38    |  |
| 30  | 69    | 310   | 34    |  |
| 31  | 44    | 40    | 218   |  |
| 32  | 37    | 35    | 54    |  |
| 33  | 214   | 210   | 34    |  |
| 34  | 67    | 76    | 27    |  |
| 35  | 56    | 35    | 216   |  |
| 36  | 43    | 28    | 45    |  |
| 37  | 35    | 32    | 663   |  |
| 38  | 284   | 35    | 107   |  |
| 39  | 243   | 40    | 42    |  |
|     |       |       |       |  |

| Day | NTU -<br>2009 | NTU -<br>2010 | NTU -<br>2011 |
|-----|---------------|---------------|---------------|
| 40  | 73            | 43            | 39            |
| 41  | 153           | 1020          | 75            |
| 42  | 46            | 95            | 134           |
| 43  | 31            | 43            | 65            |
| 44  | 285           | 30            | 107           |
| 45  | 91            | 27            | 235           |
| 46  | 38            | 32            | 250           |
| 47  | 100           | 22            | 235           |
| 48  | 41            | 27            | 53            |
| 49  | 33            | 32            | 38            |
| 50  | 22            | 30            | 28            |
| 51  | 33            | 29            | 27            |
| 52  | 33            | 23            | 26            |
| 53  | 32            | 27            | 31            |
| 54  | 33            | 35            | 444           |
| 55  | 615           | 28            | 415           |
| 56  | 138           | 28            | 199           |
| 57  | 111           | 30            | 68            |
| 58  | 345           | 30            | 36            |
| 59  | 104           | 38            | 98            |
| 60  | 77            | 31            | 141           |
| 61  | 54            | 24            | 46            |
| 62  | 37            | 39            | 590           |
| 63  | 42            | 300           | 190           |
| 64  | 34            | 39            | 52            |
| 65  | 28            | 33            | 34            |
| 66  | 36            | 31            | 27            |
| 67  | 175           | 28            | 27            |
| 68  | 600           | 30            | 23            |
| 69  | 70            | 500           | 68            |
| 70  | 38            | 218           | 54            |
| 71  | 51            | 635           | 36            |
| 72  | 55            | 158           | 64            |
| 73  | 44            | 73            | 78            |
| 74  | 110           | 54            | 101           |
| 75  | 110           | 55            | 40            |
| 76  | 52            | 72            | 440           |
| 77  | 29            | 191           | 190           |
| 78  | 29            | 70            | 130           |
| 79  | 30            | 66            | 38            |

| Day | NTU - | NTU - | NTU - | Day |
|-----|-------|-------|-------|-----|
|     | 2009  | 2010  | 2011  |     |
| 80  | 29    | 93    | 28    |     |
| 81  | 28    | 443   | 30    |     |
| 82  | 27    | 190   | 38    |     |
| 83  | 27    | 446   | 25    |     |
| 84  | 37    | 140   | 43    |     |
| 85  | 31    | 99    | 25    |     |
| 86  | 65    | 397   | 25    |     |
| 87  | 70    | 204   | 28    |     |
| 88  | 34    | 140   | 23    |     |
| 89  | 64    | 92    | 37    |     |
| 90  | 105   | 40    | 62    |     |
| 91  | 44    | 162   | 132   |     |
| 92  | 85    | 267   | 70    |     |
| 93  | 33    | 65    | 348   |     |
| 94  | 33    | 110   | 300   |     |
| 95  | 150   | 169   | 177   |     |
| 96  | 158   | 103   | 65    |     |
| 97  | 130   | 506   | 88    |     |
| 98  | 42    | 682   | 146   |     |
| 99  | 30    | 126   | 109   |     |
| 100 | 340   | 50    | 83    |     |
| 101 | 380   | 41    | 80    |     |
| 102 | 131   | 34    | 51    |     |
| 103 | 50    | 32    | 2180  |     |
| 104 | 76    | 40    | 260   |     |
| 105 | 760   | 153   | 106   |     |
| 106 | 380   | 306   | 65    |     |
| 107 | 252   | 115   | 78    |     |
| 108 | 43    | 196   | 46    |     |
| 109 | 131   | 112   | 102   |     |
| 110 | 123   | 114   | 98    |     |
| 111 | 396   | 164   | 154   |     |
| 112 | 190   | 110   | 215   |     |
| 113 | 62    | 620   | 52    |     |
| 114 | 152   | 732   | 52    |     |
| 115 | 235   | 276   | 39    |     |
| 116 | 62    | 120   | 254   |     |
| 117 | 306   | 118   | 650   |     |
| 118 | 98    | 27    | 157   |     |
| 119 | 51    | 99    | 828   |     |

| NTU - | NTU - NTU -                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                               |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2009  | 2010                                                                                                                                                                                                                                                                                                          | 2011                                                                                                                                                                                                                                                                                                          |
| 196   | 118                                                                                                                                                                                                                                                                                                           | 296                                                                                                                                                                                                                                                                                                           |
| 616   | 227                                                                                                                                                                                                                                                                                                           | 141                                                                                                                                                                                                                                                                                                           |
| 43    | 25                                                                                                                                                                                                                                                                                                            | 103                                                                                                                                                                                                                                                                                                           |
| 29    | 20                                                                                                                                                                                                                                                                                                            | 296                                                                                                                                                                                                                                                                                                           |
| 30    | 290                                                                                                                                                                                                                                                                                                           | 170                                                                                                                                                                                                                                                                                                           |
| 32    | 160                                                                                                                                                                                                                                                                                                           | 105                                                                                                                                                                                                                                                                                                           |
| 250   | 47                                                                                                                                                                                                                                                                                                            | 95                                                                                                                                                                                                                                                                                                            |
| 127   | 46                                                                                                                                                                                                                                                                                                            | 110                                                                                                                                                                                                                                                                                                           |
| 42    | 240                                                                                                                                                                                                                                                                                                           | 70                                                                                                                                                                                                                                                                                                            |
| 224   | 111                                                                                                                                                                                                                                                                                                           | 33                                                                                                                                                                                                                                                                                                            |
| 99    | 71                                                                                                                                                                                                                                                                                                            | 55                                                                                                                                                                                                                                                                                                            |
| 466   | 67                                                                                                                                                                                                                                                                                                            | 135                                                                                                                                                                                                                                                                                                           |
| 190   | 53                                                                                                                                                                                                                                                                                                            | 150                                                                                                                                                                                                                                                                                                           |
| 420   | 33                                                                                                                                                                                                                                                                                                            | 54                                                                                                                                                                                                                                                                                                            |
| 116   | 33                                                                                                                                                                                                                                                                                                            | 360                                                                                                                                                                                                                                                                                                           |
| 133   | 32                                                                                                                                                                                                                                                                                                            | 358                                                                                                                                                                                                                                                                                                           |
| 57    | 30                                                                                                                                                                                                                                                                                                            | 126                                                                                                                                                                                                                                                                                                           |
| 100   | 31                                                                                                                                                                                                                                                                                                            | 63                                                                                                                                                                                                                                                                                                            |
| 137   | 33                                                                                                                                                                                                                                                                                                            | 38                                                                                                                                                                                                                                                                                                            |
| 46    | 30                                                                                                                                                                                                                                                                                                            | 33                                                                                                                                                                                                                                                                                                            |
| 70    | 27                                                                                                                                                                                                                                                                                                            | 520                                                                                                                                                                                                                                                                                                           |
| 54    | 34                                                                                                                                                                                                                                                                                                            | 55                                                                                                                                                                                                                                                                                                            |
| 684   | 34                                                                                                                                                                                                                                                                                                            | 40                                                                                                                                                                                                                                                                                                            |
| 297   | 29                                                                                                                                                                                                                                                                                                            | 725                                                                                                                                                                                                                                                                                                           |
| 57    | 27                                                                                                                                                                                                                                                                                                            | 370                                                                                                                                                                                                                                                                                                           |
| 151   | 26                                                                                                                                                                                                                                                                                                            | 73                                                                                                                                                                                                                                                                                                            |
| 63    | 28                                                                                                                                                                                                                                                                                                            | 37                                                                                                                                                                                                                                                                                                            |
| 46    | 88                                                                                                                                                                                                                                                                                                            | 28                                                                                                                                                                                                                                                                                                            |
| 30    | 29                                                                                                                                                                                                                                                                                                            | 52                                                                                                                                                                                                                                                                                                            |
| 31    | 27                                                                                                                                                                                                                                                                                                            | 65                                                                                                                                                                                                                                                                                                            |
| 38    | 29                                                                                                                                                                                                                                                                                                            | 45                                                                                                                                                                                                                                                                                                            |
| 34    | 27                                                                                                                                                                                                                                                                                                            | 30                                                                                                                                                                                                                                                                                                            |
| 29    | 31                                                                                                                                                                                                                                                                                                            | 27                                                                                                                                                                                                                                                                                                            |
| 390   | 38                                                                                                                                                                                                                                                                                                            | 23                                                                                                                                                                                                                                                                                                            |
| 53    | 24                                                                                                                                                                                                                                                                                                            | 26                                                                                                                                                                                                                                                                                                            |
| 36    | 23                                                                                                                                                                                                                                                                                                            | 39                                                                                                                                                                                                                                                                                                            |
| 33    | 28                                                                                                                                                                                                                                                                                                            | 29                                                                                                                                                                                                                                                                                                            |
| 30    | 26                                                                                                                                                                                                                                                                                                            | 32                                                                                                                                                                                                                                                                                                            |
| 31    | 28                                                                                                                                                                                                                                                                                                            | 32                                                                                                                                                                                                                                                                                                            |
| 27    | 29                                                                                                                                                                                                                                                                                                            | 24                                                                                                                                                                                                                                                                                                            |
|       | NTU -   2009   196   616   43   29   30   21   30   224   99   466   190   461   99   462   99   463   190   461   190   462   99   463   190   463   190   460   190   420   99   463   190   420   100   133   684   297   57   151   63   30   31   32   33   34   353   36   37   38   390   31   32   33 | NTU-<br>2009NTU-<br>20101961186162274325292030290311602504712746422402441119971466679971465637190534203311633133325730100311333246307027543468434297295727151266328468830293127382931273829312738293127382931273829312733283328332834233524362337263828393833283427352436233726382839383328342835243623372638 |

| Day | NTU - | NTU - | NTU - | Day |
|-----|-------|-------|-------|-----|
|     | 2009  | 2010  | 2011  |     |
| 160 | 24    | 29    | 23    | 200 |
| 161 | 27    | 26    | 26    | 201 |
| 162 | 28    | 23    | 25    | 202 |
| 163 | 28    | 28    | 31    | 203 |
| 164 | 24    | 26    | 31    | 204 |
| 165 | 28    | 71    | 35    | 205 |
| 166 | 28    | 27    | 38    | 206 |
| 167 | 24    | 25    | 30    | 207 |
| 168 | 24    | 23    | 30    | 208 |
| 169 | 24    | 71    | 33    | 209 |
| 170 | 24    | 24    | 32    | 210 |
| 171 | 21    | 24    | 29    | 211 |
| 172 | 20    | 23    | 30    | 212 |
| 173 | 20    | 116   | 29    | 213 |
| 174 | 23    | 28    | 30    | 214 |
| 175 | 26    | 23    | 28    | 215 |
| 176 | 23    | 26    | 28    | 216 |
| 177 | 90    | 21    | 28    | 217 |
| 178 | 23    | 25    | 28    | 218 |
| 179 | 23    | 21    | 27    | 219 |
| 180 | 25    | 20    | 28    | 220 |
| 181 | 25    | 20    | 29    | 221 |
| 182 | 27    | 21    | 29    | 222 |
| 183 | 19    | 23    | 29    | 223 |
| 184 | 23    | 21    | 42    | 224 |
| 185 | 26    | 20    | 26    | 225 |
| 186 | 21    | 20    | 26    | 226 |
| 187 | 21    | 22    | 27    | 227 |
| 188 | 18    | 19    | 27    | 228 |
| 189 | 24    | 19    | 28    | 229 |
| 190 | 23    | 19    | 28    | 230 |
| 191 | 163   | 20    | 27    | 231 |
| 192 | 73    | 17    | 25    | 232 |
| 193 | 23    | 18    | 24    | 233 |
| 194 | 18    | 20    | 21    | 234 |
| 195 | 19    | 18    | 21    | 235 |
| 196 | 26    | 18    | 27    | 236 |
| 197 | 135   | 17    | 19    | 237 |
| 198 | 26    | 17    | 20    | 238 |
| 199 | 22    | 18    | 23    | 239 |

| Day | NTU -<br>2009 | NTU -<br>2010 | NTU -<br>2011 |
|-----|---------------|---------------|---------------|
| 200 | 23            | 15            | 21            |
| 201 | 23            | 15            | 21            |
| 202 | 25            | 16            | 20            |
| 203 | 26            | 18            | 19            |
| 204 | 22            | 54            | 17            |
| 205 | 24            | 15            | 21            |
| 206 | 24            | 0             | 21            |
| 207 | 22            | 22            | 19            |
| 208 | 24            | 17            | 16            |
| 209 | 18            | 19            | 17            |
| 210 | 35            | 19            | 18            |
| 211 | 26            | 18            | 18            |
| 212 | 29            | 20            | 17            |
| 213 | 21            | 18            | 17            |
| 214 | 36            | 17            | 17            |
| 215 | 19            | 20            | 19            |
| 216 | 21            | 18            | 16            |
| 217 | 21            | 17            | 16            |
| 218 | 25            | 15            | 17            |
| 219 | 20            | 16            | 16            |
| 220 | 23            | 16            | 14            |
| 221 | 21            | 16            | 18            |
| 222 | 24            | 16            | 17            |
| 223 | 26            | 16            | 21            |
| 224 | 33            | 17            | 16            |
| 225 | 28            | 15            | 16            |
| 226 | 27            | 22            | 18            |
| 227 | 30            | 19            | 17            |
| 228 | 68            | 19            | 18            |
| 229 | 23            | 15            | 19            |
| 230 | 28            | 25            | 92            |
| 231 | 25            | 20            | 90            |
| 232 | 30            | 16            | 49            |
| 233 | 22            | 25            | 24            |
| 234 | 23            | 19            | 22            |
| 235 | 27            | 17            | 22            |
| 236 | 23            | 17            | 27            |
| 237 | 20            | 16            | 23            |
| 238 | 30            | 14            | 26            |
| 239 | 25            | 17            | 21            |

| Day | NTU - | NTU - | NTU - | D | Day | NTU - |
|-----|-------|-------|-------|---|-----|-------|
|     | 2009  | 2010  | 2011  |   |     | 2009  |
| 240 | 23    | 17    | 21    |   | 280 | 18    |
| 241 | 25    | 13    | 22    |   | 281 | 21    |
| 242 | 23    | 16    | 21    |   | 282 | 18    |
| 243 | 21    | 18    | 22    |   | 283 | 20    |
| 244 | 27    | 14    | 17    |   | 284 | 24    |
| 245 | 29    | 23    | 28    |   | 285 | 163   |
| 246 | 22    | 20    | 25    |   | 286 | 27    |
| 247 | 20    | 22    | 23    |   | 287 | 34    |
| 248 | 23    | 20    | 20    |   | 288 | 29    |
| 249 | 21    | 25    | 22    |   | 289 | 30    |
| 250 | 23    | 22    | 21    |   | 290 | 182   |
| 251 | 24    | 25    | 21    |   | 291 | 79    |
| 252 | 25    | 24    | 62    |   | 292 | 51    |
| 253 | 25    | 22    | 25    |   | 293 | 41    |
| 254 | 27    | 22    | 20    |   | 294 | 47    |
| 255 | 27    | 22    | 19    |   | 295 | 44    |
| 256 | 26    | 22    | 19    |   | 296 | 133   |
| 257 | 35    | 22    | 19    |   | 297 | 284   |
| 258 | 93    | 24    | 19    |   | 298 | 216   |
| 259 | 33    | 22    | 18    |   | 299 | 2100  |
| 260 | 29    | 29    | 21    |   | 300 | 650   |
| 261 | 26    | 22    | 24    |   | 301 | 88    |
| 262 | 29    | 28    | 20    |   | 302 | 85    |
| 263 | 28    | 23    | 27    |   | 303 | 78    |
| 264 | 23    | 24    | 20    |   | 304 | 238   |
| 265 | 22    | 22    | 23    |   | 305 | 55    |
| 266 | 24    | 29    | 18    |   | 306 | 36    |
| 267 | 80    | 22    | 21    |   | 307 | 230   |
| 268 | 137   | 20    | 260   |   | 308 | 390   |
| 269 | 92    | 22    | 60    |   | 309 | 490   |
| 270 | 41    | 24    | 36    |   | 310 | /0    |
| 2/1 | 29    | 27    | 28    |   | 311 | 149   |
| 272 | 41    | 23    | 1/    |   | 312 | 440   |
| 2/3 | 26    | 46    | 1/    |   | 313 | 62    |
| 2/4 | 28    | 48    | 19    |   | 314 | 3/    |
| 2/5 | 23    | 21    | 22    |   | 315 | 33    |
| 276 | 21    | 25    | 1/    |   | 316 | 32    |
| 2// | 20    | 1/    | 1/    |   | 31/ | 42    |
| 278 | 19    | 19    | 18    |   | 318 | 29    |
| 279 | 19    | 19    | 17    |   | 319 | 340   |

