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ABSTRACT OF DISSERTATION

TURBULENT VELOCITY PROFILES IN CLEAR WATER AND

SEDIMENT-LADEN FLOWS

This dissertation studies turbulent velocity proÞles in pipes with clear water, and

centerline velocity proÞles in open-channels with clear water and sediment-laden ßows.

The main purpose is to Þnd a suitable velocity proÞle law for the entire boundary

layer, particularly near the water surface, and to study the effects of sediment suspen-

sion on the model parameters. As a prerequisite for the study of velocity proÞles in

open-channels, a theoretical method for determining the bed shear stress in smooth

rectangular channels is presented.

The major Þndings are:

(1) A wall shear turbulent velocity proÞle, in a velocity defect form, consists of

three parts: a log term, a wake correction term, and a boundary correction term which

is a linear function. The Þrst two terms are the same as those in the classical log-wake

law. The third term is a major contribution of this study. This new velocity proÞle

law is referred to as the modiÞed log-wake law. The new law considers the upper

derivative boundary condition, which is not satisÞed in previous studies. Physically,

the log term reßects the inertia effect, the wake term reßects the large scale turbulent

mixing, and the linear term reßects the effect of the upper boundary condition. In

open-channels, the log term reßects the effect of the channel bed; the wake term

reßects the effect of the side-walls, which induce secondary ßows in the corners and

then produce large scale turbulent mixing.

(2) For clear water ßows in pipes, the new law contains two universal constants:

the von Karman constant κ0 = 0.406 and the wake strength coefficient Ω0 = 3.2.

(3) For clear water ßows in narrow channels, the boundary layer thickness δ is
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deÞned as the distance from the bed to the maximum velocity. The velocity proÞle

equation is similar to that in pipes except that the wake strength coefficient Ω0

decreases with the aspect ratios. In particular, the new law can even reproduce the

velocity proÞle measurements beyond the boundary layer thickness.

(4) For clear water ßows in wide channels, the effect of the side-walls is weakened,

also, the water surface limits large scale turbulent mixing, so the wake component

may be neglected. The modiÞed log-wake law reduces to a log-linear law. The von

Karman constant κ0 is still 0.406. The water surface shear stress is considered through

the parameter λ0 which is about a constant 0.065 for a smooth bed and small relative

roughness, but increases with the relative roughness in very rough beds.

(5) The modiÞed log-wake law is also valid in sediment-laden ßows. Sediment

suspension affects the velocity proÞle in two factors: concentration and density gra-

dient (the Richardson number Ri). Both factors reduce the von Karman constant κ.

However, if both concentration and density gradient near the water surface are very

small, they have little effect on the wake strength coefficient Ω in narrow channels

and the water surface shear effect factor λ in wide channels.

(6) The modiÞed log-wake law, including its reduction in wide channels, compares

quite well with over 100 experimental velocity proÞles in pipes, narrow open-channels

and wide open-channels. The correlation coefficients r are always over 0.99.

Junke Guo
Department of Civil Engineering
Colorado State University
Fort Collins, CO 80523
Spring 1998
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Chapter 1

INTRODUCTION

1.1 Statement and signiÞcance of the problem

The study of wall shear turbulent velocity proÞles is a basic subject in ßuid me-

chanics. In particular, the study of turbulent velocity proÞles in sediment-laden ßows

is one of the most important subjects in sediment transport and river mechanics.

This study addresses the problem: what is the best functional form of the velocity

proÞle equation in a pipe or open-channel, and how does sediment suspension affect

the velocity proÞle in a sediment-laden ßow?

Since the problem is a fundamental subject, its thorough understanding is re-

quired to study ßow resistance and sediment transport capacity. Furthermore, its

accurate prediction is helpful for the analysis of a pipe ßow, a river development and

management, reservoir operation, ßood protection, etc.

1.2 Background

To answer the above questions, extensive investigations have been reported for

the last half century. The studies in clear water include Prandtl (Schlichting, 1979,

p.596), von Karman (Schlichting, 1979, p.608), Nikuradse (1932), Keulegan (1938),

Laufer (1954), Patel and Head (1969), Zagarola (1996), and many others. The studies

in sediment-laden ßows include Vanoni (1946), Einstein and Chien (1955), Vanoni and
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Nomicos (1960), Elata and Ippen (1961), Coleman (1981, 1986), Janin (1986), Karim

and Kennedy (1987), Woo, Julien and Richardson (1988), Lyn (1986, 1988), Wang

and Qian(1989). All investigations of sediment-laden ßows are to study the effects of

sediment suspension on the model parameters in the log law, the log-wake law or the

power law. However, a literature review shows that neither the log law, the log-wake

law nor the power law is the best functional form of the velocity proÞle model in pipes

and open-channels. This is because all of them do not satisfy the derivative boundary

condition at the pipe axis, the water surface or the boundary layer margin, where the

boundary layer thickness is deÞned as the distance from the bed to the maximum

velocity position in narrow channels. Obviously, the subject of the velocity proÞles in

pipes and open-channels is still very challenging and a further research is indicated.