NTU -

NTU -

| Day | NTU -<br>2009 | NTU -<br>2010 | NTU -<br>2011 |
|-----|---------------|---------------|---------------|
| 320 | 380           | 490           | 640           |
| 321 | 445           | 980           | 599           |
| 322 | 171           | 120           | 405           |
| 323 | 460           | 60            | 387           |
| 324 | 600           | 346           | 200           |
| 325 | 392           | 510           | 112           |
| 326 | 40            | 389           | 346           |
| 327 | 35            | 258           | 546           |
| 328 | 63            | 523           | 530           |
| 329 | 174           | 124           | 110           |
| 330 | 311           | 79            | 55            |
| 331 | 415           | 383           | 46            |
| 332 | 366           | 275           | 340           |
| 333 | 271           | 150           | 1666          |
| 334 | 99            | 95            | 256           |
| 335 | 52            | 45            | 63            |
| 336 | 115           | 38            | 45            |
| 337 | 476           | 54            | 610           |
| 338 | 79            | 37            | 740           |
| 339 | 1118          | 286           | 480           |
| 340 | 540           | 109           | 152           |
| 341 | 118           | 58            | 660           |
| 342 | 42            | 112           | 842           |
| 343 | 540           | 130           | 114           |
| 344 | 310           | 42            | 70            |
| 345 | 213           | 29            | 480           |
| 346 | 143           | 115           | 381           |
| 347 | 84            | 508           | 105           |
| 348 | 544           | 216           | 51            |
| 349 | 412           | 122           | 38            |
| 350 | 82            | 77            | 207           |
| 351 | 71            | 48            | 81            |
| 352 | 52            | 49            | 38            |
| 353 | 760           | 48            | 93            |
| 354 | 560           | 31            | 52            |
| 355 | 580           | 172           | 37            |
| 356 | 220           | 219           | 35            |
| 357 | 74            | 284           | 38            |
| 358 | 104           | 346           | 33            |
| 359 | 395           | 330           | 34            |

| Day | NTU -<br>2009 | NTU -<br>2010 | NTU -<br>2011 |
|-----|---------------|---------------|---------------|
| 360 | 280           | 122           | 35            |
| 361 | 82            | 131           | 48            |
| 362 | 54            | 835           | 41            |
| 363 | 51            | 214           | 70            |
| 364 | 47            | 55            | 42            |
| 365 | 48            | 37            | 38            |
| 366 |               |               |               |

| Day    | NTU -<br>2012 | NTU -<br>2013 |
|--------|---------------|---------------|
| 1      | 30            | /13           |
| 2      | 20            | 43            |
| 2      | 20            | 55            |
| 3      | 36            | 75            |
|        | 20            | 75            |
| 5      | 170           | 160           |
| 7      | 25            | 105           |
| 2      | 33            | 7             |
| 0<br>Q | 30            | 30            |
| 10     | 30            | 30            |
| 11     | 281           | 32            |
| 12     | 201           | 40            |
| 13     | 26            | 143           |
| 14     | 38            | 472           |
| 15     | 38            | 231           |
| 16     | 34            | 195           |
| 17     | 27            | 95            |
| 18     | 28            | 70            |
| 19     | 29            | 64            |
| 20     | 27            | 40            |
| 21     | 193           | 35            |
| 22     | 53            | 30            |
| 23     | 36            | 144           |
| 24     | 29            | 204           |
| 25     | 28            | 55            |
| 26     | 25            | 123           |
| 27     | 27            | 46            |
| 28     | 31            | 42            |
| 29     | 24            | 92            |
| 30     | 29            | 154           |
| 31     | 36            | 75            |
| 32     | 32            | 154           |
| 33     | 28            | 267           |
| 34     | 26            | 197           |
| 35     | 79            | 51            |
| 36     | 53            | 115           |
| 37     | 30            | 335           |
| 38     | 31            | 431           |
| 39     | 29            | 163           |

| Day | NTU - | NTU - |
|-----|-------|-------|
|     | 2012  | 2013  |
| 40  | 28    | 200   |
| 41  | 22    | 464   |
| 42  | 33    | 479   |
| 43  | 25    | 90    |
| 44  | 130   | 49    |
| 45  | 61    | 52    |
| 46  | 27    | 35    |
| 47  | 24    | 30    |
| 48  | 54    | 116   |
| 49  | 44    | 365   |
| 50  | 27    | 146   |
| 51  | 56    | 53    |
| 52  | 62    | 55    |
| 53  | 40    | 26    |
| 54  | 368   | 32    |
| 55  | 203   | 390   |
| 56  | 54    | 243   |
| 57  | 34    | 126   |
| 58  | 34    | 102   |
| 59  | 621   | 35    |
| 60  | 127   | 35    |
| 61  | 51    | 58    |
| 62  | 34    | 82    |
| 63  | 30    | 32    |
| 64  | 29    | 740   |
| 65  | 26    | 195   |
| 66  | 68    | 63    |
| 67  | 31    | 340   |
| 68  | 37    | 87    |
| 69  | 33    | 66    |
| 70  | 31    | 60    |
| 71  | 27    | 98    |
| 72  | 252   | 46    |
| 73  | 803   | 39    |
| 74  | 96    | 98    |
| 75  | 46    | 78    |
| 76  | 38    | 67    |
| 77  | 28    | 196   |
| 78  | 80    | 202   |
| 79  | 46    | 118   |

| Day | NTU - | NTU - |
|-----|-------|-------|
|     | 2012  | 2013  |
| 80  | 41    | 586   |
| 81  | 79    | 1564  |
| 82  | 68    | 610   |
| 83  | 54    | 338   |
| 84  | 55    | 92    |
| 85  | 84    | 54    |
| 86  | 131   | 48    |
| 87  | 366   | 41    |
| 88  | 44    | 57    |
| 89  | 366   | 35    |
| 90  | 159   | 207   |
| 91  | 256   | 28    |
| 92  | 116   | 106   |
| 93  | 80    | 48    |
| 94  | 48    | 870   |
| 95  | 111   | 790   |
| 96  | 158   | 750   |
| 97  | 58    | 106   |
| 98  | 113   | 60    |
| 99  | 34    | 43    |
| 100 | 116   | 37    |
| 101 | 235   | 35    |
| 102 | 520   | 39    |
| 103 | 128   | 43    |
| 104 | 76    | 124   |
| 105 | 128   | 666   |
| 106 | 115   | 216   |
| 107 | 50    | 110   |
| 108 | 33    | 88    |
| 109 | 67    | 305   |
| 110 | 756   | 177   |
| 111 | 246   | 449   |
| 112 | 78    | 57    |
| 113 | 231   | 425   |
| 114 | 467   | 469   |
| 115 | 107   | 315   |
| 116 | 283   | 87    |
| 117 | 135   | 106   |
| 118 | 81    | 104   |
| 119 | 514   | 133   |

| Day | NTU - | NTU - |
|-----|-------|-------|
|     | 2012  | 2013  |
| 120 | 640   | 144   |
| 121 | 189   | 48    |
| 122 | 137   | 46    |
| 123 | 108   | 63    |
| 124 | 94    | 700   |
| 125 | 78    | 188   |
| 126 | 50    | 129   |
| 127 | 125   | 744   |
| 128 | 160   | 83    |
| 129 | 118   | 65    |
| 130 | 280   | 153   |
| 131 | 254   | 40    |
| 132 | 153   | 36    |
| 133 | 84    | 82    |
| 134 | 68    | 106   |
| 135 | 48    | 165   |
| 136 | 166   | 70    |
| 137 | 95    | 88    |
| 138 | 60    | 127   |
| 139 | 42    | 152   |
| 140 | 50    | 57    |
| 141 | 40    | 48    |
| 142 | 73    | 33    |
| 143 | 36    | 32    |
| 144 | 36    | 36    |
| 145 | 29    | 35    |
| 146 | 27    | 36    |
| 147 | 25    | 33    |
| 148 | 26    | 40    |
| 149 | 31    | 48    |
| 150 | 36    | 30    |
| 151 | 78    | 31    |
| 152 | 37    | 34    |
| 153 | 34    | 32    |
| 154 | 23    | 33    |
| 155 | 28    | 30    |
| 156 | 24    | 29    |
| 157 | 25    | 29    |
| 158 | 25    | 27    |
| 159 | 21    | 30    |

| Day  | NTU - | NTU - |
|------|-------|-------|
| 1.00 | 2012  | 2013  |
| 160  | 22    | 28    |
| 101  | 21    | 25    |
| 162  | 23    | 27    |
| 163  | 25    | 25    |
| 164  | 21    | 29    |
| 165  | 20    | 25    |
| 166  | 21    | 26    |
| 167  | 21    | 33    |
| 168  | 21    | 87    |
| 169  | 19    | 79    |
| 170  | 20    | 37    |
| 171  | 20    | 26    |
| 172  | 21    | 14    |
| 173  | 21    | 18    |
| 174  | 24    | 24    |
| 175  | 20    | 27    |
| 176  | 19    | 23    |
| 177  | 17    | 21    |
| 178  | 22    | 23    |
| 179  | 19    | 20    |
| 180  | 18    | 23    |
| 181  | 21    | 21    |
| 182  | 24    | 24    |
| 183  | 19    | 20    |
| 184  | 20    | 20    |
| 185  | 19    | 19    |
| 186  | 19    | 22    |
| 187  | 21    | 30    |
| 188  | 19    | 21    |
| 189  | 24    | 23    |
| 190  | 38    | 23    |
| 191  | 25    | 26    |
| 192  | 30    | 22    |
| 193  | 15    | 23    |
| 194  | 17    | 23    |
| 195  | 16    | 23    |
| 196  | 19    | 22    |
| 197  | 17    | 25    |
| 198  | 16    | 23    |
| 199  | 16    | 20    |

| Day | NTU - | NTU - |
|-----|-------|-------|
|     | 2012  | 2013  |
| 200 | 19    | 23    |
| 201 | 21    | 23    |
| 202 | 18    | 21    |
| 203 | 16    | 21    |
| 204 | 14    | 21    |
| 205 | 20    | 23    |
| 206 | 20    | 23    |
| 207 | 20    | 23    |
| 208 | 17    | 22    |
| 209 | 18    | 20    |
| 210 | 19    | 22    |
| 211 | 20    | 17    |
| 212 | 16    | 15    |
| 213 | 16    | 15    |
| 214 | 17    | 19    |
| 215 | 18    | 17    |
| 216 | 18    | 16    |
| 217 | 16    | 15    |
| 218 | 16    | 19    |
| 219 | 18    | 16    |
| 220 | 21    | 17    |
| 221 | 18    | 16    |
| 222 | 16    | 18    |
| 223 | 17    | 17    |
| 224 | 18    | 16    |
| 225 | 15    | 20    |
| 226 | 17    | 18    |
| 227 | 18    | 17    |
| 228 | 18    | 17    |
| 229 | 17    | 18    |
| 230 | 19    | 17    |
| 231 | 16    | 23    |
| 232 | 15    | 20    |
| 233 | 19    | 20    |
| 234 | 20    | 20    |
| 235 | 17    | 25    |
| 236 | 79    | 22    |
| 237 | 25    | 18    |
| 238 | 20    | 21    |
| 239 | 16    | 22    |

| Day | NTU - | NTU - |
|-----|-------|-------|
|     | 2012  | 2013  |
| 240 | 20    | 19    |
| 241 | 17    | 22    |
| 242 | 18    | 20    |
| 243 | 18    | 22    |
| 244 | 15    | 19    |
| 245 | 19    | 24    |
| 246 | 78    | 21    |
| 247 | 40    | 25    |
| 248 | 32    | 22    |
| 249 | 34    | 22    |
| 250 | 17    | 17    |
| 251 | 19    | 20    |
| 252 | 20    | 17    |
| 253 | 18    | 20    |
| 254 | 23    | 19    |
| 255 | 81    | 19    |
| 256 | 24    | 23    |
| 257 | 21    | 22    |
| 258 | 23    | 36    |
| 259 | 14    | 22    |
| 260 | 34    | 18    |
| 261 | 19    | 21    |
| 262 | 33    | 22    |
| 263 | 34    | 22    |
| 264 | 40    | 22    |
| 265 | 58    | 22    |
| 266 | 122   | 22    |
| 267 | 55    | 21    |
| 268 | 29    | 19    |
| 269 | 25    | 32    |
| 270 | 19    | 31    |
| 271 | 20    | 33    |
| 272 | 25    | 31    |
| 273 | 86    | 31    |
| 274 | 74    | 65    |
| 275 | 264   | 63    |
| 276 | 30    | 51    |
| 277 | 68    | 50    |
| 278 | 27    | 36    |
| 279 | 107   | 28    |

| Day | NTU - | NTU - |
|-----|-------|-------|
|     | 2012  | 2013  |
| 280 | 36    | 39    |
| 281 | 71    | 42    |
| 282 | 128   | 30    |
| 283 | 56    | 288   |
| 284 | 34    | 74    |
| 285 | 111   | 120   |
| 286 | 33    | 97    |
| 287 | 29    | 134   |
| 288 | 29    | 596   |
| 289 | 58    | 116   |
| 290 | 61    | 196   |
| 291 | 24    | 244   |
| 292 | 22    | 86    |
| 293 | 150   | 71    |
| 294 | 21    | 90    |
| 295 | 80    | 33    |
| 296 | 205   | 29    |
| 297 | 517   | 85    |
| 298 | 212   | 366   |
| 299 | 63    | 214   |
| 300 | 37    | 1017  |
| 301 | 45    | 181   |
| 302 | 32    | 61    |
| 303 | 52    | 63    |
| 304 | 58    | 45    |
| 305 | 31    | 69    |
| 306 | 29    | 166   |
| 307 | 26    | 111   |
| 308 | 24    | 60    |
| 309 | 35    | 58    |
| 310 | 109   | 90    |
| 311 | 63    | 280   |
| 312 | 36    | 56    |
| 313 | 366   | 145   |
| 314 | 216   | 70    |
| 315 | 52    | 33    |
| 316 | 40    | 71    |
| 317 | 126   | 850   |
| 318 | 625   | 300   |
| 319 | 830   | 200   |

| Day | NTU - | NTU - |
|-----|-------|-------|
|     | 2012  | 2013  |
| 320 | 167   | 67    |
| 321 | 2555  | 39    |
| 322 | 418   | 40    |
| 323 | 73    | 126   |
| 324 | 131   | 520   |
| 325 | 625   | 112   |
| 326 | 157   | 200   |
| 327 | 285   | 275   |
| 328 | 227   | 82    |
| 329 | 344   | 323   |
| 330 | 888   | 139   |
| 331 | 338   | 55    |
| 332 | 161   | 357   |
| 333 | 115   | 165   |
| 334 | 140   | 58    |
| 335 | 107   | 434   |
| 336 | 130   | 560   |
| 337 | 162   | 191   |
| 338 | 115   | 118   |
| 339 | 230   | 43    |
| 340 | 71    | 172   |
| 341 | 60    | 816   |
| 342 | 100   | 103   |
| 343 | 350   | 96    |
| 344 | 144   | 76    |
| 345 | 30    | 96    |
| 346 | 110   | 136   |
| 347 | 317   | 426   |
| 348 | 715   | 1000  |
| 349 | 827   | 810   |
| 350 | 202   | 1724  |
| 351 | 82    | 128   |
| 352 | 988   | 68    |
| 353 | 1040  | 58    |
| 354 | 108   | 260   |
| 355 | 235   | 125   |
| 356 | 147   | 63    |
| 357 | 170   | 55    |
| 358 | 102   | 1228  |
| 359 | 42    | 202   |

| Day | NTU -<br>2012 | NTU -<br>2013 |
|-----|---------------|---------------|
| 360 | 38            | 205           |
| 361 | 898           | 62            |
| 362 | 197           | 46            |
| 363 | 124           | 657           |
| 364 | 63            | 180           |
| 365 | 75            | 75            |
| 366 | 76            |               |



## **Turbidity Exceedance Probability Curves (2000 to 2013)**

## TSS vs Turbidity (2005)

| NTU | TSS (mg/l) |  |
|-----|------------|--|
| 28  | 93.2       |  |
| 35  | 114.2      |  |
| 27  | 88.4       |  |
| 60  | 171.1      |  |
| 149 | 422        |  |
| 195 | 588.9      |  |
| 126 | 311.1      |  |
| 68  | 223.5      |  |
| 47  | 144.3      |  |
| 25  | 78.5       |  |
| 101 | 313.5      |  |
| 43  | 129.4      |  |
| 169 | 494.4      |  |
| 189 | 526.4      |  |
| 486 | 1317.6     |  |
| 22  | 71.2       |  |
| 21  | 71.1       |  |
| 18  | 63         |  |
| 66  | 194.9      |  |
| 17  | 54         |  |
| 24  | 77.2       |  |
| 19  | 59.2       |  |
| 23  | 78.9       |  |
| 20  | 71.4       |  |
| 41  | 133.4      |  |
| 143 | 406.2      |  |
| 33  | 101.2      |  |
| 235 | 604.5      |  |
| 270 | 763.5      |  |
| 63  | 165.1      |  |
| 34  | 104.8      |  |
| 129 | 399        |  |
| 288 | 808.9      |  |
| 92  | 259.5      |  |
| 98  | 305.1      |  |
| 110 | 288.2      |  |
| 94  | 287.2      |  |
| 40  | 127.2      |  |
| 394 | 1012.4     |  |

## TSS vs Turbidity (2013)

| NTU | TSS    |  |
|-----|--------|--|
|     | (mg/l) |  |
| 294 | 852.9  |  |
| 112 | 295.2  |  |
| 31  | 112.4  |  |
| 117 | 327    |  |
| 27  | 104.4  |  |
| 461 | 1342.4 |  |
| 418 | 1122.4 |  |
| 87  | 254.8  |  |
| 49  | 168.3  |  |
| 115 | 308.2  |  |
| 252 | 694.5  |  |
| 46  | 151.2  |  |
| 13  | 64     |  |
| 59  | 188.3  |  |
| 357 | 920.2  |  |
| 82  | 241.5  |  |
| 141 | 334    |  |
| 63  | 178.1  |  |
| 605 | 1934   |  |
| 459 | 1329.6 |  |
| 208 | 598.9  |  |
| 317 | 955    |  |
| 548 | 1745   |  |
| 493 | 1482.3 |  |
| 922 | 3221.2 |  |
| 99  | 311.2  |  |
| 148 | 451    |  |

## Discharge vs Water Level

| W (cm) | Q (m3/s) |  |  |
|--------|----------|--|--|
| 121.8  | 10.8     |  |  |
| 126.6  | 11.2     |  |  |
| 129.0  | 11.4     |  |  |
| 130.0  | 11.9     |  |  |
| 134.0  | 12.3     |  |  |
| 134.3  | 12.5     |  |  |
| 143.2  | 13.3     |  |  |
| 145.0  | 14.1     |  |  |
| 150.0  | 14.5     |  |  |
| 159.4  | 15.4     |  |  |
| 166.7  | 16.0     |  |  |
| 185.0  | 17.4     |  |  |
| 195.0  | 17.8     |  |  |
| 195.0  | 18.4     |  |  |
| 214.0  | 21.0     |  |  |
| 226.0  | 21.4     |  |  |
| 254.0  | 28.4     |  |  |
| 259.0  | 29.0     |  |  |
| 260.0  | 31.3     |  |  |
| 269.8  | 32.4     |  |  |
| 297.0  | 40.9     |  |  |

#### APPENDIX B: RAINFALL-RUNOFF EROSIVITY FACTORS & CROSS VALIDATION OF INTERPOLATION METHODS

#### **Rainfall-Runoff Erosivity Factor Relationships**

• From Bols (1978). [Relationship based on empirical study in Indonesia]

$$R = \frac{2.5 \ P^2}{100 \ (0.073P + 0.73)}$$

Where:

R = the annual rainfall erosivity, expressed in Mj  $\cdot$  mm  $\cdot$  ha<sup>-1</sup>  $\cdot$  h<sup>-1</sup>  $\cdot$  year<sup>-1</sup>; P = the annual precipitation (mm).

• From Yu and Rosewell (1996). [Relationship used in southeastern Australia in 1996]

$$R = 0.0438 P^{1.61}$$

Where:

R = the annual rainfall erosivity, expressed in Mj  $\cdot$  mm  $\cdot$  ha<sup>-1</sup>  $\cdot$  h<sup>-1</sup>  $\cdot$  year<sup>-1</sup>; P = the annual precipitation (mm).

• From Mikhailova et al. (1997). [Relationship based on annual rainfall and elevation in Honduras]

$$R = -3172 + 7.562 P$$

Where:

R = the annual rainfall erosivity, expressed in Mj  $\cdot$  mm  $\cdot$  ha<sup>-1</sup>  $\cdot$  h<sup>-1</sup>  $\cdot$  year<sup>-1</sup>; P = the annual precipitation (mm).

• From Torri et al. (2006). [Relationship based on annual rainfall in Italy]

$$R = -944 + 3.08 P$$

Where:

R = the annual rainfall erosivity, expressed in Mj  $\cdot$  mm  $\cdot$  ha<sup>-1</sup>  $\cdot$  h<sup>-1</sup>  $\cdot$  year<sup>-1</sup>; P = the annual precipitation (mm).

# Tables of Rainfall-Runoff Erosivity Factor Used from 8 Us States

| ALABAMA                 |                              |          |  |
|-------------------------|------------------------------|----------|--|
| County                  | Annual Precipitation<br>(in) | R_Factor |  |
| Autauga County          | 55.0                         | 417      |  |
| Barbour County          | 52.5                         | 429      |  |
| Bibb County             | 58.3                         | 424      |  |
| Blount County           | 56.5                         | 365      |  |
| Bullock County          | 54.1                         | 422      |  |
| Butler County           | 57.6                         | 475      |  |
| Calhoun County          | 54.8                         | 338      |  |
| <b>Chambers County</b>  | 55.8                         | 393      |  |
| Cherokee County         | 56.5                         | 338      |  |
| Chilton County          | 56.4                         | 412      |  |
| Choctaw County          | 59.7                         | 504      |  |
| Clarke County           | 59.8                         | 539      |  |
| Clay County             | 58.3                         | 394      |  |
| Cleburne County         | 56.1                         | 355      |  |
| Coffee County           | 56.9                         | 531      |  |
| Colbert County          | 55.8                         | 374      |  |
| Coosa County            | 56.8                         | 408      |  |
| <b>Covington County</b> | 59.7                         | 547      |  |
| Crenshaw County         | 56.6                         | 497      |  |
| Cullman County          | 57.6                         | 372      |  |
| Dale County             | 55.5                         | 500      |  |
| Dallas County           | 54.7                         | 435      |  |
| De Kalb County          | 58.2                         | 343      |  |
| Elmore County           | 55.5                         | 410      |  |
| Etowah County           | 55.5                         | 338      |  |
| Fayette County          | 58.9                         | 434      |  |
| Franklin County         | 57.7                         | 392      |  |
| Geneva County           | 57.7                         | 543      |  |
| Greene County           | 54.3                         | 412      |  |
| Hale County             | 55.3                         | 420      |  |
| Henry County            | 54.9                         | 463      |  |
| Houston County          | 55.4                         | 520      |  |
| Jackson County          | 57.8                         | 332      |  |
| Jefferson County        | 56.9                         | 381      |  |
| Lamar County            | 59.0                         | 420      |  |
| ALABAMA           |                              |                 |
|-------------------|------------------------------|-----------------|
| County            | Annual Precipitation<br>(in) | <b>R_Factor</b> |
| Lauderdale County | 55.7                         | 363             |
| Lawrence County   | 56.8                         | 369             |
| Lee County        | 55.6                         | 403             |
| Limestone County  | 56.5                         | 348             |
| Lowndes County    | 54.4                         | 442             |
| Macon County      | 55.2                         | 417             |
| Madison County    | 56.2                         | 340             |
| Marengo County    | 56.0                         | 454             |
| Marion County     | 59.2                         | 418             |
| Marshall County   | 55.4                         | 338             |
| Monroe County     | 58.5                         | 539             |
| Montgomery County | 54.4                         | 436             |
| Morgan County     | 56.6                         | 362             |
| Perry County      | 55.6                         | 430             |
| Pickens County    | 56.6                         | 419             |
| Pike County       | 54.1                         | 454             |
| Randolph County   | 55.9                         | 362             |
| Russell County    | 51.6                         | 388             |
| Shelby County     | 57.1                         | 391             |
| St. Clair County  | 56.0                         | 370             |
| Sumter County     | 55.9                         | 445             |
| Talladega County  | 56.2                         | 380             |
| Tallapoosa County | 57.1                         | 411             |
| Tuscaloosa County | 57.0                         | 412             |
| Walker County     | 57.6                         | 393             |
| Wilcox County     | 56.1                         | 481             |
| Winston County    | 58.4                         | 392             |

| ARKANSAS           |                              |          |
|--------------------|------------------------------|----------|
| County             | Annual Precipitation<br>(in) | R_Factor |
| Arkansas County    | 51.0                         | 357      |
| Ashley County      | 54.7                         | 425      |
| Bradley County     | 54.0                         | 413      |
| Calhoun County     | 52.4                         | 394      |
| Chicot County      | 53.4                         | 405      |
| Clark County       | 53.7                         | 390      |
| Cleburne County    | 51.2                         | 325      |
| Cleveland County   | 52.9                         | 388      |
| Columbia County    | 51.1                         | 400      |
| Crittenden County  | 50.9                         | 338      |
| Dallas County      | 52.1                         | 384      |
| Desha County       | 52.1                         | 382      |
| Drew County        | 53.8                         | 399      |
| Faulkner County    | 50.1                         | 332      |
| Garland County     | 55.8                         | 393      |
| Grant County       | 52.4                         | 371      |
| Hempstead County   | 52.6                         | 397      |
| Hot Spring County  | 54.8                         | 393      |
| Howard County      | 54.1                         | 397      |
| Jefferson County   | 51.4                         | 362      |
| Lafayette County   | 50.2                         | 391      |
| Lee County         | 51.9                         | 351      |
| Lincoln County     | 52.4                         | 381      |
| Monroe County      | 50.4                         | 348      |
| Montgomery County  | 55.8                         | 394      |
| Nevada County      | 53.0                         | 398      |
| Ouachita County    | 52.0                         | 391      |
| Perry County       | 50.7                         | 350      |
| Phillips County    | 52.5                         | 370      |
| Pike County        | 55.7                         | 410      |
| Polk County        | 56.3                         | 407      |
| Prairie County     | 50.2                         | 339      |
| Pulaski County     | 50.2                         | 343      |
| Saline County      | 53.5                         | 375      |
| Scott County       | 50.2                         | 339      |
| Sevier County      | 52.5                         | 385      |
| St. Francis County | 51.0                         | 340      |

| ARKANSAS         |                              |          |
|------------------|------------------------------|----------|
| County           | Annual Precipitation<br>(in) | R_Factor |
| Union County     | 52.6                         | 410      |
| Van Buren County | 51.6                         | 325      |
| White County     | 51.0                         | 334      |
| Woodruff County  | 50.1                         | 333      |

| GEORGIA              |                              |          |
|----------------------|------------------------------|----------|
| County               | Annual Precipitation<br>(in) | R_Factor |
| Atkinson County      | 50.1                         | 424      |
| Baker County         | 52.2                         | 445      |
| Banks County         | 54.9                         | 309      |
| Barrow County        | 51.3                         | 296      |
| Bartow County        | 52.8                         | 304      |
| Brantley County      | 51.6                         | 451      |
| Brooks County        | 52.2                         | 464      |
| Calhoun County       | 51.8                         | 425      |
| Camden County        | 51.2                         | 452      |
| Carroll County       | 54.5                         | 342      |
| Catoosa County       | 54.3                         | 299      |
| Charlton County      | 52.1                         | 467      |
| Chattahoochee County | 50.2                         | 377      |
| Chattooga County     | 55.8                         | 319      |
| Cherokee County      | 56.2                         | 319      |
| Clay County          | 52.9                         | 440      |
| Clayton County       | 50.8                         | 309      |
| Clinch County        | 52.3                         | 464      |
| Cobb County          | 54.4                         | 323      |
| Colquitt County      | 50.6                         | 437      |
| Cook County          | 50.4                         | 432      |
| Coweta County        | 52.7                         | 336      |
| Dade County          | 59.9                         | 340      |
| De Kalb County       | 53.0                         | 313      |
| Decatur County       | 54.4                         | 502      |
| Dougherty County     | 51.2                         | 418      |
| Douglas County       | 53.8                         | 334      |
| Early County         | 53.7                         | 465      |
| Echols County        | 53.3                         | 483      |
| Fayette County       | 51.5                         | 325      |

| GEORGIA           |                      |            |
|-------------------|----------------------|------------|
| County            | Annual Precipitation | R Factor   |
| county            | (in)                 | IX_I actor |
| Floyd County      | 54.6                 | 310        |
| Forsyth County    | 57.3                 | 329        |
| Franklin County   | 52.6                 | 299        |
| Fulton County     | 53.5                 | 318        |
| Glynn County      | 50.7                 | 443        |
| Gordon County     | 54.3                 | 299        |
| Grady County      | 54.0                 | 486        |
| Gwinnett County   | 54.3                 | 320        |
| Hall County       | 57.7                 | 325        |
| Haralson County   | 55.5                 | 335        |
| Harris County     | 52.2                 | 377        |
| Hart County       | 51.1                 | 292        |
| Heard County      | 54.4                 | 349        |
| Henry County      | 50.5                 | 320        |
| Jackson County    | 52.9                 | 298        |
| Lamar County      | 50.2                 | 327        |
| Lanier County     | 51.6                 | 444        |
| Lowndes County    | 52.5                 | 463        |
| Madison County    | 50.2                 | 292        |
| McIntosh County   | 50.8                 | 433        |
| Meriwether County | 52.2                 | 343        |
| Miller County     | 53.2                 | 472        |
| Mitchell County   | 52.1                 | 454        |
| Murray County     | 58.3                 | 318        |
| Muscogee County   | 51.1                 | 371        |
| Paulding County   | 54.5                 | 327        |
| Pickens County    | 59.8                 | 340        |
| Pike County       | 51.3                 | 337        |
| Polk County       | 53.9                 | 315        |
| Quitman County    | 51.5                 | 417        |
| Randolph County   | 51.2                 | 413        |
| Rockdale County   | 50.7                 | 310        |
| Seminole County   | 54.2                 | 504        |
| Spalding County   | 51.2                 | 325        |
| Stephens County   | 57.3                 | 317        |
| Talbot County     | 51.7                 | 370        |
| Terrell County    | 50.1                 | 395        |
| Thomas County     | 52.8                 | 471        |
| Troup County      | 53.7                 | 359        |

| GEORGIA          |                              |          |
|------------------|------------------------------|----------|
| County           | Annual Precipitation<br>(in) | R_Factor |
| Upson County     | 50.6                         | 340      |
| Walker County    | 57.6                         | 322      |
| Walton County    | 50.5                         | 292      |
| Ware County      | 50.8                         | 445      |
| Wayne County     | 50.0                         | 424      |
| Whitfield County | 55.7                         | 306      |

| LOUISIANA              |                              |                 |
|------------------------|------------------------------|-----------------|
| County                 | Annual Precipitation<br>(in) | <b>R_Factor</b> |
| Acadia County          | 59.3                         | 594             |
| Beauregard County      | 57.7                         | 552             |
| Bienville County       | 53.8                         | 443             |
| Calcasieu County       | 57.2                         | 564             |
| Caldwell County        | 56.3                         | 483             |
| Cameron County         | 58.0                         | 588             |
| Catahoula County       | 58.6                         | 532             |
| Claiborne County       | 52.7                         | 419             |
| Concordia County       | 60.0                         | 561             |
| East Carroll County    | 55.7                         | 455             |
| Franklin County        | 55.2                         | 470             |
| Grant County           | 58.2                         | 522             |
| Jackson County         | 55.3                         | 458             |
| Jefferson Davis County | 59.5                         | 590             |
| La Salle County        | 59.3                         | 537             |
| Lafayette County       | 59.2                         | 618             |
| Lincoln County         | 53.5                         | 432             |
| Madison County         | 56.1                         | 468             |
| Morehouse County       | 54.2                         | 428             |
| Natchitoches County    | 54.1                         | 485             |
| Orleans County         | 58.9                         | 625             |
| Ouachita County        | 52.7                         | 436             |
| Rapides County         | 59.8                         | 562             |
| Red River County       | 51.1                         | 425             |
| <b>Richland County</b> | 54.0                         | 448             |
| Sabine County          | 52.6                         | 460             |
| Tensas County          | 56.0                         | 480             |
| Union County           | 53.2                         | 422             |

| LOUISIANA           |                              |          |
|---------------------|------------------------------|----------|
| County              | Annual Precipitation<br>(in) | R_Factor |
| Vernon County       | 56.7                         | 531      |
| Webster County      | 50.8                         | 405      |
| West Carroll County | 54.9                         | 436      |
| Winn County         | 57.9                         | 514      |

| MISSISSIPI        |                              |          |
|-------------------|------------------------------|----------|
| County            | Annual Precipitation<br>(in) | R_Factor |
| Alcorn County     | 55.0                         | 374      |
| Attala County     | 57.5                         | 441      |
| Benton County     | 56.8                         | 388      |
| Bolivar County    | 53.6                         | 391      |
| Calhoun County    | 55.9                         | 416      |
| Carroll County    | 56.7                         | 435      |
| Chickasaw County  | 56.0                         | 401      |
| Choctaw County    | 56.7                         | 432      |
| Claiborne County  | 56.9                         | 505      |
| Clarke County     | 58.7                         | 498      |
| Clay County       | 56.8                         | 422      |
| Coahoma County    | 53.3                         | 383      |
| Copiah County     | 58.1                         | 527      |
| Covington County  | 59.5                         | 544      |
| De Soto County    | 52.4                         | 351      |
| Grenada County    | 56.4                         | 418      |
| Hinds County      | 55.8                         | 466      |
| Holmes County     | 56.2                         | 447      |
| Humphreys County  | 56.1                         | 438      |
| Issaquena County  | 55.7                         | 452      |
| Itawamba County   | 57.8                         | 402      |
| Jasper County     | 58.1                         | 488      |
| Jefferson County  | 58.0                         | 528      |
| Jones County      | 58.7                         | 531      |
| Kemper County     | 55.8                         | 438      |
| Lafayette County  | 56.6                         | 402      |
| Lauderdale County | 57.1                         | 471      |
| Lawrence County   | 59.9                         | 541      |
| Leake County      | 56.2                         | 449      |
| Lee County        | 56.4                         | 399      |

| MISSISSIPI               |                              |          |
|--------------------------|------------------------------|----------|
| County                   | Annual Precipitation<br>(in) | R_Factor |
| Leflore County           | 55.6                         | 419      |
| Lowndes County           | 57.2                         | 426      |
| Madison County           | 55.6                         | 447      |
| Marshall County          | 54.7                         | 374      |
| Monroe County            | 57.1                         | 408      |
| Montgomery County        | 56.6                         | 433      |
| Neshoba County           | 56.9                         | 452      |
| Newton County            | 57.0                         | 471      |
| Noxubee County           | 54.8                         | 427      |
| Oktibbeha County         | 56.2                         | 425      |
| Panola County            | 55.2                         | 398      |
| Pontotoc County          | 57.1                         | 417      |
| Prentiss County          | 56.1                         | 399      |
| Quitman County           | 54.4                         | 385      |
| Rankin County            | 56.4                         | 470      |
| Scott County             | 57.7                         | 479      |
| Sharkey County           | 55.0                         | 447      |
| Simpson County           | 58.6                         | 515      |
| Smith County             | 58.6                         | 511      |
| Sunflower County         | 54.9                         | 410      |
| Tallahatchie County      | 55.3                         | 408      |
| Tate County              | 53.4                         | 374      |
| Tippah County            | 56.6                         | 383      |
| <b>Tishomingo County</b> | 56.1                         | 378      |
| Tunica County            | 52.8                         | 367      |
| Union County             | 57.0                         | 411      |
| Warren County            | 56.0                         | 464      |
| Washington County        | 53.5                         | 402      |
| Wayne County             | 59.3                         | 538      |
| Webster County           | 56.2                         | 421      |
| Winston County           | 56.9                         | 449      |
| Yalobusha County         | 56.4                         | 410      |
| Yazoo County             | 56.5                         | 461      |