1.3 Objectives

The speciÞc objectives addressed in this study are: (1) to establish a new velocity

proÞle model in clear water ßows using a new similarity analysis method; (2) to create

a method for determining the bed shear stress (or the bed shear velocity) in a smooth

rectangular channel, based on a conformal mapping method; (3) to determine the

model parameters, i.e., the von Karman constant κ0, the wake strength coefficient

Ω0, and the water surface shear effect factor λ0, in clear water ßows, using a least-

squares method; (4) to prove that the new velocity proÞle model from clear water

ßows is also valid in sediment-laden ßows, based on the sediment-laden ßow governing

equations and a magnitude order analysis; and (5) to study the effects of sediment

suspension on the model parameters, using a least-squares method.

1.4 Limitations and assumptions

This study is limited to the outer region velocity proÞles in pipes and open-

channels, i.e., the inner region (the viscous sublayer and the buffer layer), where the

viscous shear stress is important, is excluded. In addition, the study assumes that: (1)
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the ßow is steady, uniform and 2D (two-dimensional); (2) the 2D ßow results may be

empirically extended to narrow channels; and (3) the volumetric concentration may

be very high for neutral particle-laden ßows, but relative dilute for natural sediment-

laden ßows, say, the volumetric concentration C < 0.1.

1.5 Outline

This dissertation includes 9 chapters. Chapter 1 brießy introduces the subject and

states the objectives. Chapter 2 reviews previous major achievements in pipes and

open-channel ßows. To meet Objective 1, Chapter 3 Þrst presents a new similarity

analysis method and then proposes a new velocity proÞle law, the modiÞed log-wake

law, in clear water. Chapter 4 discusses a method for determining the bed shear

velocity in a smooth rectangular channel (Objective 2). Chapter 5 tests the modiÞed

log-wake law and studies the model parameters in clear water (Objective 3). Chapter

6 discusses the application of the velocity proÞle law from clear water to sediment-

laden ßows (Objective 4). Chapter 7 studies the effects of sediment suspension on

the velocity proÞles in sediment-laden ßows (Objective 5). Chapter 8 illustrates the

procedures for applying the modiÞed log-wake law. Finally, Chapter 9 summarites

the main results of this research. In addition, several appendixes, which show detailed

programs or analyses, appear at the end of the dissertation.
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Chapter 2

LITERATURE REVIEW

2.1 Introduction

This chapter reviews the previous principal achievements regarding velocity pro-

Þles in pipes and open-channels. The velocity proÞle in clear water is Þrst reviewed

in Section 2.2, Then, a review of the sediment-laden velocity proÞles is followed in

Section 2.3. Section 2.4 summarizes the previous major results and weaknesses.

2.2 Velocity ProÞle in Clear Water

Experimental evidence shows that all wall shear turbulent velocity proÞles, such

as pipe ßows, open-channel ßows, and boundary layer ßows, over a smooth boundary

can be divided into two regions (Coles, 1956): an inner region where turbulence is

directly affected by the bed; and an outer region where the ßow is only indirectly

affected by the bed through its shear stress. The inner region can be further divided

into a viscous sublayer, a buffer layer, and an overlap. Since the variation from the

inner region to the outer region is gradual, the overlap is also a part of the outer

regions (Kundu, 1990, p.451). Thus, the outer region can be further divided into the

overlap and a wake layer. In brief, the ßow domain in a wall shear turbulence can

be divided into four layers (or subregions): viscous sublayer, buffer layer, overlap (or

intermediate layer), and wake layer, shown in FIG. 2.1. The velocity proÞle in each
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FIG. 2.1: Sketch of a representative velocity proÞle in open-channels

layer is reviewed below.

2.2.1 Linear law in the viscous sublayer

Assume that the velocity proÞle near the bed can be expressed as a Taylor series,

i.e.

u1 = u1|x3=0 +
du1
dx3

¯̄̄̄
x3=0

x3 +
1

2

d2u1
dx23

¯̄̄̄
x3=0

x23 + · · · (2.1)

where u1 is the time mean velocity in the ßow direction; and x3 is the distance from

the bed. The no-slip condition at the bed requires that

u1|x3=0 = 0 (2.2)

According to Newton�s frictional law, du1
dx3

¯̄̄
x3=0

is related to the bed shear stress τ0,

i.e.

τ0 ≡ ρ0u2∗ = µ
du1
dx3

¯̄̄̄
x3=0

or
du1
dx3

¯̄̄̄
x3=0

=
u2∗
ν

(2.3)
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in which ρ0 is the water density; u∗ =
p
τ0/ρ0 is the shear velocity; µ = ρ0ν is the

water dynamic viscosity; and ν is the water kinematic viscosity.

Substituting (2.2) and (2.3) into (2.1) and neglecting the higher order terms yield

the velocity proÞle near the bed as

u1
u∗
=
u∗x3
ν

or

u+ = y+ (2.4)

in which u+ = u1/u∗ and y+ = u∗x3/ν are the inner variables. Experiments (Schlicht-

ing, 1979, p.601) show that the above equation is valid in the range of 0 ≤ y+ ≤ 5.
The buffer layer velocity proÞle is very complicated and cannot be expressed using

a simple function. It will be discussed in Subsection 2.2.4.