| PUERTO RICO  |                      |                 |
|--------------|----------------------|-----------------|
| County       | Annual Precipitation | <b>R_Factor</b> |
|              | (in)                 |                 |
| Aguada       | 54.0                 | 468             |
| Aguada       | 58.9                 | 512             |
| Aguadilla    | 51.0                 | 431             |
| Aguadilla    | 55.1                 | 466             |
| Aguadilla    | 59.0                 | 499             |
| Aguas Buenas | 58.0                 | 355             |
| Aibonito     | 50.0                 | 323             |
| Aibonito     | 55.5                 | 364             |
| Aibonito     | 59.2                 | 398             |
| Arecibo      | 54.8                 | 417             |
| Arecibo      | 59.1                 | 453             |
| Arroyo       | 51.2                 | 308             |
| Arroyo       | 55.1                 | 333             |
| Arroyo       | 59.2                 | 367             |
| Barceloneta  | 54.9                 | 401             |
| Barceloneta  | 59.1                 | 432             |
| Barranquitas | 55.2                 | 351             |
| Barranquitas | 59.3                 | 367             |
| Cabo Rojo    | 51.1                 | 429             |
| Cabo Rojo    | 54.5                 | 464             |
| Cabo Rojo    | 57.4                 | 498             |
| Caguas       | 58.0                 | 361             |
| Camuy        | 51.2                 | 415             |
| Camuy        | 55.1                 | 450             |
| Camuy        | 58.9                 | 483             |
| Carolina     | 54.8                 | 332             |
| Carolina     | 58.8                 | 349             |
| Catano       | 58.0                 | 379             |
| Сауеу        | 56.3                 | 407             |
| Сауеу        | 59.1                 | 431             |
| Ceiba        | 51.5                 | 269             |
| Ceiba        | 55.4                 | 287             |
| Ceiba        | 59.5                 | 307             |
| Ciales       | 58.0                 | 414             |
| Cidra        | 54.0                 | 377             |
| Cidra        | 59.2                 | 407             |
| Coamo        | 51.1                 | 358             |
| Coamo        | 55.0                 | 382             |

| PUERTO RICO |                      |                 |
|-------------|----------------------|-----------------|
| County      | Annual Precipitation | <b>R_Factor</b> |
|             | (in)                 |                 |
| Coamo       | 58.8                 | 401             |
| Comerio     | 50.0                 | 312             |
| Comerio     | 55.4                 | 343             |
| Comerio     | 58.8                 | 364             |
| Corozal     | 58.0                 | 392             |
| Fajardo     | 55.4                 | 281             |
| Fajardo     | 59.6                 | 300             |
| Florida     | 58.0                 | 430             |
| Guayama     | 51.3                 | 345             |
| Guayama     | 55.2                 | 374             |
| Guayama     | 59.1                 | 399             |
| Guayanilla  | 50.8                 | 372             |
| Guayanilla  | 54.7                 | 399             |
| Guayanilla  | 58.7                 | 434             |
| Hatillo     | 51.7                 | 416             |
| Hatillo     | 54.4                 | 439             |
| Hatillo     | 59.0                 | 481             |
| Hormigueros | 54.0                 | 472             |
| Hormigueros | 59.2                 | 518             |
| Isabela     | 51.0                 | 430             |
| Isabela     | 54.8                 | 461             |
| Isabela     | 58.8                 | 495             |
| Juana Diaz  | 51.0                 | 331             |
| Juana Diaz  | 55.2                 | 354             |
| Juana Diaz  | 58.7                 | 365             |
| Lajas       | 50.3                 | 415             |
| Lajas       | 53.5                 | 429             |
| Lajas       | 56.4                 | 452             |
| Loiza       | 50.0                 | 303             |
| Loiza       | 54.5                 | 326             |
| Loiza       | 59.2                 | 350             |
| Luquillo    | 58.0                 | 308             |
| Manati      | 55.6                 | 398             |
| Manati      | 59.0                 | 424             |
| Mayaguez    | 59.9                 | 522             |
| Naguabo     | 55.8                 | 293             |
| Naguabo     | 58.9                 | 309             |
| Patillas    | 52.7                 | 309             |
| Patillas    | 55.1                 | 323             |

| PUERTO RICO   |                              |          |  |  |
|---------------|------------------------------|----------|--|--|
| County        | Annual Precipitation<br>(in) | R_Factor |  |  |
| Patillas      | 59.1                         | 346      |  |  |
| Penuelas      | 51.6                         | 364      |  |  |
| Penuelas      | 55.1                         | 390      |  |  |
| Penuelas      | 58.5                         | 413      |  |  |
| Ponce         | 50.9                         | 350      |  |  |
| Ponce         | 55.0                         | 376      |  |  |
| Ponce         | 58.8                         | 397      |  |  |
| Quebradillas  | 51.0                         | 423      |  |  |
| Quebradillas  | 55.1                         | 459      |  |  |
| Quebradillas  | 59.1                         | 496      |  |  |
| Rincon        | 54.0                         | 468      |  |  |
| Rincon        | 58.7                         | 508      |  |  |
| Sabana Grande | 50.7                         | 416      |  |  |
| Sabana Grande | 54.8                         | 461      |  |  |
| Sabana Grande | 59.0                         | 503      |  |  |
| Salinas       | 51.1                         | 364      |  |  |
| Salinas       | 54.8                         | 393      |  |  |
| Salinas       | 58.4                         | 418      |  |  |
| San German    | 51.3                         | 438      |  |  |
| San German    | 54.6                         | 472      |  |  |
| San German    | 59.1                         | 517      |  |  |
| San Juan      | 54.0                         | 335      |  |  |
| San Juan      | 59.8                         | 376      |  |  |
| Тоа Ваја      | 58.0                         | 382      |  |  |
| Vega Alta     | 58.0                         | 396      |  |  |
| Vega Baja     | 54.0                         | 383      |  |  |
| Vega Baja     | 59.5                         | 430      |  |  |
| Villalba      | 51.8                         | 317      |  |  |
| Villalba      | 55.9                         | 345      |  |  |
| Villalba      | 58.9                         | 365      |  |  |
| Yauco         | 51.6                         | 401      |  |  |
| Yauco         | 55.1                         | 429      |  |  |
| Yauco         | 59.2                         | 461      |  |  |

| SOUTH CAROLINA     |                              |          |  |
|--------------------|------------------------------|----------|--|
| County             | Annual Precipitation<br>(in) | R_Factor |  |
| Anderson County    | 50.3                         | 279      |  |
| Beaufort County    | 51.1                         | 411      |  |
| Berkeley County    | 50.5                         | 386      |  |
| Charleston County  | 50.9                         | 400      |  |
| Colleton County    | 50.5                         | 387      |  |
| Dorchester County  | 50.3                         | 374      |  |
| Georgetown County  | 51.4                         | 396      |  |
| Greenville County  | 56.6                         | 317      |  |
| Jasper County      | 50.4                         | 397      |  |
| Pickens County     | 60.0                         | 332      |  |
| Spartanburg County | 51.2                         | 284      |  |

| TENNESSEE         |                              |          |  |
|-------------------|------------------------------|----------|--|
| County            | Annual Precipitation<br>(in) | R_Factor |  |
| Anderson County   | 55.9                         | 271      |  |
| Bedford County    | 55.1                         | 316      |  |
| Benton County     | 54.0                         | 320      |  |
| Bledsoe County    | 57.7                         | 304      |  |
| Blount County     | 53.4                         | 272      |  |
| Bradley County    | 55.2                         | 301      |  |
| Campbell County   | 53.6                         | 258      |  |
| Cannon County     | 56.3                         | 316      |  |
| Carroll County    | 53.5                         | 329      |  |
| Cheatham County   | 51.0                         | 286      |  |
| Chester County    | 53.7                         | 347      |  |
| Claiborne County  | 51.0                         | 235      |  |
| Clay County       | 53.0                         | 271      |  |
| Coffee County     | 56.7                         | 325      |  |
| Crockett County   | 52.3                         | 327      |  |
| Cumberland County | 58.2                         | 297      |  |
| De Kalb County    | 55.2                         | 304      |  |
| Decatur County    | 54.4                         | 340      |  |
| Dickson County    | 52.5                         | 303      |  |
| Dyer County       | 51.1                         | 310      |  |
| Fayette County    | 53.2                         | 354      |  |
| Fentress County   | 54.6                         | 273      |  |
| Franklin County   | 57.8                         | 333      |  |

| TENNESSEE         |                      |          |  |  |
|-------------------|----------------------|----------|--|--|
| County            | Annual Precipitation | R Factor |  |  |
| county            | (in)                 | K_lactor |  |  |
| Gibson County     | 53.3                 | 324      |  |  |
| Giles County      | 55.4                 | 344      |  |  |
| Hamilton County   | 55.7                 | 303      |  |  |
| Hardeman County   | 53.9                 | 355      |  |  |
| Hardin County     | 56.1                 | 362      |  |  |
| Haywood County    | 52.4                 | 329      |  |  |
| Henderson County  | 52.3                 | 334      |  |  |
| Henry County      | 53.2                 | 308      |  |  |
| Hickman County    | 53.6                 | 320      |  |  |
| Houston County    | 53.0                 | 300      |  |  |
| Humphreys County  | 54.3                 | 319      |  |  |
| Jackson County    | 54.0                 | 282      |  |  |
| Knox County       | 50.4                 | 247      |  |  |
| Lauderdale County | 51.4                 | 316      |  |  |
| Lawrence County   | 55.8                 | 352      |  |  |
| Lewis County      | 55.0                 | 335      |  |  |
| Lincoln County    | 54.9                 | 328      |  |  |
| Loudon County     | 53.2                 | 272      |  |  |
| Macon County      | 54.3                 | 285      |  |  |
| Madison County    | 52.8                 | 336      |  |  |
| Marion County     | 58.6                 | 329      |  |  |
| Marshall County   | 54.6                 | 334      |  |  |
| Maury County      | 54.3                 | 324      |  |  |
| McMinn County     | 56.4                 | 294      |  |  |
| McNairy County    | 55.5                 | 365      |  |  |
| Meigs County      | 54.9                 | 285      |  |  |
| Monroe County     | 57.5                 | 298      |  |  |
| Montgomery County | 50.9                 | 275      |  |  |
| Moore County      | 56.0                 | 325      |  |  |
| Morgan County     | 56.7                 | 283      |  |  |
| Obion County      | 51.8                 | 317      |  |  |
| Overton County    | 54.4                 | 282      |  |  |
| Perry County      | 55.4                 | 342      |  |  |
| Pickett County    | 52.8                 | 264      |  |  |
| Polk County       | 58.3                 | 316      |  |  |
| Putnam County     | 56.4                 | 296      |  |  |
| Rhea County       | 57.4                 | 297      |  |  |
| Roane County      | 54.4                 | 273      |  |  |
| Robertson County  | 50.2                 | 269      |  |  |

| TENNESSEE         |                              |                 |  |
|-------------------|------------------------------|-----------------|--|
| County            | Annual Precipitation<br>(in) | <b>R_Factor</b> |  |
| Rutherford County | 53.7                         | 311             |  |
| Scott County      | 54.3                         | 265             |  |
| Sequatchie County | 59.1                         | 323             |  |
| Sevier County     | 52.2                         | 261             |  |
| Shelby County     | 52.0                         | 345             |  |
| Smith County      | 53.6                         | 282             |  |
| Stewart County    | 52.4                         | 287             |  |
| Sumner County     | 51.3                         | 276             |  |
| Tipton County     | 51.7                         | 326             |  |
| Trousdale County  | 53.1                         | 283             |  |
| Unicoi County     | 50.6                         | 231             |  |
| Union County      | 51.9                         | 243             |  |
| Van Buren County  | 57.2                         | 309             |  |
| Warren County     | 54.9                         | 307             |  |
| Wayne County      | 56.8                         | 366             |  |
| Weakley County    | 53.5                         | 313             |  |
| White County      | 56.1                         | 299             |  |
| Williamson County | 52.7                         | 303             |  |
| Wilson County     | 53.1                         | 294             |  |

# **Cross Validation of Deterministic Interpolation Methods**

# **Inverse Distance Weighting Method**

# Regression function: -0.142518319159947 \* x + 500.984518950821

### Cross Validation

| ource ID | Included | Measured | Predicted | Error               | Predicted 10 <sup>-2</sup>                            |
|----------|----------|----------|-----------|---------------------|-------------------------------------------------------|
|          | Yes      | 467.8    | 434.9     | -32.817786684411544 | 4.678                                                 |
|          | Yes      | 449.2    | 431.6     | -17.525625705027153 |                                                       |
|          | Yes      | 376.2    | 449.8     | 73.62079277148524   | 4.595                                                 |
| 1        | Yes      | 451.7    | 439.9     | -11.733991469088437 |                                                       |
| ł        | Yes      | 463.9    | 437.4     | -26.42120000329612  | 4.511                                                 |
| i        | Yes      | 460.7    | 437.7     | -22.915667349794035 |                                                       |
|          | Yes      | 445.3    | 437.6     | -7.6737256639518705 | 4.428                                                 |
| ,        | Yes      | 384.4    | 443.1     | 58.793373431593864  | 4.245                                                 |
|          | Yes      | 463.9    | 430.6     | -33.22484471326675  | 4.345                                                 |
|          | Yes      | 400.4    | 444.7     | 44.36517923953204   | 4 262                                                 |
|          |          |          |           |                     | 7.202                                                 |
|          |          |          |           |                     | 4.178                                                 |
|          |          |          |           |                     |                                                       |
|          |          |          |           |                     | 4.095                                                 |
|          |          |          |           |                     |                                                       |
|          |          |          |           |                     | 4.012                                                 |
|          |          |          |           |                     |                                                       |
|          |          |          |           |                     | 3.929                                                 |
|          |          |          |           |                     |                                                       |
|          |          |          |           |                     | 3.845                                                 |
|          |          |          |           |                     |                                                       |
|          |          |          |           |                     | 3.762 3.893 4.024 4.155 4.285 4.416 4.547 4.67        |
|          |          |          |           |                     | Measured ·10                                          |
|          |          |          |           |                     | Predicted Error                                       |
|          |          |          |           |                     | Regression function -0.142518319159947 * x + 500.9845 |
|          |          |          |           |                     | Prediction Errors                                     |
|          |          |          |           |                     | Samples 10 of 10                                      |
|          |          |          |           |                     | Mean 2.44665                                          |
|          |          |          |           |                     | Root-Mean-Square 38.40934                             |
|          |          |          |           |                     | Export Result Table                                   |
|          |          |          |           |                     |                                                       |
|          |          |          |           |                     |                                                       |
|          | 1        |          |           |                     |                                                       |



# **Global Polynomial Interpolation**

# Regression function: 0.0332408590870944 \* x + 425.567191002319

# Cross Validation

|           |          |          | Geostati  | stical wizard - Global Polynon | nial Interpolation step 2 of 2 - Cross Validation – 🗖 🗙                     |
|-----------|----------|----------|-----------|--------------------------------|-----------------------------------------------------------------------------|
| Source ID | Included | Measured | Predicted | Error                          | Predicted ·10 <sup>-2</sup>                                                 |
| 0         | Yes      | 467.8    | 458.5     | -9.236013966682435             | 4.791                                                                       |
| 1         | Yes      | 449.2    | 408.5     | -40.65308478437339             |                                                                             |
| 2         | Yes      | 376.2    | 456.2     | 80.09276268834321              | 4.698                                                                       |
| 3         | Yes      | 451.7    | 445.9     | -5.785871370613847             |                                                                             |
| 4         | Yes      | 463.9    | 435.4     | -28.46875953107667             | 4.604                                                                       |
| 5         | Yes      | 460.7    | 479.1     | 18.440016838998133             |                                                                             |
| 6         | Yes      | 445.3    | 423.2     | -22.031153329702477            | 4.511                                                                       |
| 7         | Yes      | 384.4    | 412.3     | 27.94235949014302              | •                                                                           |
| 8         | Yes      | 463.9    | 424.4     | -39.47381380610551             | 4.41/                                                                       |
| 9         | Yes      | 400.4    | 456.7     | 56.3919564207942               | 4.323                                                                       |
|           |          |          |           |                                | 4.23                                                                        |
|           |          |          |           |                                | 4.136                                                                       |
|           |          |          |           |                                | 4.043                                                                       |
|           |          |          |           |                                | 3.949                                                                       |
|           |          |          |           |                                | 3.856                                                                       |
|           |          |          |           |                                |                                                                             |
|           |          |          |           |                                | 3.762 3.909 4.056 4.203 4.35 4.497 4.644 4.791<br>Measured 10 <sup>-2</sup> |
|           |          |          |           |                                | Predicted Error                                                             |
|           |          |          |           |                                | Regression function 0.0332408590870944 * x + 425.567                        |
|           |          |          |           |                                | Prediction Errors                                                           |
|           |          |          |           |                                | Samples 10 of 10                                                            |
|           |          |          |           |                                | Mean 3.72184                                                                |
|           |          |          |           |                                | Root-Mean-Square 39.16783                                                   |
|           |          |          |           |                                | Export Result Table                                                         |
|           |          |          |           |                                |                                                                             |
|           |          |          |           |                                |                                                                             |
|           |          |          |           |                                |                                                                             |
|           |          |          |           |                                | < Back Next > Finish Cancel                                                 |



#### **Local Polynomial Interpolation**

Regression function: -0.104076952679077 \* x + 483.56594277478









**APPENDIX C: SHORT TERM C-FACTOR & CLASSIFICATION ERROR ANALYSIS** 

| Short-term C-factor estimate for land cover ' | "Bare land/burned grass/plowed land/rainf | ed |
|-----------------------------------------------|-------------------------------------------|----|
| crops"                                        |                                           |    |

| June              |                         |                       |    |      |      |
|-------------------|-------------------------|-----------------------|----|------|------|
|                   | Area (km <sup>2</sup> ) | Minimum (%) Bare soil |    | Ci   | С    |
| Bare land         | 45.6                    |                       |    | 0.5  |      |
| Rainfed Crop Land | 177.9                   |                       |    | 0.35 | 0.31 |
| Burn areas        | 232.7                   |                       | 76 | 0.24 |      |
| Total             | 456.2                   |                       |    |      |      |
|                   | Ju                      | ıly                   |    |      |      |
|                   | Area (km <sup>2</sup> ) | Minimum (%) Bare soil |    | Ci   | С    |
| Bare land         | 45.6                    |                       |    | 0.5  |      |
| Rainfed Crop Land | 177.9                   |                       |    | 0.35 | 0.42 |
| Burn areas        | 232.7                   |                       | 85 | 0.45 |      |
| Total             | 456.2                   |                       |    |      |      |
|                   | Aug                     | gust                  |    |      |      |
|                   | Area (km <sup>2</sup> ) | Minimum (%) Bare soil |    | Ci   | С    |
| Bare land         | 45.6                    |                       |    | 0.5  |      |
| Rainfed Crop Land | 177.9                   |                       |    | 0.35 | 0.42 |
| Burn areas        | 232.7                   |                       | 90 | 0.45 |      |
| Total             | 456.2                   |                       |    |      |      |
|                   | Septe                   | ember                 |    |      |      |
|                   | Area (km <sup>2</sup> ) | Minimum (%) Bare soil |    | Ci   | С    |
| Bare land         | 45.6                    |                       |    | 0.5  |      |
| Rainfed Crop Land | 177.9                   |                       |    | 0.35 | 0.29 |
| Burn areas        | 232.7                   |                       | 70 | 0.2  |      |
| Total             | 456.2                   |                       |    |      |      |
|                   | Octo                    | ober                  |    |      |      |
|                   | Area (km <sup>2</sup> ) | Minimum (%) Bare soil |    | Ci   | С    |
| Bare land         | 45.6                    |                       |    | 0.5  |      |
| Rainfed Crop Land | 177.9                   |                       |    | 0.35 | 0.27 |
| Burn areas        | 232.7                   |                       | 65 | 0.17 |      |
| Total             | 456.2                   |                       |    |      |      |
|                   | Nove                    | mber                  |    |      |      |
|                   | Area (km <sup>2</sup> ) | Minimum (%) Bare soil |    | Ci   | С    |
| Bare land         | 45.6                    |                       |    | 0.5  |      |
| Rainfed Crop Land | 177.9                   |                       |    | 0.35 | 0.27 |
| Burn areas        | 232.7                   |                       | 61 | 0.16 |      |
| Total             | 456.2                   |                       |    |      |      |

| Short-term C-factor estimate for land cover ' | "Bare land/burned grass/plowed land/rainfed |
|-----------------------------------------------|---------------------------------------------|
| crops"                                        |                                             |

| December          |            |                       |    |      |      |  |
|-------------------|------------|-----------------------|----|------|------|--|
|                   | Area (km2) | Minimum (%) Bare soil |    | Ci   | С    |  |
| Bare land         | 45.6       |                       |    | 0.5  |      |  |
| Rainfed Crop Land | 177.9      |                       |    | 0.35 | 0.26 |  |
| Burn areas        | 232.7      |                       | 57 | 0.15 |      |  |
| Total             | 456.2      |                       |    |      |      |  |
|                   | Jar        | nuary                 |    |      |      |  |
|                   | Area (km2) | Minimum (%) Bare soil |    | Ci   | С    |  |
| Bare land         | 45.6       |                       |    | 0.5  |      |  |
| Rainfed Crop Land | 177.9      |                       |    | 0.35 | 0.26 |  |
| Burn areas        | 232.7      |                       | 55 | 0.14 |      |  |
| Total             | 456.2      |                       |    |      |      |  |
|                   | Feb        | oruary                |    |      |      |  |
|                   | Area (km2) | Minimum (%) Bare soil |    | Ci   | С    |  |
| Bare land         | 45.6       |                       |    | 0.5  |      |  |
| Rainfed Crop Land | 177.9      |                       |    | 0.35 | 0.25 |  |
| Burn areas        | 232.7      |                       | 52 | 0.13 |      |  |
| Total             | 456.2      |                       |    |      |      |  |
|                   | Μ          | arch                  |    |      |      |  |
|                   | Area (km2) | Minimum (%) Bare soil |    | Ci   | С    |  |
| Bare land         | 45.6       |                       |    | 0.5  |      |  |
| Rainfed Crop Land | 177.9      |                       |    | 0.35 | 0.25 |  |
| Burn areas        | 232.7      |                       | 50 | 0.12 |      |  |
| Total             | 456.2      |                       |    |      |      |  |
|                   | A          | pril                  |    |      |      |  |
|                   | Area (km2) | Minimum (%) Bare soil |    | Ci   | С    |  |
| Bare land         | 45.6       |                       |    | 0.5  |      |  |
| Rainfed Crop Land | 177.9      |                       |    | 0.35 | 0.24 |  |
| Burn areas        | 232.7      |                       | 48 | 0.11 |      |  |
| Total             | 456.2      |                       |    |      |      |  |
| May               |            |                       |    |      |      |  |
|                   | Area (km2) | Minimum (%) Bare soil |    | Ci   | С    |  |
| Bare land         | 45.6       |                       |    | 0.5  |      |  |
| Rainfed Crop Land | 177.9      |                       |    | 0.35 | 0.24 |  |
| Burn areas        | 232.7      |                       | 45 | 0.1  |      |  |
| Total             | 456.2      |                       |    |      |      |  |

# APPENDIX D: PICTURES OF LABORATORY EXPERIMENT



Brush fire in the N'djili Basin (July 2014)



Ash sampling site in the N'djili Basin (July 2014)



Raw ashes from Field



**Crushed ashes** 



**Precision scale** 



Mixing water and ashes



Mixing water and ashes



<image>

Water-ashes mixture after 0 hour of settling (Photos by: Patrick Ndolo Goy, July 2014)

### APPENDIX E: ANNUAL AVERAGE SOIL LOSS MAPS, SEDIMENT RATING CURVES, ANNUAL SEDIMENT LOAD.



Annual Average Soil loss rate map of the N'djili River Basin for year 2001



Annual Average Soil loss rate map of the N'djili River Basin for year 1995



### Average annual soil loss rate histogram (2013)

# Average annual soil loss rate histogram (2001)





# Average annual soil loss rate histogram (1995)

Daily sediment load vs Discharge (2005)

| Day       | TSS<br>(mg/l) -<br>2005 | Qobs<br>[2005]<br>(m3/s) | Qs (metric<br>tons/day) -<br>[2005] |
|-----------|-------------------------|--------------------------|-------------------------------------|
| 1-Jan-05  | 173.9                   | 22.6                     | 339.6                               |
| 2-Jan-05  | 93.0                    | 17.2                     | 138.1                               |
| 3-Jan-05  | 421.1                   | 36.7                     | 1335.3                              |
| 4-Jan-05  | 133.9                   | 21.4                     | 247.6                               |
| 5-Jan-05  | 311.8                   | 30                       | 808.1                               |
| 6-Jan-05  | 279.2                   | 27.4                     | 661.0                               |
| 7-Jan-05  | 95.9                    | 15.4                     | 127.6                               |
| 8-Jan-05  | 368.1                   | 31.2                     | 992.3                               |
| 9-Jan-05  | 224.3                   | 21.3                     | 412.7                               |
| 10-Jan-05 | 139.7                   | 19.5                     | 235.3                               |
| 11-Jan-05 | 176.7                   | 22.5                     | 343.6                               |
| 12-Jan-05 | 249.1                   | 28.9                     | 622.0                               |
| 13-Jan-05 | 133.9                   | 21.4                     | 247.6                               |
| 14-Jan-05 | 386.7                   | 36.7                     | 1226.2                              |
| 15-Jan-05 | 190.8                   | 21.8                     | 359.4                               |
| 16-Jan-05 | 159.7                   | 18.8                     | 259.4                               |
| 17-Jan-05 | 148.3                   | 18.6                     | 238.3                               |
| 18-Jan-05 | 314.5                   | 28.9                     | 785.2                               |
| 19-Jan-05 | 125.2                   | 19.1                     | 206.7                               |
| 20-Jan-05 | 215.9                   | 24.3                     | 453.4                               |
| 21-Jan-05 | 142.6                   | 19.8                     | 243.9                               |
| 22-Jan-05 | 145.4                   | 23.4                     | 294.0                               |
| 23-Jan-05 | 122.3                   | 21.2                     | 224.1                               |
| 24-Jan-05 | 95.9                    | 15.4                     | 127.6                               |
| 25-Jan-05 | 90.0                    | 15.4                     | 119.7                               |
| 26-Jan-05 | 128.1                   | 18.4                     | 203.7                               |
| 27-Jan-05 | 218.7                   | 24.2                     | 457.3                               |
| 28-Jan-05 | 193.6                   | 22.9                     | 383.1                               |
| 29-Jan-05 | 125.2                   | 20.2                     | 218.6                               |
| 30-Jan-05 | 98.9                    | 18.9                     | 161.5                               |
| 31-Jan-05 | 122.3                   | 20.9                     | 220.9                               |
| 1-Feb-05  | 84.0                    | 17                       | 123.4                               |
| 2-Feb-05  | 72.0                    | 13                       | 80.8                                |
| 3-Feb-05  | 75.0                    | 12.5                     | 81.0                                |
| 4-Feb-05  | 119.4                   | 17.4                     | 179.5                               |
| 5-Feb-05  | 221.5                   | 20.6                     | 394.2                               |
| 6-Feb-05  | 156.9                   | 21.2                     | 287.3                               |

| Day       | TSS      | Qobs   | Qs (metric  |  |  |
|-----------|----------|--------|-------------|--|--|
|           | (mg/l) - | [2005] | tons/day) - |  |  |
|           | 2005     | (m3/s) | [2005]      |  |  |
| 7-Feb-05  | 110.7    | 17.7   | 169.2       |  |  |
| 8-Feb-05  | 93.0     | 17.2   | 138.1       |  |  |
| 9-Feb-05  | 87.0     | 18     | 135.3       |  |  |
| 10-Feb-05 | 182.4    | 26.8   | 422.3       |  |  |
| 11-Feb-05 | 423.8    | 33.5   | 1226.5      |  |  |
| 12-Feb-05 | 543.8    | 37.6   | 1766.5      |  |  |
| 13-Feb-05 | 362.8    | 30.7   | 962.2       |  |  |
| 14-Feb-05 | 173.9    | 18.5   | 278.0       |  |  |
| 15-Feb-05 | 131.0    | 19.5   | 220.8       |  |  |
| 16-Feb-05 | 486.7    | 38.3   | 1610.4      |  |  |
| 17-Feb-05 | 468.4    | 38.5   | 1558.0      |  |  |
| 18-Feb-05 | 210.4    | 26.9   | 489.0       |  |  |
| 19-Feb-05 | 235.3    | 25.4   | 516.5       |  |  |
| 20-Feb-05 | 360.1    | 30.5   | 948.9       |  |  |
| 21-Feb-05 | 246.4    | 24.8   | 527.9       |  |  |
| 22-Feb-05 | 139.7    | 18.7   | 225.7       |  |  |
| 23-Feb-05 | 173.9    | 19.4   | 291.5       |  |  |
| 24-Feb-05 | 110.7    | 17.2   | 164.4       |  |  |
| 25-Feb-05 | 210.4    | 24.8   | 450.8       |  |  |
| 26-Feb-05 | 397.3    | 34     | 1167.2      |  |  |
| 27-Feb-05 | 204.8    | 23.5   | 415.8       |  |  |
| 28-Feb-05 | 145.4    | 23.2   | 291.5       |  |  |
| 1-Mar-05  | 53.6     | 12.8   | 59.2        |  |  |
| 2-Mar-05  | 87.0     | 15.3   | 115.0       |  |  |
| 3-Mar-05  | 87.0     | 17.7   | 133.0       |  |  |
| 4-Mar-05  | 125.2    | 21.1   | 228.3       |  |  |
| 5-Mar-05  | 110.7    | 21.5   | 205.6       |  |  |
| 6-Mar-05  | 116.5    | 16.9   | 170.1       |  |  |
| 7-Mar-05  | 154.0    | 19.2   | 255.5       |  |  |
| 8-Mar-05  | 165.4    | 20.5   | 293.0       |  |  |
| 9-Mar-05  | 93.0     | 12.1   | 97.2        |  |  |
| 10-Mar-05 | 608.1    | 41.4   | 2175.2      |  |  |
| 11-Mar-05 | 224.3    | 26.2   | 507.7       |  |  |
| 12-Mar-05 | 362.8    | 33.4   | 1046.8      |  |  |
| 13-Mar-05 | 193.6    | 26.1   | 436.6       |  |  |
| 14-Mar-05 | 122.3    | 20.3   | 214.6       |  |  |
| 15-Mar-05 | 249.1    | 25     | 538.1       |  |  |
| 16-Mar-05 | 122.3    | 18.6   | 196.6       |  |  |

| Day       | TSS<br>(mg/l) -<br>2005 | Qobs<br>[2005]<br>(m3/s) | Qs (metric<br>tons/day) -<br>[2005] |                | Day                                | TSS<br>(mg/l) -<br>2005 | Qobs<br>[2005]<br>(m3/s) | Qs (metric<br>tons/day) -<br>[2005] |           |           |      |      |       |
|-----------|-------------------------|--------------------------|-------------------------------------|----------------|------------------------------------|-------------------------|--------------------------|-------------------------------------|-----------|-----------|------|------|-------|
| 17-Mar-05 | 232.6                   | 25.3                     | 508.4                               |                | 24-Apr-05                          | 1460.1                  | 62.9                     | 7934.8                              |           |           |      |      |       |
| 18-Mar-05 | 240.9                   | 26.9                     | 559.8                               |                | 25-Apr-05                          | 1199.9                  | 58.1                     | 6023.2                              |           |           |      |      |       |
| 19-Mar-05 | 136.8                   | 19.5                     | 230.5                               |                | 26-Apr-05                          | 515.3                   | 39                       | 1736.3                              |           |           |      |      |       |
| 20-Mar-05 | 116.5                   | 18                       | 181.2                               |                | 27-Apr-05                          | 202.0                   | 24.2                     | 422.4                               |           |           |      |      |       |
| 21-Mar-05 | 104.8                   | 17.7                     | 160.2                               |                | 28-Apr-05                          | 142.6                   | 21.2                     | 261.1                               |           |           |      |      |       |
| 22-Mar-05 | 190.8                   | 23.9                     | 394.0                               |                | 29-Apr-05                          | 133.9                   | 23.8                     | 275.4                               |           |           |      |      |       |
| 23-Mar-05 | 136.8                   | 24.1                     | 284.9                               |                | 30-Apr-05                          | 494.5                   | 37.9                     | 1619.2                              |           |           |      |      |       |
| 24-Mar-05 | 113.6                   | 17.3                     | 169.8                               |                | 1-May-05                           | 1021.5                  | 55.4                     | 4889.6                              |           |           |      |      |       |
| 25-Mar-05 | 81.0                    | 14.3                     | 100.1                               |                | 2-May-05                           | 188.0                   | 23.9                     | 388.2                               |           |           |      |      |       |
| 26-Mar-05 | 290.1                   | 27.2                     | 681.7                               |                | 3-May-05                           | 122.3                   | 20.9                     | 220.9                               |           |           |      |      |       |
| 27-Mar-05 | 295.5                   | 28.1                     | 717.5                               |                | 4-May-05                           | 113.6                   | 19.3                     | 189.4                               |           |           |      |      |       |
| 28-Mar-05 | 354.7                   | 31.9                     | 977.7                               |                | 5-May-05                           | 87.0                    | 15.1                     | 113.5                               |           |           |      |      |       |
| 29-Mar-05 | 378.7                   | 32.3                     | 1057.0                              |                | 6-May-05                           | 78.0                    | 12.7                     | 85.6                                |           |           |      |      |       |
| 30-Mar-05 | 376.1                   | 33.1                     | 1075.5                              |                | 7-May-05                           | 75.0                    | 12.1                     | 78.4                                |           |           |      |      |       |
| 31-Mar-05 | 623.5                   | 41.7                     | 2246.2                              |                | 8-May-05                           | 84.0                    | 13.7                     | 99.4                                |           |           |      |      |       |
| 1-Apr-05  | 314.5                   | 31.3                     | 850.4                               |                | 9-May-05<br>10-May-05<br>11-May-05 | 84.0                    | 15.5                     | 112.5                               |           |           |      |      |       |
| 2-Apr-05  | 362.8                   | 30.6                     | 959.1                               |                |                                    | 75.0                    | 14.6                     | 94.6                                |           |           |      |      |       |
| 3-Apr-05  | 679.5                   | 44.4                     | 2606.7                              |                |                                    | 84.0                    | 16.4                     | 119.0                               |           |           |      |      |       |
| 4-Apr-05  | 229.8                   | 26.5                     | 526.2<br>1003.0<br>865.5            | 526.2          |                                    | 12-May-05               | 72.0                     | 15.3                                | 95.1      |           |      |      |       |
| 5-Apr-05  | 362.8                   | 32                       |                                     |                | 13-May-05                          | 75.0                    | 14.7                     | 95.2                                |           |           |      |      |       |
| 6-Apr-05  | 306.4                   | 32.7                     |                                     |                | 14-May-05                          | 75.0                    | 13.6                     | 88.1                                |           |           |      |      |       |
| 7-Apr-05  | 165.4                   | 21.5                     | 307.2                               |                | 15-May-05                          | 68.9                    | 11.7                     | 69.7                                |           |           |      |      |       |
| 8-Apr-05  | 133.9                   | 20.2                     | 233.7                               |                | 16-May-05                          | 81.0                    | 15.2                     | 106.4                               |           |           |      |      |       |
| 9-Apr-05  | 476.2                   | 37.5                     | 1543.0<br>1875.8                    |                | 17-May-05                          | 81.0                    | 16.5                     | 115.5                               |           |           |      |      |       |
| 10-Apr-05 | 528.2                   | 41.1                     |                                     |                | 18-May-05                          | 75.0                    | 16.2                     | 105.0                               |           |           |      |      |       |
| 11-Apr-05 | 1267.7                  | 60.5                     | 6626.7                              |                | 19-May-05                          | 72.0                    | 14.9                     | 92.6                                |           |           |      |      |       |
| 12-Apr-05 | 227.0                   | 23.9                     | 468.8                               |                | 20-May-05                          | 72.0                    | 14                       | 87.0                                |           |           |      |      |       |
| 13-Apr-05 | 136.8                   | 17.6                     | 208.0<br>168.8                      | 208.0<br>168.8 | 208.0<br>168.8                     | 208.0<br>168.8          | 208.0<br>168.8           | 208.0                               |           | 21-May-05 | 81.0 | 15.3 | 107.1 |
| 14-Apr-05 | 113.6                   | 17.2                     |                                     |                |                                    |                         |                          |                                     | 22-May-05 | 72.0      | 15.6 | 97.0 |       |
| 15-Apr-05 | 182.4                   | 18.3                     | 288.3                               |                | 23-May-05                          | 87.0                    | 15.6                     | 117.3                               |           |           |      |      |       |
| 16-Apr-05 | 330.6                   | 30.1                     | 859.8                               |                | 24-May-05                          | 72.0                    | 16.4                     | 102.0                               |           |           |      |      |       |
| 17-Apr-05 | 131.0                   | 20.2                     | 228.7                               |                | 25-May-05                          | 68.9                    | 12.8                     | 76.2                                |           |           |      |      |       |
| 18-Apr-05 | 107.7                   | 18.4                     | 171.3                               |                | 26-May-05                          | 75.0                    | 13.1                     | 84.9                                |           |           |      |      |       |
| 19-Apr-05 | 327.9                   | 32.7                     | 926.5                               |                | 27-May-05                          | 72.0                    | 12.8                     | 79.6                                |           |           |      |      |       |
| 20-Apr-05 | 131.0                   | 22.7                     | 257.0                               |                | 28-May-05                          | 68.9                    | 12.6                     | 75.0                                |           |           |      |      |       |
| 21-Apr-05 | 107.7                   | 16.6                     | 154.5                               |                | 29-May-05                          | 68.9                    | 14.1                     | 84.0                                |           |           |      |      |       |
| 22-Apr-05 | 327.9                   | 28.1                     | 796.2                               |                | 30-May-05                          | 68.9                    | 13.5                     | 80.4                                |           |           |      |      |       |
| 23-Apr-05 | 265.6                   | 25.3                     | 580.5                               |                | 31-May-05                          | 68.9                    | 14.6                     | 86.9                                |           |           |      |      |       |