2.2.2 Log law in the overlap

Traditionally, the velocity proÞle in the overlap is expressed by the log law or the

power law. The log law is usually regarded as a complete success since it can be

derived from a complete similarity assumption (Kundu, 1990, p.451), i.e.

u1 =
u∗
κ0
ln x3 + const (2.5)

The above equation is usually expressed in terms of the inner variables as

u+ =
1

κ0
ln y+ + C1 (2.6)

in which C1 ≈ 5, or in terms of the outer variables as
u1max − u1

u∗
= − 1

κ0
ln ξ + C2 (2.7)

in which u1max = the velocity at the water surface for a wide channel or at the

boundary layer margin for a narrow channel; ξ = x3/δ, and C2 ≈ 1. Experiments

(Kundu, p.453) show that the log law is usually valid in the range of y+ > 30 − 70
and ξ < 0.15− 0.2, which is shown in FIG. 2.1.
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Barenblatt (1996, p.271) has shown that the power law can be derived from an

incomplete similarity assumption and the log law is only a special case of the power

law. Zagarola (1996) experimentally shows that the power law has advantage over

the log law in the range of 50 < y+ < 500. In practice, the log law may still be a

good approximation.

2.2.3 Parabolic law in the wake layer and upper boundary

conditions

The velocity proÞle near a water surface or a boundary layer margin can be

expressed as a Taylor series, i.e.

u1 = u1|ξ=1 +
du1
dξ

¯̄̄̄
ξ=1

(ξ − 1) + 1

2!

d2u1
dξ2

¯̄̄̄
ξ=1

(ξ − 1)2

+
1

3!

d3u1
dξ3

¯̄̄̄
ξ=1

(ξ − 1)3 + · · · (2.8)

The boundary conditions at the water surface of a 2D channel can be expressed

as:

Velocity at the water surface: u1|ξ=1 = u1max (2.9)

and the shear stress at the water surface (White, 1991, p.149):

τ |ξ=1 = Cdρair(Vwind − u1max)2 (2.10)

in which u1max = the maximum velocity; ρair = 1.21 kg/m3 is the air density in

the standard atmosphere; Vwind is the wind velocity over the water; and Cd = the

water surface drag coefficient which is in the order of 10−3 but difficult to determine

accurately (Roll, 1965, p.160). On the other hand, the shear stress (turbulent shear

stress) at the water surface relates to the velocity gradient by an eddy viscosity, i.e.

τ |ξ=1 = ε+1 ρ0u∗
du1
dξ

¯̄̄̄
ξ=1

(2.11)

in which ε+1 is the dimensionless eddy viscosity at the water surface. From the above

two equations, one derives that

du1
dξ

¯̄̄̄
ξ=1

=
Cdρair(Vwind − u1max)2

ε+1 ρ0u∗
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= λ0
(Vwind − u1max)2

u∗
(2.12)

in which λ0 = Cdρair/(ε
+
1 ρ0) is called the water surface shear effect factor. The above

equation shows that the shear stress at the water surface is usually nonzero except

that the wind velocity over the water is equal to the water surface velocity.

However, the boundary layer thickness in a narrow channel is not the water depth,

rather it is usually deÞned as the distance from the bed to the maximum velocity

position. In this case, the velocity gradient at the maximum velocity must be zero,

i.e.
du1
dξ

¯̄̄̄
ξ=1

= 0 (2.13)

The above condition is also required in a circular pipe ßow. (2.13) may also be

expressed by (2.12) except that λ0 = 0. (2.13) and (2.12) are shown in FIG. 2.2.

Now neglecting the 3rd and higher order terms in (2.8), one obtains

u1 = u1max +
du1
dξ

¯̄̄̄
ξ=1

(ξ − 1) + 1

2!

d2u1
dξ2

¯̄̄̄
ξ=1

(ξ − 1)2 (2.14)

or
u1
u∗
=
u1max
u∗

+
1

u∗

du1
dξ

¯̄̄̄
ξ=1

(ξ − 1) + 1

2!

1

u∗

d2u1
dξ2

¯̄̄̄
ξ=1

(ξ − 1)2 (2.15)

The above equation can be rewritten as a defect form:

u1max − u1
u∗

=
1

u∗

du1
dξ

¯̄̄̄
ξ=1

(1− ξ)− 1

2!

1

u∗

d2u1
dξ2

¯̄̄̄
ξ=1

(1− ξ)2 (2.16)

in which du1
dξ

¯̄̄
ξ=1

is deÞned by (2.12) or (2.13); and 1
2u∗

d2u1
dξ2

¯̄̄
ξ=1

is determined experi-

mentally.

If (2.13) is used, the previous parabolic law is obtained

u1max − u1
u∗

= A(1− ξ)2 (2.17)

in which A = − 1
2u∗

d2u1
dξ2

¯̄̄
ξ=1

is determined experimentally. Bazin suggested A = 6.3

for wide open-channels (Hu and Hui, 1995, p.31), Hama gave A = 9.6 in plane

boundary layers (Hinze, 1975, p.631) and Laufer proposed A = 7.2 in pipes (Hinze,

1975, p.732). The parabolic law is usually valid in ξ > 0.15− 0.2, which is shown in
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FIG. 2.2: Upper derivative boundary conditions in pipes, narrow channels (a/h < 5),

and wide channels (a/h ≥ 5)
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FIG. 2.3: The velocity defect law in the outer region (After Hinze, 1975, p.631)

FIG. 2.3. However, the velocity gradient at the water surface in a wide channel is not

necessary to be zero, as indicated in (2.12).