| Day       | TSS<br>(mg/l) -<br>2005 | Qobs<br>[2005]<br>(m3/s) | Qs (metric<br>tons/day) -<br>[2005] | Day                    | TSS<br>(mg/l) -<br>2005 | Qobs<br>[2005]<br>(m3/s) | Qs (metric<br>tons/day) -<br>[2005] |
|-----------|-------------------------|--------------------------|-------------------------------------|------------------------|-------------------------|--------------------------|-------------------------------------|
| 1-Jun-05  | 68.9                    | 17.2                     | 102.4                               | 9-Jul-05               | 90.0                    | 13.7                     | 106.5                               |
| 2-Jun-05  | 68.9                    | 16.9                     | 100.6                               | 10-Jul-05              | 90.0                    | 13.5                     | 105.0                               |
| 3-Jun-05  | 68.9                    | 12.9                     | 76.8                                | 11-Jul-05              | 75.0                    | 13.2                     | 85.5                                |
| 4-Jun-05  | 65.9                    | 13.9                     | 79.1                                | 12-Jul-05              | 84.0                    | 15.3                     | 111.1                               |
| 5-Jun-05  | 62.8                    | 13.2                     | 71.6                                | 13-Jul-05              | 81.0                    | 15.9                     | 111.3                               |
| 6-Jun-05  | 62.8                    | 14.2                     | 77.1                                | 14-Jul-05              | 81.0                    | 15.9                     | 111.3                               |
| 7-Jun-05  | 62.8                    | 16.6                     | 90.1                                | 15-Jul-05              | 84.0                    | 17.9                     | 129.9                               |
| 8-Jun-05  | 62.8                    | 17.5                     | 95.0                                | 16-Jul-05              | 81.0                    | 15.1                     | 105.7                               |
| 9-Jun-05  | 65.9                    | 12.4                     | 70.6                                | 17-Jul-05              | 75.0                    | 13.4                     | 86.8                                |
| 10-Jun-05 | 68.9                    | 12.3                     | 73.2                                | 18-Jul-05              | 93.0                    | 14.1                     | 113.2                               |
| 11-Jun-05 | 59.7                    | 13                       | 67.1                                | 19-Jul-05              | 56.7                    | 9.3                      | 45.5                                |
| 12-Jun-05 | 68.9                    | 15                       | 89.3                                | 20-Jul-05              | 56.7                    | 12                       | 58.7                                |
| 13-Jun-05 | 65.9                    | 14.6                     | 83.1                                | 21-Jul-05              | 53.6                    | 12.5                     | 57.9                                |
| 14-Jun-05 | 62.8                    | 14.3                     | 77.6                                | 22-Jul-05              | 56.7                    | 13.4                     | 65.6                                |
| 15-Jun-05 | 62.8                    | 14.9                     | 80.9                                | 23-Jul-05              | 53.6                    | 13                       | 60.2                                |
| 16-Jun-05 | 59.7                    | 11.6                     | 59.9                                | 24-Jul-05              | 59.7                    | 14.4                     | 74.3                                |
| 17-Jun-05 | 59.7                    | 11.2                     | 57.8                                | 25-Jul-05              | 62.8                    | 15.7                     | 85.2                                |
| 18-Jun-05 | 251.9                   | 25                       | 544.0                               | 26-Jul-05              | 59.7                    | 11.8                     | 60.9                                |
| 19-Jun-05 | 210.4                   | 24.2                     | 439.9                               | <b>27-Jul-05</b> 199.2 | 199.2                   | 22.3                     | 383.8                               |
| 20-Jun-05 | 101.8                   | 17                       | 149.6                               | 28-Jul-05              | 196.4                   | 20.9                     | 354.7                               |
| 21-Jun-05 | 95.9                    | 17.9                     | 148.4                               | 29-Jul-05              | 59.7                    | 11.9                     | 61.4                                |
| 22-Jun-05 | 84.0                    | 18.1                     | 131.4                               | 30-Jul-05              | 59.7                    | 12.8                     | 66.1                                |
| 23-Jun-05 | 87.0                    | 18.3                     | 137.6                               | 31-Jul-05              | 59.7                    | 14.1                     | 72.8                                |
| 24-Jun-05 | 81.0                    | 14.1                     | 98.7                                | 1-Aug-05               | 62.8                    | 13.4                     | 72.7                                |
| 25-Jun-05 | 90.0                    | 14.9                     | 115.8                               | 2-Aug-05               | 62.8                    | 14.9                     | 80.9                                |
| 26-Jun-05 | 95.9                    | 16                       | 132.6                               | 3-Aug-05               | 56.7                    | 15.1                     | 73.9                                |
| 27-Jun-05 | 87.0                    | 15.2                     | 114.3                               | 4-Aug-05               | 56.7                    | 11.6                     | 56.8                                |
| 28-Jun-05 | 84.0                    | 17.4                     | 126.3                               | 5-Aug-05               | 56.7                    | 12                       | 58.7                                |
| 29-Jun-05 | 84.0                    | 16.1                     | 116.9                               | 6-Aug-05               | 53.6                    | 12.2                     | 56.5                                |
| 30-Jun-05 | 84.0                    | 18.8                     | 136.5                               | 7-Aug-05               | 59.7                    | 14                       | 72.3                                |
| 1-Jul-05  | 84.0                    | 14.8                     | 107.4                               | 8-Aug-05               | 59.7                    | 14                       | 72.3                                |
| 2-Jul-05  | 90.0                    | 15.1                     | 117.4                               | 9-Aug-05               | 59.7                    | 15.8                     | 81.6                                |
| 3-Jul-05  | 90.0                    | 15.5                     | 120.5                               | 10-Aug-05              | 59.7                    | 12.6                     | 65.0                                |
| 4-Jul-05  | 87.0                    | 15.8                     | 118.8                               | 11-Aug-05              | 56.7                    | 11.8                     | 57.8                                |
| 5-Jul-05  | 90.0                    | 16                       | 124.4                               | 12-Aug-05              | 59.7                    | 11.5                     | 59.4                                |
| 6-Jul-05  | 87.0                    | 17.4                     | 130.8                               | 13-Aug-05              | 78.0                    | 15.3                     | 103.1                               |
| 7-Jul-05  | 90.0                    | 17.5                     | 136.1                               | 14-Aug-05              | 204.8                   | 24.5                     | 433.5                               |
| 8-Jul-05  | 90.0                    | 15.2                     | 118.2                               | 15-Aug-05              | 65.9                    | 13.3                     | 75.7                                |

| Day       | TSS<br>(mg/l) -<br>2005 | Qobs<br>[2005]<br>(m3/s) | Qs (metric<br>tons/day) -<br>[2005] |                       | Day       | TSS<br>(mg/l) -<br>2005 | Qobs<br>[2005]<br>(m3/s) | Qs (metric<br>tons/day) -<br>[2005] |       |
|-----------|-------------------------|--------------------------|-------------------------------------|-----------------------|-----------|-------------------------|--------------------------|-------------------------------------|-------|
| 16-Aug-05 | 59.7                    | 12.7                     | 65.6                                |                       | 23-Sep-05 | 101.8                   | 16.5                     | 145.2                               |       |
| 17-Aug-05 | 56.7                    | 15.1                     | 73.9                                |                       | 24-Sep-05 | 81.0                    | 15.3                     | 107.1                               |       |
| 18-Aug-05 | 53.6                    | 11.7                     | 54.1                                |                       | 25-Sep-05 | 154.0                   | 23.5                     | 312.7                               |       |
| 19-Aug-05 | 53.6                    | 11.3                     | 52.3                                |                       | 26-Sep-05 | 87.0                    | 14.9                     | 112.0                               |       |
| 20-Aug-05 | 50.5                    | 11.6                     | 50.6                                |                       | 27-Sep-05 | 81.0                    | 15.1                     | 105.7                               |       |
| 21-Aug-05 | 56.7                    | 14.1                     | 69.0                                |                       | 28-Sep-05 | 72.0                    | 14.5                     | 90.1                                |       |
| 22-Aug-05 | 50.5                    | 13.4                     | 58.4                                |                       | 29-Sep-05 | 72.0                    | 16.6                     | 103.2                               |       |
| 23-Aug-05 | 50.5                    | 12.1                     | 52.7                                | _                     | 30-Sep-05 | 72.0                    | 16.8                     | 104.4                               |       |
| 24-Aug-05 | 53.6                    | 12.9                     | 59.7                                | _                     | 1-Oct-05  | 128.1                   | 20.9                     | 231.4                               |       |
| 25-Aug-05 | 62.8                    | 12.8                     | 69.5                                |                       | 2-Oct-05  | 407.9                   | 33.2                     | 1170.1                              |       |
| 26-Aug-05 | 59.7                    | 13.9                     | 71.8                                | _                     | 3-Oct-05  | 145.4                   | 18.3                     | 229.9                               |       |
| 27-Aug-05 | 65.9                    | 13.4                     | 76.3                                | _                     | 4-Oct-05  | 65.9                    | 13.5                     | 76.8                                |       |
| 28-Aug-05 | 81.0                    | 16.6                     | 116.2                               | _                     | 5-Oct-05  | 72.0                    | 15.2                     | 94.5                                |       |
| 29-Aug-05 | 75.0                    | 15                       | 97.2                                | -                     | 6-Oct-05  | 65.9                    | 13.3                     | 75.7                                |       |
| 30-Aug-05 | 62.8                    | 13.6                     | 73.8                                | -                     | 7-Oct-05  | 72.0                    | 14.9                     | 92.6                                |       |
| 31-Aug-05 | 62.8                    | 16.7                     | 90.6                                | -                     | 8-Oct-05  | 190.8                   | 25.6                     | 422.0                               |       |
| 1-Sep-05  | 65.9                    | 13.1                     | 74.6                                |                       | 9-Oct-05  | 90.0                    | 14.5                     | 112.7                               |       |
| 2-Sep-05  | 62.8                    | 11.7                     | 63.5                                | -                     | 10-Oct-05 | 72.0                    | 13.4                     | 83.3                                |       |
| 3-Sep-05  | 62.8                    | 13.1                     | 71.1                                | _                     | 11-Oct-05 | 81.0                    | 13.7                     | 95.9                                |       |
| 4-Sep-05  | 68.9                    | 13.5                     | 80.4                                | -                     | 12-Oct-05 | 104.8                   | 15.7                     | 142.1                               |       |
| 5-Sep-05  | 72.0                    | 14.9                     | 92.6                                | 92.6 <b>13-Oct-05</b> | 646.4     | 43.2                    | 2412.8                   |                                     |       |
| 6-Sep-05  | 65.9                    | 14.4                     | 82.0                                | -                     | 14-Oct-05 | 735.2                   | 47.1                     | 2991.9                              |       |
| 7-Sep-05  | 68.9                    | 14.5                     | 86.3<br>65.1                        | 86.3<br>65.1          | -         | 15-Oct-05               | 190.8                    | 22.9                                | 377.5 |
| 8-Sep-05  | 62.8                    | 12                       |                                     |                       | 65.1      | -                       | 16-Oct-05                | 107.7                               | 19.8  |
| 9-Sep-05  | 75.0                    | 13                       | 84.2                                | -                     | 17-Oct-05 | 370.8                   | 32.7                     | 1047.5                              |       |
| 10-Sep-05 | 87.0                    | 14.1                     | 106.0                               | -                     | 18-Oct-05 | 780.5                   | 45.9                     | 3095.4                              |       |
| 11-Sep-05 | 68.9                    | 10.4                     | 61.9                                | _                     | 19-Oct-05 | 229.8                   | 23.1                     | 458.7                               |       |
| 12-Sep-05 | 65.9                    | 13.3                     | 75.7                                | -                     | 20-Oct-05 | 1366.6                  | 61.2                     | 7226.0                              |       |
| 13-Sep-05 | 75.0                    | 14.6                     | 94.6                                | -                     | 21-Oct-05 | 730.2                   | 42.6                     | 2687.5                              |       |
| 14-Sep-05 | 75.0                    | 15.7                     | 101.7                               | -                     | 22-Oct-05 | 543.8                   | 39.6                     | 1860.5                              |       |
| 15-Sep-05 | 75.0                    | 14.7                     | 95.2                                | -                     | 23-Oct-05 | 168.2                   | 23                       | 334.3                               |       |
| 16-Sep-05 | 104.8                   | 19.9                     | 180.2                               | -                     | 24-Oct-05 | 122.3                   | 18.8                     | 198.7                               |       |
| 17-Sep-05 | 125.2                   | 17.6                     | 190.4                               | -                     | 25-Oct-05 | 98.9                    | 17.6                     | 150.4                               |       |
| 18-Sep-05 | 148.3                   | 18.5                     | 237.0                               | -                     | 26-Oct-05 | 271.0                   | 27.9                     | 653.3                               |       |
| 19-Sep-05 | 95.9                    | 15.3                     | 126.8                               | -                     | 27-Oct-05 | 287.4                   | 27.3                     | 677.8                               |       |
| 20-Sep-05 | 68.9                    | 9.5                      | 56.6                                |                       | 28-Oct-05 | 319.9                   | 28                       | /73.8                               |       |
| 21-Sep-05 | 268.3                   | 27.6                     | 639.8                               | -                     | 29-Oct-05 | 276.5                   | 28.2                     | 673.7                               |       |
| 22-Sep-05 | 276.5                   | 29.1                     | 695.2                               |                       | 30-Oct-05 | 125.2                   | 19.8                     | 214.2                               |       |

| Day       | TSS<br>(mg/l) -<br>2005 | Qobs<br>[2005]<br>(m3/s) | Qs (metric<br>tons/day) -<br>[2005] |  |
|-----------|-------------------------|--------------------------|-------------------------------------|--|
| 31-Oct-05 | 1043.6                  | 56.3                     | 5076.6                              |  |
| 1-Nov-05  | 319.9                   | 30.5                     | 842.9                               |  |
| 2-Nov-05  | 207.6                   | 28.2                     | 505.8                               |  |
| 3-Nov-05  | 1332.9                  | 60.6                     | 6978.8                              |  |
| 4-Nov-05  | 1275.0                  | 59.2                     | 6521.4                              |  |
| 5-Nov-05  | 349.4                   | 31.4                     | 947.9                               |  |
| 6-Nov-05  | 442.2                   | 36                       | 1375.3                              |  |
| 7-Nov-05  | 243.6                   | 28                       | 589.3                               |  |
| 8-Nov-05  | 107.7                   | 19                       | 176.8                               |  |
| 9-Nov-05  | 413.2                   | 34                       | 1213.8                              |  |
| 10-Nov-05 | 281.9                   | 27.1                     | 660.1                               |  |
| 11-Nov-05 | 202.0                   | 21.5                     | 375.3                               |  |
| 12-Nov-05 | 290.1                   | 28.3                     | 709.3                               |  |
| 13-Nov-05 | 145.4                   | 21.6                     | 271.4                               |  |
| 14-Nov-05 | 215.9                   | 24.9                     | 464.6                               |  |
| 15-Nov-05 | 240.9                   | 27.8                     | 578.5                               |  |
| 16-Nov-05 | 190.8                   | 26.6                     | 438.5                               |  |
| 17-Nov-05 | 78.0                    | 13.4                     | 90.3                                |  |
| 18-Nov-05 | 835.7                   | 47.3                     | 3415.1                              |  |
| 19-Nov-05 | 659.2                   | 41.6                     | 2369.2                              |  |
| 20-Nov-05 | 478.8                   | 36.4                     | 1505.9                              |  |
| 21-Nov-05 | 330.6                   | 31.8                     | 908.4                               |  |
| 22-Nov-05 | 168.2                   | 23.7                     | 344.5                               |  |
| 23-Nov-05 | 309.1                   | 30.1                     | 803.7                               |  |
| 24-Nov-05 | 235.3                   | 26.3                     | 534.8                               |  |
| 25-Nov-05 | 165.4                   | 20.7                     | 295.8                               |  |
| 26-Nov-05 | 119.4                   | 17.6                     | 181.6                               |  |
| 27-Nov-05 | 110.7                   | 14.2                     | 135.8                               |  |
| 28-Nov-05 | 260.1                   | 23.9                     | 537.1                               |  |
| 29-Nov-05 | 260.1                   | 27                       | 606.7                               |  |
| 30-Nov-05 | 338.7                   | 31                       | 907.1                               |  |
| 1-Dec-05  | 171.1                   | 23.4                     | 345.9                               |  |
| 2-Dec-05  | 442.2                   | 38.1                     | 1455.6                              |  |
| 3-Dec-05  | 1207.2                  | 62.9                     | 6560.4                              |  |
| 4-Dec-05  | <b>c-05</b> 536.0 38    | 38.6                     | 1787.6                              |  |
| 5-Dec-05  | 171.1                   | 22.1                     | 326.7                               |  |
| 6-Dec-05  | 317.2                   | 31.7                     | 868.7                               |  |
| 7-Dec-05  | 325.2                   | 33.2                     | 932.9                               |  |

| Day       | TSS<br>(mg/l) -<br>2005 | Qobs<br>[2005]<br>(m3/s) | Qs (metric<br>tons/day) -<br>[2005] |
|-----------|-------------------------|--------------------------|-------------------------------------|
| 8-Dec-05  | 357.4                   | 33.5                     | 1034.5                              |
| 9-Dec-05  | 202.0                   | 22.8                     | 397.9                               |
| 10-Dec-05 | 151.2                   | 18.5                     | 241.6                               |
| 11-Dec-05 | 171.1                   | 20.1                     | 297.1                               |
| 12-Dec-05 | 1075.5                  | 52.4                     | 4869.2                              |
| 13-Dec-05 | 300.9                   | 29                       | 754.0                               |
| 14-Dec-05 | 133.9                   | 20.5                     | 237.2                               |
| 15-Dec-05 | 119.4                   | 17.9                     | 184.7                               |
| 16-Dec-05 | 319.9                   | 29.6                     | 818.0                               |
| 17-Dec-05 | 196.4                   | 25.4                     | 431.0                               |
| 18-Dec-05 | 139.7                   | 19.1                     | 230.5                               |
| 19-Dec-05 | 98.9                    | 14.8                     | 126.4                               |
| 20-Dec-05 | 125.2                   | 16.7                     | 180.7                               |
| 21-Dec-05 | 218.7                   | 24.2                     | 457.3                               |
| 22-Dec-05 | 486.7                   | 37.1                     | 1560.0                              |
| 23-Dec-05 | 204.8                   | 25.4                     | 449.5                               |
| 24-Dec-05 | 311.8                   | 29.2                     | 786.5                               |
| 25-Dec-05 | 587.6                   | 40.5                     | 2056.0                              |
| 26-Dec-05 | 322.5                   | 30.1                     | 838.8                               |
| 27-Dec-05 | 162.6                   | 20.1                     | 282.3                               |
| 28-Dec-05 | 128.1                   | 17.2                     | 190.4                               |
| 29-Dec-05 | 224.3                   | 25.3                     | 490.2                               |
| 30-Dec-05 | 128.1                   | 20                       | 221.4                               |
| 31-Dec-05 | 556.7                   | 41.5                     | 1996.0                              |