Equations (2.4), (2.7) and (2.16) are independent of any turbulent models and

are indeed three physical constraints to the velocity proÞle. A satisfactory turbulent

model must meet them simultaneously. In practice, the viscous and the buffer layers

may be neglected, in particular in a rough boundary. Therefore, (2.7) and (2.16) must

be at least met.

2.2.4 The law of the wall (general inner region law)

To describe the velocity proÞle in the buffer layer (5 ≤ y+ ≤ 70), Spalding (White,
1991, p.415) deduced a composite law of the wall, based on an asymptotic matching

of (2.4) and (2.7), i.e.

y+ = u+ + e−κ0B
"
eκ0u

+ − 1− κ0u+ − (κ0u
+)2

2
− (κ0u

+)2

6

#
(2.18)

in which κ0 = 0.4, and B = 5.5. This equation smoothly merges the linear and the log

laws and Þts experimental data excellently, shown in FIG. 2.4. Therefore, it can be
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regarded as a complete success in the inner region. The only weakness is its implicit

functional relation.

2.2.5 The law of the wake (general outer region law)

The law of the wake or the log-wake law, proposed by Coles (1956, 1969), is a

popular one in the outer region. Coles surveyed a lot of experiments of boundary

layer ßows, all experimental data showed that the velocity defect law in the outer

region is a composite of two universal functions, i.e., the law of the wall and the law

of the wake. That is,

u1max − u1
u∗

=

·
− 1
κ0
ln ξ +

2Π

κ0

¸
| {z }
The law of the wall

− 2Π

κ0
sin2

³π
2
ξ
´

| {z }
The law of the wake

(2.19)

in which Π is the Coles wake strength coefficient and varies with the pressure gradient

in a boundary layer ßow. The wake ßow function is just a purely empirical function.

For convenience of applications, an equivalent equation is often written as

u1max − u1
u∗

= − 1
κ0
ln ξ +

2Π

κ0
cos2

³π
2
ξ
´

(2.20)
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Several hydraulicians (Coleman, 1981, 1986; Nezu and Nakagawa, 1993) system-

atically examined it in open-channels. They found that the wake ßow function can

also improve the accuracy of velocity proÞles in open-channels. For clear water, the

Coles wake strength coefficient Π is about 0 − 0.2. Note that although many inves-
tigators regarded the log-wake law as a great success in the outer region, as Coles

(1969) stated, it is not valid near the upper boundary layer edge (ξ > 0.6−0.9). This
is because it does not satisfy the boundary condition (2.12) or (2.13).

In summary, no existing velocity proÞle equation satisÞes (2.12) or (2.13).

2.3 Velocity ProÞles in Sediment-Laden Flows

Because more independent variables, such as sediment concentration and density

gradient, are involved in sediment-laden ßow systems, velocity proÞles in sediment-

laden ßows are much more complicated than those in clear water. In this section, only

the applications of the log law and the log-wake law will be reviewed. The application

of the power law is neglected here although several studies have been reported.

2.3.1 Extension of the log law to sediment-laden ßows

Vanoni (1946), Einstein and Chien (1955), Vanoni and Nomicos (1960), Elata

and Ippen (1961), and many others examined the log law in sediment-laden ßows

experimentally. They concluded that the log law remains valid except that κ, which is

the von Karman constant in sediment-laden ßow, decreases with sediment suspension.

Furthermore, Einstein and Chien (1955) proposed a graphical relation to predict the

von Karman constant κ based on an energy concept, as shown in FIG. 2.5. They also

pointed out that the main effect of sediment suspension occurs near the bed.

Later, Vanoni and Nomicos (1960) modiÞed the Einstein and Chien parameter

with the average volumetric concentration near the bed. Barton and Lin (1955) dis-

cussed the variation of the von Karman constant κ from the view of density gradient.

Chien and Wan (1983, p.396) uniÞed various arguments with a Richardson number.

However, their study could not explain Elata and Ippen�s (1961) neutral particle ex-
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FIG. 2.5: Effect of suspended sediment on the von Karman constant (After Einstein

and Chien, 1955)
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periments. To explain his neutral particle experiments, Ippen (1971) argued that

suspended sediment affects the velocity proÞle mainly by changing water viscosity. A

good summary of this type of research can be found in the literature (Vanoni, 1975,

p.83-91; Chien and Wan, 1983, p.391-401; Hu and Hui, 1995, p.130-137).

Almost at the same time as Einstein and Chien (1955), Kolmogorov (1954) and

Barenblatt (1953, 1996) also analyzed the effect of sediment suspension on the log

law from a view of complete similarity. They considered the momentum equation, the

sediment concentration equation and the turbulent energy equation simultaneously

and concluded that the log law is still valid in sediment-laden ßows except that the

von Karman constant becomes smaller. This is exactly the same conclusion as that

drawn by Einstein and Chien (1955). Barenblatt (1996, p.270) further pointed out

that the application of the log law in sediment-laden ßows, as it in clear water, is

limited to the overlap zone. In other words, the log law may not be valid in the wake

layer and near the water surface.

2.3.2 Extension of the log-wake law to sediment-laden ßows

Coleman (1981, 1986) introduced the log-wake law to open channels and studied

the effect of suspended sediment on the parameters κ and Π. He argued that if

the log-wake law is applied, the von Karman constant κ remains the same as that

in clear water κ0, but the wake strength coefficient Π increases with a Richardson

number, shown in FIG. 2.6. He further pointed out that the previous conclusion, i.e.,

κ decreases with sediment suspension, was obtained by incorrectly extending the log

law to the wake layer.

Coleman�s argument was supported by Parker and Coleman (1986), Cioffi and

Gallerano (1991). A similar result was obtained at CSU by Janin (1986) in a large

boundary layer wind tunnel. Coleman�s conclusion is actually an analogy to the ef-

fect of pressure-gradient on boundary-layer ßows. However, the pressure equation of a

boundary layer ßow in the normal direction is not similar to the sediment concentra-

tion equation in a sediment-laden ßow. The pressure or pressure-gradient is regarded

as a constant at a certain cross-section in a boundary layer ßow while the sediment
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FIG. 2.6: Effect of suspended sediment on the wake strength coefficient

concentration is usually not uniform in the vertical direction. In other words, the von

Karman constant κ is not necessarily

constant in sediment-laden ßows.

Contrary to Coleman�s Þnding, Lyn (1986, 1988) believed that the effect of sedi-

ment suspension mainly occurs near the bed. In other words, the von Karman con-

stant κ may decrease with sediment suspension while the wake strength coefficient Π

may be independent of sediment suspension and kept about 0.2, the same as that in

clear water.

Recently, Kereselidze and Kutavaia (1995), from their own experiments, deduced

that both κ and Π vary with sediment suspension.

No doubt, the log-wake law can improve the accuracy of the velocity proÞles in

sediment-laden ßows. However, the effects of sediment suspension on κ and Π are

still debatable.
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2.3.3 Log-linear law and others

The log-linear law was originally proposed in temperature stratiÞed ßows (Kundu,

1990, p.463). It is written as

u1
u∗
=
1

κ

·
ln
x3
x30

+ 5
x3
LM

¸
(2.21)

in which x30 is a reference point; and LM is the Monin-Obukhov length. The above

equation can be written as a defect form as follows:

u1max − u1
u∗

=
1

κ

·
− ln x3

δ
+ 5

δ − x3
LM

¸
= −1

κ
ln ξ +

5

κ

δ

LM
(1− ξ) (2.22)

in which ξ = x3/δ. From the formula appearance, the log-linear law is another type

of the log-wake law, except that the wake function is a linear function rather than

a sine function. However, from its derivation (Duo, 1987, p.365), the log-linear law,

like the log law, is only valid in the overlap since it is assumed that the shear stress is

a constant. In addition, the above log-linear law is derived under the assumption of

small values of Richardson number Ri (Roll, 1965, p.147). In other words, one cannot

expect that it will prove useful under conditions of great density gradient ßows.

Itakura and Kishi (1980) and McCutcheon (1981) applied the log-linear law to

sediment-laden ßows. However, this extension is not accepted by sediment researchers.

As pointed out by Lyn (1986), the foundation of the log-linear law, where the tur-

bulent temperature ßux is a constant, is not applicable in sediment-laden ßows since

the turbulent sediment concentration ßux is not a constant in the vertical direction at

all. Although the log-linear law is not applicable in sediment-laden ßows theoretically,

the comparison of the log-linear law with experimental data (Itakura and Kishi,1980;

McCutcheon, 1981) looks very good.

Besides the log-wake law and the log-linear law, some other wake function forms

can be found in literature. Ni and Hui (1988) proposed a wake ßow function with two

terms: one indicates the effect of mean concentration; the other expresses the effect

of concentration gradient. Umeyama and Gerritsen (1992) and Zhou and Ni (1995)
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suggested a Taylor series to express the wake ßow function. In addition, the study

of the power law was reported by Chien and Wan (1983), Chen (1984), Karim and

Kennedy (1987) and Woo, Julien and Richardson (1988).

2.4 Summary

No existing (outer region) velocity proÞle laws in clear water are fully satisfactory.

The log law is valid only in the overlap. The log-wake law does not satisfy the upper

boundary condition. The parabolic law is only valid near the water surface in narrow

channels. The log-linear law is good in temperature stratiÞed ßows, but the foun-

dation of its assumptions may not applicable in sediment-laden ßows. Consequently,

the applications of these laws in sediment-laden ßows are not satisfactory.
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Chapter 3

SIMILARITY ANALYSIS OF

CLEAR WATER VELOCITY

PROFILES

3.1 Introduction

Turbulence is complicated. Although the governing Navier-Stokes equations have

been established over a century, no solutions for turbulent ßows (high Reynolds num-

ber ßows) are yet available, even for a simple steady uniform 2D turbulence. To Þnd

a time-averaged solution of turbulence, the Reynolds averaged equations are usually

applied. However, the average process brings new unknowns to the ßow system. In

other words, the Reynolds equations are not closed and cannot be solved theoreti-

cally. Dimensional analysis or similarity analysis is usually helpful in such a case. The

new difficulty from the classical dimensional analysis is that it only gives similarity

parameters. It cannot give the speciÞc functional relations.