Daily sediment load vs Discharge (2013)

| Day       | TSS<br>(mg/l) -<br>2013 | Qobs<br>corr<br>[2013]<br>(m3/s) | Qs (metric<br>tons/day) -<br>[2013] |
|-----------|-------------------------|----------------------------------|-------------------------------------|
| 1-Jan-13  | 124.9                   | 18.7                             | 201.8                               |
| 2-Jan-13  | 330.6                   | 32                               | 913.9                               |
| 3-Jan-13  | 137.5                   | 21.7                             | 257.7                               |
| 4-Jan-13  | 171.6                   | 22.2                             | 329.1                               |
| 5-Jan-13  | 481.1                   | 41.9                             | 1741.7                              |
| 6-Jan-13  | 327.6                   | 39.5                             | 1118.1                              |
| 7-Jan-13  | 134.3                   | 18.3                             | 212.4                               |
| 8-Jan-13  | 99.5                    | 13.5                             | 116.1                               |
| 9-Jan-13  | 96.3                    | 15.4                             | 128.1                               |
| 10-Jan-13 | 102.7                   | 17.5                             | 155.3                               |
| 11-Jan-13 | 96.3                    | 17.8                             | 148.1                               |
| 12-Jan-13 | 112.3                   | 18.9                             | 183.3                               |
| 13-Jan-13 | 280.3                   | 31.7<br>50.5                     | 767.8                               |
| 14-Jan-13 | 725.9                   |                                  | 3167.4                              |
| 15-Jan-13 | 501.1                   | 47.1                             | 2039.2                              |
| 16-Jan-13 | 397.6                   | 37.2                             | 1278.1                              |
| 17-Jan-13 | 232.5                   | 23.5                             | 472.0                               |
| 18-Jan-13 | 180.8                   | 20.8                             | 324.9                               |
| 19-Jan-13 | 159.2                   | 21.2                             | 291.7                               |
| 20-Jan-13 | 115.4                   | 18.6                             | 185.5                               |
| 21-Jan-13 | 102.7                   | 18                               | 159.7                               |
| 22-Jan-13 | 89.9                    | 16.2                             | 125.8                               |
| 23-Jan-13 | 271.4                   | 32                               | 750.4                               |
| 24-Jan-13 | 391.8                   | 33.1                             | 1120.6                              |
| 25-Jan-13 | 143.7                   | 19.2                             | 238.4                               |
| 26-Jan-13 | 241.5                   | 25.7                             | 536.2                               |
| 27-Jan-13 | 124.9                   | 18.4                             | 198.6                               |
| 28-Jan-13 | 115.4                   | 18                               | 179.5                               |
| 29-Jan-13 | 199.2                   | 24.3                             | 418.1                               |
| 30-Jan-13 | 327.6                   | 31.4                             | 888.8                               |
| 31-Jan-13 | 208.3                   | 27.9                             | 502.1                               |
| 1-Feb-13  | 312.9                   | 31.1                             | 840.8                               |
| 2-Feb-13  | 532.4                   | 38.8                             | 1784.7                              |
| 3-Feb-13  | 394.7                   | 32.5                             | 1108.4                              |
| 4-Feb-13  | 146.8                   | 17.5                             | 222.0                               |
| 5-Feb-13  | 238.5                   | 24.9                             | 513.1                               |

| Day       | TSS      | Qobs             | Qs (metric  |  |  |
|-----------|----------|------------------|-------------|--|--|
|           | (mg/l) - | corr             | tons/day) - |  |  |
|           | 2013     | [2013]<br>(m2/a) | [2013]      |  |  |
| 6-Feb-13  | 594.6    | (m3/s)<br>41.7   | 2142.2      |  |  |
| 7-Feb-13  | 863.8    | 51.7             | 3821 4      |  |  |
| 8-Feb-13  | 351.1    | 34.5             | 1046.5      |  |  |
| 9-Feb-13  | 388.9    | 33.5             | 1125.8      |  |  |
| 10-Feb-13 | 836.4    | 50.3             | 3634.9      |  |  |
| 11-Feb-13 | 830.9    | 49               | 3517.7      |  |  |
| 12-Feb-13 | 226.4    | 33.7             | 659.3       |  |  |
| 13-Feb-13 | 140.6    | 23.3             | 283.0       |  |  |
| 14-Feb-13 | 134.3    | 15.4             | 178.7       |  |  |
| 15-Feb-13 | 105.9    | 17.1             | 156.5       |  |  |
| 16-Feb-13 | 93.1     | 16.3             | 131.1       |  |  |
| 17-Feb-13 | 223.4    | 26.8             | 517.3       |  |  |
| 18-Feb-13 | 611.5    | 43.7             | 2308.6      |  |  |
| 19-Feb-13 | 327.6    | 35               | 990.7       |  |  |
| 20-Feb-13 | 156.1    | 20.1             | 271.2       |  |  |
| 21-Feb-13 | 131.2    | 18.8             | 213.1       |  |  |
| 22-Feb-13 | 80.2     | 12.1             | 83.8        |  |  |
| 23-Feb-13 | 93.1     | 12.3             | 98.9        |  |  |
| 24-Feb-13 | 622.7    | 43.3             | 2329.5      |  |  |
| 25-Feb-13 | 441.0    | 36.7             | 1398.2      |  |  |
| 26-Feb-13 | 265.4    | 30.2             | 692.6       |  |  |
| 27-Feb-13 | 235.5    | 28.4             | 577.8       |  |  |
| 28-Feb-13 | 102.7    | 19               | 168.6       |  |  |
| 1-Mar-13  | 99.5     | 16.8             | 144.4       |  |  |
| 2-Mar-13  | 134.3    | 20.9             | 242.6       |  |  |
| 3-Mar-13  | 177.7    | 23.2             | 356.3       |  |  |
| 4-Mar-13  | 96.3     | 18.7             | 155.6       |  |  |
| 5-Mar-13  | 1108.3   | 61.6             | 5898.5      |  |  |
| 6-Mar-13  | 412.1    | 33.6             | 1196.4      |  |  |
| 7-Mar-13  | 171.6    | 21               | 311.3       |  |  |
| 8-Mar-13  | 594.6    | 38.7             | 1988.1      |  |  |
| 9-Mar-13  | 217.4    | 21.2             | 398.1       |  |  |
| 10-Mar-13 | 177.7    | 23.1             | 354.7       |  |  |
| 11-Mar-13 | 180.8    | 24.1             | 376.5       |  |  |
| 12-Mar-13 | 232.5    | 26.1             | 524.2       |  |  |
| 13-Mar-13 | 128.1    | 22.1             | 244.5       |  |  |
| 14-Mar-13 | 112.3    | 22.1             | 214.4       |  |  |
| 15-Mar-13 | 229.5    | 25               | 495.6       |  |  |

| Day       | TSS<br>(mg/l) -<br>2013 | Qobs<br>corr<br>[2013]<br>(m3/s) | Qs (metric<br>tons/day) -<br>[2013] | Day       | TSS<br>(mg/l) -<br>2013 | Qobs<br>corr<br>[2013]<br>(m3/s) |
|-----------|-------------------------|----------------------------------|-------------------------------------|-----------|-------------------------|----------------------------------|
| 16-Mar-13 | 211.3                   | 24.5                             | 447.3                               | 23-Apr-13 | 725.9                   | 43.5                             |
| 17-Mar-13 | 168.5                   | 22.2                             | 323.2                               | 24-Apr-13 | 841.9                   | 48.6                             |
| 18-Mar-13 | 351.1                   | 33.3                             | 1010.1                              | 25-Apr-13 | 574.8                   | 41.5                             |
| 19-Mar-13 | 420.8                   | 34.7                             | 1261.5                              | 26-Apr-13 | 223.4                   | 25.3                             |
| 20-Mar-13 | 268.4                   | 28.9                             | 670.2                               | 27-Apr-13 | 241.5                   | 27                               |
| 21-Mar-13 | 929.5                   | 54.4                             | 4368.6                              | 28-Apr-13 | 235.5                   | 28.2                             |
| 22-Mar-13 | 2203.2                  | 85.4                             | 16256.8                             | 29-Apr-13 | 339.4                   | 33                               |
| 23-Mar-13 | 1111.0                  | 61.7                             | 5922.5                              | 30-Apr-13 | 301.1                   | 30.1                             |
| 24-Mar-13 | 647.9                   | 43                               | 2407.1                              | 1-May-13  | 131.2                   | 19.6                             |
| 25-Mar-13 | 238.5                   | 24.2                             | 498.6                               | 2-May-13  | 124.9                   | 18.5                             |
| 26-Mar-13 | 159.2                   | 18.3                             | 251.8                               | 3-May-13  | 153.0                   | 21.5                             |
| 27-Mar-13 | 146.8                   | 19.7                             | 249.9                               | 4-May-13  | 1092.1                  | 60.6                             |
| 28-Mar-13 | 124.9                   | 19.1                             | 206.1                               | 5-May-13  | 435.2                   | 34.7                             |
| 29-Mar-13 | 146.8                   | 21                               | 266.4                               | 6-May-13  | 292.2                   | 27.1                             |
| 30-Mar-13 | 105.9                   | 19.8                             | 181.2                               | 7-May-13  | 1154.0                  | 58.3                             |
| 31-Mar-13 | 365.7                   | 33.6                             | 1061.5                              | 8-May-13  | 199.2                   | 22.8                             |
| 1-Apr-13  | 93.1                    | 15.9                             | 127.9                               | 9-May-13  | 165.4                   | 21.9                             |
| 2-Apr-13  | 214.3                   | 23.9                             | 442.6                               | 10-May-13 | 307.0                   | 29.5                             |
| 3-Apr-13  | 124.9                   | 18.7                             | 201.8                               | 11-May-13 | 118.6                   | 19.4                             |
| 4-Apr-13  | 1314.3                  | 62.8                             | 7131.4                              | 12-May-13 | 105.9                   | 19                               |
| 5-Apr-13  | 1199.6                  | 60.3                             | 6249.7                              | 13-May-13 | 180.8                   | 23.2                             |
| 6-Apr-13  | 1255.7                  | 62.5                             | 6780.8                              | 14-May-13 | 226.4                   | 24.4                             |
| 7-Apr-13  | 277.4                   | 28.2                             | 675.8                               | 15-May-13 | 351.1                   | 29.9                             |
| 8-Apr-13  | 162.3                   | 21.7                             | 304.4                               | 16-May-13 | 177.7                   | 22.4                             |
| 9-Apr-13  | 131.2                   | 19.6                             | 222.2                               | 17-May-13 | 193.1                   | 24.2                             |
| 10-Apr-13 | 112.3                   | 17.7                             | 171.7                               | 18-May-13 | 244.5                   | 27.9                             |
| 11-Apr-13 | 112.3                   | 18.3                             | 177.5                               | 19-May-13 | 298.1                   | 32.4                             |
| 12-Apr-13 | 112.3                   | 16.9                             | 163.9                               | 20-May-13 | 153.0                   | 20.8                             |
| 13-Apr-13 | 115.4                   | 17.2                             | 171.5                               | 21-May-13 | 137.5                   | 20.1                             |
| 14-Apr-13 | 244.5                   | 26                               | 549.2                               | 22-May-13 | 96.3                    | 17.3                             |
| 15-Apr-13 | 1002.9                  | 52.1                             | 4514.5                              | 23-May-13 | 93.1                    | 18.1                             |
| 16-Apr-13 | 426.6                   | 35.1                             | 1293.6                              | 24-May-13 | 99.5                    | 19.5                             |
| 17-Apr-13 | 277.4                   | 29.4                             | 704.5                               | 25-May-13 | 99.5                    | 15.8                             |
| 18-Apr-13 | 199.2                   | 25.2                             | 433.6                               | 26-May-13 | 102.7                   | 16.6                             |
| 19-Apr-13 | 518.2                   | 39.9                             | 1786.3                              | 27-May-13 | 99.5                    | 15.3                             |
| 20-Apr-13 | 359.8                   | 34.7                             | 1078.8                              | 28-May-13 | 112.3                   | 16.5                             |
| 21-Apr-13 | 748.1                   | 46.5                             | 3005.7                              | 29-May-13 | 124.9                   | 18.9                             |
| 22-Apr-13 | 153.0                   | 18.8                             | 248.6                               | 30-May-13 | 89.9                    | 17.3                             |

Qs (metric tons/day) -[2013]

> 2728.4 3535.2 2061.1 488.4 563.3 573.7 967.6 783.0 222.2 199.7 284.3 5718.1 1304.8 684.2 5812.8 392.3 313.0 782.5 198.8 173.9 362.4 477.4 906.9 344.0 403.6 589.4 834.6 275.0 238.7 144.0 145.6 167.7 135.8 147.3 131.6 160.0 204.0 134.3

| Day       | TSS      | Qobs             | Qs (metric  | Day       | TSS      | Qobs   |
|-----------|----------|------------------|-------------|-----------|----------|--------|
|           | (mg/l) - | corr             | tons/day) - |           | (mg/l) - | corr   |
|           | 2013     | [2013]<br>(m2(a) | [2013]      |           | 2013     | [2013] |
| 31_May_13 | 96.3     | (m3/s)           | 135.6       | 8-Iul-13  | 73.6     | (m3/s) |
| 1_lun_13  | 105.0    | 10.5             | 170.2       | 0-Jul-13  | 63.8     | 12.5   |
| 2-lun-13  | 96.3     | 10.0             | 175.5       | 10-Jul-13 | 67.1     | 10 /   |
| 2-Jun-13  | 102.7    | 15.9             | 1/1 1       | 10-Jul-13 | 60.5     | 11.9   |
| 4-lun-13  | 89.9     | 16.2             | 125.8       | 12-Jul-13 | 70.4     | 13.7   |
| 5-Jun-13  | 89.9     | 17.1             | 132.8       | 13-Jul-13 | 67.1     | 13.6   |
| 6-Jun-13  | 86.6     | 16.4             | 122.8       | 14-Jul-13 | 70.4     | 15.8   |
| 7-Jun-13  | 83.4     | 17.9             | 129.0       | 15-Jul-13 | 67.1     | 14.7   |
| 8-Jun-13  | 93.1     | 18.7             | 150.4       | 16-Jul-13 | 70.4     | 18.6   |
| 9-Jun-13  | 83.4     | 14               | 100.9       | 17-Jul-13 | 63.8     | 12.6   |
| 10-Jun-13 | 80.2     | 13.9             | 96.3        | 18-Jul-13 | 60.5     | 11.1   |
| 11-Jun-13 | 83.4     | 15.1             | 108.8       | 19-Jul-13 | 67.1     | 11.8   |
| 12-Jun-13 | 76.9     | 16.1             | 107.0       | 20-Jul-13 | 73.6     | 10.6   |
| 13-Jun-13 | 86.6     | 17.7             | 132.5       | 21-Jul-13 | 57.1     | 12.8   |
| 14-Jun-13 | 80.2     | 15.6             | 108.0       | 22-Jul-13 | 60.5     | 14.3   |
| 15-Jun-13 | 86.6     | 17.1             | 128.0       | 23-Jul-13 | 63.8     | 13.9   |
| 16-Jun-13 | 93.1     | 15.5             | 124.7       | 24-Jul-13 | 70.4     | 15.8   |
| 17-Jun-13 | 180.8    | 22.3             | 348.4       | 25-Jul-13 | 70.4     | 15     |
| 18-Jun-13 | 183.9    | 21.9             | 347.9       | 26-Jul-13 | 70.4     | 12.8   |
| 19-Jun-13 | 102.7    | 17.3             | 153.5       | 27-Jul-13 | 70.4     | 13.4   |
| 20-Jun-13 | 63.8     | 13.3             | 73.3        | 28-Jul-13 | 67.1     | 10.5   |
| 21-Jun-13 | 47.1     | 13.1             | 53.3        | 29-Jul-13 | 60.5     | 11.9   |
| 22-Jun-13 | 57.1     | 13               | 64.2        | 30-Jul-13 | 53.8     | 12.5   |
| 23-Jun-13 | 76.9     | 17.8             | 118.3       | 31-Jul-13 | 47.1     | 11.8   |
| 24-Jun-13 | 73.6     | 13.9             | 88.4        | 1-Aug-13  | 50.4     | 12.9   |
| 25-Jun-13 | 70.4     | 12.7             | 77.2        | 2-Aug-13  | 53.8     | 15.2   |
| 26-Jun-13 | 67.1     | 13.6             | 78.8        | 3-Aug-13  | 53.8     | 14.3   |
| 27-Jun-13 | 70.4     | 13.8             | 83.9        | 4-Aug-13  | 53.8     | 11.7   |
| 28-Jun-13 | 67.1     | 13.9             | 80.6        | 5-Aug-13  | 47.1     | 10.4   |
| 29-Jun-13 | 70.4     | 14.7             | 89.4        | 6-Aug-13  | 57.1     | 12.6   |
| 30-Jun-13 | 67.1     | 14.6             | 84.6        | 7-Aug-13  | 50.4     | 13.2   |
| 1-Jul-13  | 73.6     | 13.3             | 84.6        | 8-Aug-13  | 53.8     | 12     |
| 2-Jul-13  | 63.8     | 11.6             | 63.9        | 9-Aug-13  | 50.4     | 14.6   |
| 3-Jul-13  | 63.8     | 13.1             | 72.2        | 10-Aug-13 | 57.1     | 12.8   |
| 4-Jul-13  | 60.5     | 12.9             | 67.4        | 11-Aug-13 | 53.8     | 11./   |
| 5-JUI-13  | b/.1     | 15               | 86.9        | 12-Aug-13 | 50.4     | 10.5   |
| 6-JUI-13  | /6.9     | 16.5             | 109.6       | 13-Aug-13 | 60.5     | 13.3   |
| 7-Jul-13  | b/.1     | 14.6             | 84.6        | 14-Aug-13 | 57.1     | 13.4   |