Recently, Barenblatt (1996) has extended the dimensional analysis method. In

particular, the concept of the intermediate asymptotics suggested by him is very

powerful in a turbulence analysis. Based on previous studies, an improved similarity

analysis approach is Þrst presented in Section 3.2. Then its application in the study
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of clear water velocity proÞle is discussed in Section 3.3. An eddy viscosity, based on

the new velocity proÞle law, is discussed in Section 3.4. Section 3.5 brießy summaries

the results of this chapter.

3.2 Four-step similarity analysis method

Suppose there is a physical system including a turbulent ßow in a 2D pipe or

open-channel. The governing equations of the system are not closed, unknown, or

too difficult to solve. One may proceed with a similarity analysis in the following

way: dimensional analysis, intermediate asymptotics, wake correction, and boundary

correction. These four steps are referred to as the four-step similarity analysis method.

The following is the discussion of each step.

3.2.1 Dimensional analysis

For simplicity, one assumes an equilibrium physical system. The dimensional

analysis includes: (a) specifying governing parameters (independent and dependent

parameters) and their dimensions; (b) specifying the boundary conditions; (c) choos-

ing the repeated parameters; and (d) using Buckingham�s Π theorem to normalize

the governing parameters and the boundary conditions with the repeated parameters

and putting the function under study into a dimensionless form, i.e.

The governing parameters

Π = Φ(Π1, Π2, · · · , Πm) (3.1)

The boundary conditions

lim
x→Γ

Π = φ, lim
x→Γ

∂Π

∂Πj
= φ1, lim

x→Γ
∂2Π

∂Π2j
= φ2, · · · (3.2)

in which Π is the dependent similarity parameter; Π1, Π2, · · ·, and Πm are independent
similarity parameters; x → Γ denotes the space variable tends to the boundary; φ

denotes the boundary values; and subscripts 1 and 2 denote the values of the Þrst

and the second derivatives; and j = 1, 2, · · · ,m. (3.1) is equivalent to the governing
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equations which may be a vector. The number of the boundary conditions depends

on the governing equations (ODE or PDE). However, if the governing equations are

unknown, try to write as many conditions as possible. (3.2) are constraints of (3.1).

3.2.2 Intermediate asymptotics

According to Barenblatt (1996, p. xiii), the intermediate asymptotics means that

for a certain governing similarity parameter, its value is intermediate, i.e., neither

too big nor too small. For a time-dependent problem, the intermediate asymptotics

means that the system is independent of the Þne details of the initial conditions and

also far away from the equilibrium state. For an equilibrium problem, the physical

domain considered is far away from the boundary. In other words, the dependent

parameters under consideration are independent of the boundary conditions. The

intermediate asymptotics usually includes two steps: one is the test of �complete

similarity assumption�, and the other is the test of �incomplete similarity assump-

tion.�

Complete similarity: If the system is completely independent of a certain para-

meter, say, Πm, one says that the system is complete similarity with respect to Πm.

Then Πm disappears in (3.1), the number of the independent parameters reduces to

m− 1.
Incomplete similarity: Suppose that Φ tends to zero or inÞnity when Πm goes to

zero or inÞnity. This means that the quantity of Πm remains essential in the system,

and (3.1) may be rewritten as (Barenblatt, 1996, p. 24, p. 145, Chap. 5):

Π = Πα1mΦ

µ
Π1
Πα2m

,
Π2
Πα3m

, · · · , Πm−1
Παmm

¶
(3.3)

in which the exponents α1, α2, · · ·, and αm must be determined experimentally. This
kind of similarity is called incomplete similarity.

3.2.3 Wake correction (or wake function)

From its deÞnition, the intermediate asymptotics is not valid beyond the corre-

sponding intermediate domain. The deviation between the real values of Π and the
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intermediate asymptotics beyond the intermediate domain is called the wake cor-

rection or wake function W . This is analogous to the Coles wake ßow function in

turbulent boundary layers (Coles, 1956). Now one has

Π = Φ(Π1, Π2, · · · , Πm−1) +W (Π1, Π2, · · · , Πm) (3.4)

for a complete similarity, and

Π = Πα1mΦ

µ
Π1
Πα2m

,
Π2
Πα3m

, · · · , Πm−1
Παmm

¶
+W (Π1, Π2, · · · , Πm) (3.5)

for an incomplete similarity. Obviously, the wake correction must be very small

compared with the Þrst term when Πm goes to its intermediate values.

3.2.4 Boundary correction

Equation (3.4) or (3.5) has extended the solution near the boundary. However,

the boundary conditions are usually not satisÞed. To meet the boundary condition,

another additional term which is called the boundary correction B may be added to

(3.4) and (3.5). Then one has

Π =Φ(Π1, Π2, · · · , Πm−1)| {z }
Intermediate asymptotics

+ W (Π1, Π2, · · · , Πm)| {z }
Wake correction

+ B(Π1, Π2, · · · , Πm)| {z }
Boundary correction

(3.6)

or

Π =Πα1mΦ

µ
Π1
Πα2m

,
Π2
Πα3m

, · · · , Πm−1
Παmm

¶
| {z }

Intermediate asymptotics

+ W (Π1, Π2, · · · , Πm)| {z }
Wake correction

+ B(Π1, Π2, · · · , Πm)| {z }
Boundary correction

(3.7)

The boundary correction function B is usually a polynomial. The power of the polyno-

mial is equal to the highest order of derivative boundary condition. For example, if the

highest order of the derivative boundary condition is a Þrst order, then the boundary

correction function B will be a linear function. The function B can be determined by

expanding the Þrst two terms at the boundary. The detailed method for determining

the boundary correction function B will be illustrated in the following section.

One can see that a similarity solution may consist of three parts: intermediate

asymptotics, wake correction, and boundary correction. Take the velocity proÞle in

a pipe ßow as an example, the above four steps can be summarized in FIG. 3.1.
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3.3 Velocity proÞle analysis

To give a complete procedure of the four-step similarity analysis method, some

previous results are cited in the following analysis.

3.3.1 Dimensional analysis

Like solving a system of partial differential equations, one must consider both

the governing parameters (corresponding to governing equations) and the boundary

conditions.

Traditionally, the velocity proÞle in a turbulent boundary shear ßow is considered

in two different regions separately (White, 1986, p.298). For the inner region, Prandtl

deduced in 1930 that u1 must be independent of the shear-layer thickness

u1 = f(µ, τ0, ρ0, x3) (3.8)

By dimensional analysis, this is equivalent to

u1
u∗
= F

³u∗x3
ν

´
(3.9)

or
u1
u∗
= F (y+) (3.10)

in which u∗ =
p
τ0/ρ0 and ν = µ/ρ0. (3.9) or (3.10) is called the law of the wall. The

inner boundary condition corresponding to the law of the wall is the no slip condition.

In the literature review (Chapter 2), it has been pointed out that the law of the wall

has been well solved by Spalding (White, 1991, p.415). Therefore, this analysis will

focus on the outer region velocity proÞle.

For the outer region, von Karman in 1933 deduced that u1 in the outer region is

independent of molecular viscosity but its deviation from the stream velocity u1max

(for a 2D open-channel ßow, i.e., the water surface velocity) must depend on the

shear-layer thickness and the other properties

u1max − u1 = g(δ, τ0, ρ0, x3) (3.11)
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Again, by dimensional analysis one writes this as

u1max − u1
u∗

= G
³x3
δ

´
(3.12)

or
u1max − u1

u∗
= G(ξ) (3.13)

in which ξ = x3/δ. (3.12) or (3.13) is called the velocity defect law. The boundary

conditions corresponding to the defect law should be (2.9) and (2.12) or (2.13). They

will be met by choosing the function G.

3.3.2 Intermediate asymptotics

Assume that the channel bed corresponds to the boundary Γ1 and the upper

boundary (the maximum velocity in a narrow channel or the water surface in a wide

channel) corresponds to the boundary Γ2 in FIG. 3.1. Then the left part corresponds

to the inner region in a channel ßow while the right part corresponds to the outer

region. Obviously, unlike previous studies, the outer region is now divided into three

layers: the overlap, the wake layer, and the boundary effect layer. The boundary

effect layer is emphasized here.

From FIG. 3.1, the intermediate layer or overlap belongs to both the inner region

and the outer region. Then both (3.10) and (3.13) are valid in the overlap. From

(3.10) one gets the velocity gradient as (Millikan, 1938; Kundu, 1990, p.452)

du1
dx3

=
u2∗
ν

dF

dy+
(3.14)

From (3.13) one has
du1
dx3

=
u∗
δ

dG

dξ
(3.15)

Equating (3.14) and (3.15) and multiplying by x3/u∗, one has

ξ
dG

dξ
= y+

dF

dy+
=
1

κ0
(3.16)

which is valid for large y+ and small ξ. Since the left side is only a function of ξ and

the right side is only a function of y+, both sides must be equal to the same universal
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constant, say 1/κ0, where κ0 is the von Karman constant in clear water. Integration

of (3.16) gives

F (y+) =
1

κ0
ln y+ + C1 (3.17)

and

G(ξ) =
1

κ0
ln ξ + C2 (3.18)

in which κ0, C1 and C2 are experimental constants. The above log law is actually

derived on the assumption of complete similarity with respect to Reynolds number

in the intermediate region.

Barenblatt (1996, p.269) showed that under the assumption of incomplete similar-

ity with Reynolds number, a power law in the intermediate region may be obtained.

This study will concentrate on the log law. The brief study of a power law, under the

assumption of incomplete similarity, in pipe ßows is appended in Appendix A.

3.3.3 Wake correction to the log law

Based on (3.17), Coles (1956, 1969) analyzed a lot of experimental proÞles and

determined that the wake correction can be well approximated as

W (ξ) = Ω0 sin
2 πξ

2
(3.19)

in which Ω0 is the wake value at ξ = 1. In other words, the log law may be extended

to the wake layer by adding the wake function (3.19) to (3.17), i.e.

u1
u∗
=
1

κ0
ln y+ + C1 + Ω0 sin

2 πξ

2
(3.20)

Considering y+ = Re∗ξ, in which the Reynolds number Re∗ = u∗δ/ν, the above

equation can be rewritten by the outer variable ξ, i.e.

u1
u∗
=
1

κ0
ln ξ + C3 + Ω0 sin

2 πξ

2
(3.21)

in which C3 = 1/κ0 lnRe∗ + C1. This is just the log-wake law proposed by Coles

(1956). As Coles (1969) stated later, this law is not valid near the upper boundary

layer since the derivative boundary condition at the boundary edge is not satisÞed.
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3.3.4 Boundary correction to the log-wake law

According to (3.6), assume a boundary correction function B(ξ), then (3.21) be-

comes
u1
u∗
=
1

κ0
ln ξ + C3 + Ω0 sin

2 πξ

2
+B(ξ) (3.22)

in which B(ξ) is a linear function since the highest derivative boundary condition is

a Þrst order derivative.