Qs (metric tons/day) -[2013]

88.4

71.1

60.3 61.6

83.3

78.8

96.1

85.2

69.4

58.0 68.4

67.4

63.2

74.7

76.6

96.1

91.2

77.8

81.5

60.8 62.2

58.1

48.0

56.2 70.7

66.5

54.4

42.3

62.2

57.5

55.8

63.6

63.2

54.4

45.8

69.5

66.2

113.1
| Da    | ay    | TSS              | Qobs                     | Qs (metric            | Day       | TSS              | Qobs                     |
|-------|-------|------------------|--------------------------|-----------------------|-----------|------------------|--------------------------|
|       |       | (mg/l) -<br>2013 | corr<br>[2013]<br>(m3/s) | tons/day) -<br>[2013] |           | (mg/l) -<br>2013 | corr<br>[2013]<br>(m3/s) |
| 15-A  | ug-13 | 53.8             | 14.3                     | 66.5                  | 22-Sep-13 | 70.4             | 14.4                     |
| 16-A  | ug-13 | 53.8             | 15.3                     | 71.1                  | 23-Sep-13 | 67.1             | 16                       |
| 17-A  | ug-13 | 57.1             | 15.7                     | 77.5                  | 24-Sep-13 | 63.8             | 17                       |
| 18-A  | ug-13 | 57.1             | 11.6                     | 57.3                  | 25-Sep-13 | 60.5             | 12.9                     |
| 19-A  | ug-13 | 63.8             | 12.1                     | 66.7                  | 26-Sep-13 | 83.4             | 14.6                     |
| 20-A  | ug-13 | 60.5             | 12.9                     | 67.4                  | 27-Sep-13 | 93.1             | 16.1                     |
| 21-A  | ug-13 | 60.5             | 13.6                     | 71.0                  | 28-Sep-13 | 93.1             | 17.4                     |
| 22-A  | ug-13 | 57.1             | 13.3                     | 65.7                  | 29-Sep-13 | 93.1             | 18.3                     |
| 23-A  | ug-13 | 70.4             | 14.4                     | 87.5                  | 30-Sep-13 | 93.1             | 19.1                     |
| 24-A  | ug-13 | 67.1             | 15.1                     | 87.5                  | 1-Oct-13  | 149.9            | 24.7                     |
| 25-A  | ug-13 | 53.8             | 13.9                     | 64.6                  | 2-Oct-13  | 153.0            | 20.4                     |
| 26-A  | ug-13 | 60.5             | 14.6                     | 76.3                  | 3-Oct-13  | 134.3            | 17.5                     |
| 27-A  | ug-13 | 67.1             | 13.7                     | 79.4                  | 4-Oct-13  | 140.6            | 20.4                     |
| 28-A  | ug-13 | 60.5             | 14.4                     | 75.2                  | 5-Oct-13  | 99.5             | 17.1                     |
| 29-A  | ug-13 | 67.1             | 15.8                     | 91.6                  | 6-Oct-13  | 86.6             | 17.8                     |
| 30-A  | ug-13 | 63.8             | 15.6                     | 86.0                  | 7-Oct-13  | 105.9            | 19.8                     |
| 31-A  | ug-13 | 70.4             | 14.8                     | 90.0                  | 8-Oct-13  | 112.3            | 19.5                     |
| 1-Se  | ep-13 | 60.5             | 12.3                     | 64.3                  | 9-Oct-13  | 93.1             | 15.2                     |
| 2-S   | ep-13 | 67.1             | 13.2                     | 76.5                  | 10-Oct-13 | 569.2            | 39                       |
| 3-S   | ep-13 | 60.5             | 13.5                     | 70.5                  | 11-Oct-13 | 193.1            | 20.5                     |
| 4-S   | ep-13 | 73.6             | 15.1                     | 96.1                  | 12-Oct-13 | 271.4            | 27.1                     |
| 5-S   | ep-13 | 67.1             | 16.2                     | 93.9                  | 13-Oct-13 | 226.4            | 25.6                     |
| 6-S   | ep-13 | 63.8             | 13.4                     | 73.8                  | 14-Oct-13 | 268.4            | 28                       |
| 7-S   | ep-13 | 53.8             | 15.2                     | 70.7                  | 15-Oct-13 | 1035.4           | 56.6                     |
| 8-S   | ep-13 | 60.5             | 11.8                     | 61.6                  | 16-Oct-13 | 262.5            | 28.4                     |
| 9-S   | ep-13 | 53.8             | 11                       | 51.1                  | 17-Oct-13 | 356.9            | 33.2                     |
| 10-Se | ep-13 | 60.5             | 10                       | 52.2                  | 18-Oct-13 | 435.2            | 35                       |
| 11-Se | ep-13 | 57.1             | 10.9                     | 53.8                  | 19-Oct-13 | 205.2            | 22.3                     |
| 12-Se | ep-13 | 60.5             | 12.9                     | 67.4                  | 20-Oct-13 | 174.7            | 21.6                     |
| 13-Se | ep-13 | 70.4             | 15.6                     | 94.8                  | 21-Oct-13 | 199.2            | 20.3                     |
| 14-Se | ep-13 | 67.1             | 14.7                     | 85.2                  | 22-Oct-13 | 93.1             | 16.6                     |
| 15-Se | ep-13 | 89.9             | 16.3                     | 126.6                 | 23-Oct-13 | 86.6             | 16.9                     |
| 16-Se | ep-13 | 67.1             | 15                       | 86.9                  | 24-Oct-13 | 177.7            | 22.7                     |
| 17-Se | ep-13 | 60.5             | 12.2                     | 63.7                  | 25-Oct-13 | 625.5            | 44.9                     |
| 18-Se | ep-13 | 67.1             | 12                       | 69.5                  | 26-Oct-13 | 426.6            | 38.9                     |
| 19-Se | ep-13 | 67.1             | 11.4                     | 66.1                  | 27-Oct-13 | 1693.7           | 70.5                     |
| 20-Se | ep-13 | 67.1             | 12.9                     | 74.8                  | 28-Oct-13 | 365.7            | 30.6                     |
| 21-Se | ep-13 | 67.1             | 14.1                     | 81.7                  | 29-Oct-13 | 165.4            | 21.7                     |

Qs (metric tons/day) -

[2013]

87.5

92.7

93.7

67.4

105.2

129.5

140.0

147.2

153.6

320.0

269.8

203.1

247.8

147.0

133.3

181.2

189.1

122.3

1917.9

341.9

635.5

500.8

649.4

5063.4

644.0

1023.8

1316.0

395.4

326.0

349.3

133.5

126.5

348.6

2426.5

1433.6

10316.9

966.8

310.2

| Day       | TSS      | Qobs              | Qs (metric  |  |
|-----------|----------|-------------------|-------------|--|
|           | (mg/l) - | corr              | tons/day) - |  |
|           | 2013     | [2013]<br>(m2 (c) | [2013]      |  |
| 30-Oct-13 | 156.1    | 21.7              | 292.8       |  |
| 31-Oct-13 | 128.1    | 19.3              | 213.5       |  |
| 1-Nov-13  | 159.2    | 23.7              | 326.1       |  |
| 2-Nov-13  | 309.9    | 30                | 803.4       |  |
| 3-Nov-13  | 271.4    | 26.7              | 626.1       |  |
| 4-Nov-13  | 153.0    | 19.2              | 253.9       |  |
| 5-Nov-13  | 156.1    | 21.1              | 284.7       |  |
| 6-Nov-13  | 199.2    | 23.6              | 406.1       |  |
| 7-Nov-13  | 506.8    | 41                | 1795.3      |  |
| 8-Nov-13  | 146.8    | 23.9              | 303.2       |  |
| 9-Nov-13  | 280.3    | 31.2              | 755.7       |  |
| 10-Nov-13 | 153.0    | 19.8              | 261.8       |  |
| 11-Nov-13 | 99.5     | 15.1              | 129.8       |  |
| 12-Nov-13 | 153.0    | 20.9              | 276.4       |  |
| 13-Nov-13 | 1309.0   | 62.7              | 7091.2      |  |
| 14-Nov-13 | 625.5    | 44.4              | 2399.5      |  |
| 15-Nov-13 | 441.0    | 36.9              | 1405.8      |  |
| 16-Nov-13 | 168.5    | 26.2              | 381.5       |  |
| 17-Nov-13 | 118.6    | 17.4              | 178.3       |  |
| 18-Nov-13 | 115.4    | 17.5              | 174.5       |  |
| 19-Nov-13 | 244.5    | 25                | 528.1       |  |
| 20-Nov-13 | 926.7    | 53.1              | 4251.7      |  |
| 21-Nov-13 | 259.5    | 27.2              | 609.8       |  |
| 22-Nov-13 | 386.0    | 34.2              | 1140.7      |  |
| 23-Nov-13 | 538.1    | 42.3              | 1966.4      |  |
| 24-Nov-13 | 220.4    | 28.3              | 538.9       |  |
| 25-Nov-13 | 577.7    | 40.2              | 2006.4      |  |
| 26-Nov-13 | 298.1    | 27.6              | 710.9       |  |
| 27-Nov-13 | 153.0    | 20                | 264.5       |  |
| 28-Nov-13 | 597.4    | 37.7              | 1945.9      |  |
| 29-Nov-13 | 356.9    | 31.9              | 983.7       |  |
| 30-Nov-13 | 156.1    | 21.8              | 294.1       |  |
| 1-Dec-13  | 687.0    | 45.5              | 2700.8      |  |
| 2-Dec-13  | 1067.8   | 59.3              | 5471.1      |  |
| 3-Dec-13  | 403.4    | 36.9              | 1286.2      |  |
| 4-Dec-13  | 253.5    | 27                | 591.3       |  |
| 5-Dec-13  | 131.2    | 20.7              | 234.6       |  |
| 6-Dec-13  | 321.7    | 31.8              | 884.0       |  |

| Day       | TSS      | Qobs   | Qs (metric  |
|-----------|----------|--------|-------------|
|           | (mg/l) - | corr   | tons/day) - |
|           | 2013     | [2013] | [2013]      |
|           |          | (m3/s) |             |
| 7-Dec-13  | 1290.4   | 62.8   | 7001.4      |
| 8-Dec-13  | 247.5    | 28.2   | 603.0       |
| 9-Dec-13  | 208.3    | 23.9   | 430.1       |
| 10-Dec-13 | 171.6    | 21.6   | 320.2       |
| 11-Dec-13 | 217.4    | 24     | 450.7       |
| 12-Dec-13 | 309.9    | 28.9   | 773.9       |
| 13-Dec-13 | 714.8    | 46.4   | 2865.7      |
| 14-Dec-13 | 1544.4   | 69.6   | 9287.0      |
| 15-Dec-13 | 1399.2   | 65.1   | 7870.3      |
| 16-Dec-13 | 2509.4   | 90.7   | 19664.5     |
| 17-Dec-13 | 312.9    | 30.1   | 813.7       |
| 18-Dec-13 | 196.1    | 22.7   | 384.6       |
| 19-Dec-13 | 171.6    | 20.3   | 301.0       |
| 20-Dec-13 | 455.3    | 35.9   | 1412.3      |
| 21-Dec-13 | 274.4    | 25.9   | 614.0       |
| 22-Dec-13 | 162.3    | 22.1   | 310.0       |
| 23-Dec-13 | 131.2    | 20.3   | 230.1       |
| 24-Dec-13 | 1751.1   | 74.5   | 11271.7     |
| 25-Dec-13 | 400.5    | 34.2   | 1183.6      |
| 26-Dec-13 | 386.0    | 35.1   | 1170.7      |
| 27-Dec-13 | 168.5    | 20.9   | 304.3       |
| 28-Dec-13 | 134.3    | 18.3   | 212.4       |
| 29-Dec-13 | 1005.6   | 54.8   | 4761.2      |
| 30-Dec-13 | 400.5    | 34.5   | 1193.9      |
| 31-Dec-13 | 190.0    | 23.7   | 389.1       |

## Annual sediment load in 2005

| Time<br>intervals<br>(%) | Interval<br>midpoint<br>(%) | Interval<br>∆p (%) | Discharge<br>Q (m3/s) | Concentration C<br>(mg/l) | Q x ∆p<br>(m3/s) | Sediment<br>Load<br>Qs x ∆p |
|--------------------------|-----------------------------|--------------------|-----------------------|---------------------------|------------------|-----------------------------|
| (1)                      | (2)                         | (3)                | (4)                   | (5)                       | (6)              | (tons/year)<br>(7)          |
| 0.00 - 0.02              | 0.01                        | 0.02               | 62.6                  | 1234.8                    | 0.01252          | 487                         |
| 0.02 - 0.1               | 0.06                        | 0.08               | 62.4                  | 1227.3                    | 0.04992          | 1930                        |
| 0.1 - 0.5                | 0.3                         | 0.4                | 61.5                  | 1193.8                    | 0.246            | 9251                        |
| 0.5 - 1.5                | 1                           | 1                  | 60.5                  | 1157.2                    | 0.605            | 22053                       |
| 1.5 - 5.0                | 3.25                        | 3.5                | 47.5                  | 730.5                     | 1.6625           | 38255                       |
| 5 - 15                   | 10                          | 10                 | 34.8                  | 404.2                     | 3.48             | 44308                       |
| 15 - 25                  | 20                          | 10                 | 28.2                  | 271                       | 2.82             | 24073                       |
| 25 - 35                  | 30                          | 10                 | 24.1                  | 201                       | 2.41             | 15259                       |
| 35 - 45                  | 40                          | 10                 | 21.1                  | 156.1                     | 2.11             | 10375                       |
| 45 - 55                  | 50                          | 10                 | 18.1                  | 116.6                     | 1.81             | 6648                        |
| 55 - 65                  | 60                          | 10                 | 17                    | 103.5                     | 1.7              | 5542                        |
| 65 - 75                  | 70                          | 10                 | 15                    | 81.6                      | 1.5              | 3856                        |
| 75 - 85                  | 80                          | 10                 | 14.8                  | 79.5                      | 1.48             | 3706                        |
| 85 - 95                  | 90                          | 10                 | 12.6                  | 58.6                      | 1.26             | 2326                        |
| 95 - 100                 | 97.5                        | 5                  | 11.8                  | 51.7                      | 0.59             | 961                         |
| Total                    |                             | 100                |                       |                           | 21.735           | 189,030                     |

## Annual sediment load in 2013

| Time<br>intervals<br>(%) | Interval<br>midpoint<br>(%) | Interval<br>∆p (%) | Discharge<br>Q (m3/s) | Concentration C<br>(mg/l) | Q x ∆p<br>(m3/s) | Sediment<br>Load<br>Qs x ∆p |
|--------------------------|-----------------------------|--------------------|-----------------------|---------------------------|------------------|-----------------------------|
| (1)                      | (2)                         | (3)                | (4)                   | (5)                       | (6)              | (tons/year)<br>(7)          |
| 0.00 - 0.02              | 0.01                        | 0.02               | 91.2                  | 2414.3                    | 0.01824          | 1387                        |
| 0.02 - 0.1               | 0.06                        | 0.08               | 91                    | 2404.3                    | 0.0728           | 5514                        |
| 0.1 - 0.5                | 0.3                         | 0.4                | 90.7                  | 2389.3                    | 0.3628           | 27305                       |
| 0.5 - 1.5                | 1                           | 1                  | 70.5                  | 1485.4                    | 0.705            | 32987                       |
| 1.5 - 5.0                | 3.25                        | 3.5                | 61.8                  | 1158.5                    | 2.163            | 78934                       |
| 5 - 15                   | 10                          | 10                 | 42.5                  | 571.6                     | 4.25             | 76523                       |
| 15 - 25                  | 20                          | 10                 | 33.1                  | 356.7                     | 3.31             | 37191                       |
| 25 - 35                  | 30                          | 10                 | 26.5                  | 234.4                     | 2.65             | 19567                       |
| 35 - 45                  | 40                          | 10                 | 21.8                  | 162.2                     | 2.18             | 11138                       |
| 45 - 55                  | 50                          | 10                 | 19.5                  | 131.4                     | 1.95             | 8071                        |
| 55 - 65                  | 60                          | 10                 | 17.1                  | 102.6                     | 1.71             | 5527                        |
| 65 - 75                  | 70                          | 10                 | 15.9                  | 89.4                      | 1.59             | 4478                        |
| 75 - 85                  | 80                          | 10                 | 14.1                  | 71.3                      | 1.41             | 3167                        |
| 85 - 95                  | 90                          | 10                 | 12.8                  | 59.4                      | 1.28             | 2395                        |
| 95 - 100                 | 97.5                        | 5                  | 11.2                  | 46.2                      | 0.56             | 815                         |
| Total                    |                             | 100                |                       |                           | 24.21184         | 315,000                     |