One can expand the above equation at ξ = 1. One has

ln ξ = ln[1− (1− ξ)] = −
∞X
i=1

(1− ξ)i
i

= −(1− ξ)− (1− ξ)
2

2
− · · · (3.23)

sin2
π

2
ξ =

1− cosπξ
2

=
1

2
+
cos(π − πξ)

2

= 1− 1
2

∞X
i=1

(−1)i [π(1− ξ)]
2i

(2i)!

= 1− π
2

4
(1− ξ)2 + · · · (3.24)

and

cos2
π

2
ξ =

π2

4
(1− ξ)2 + · · · (3.25)

(3.25) will be used later. Now substituting (3.23) and (3.24) into (3.21) and neglecting

the 3rd and higher order terms yield that

u1
u∗

= −1− ξ
κ0

− (1− ξ)
2

2κ0
+ C3 + Ω0

µ
1− π

2

4
(1− ξ)2

¶
+B(ξ)

= (C3 + Ω0)− 1− ξ
κ0

−
µ
1

2κ0
+
π2

4
Ω0

¶
(1− ξ)2 +B(ξ) (3.26)

It is assumed that B(ξ) is linear, comparing (3.26) and (2.15), one has

C3 + Ω0 =
u1max
u∗

(3.27)

B(ξ) =

"
1

κ0
− 1

u∗

du1
dξ

¯̄̄̄
ξ=1

#
(1− ξ) (3.28)
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Finally, the log-wake law is modiÞed as

u1
u∗
=
1

κ0
ln ξ +

u1max
u∗

−Ω0 cos2 πξ
2
+

"
1

κ0
− 1

u∗

du1
dξ

¯̄̄̄
ξ=1

#
(1− ξ) (3.29)

which can be rewritten as a velocity defect form

u1max − u1
u∗

= − 1
κ0
ln ξ + Ω0 cos

2 πξ

2
−
"
1

κ0
− 1

u∗

du1
dξ

¯̄̄̄
ξ=1

#
(1− ξ) (3.30)

in which κ0 and Ω0 are two experimental constants. This is the Þnal velocity proÞle

equation based on the log law, which is called the modiÞed log-wake law. The last

term is due to the boundary correction which is a main contribution of this study.

Considering (2.12) and (2.13), (3.30) may further be written as

u1max − u1
u∗

= − 1
κ0
ln ξ + Ω0 cos

2 πξ

2
−
"
1

κ0
− λ0

µ
Vwind − u1max

u∗

¶2#
(1− ξ)

(3.31)

in which λ0 = 0 for narrow channels and pipes, and λ0 > 0 for wide channels.

3.4 Implication to turbulent eddy viscosity

The eddy viscosity is not a measurable variable. It is usually derived from some

assumptions, such as the mixing length hypothesis, or from the mean velocity proÞles

for simple ßows. If (3.30) is correct, an eddy viscosity model can be deduced.

Assume that the shear stress is linearly distributed along the ßow depth and the

viscous shear stress can be neglected, the distribution of the eddy viscosity ε may be

derived from

ε =
τ0
ρ

(1− ξ) + τ |ξ=1 /τ0
1

δ

du1
dξ

= δu∗
(1− ξ) + τ |ξ=1 /τ0

1

u∗

du1
dξ

or

ε+ ≡ ε

δu∗
=
(1− ξ) + τ |ξ=1 /τ0

1

u∗

du1
dξ

(3.32)
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in which τ |ξ=1 is the shear stress on the water surface; and ε+ is deÞned as the
dimensionless eddy viscosity.

From (3.30), one has

1

u∗

du1
dξ

=
1− ξ
κ0ξ

+
πΩ0
2
sinπξ +

1

u∗

du1
dξ

¯̄̄̄
ξ=1

Substituting the above equation into (3.32) gives

ε+ =
(1− ξ) + τ |ξ=1 /τ0

1− ξ
κ0ξ

+
πΩ0
2
sin πξ +

1

u∗

du1
dξ

¯̄̄̄
ξ=1

(3.33)

which is the eddy viscosity model corresponding to the modiÞed log-wake law. The

shear stress and the velocity gradient at the water surface are boundary conditions.

When ξ → 0, (3.33) tends to

ε+ → κ0ξ (3.34)

which is the classical mixing length model. When ξ → 1, (3.33) tends to

ε+ → τ |ξ=1 /τ0
1

u∗

du1
dξ

¯̄̄̄
ξ=1

= const (3.35)

which corresponds to the constant eddy viscosity model.

(3.33) along with (3.30) will be examined with experimental data later.

3.5 Summary

In this chapter, an improved similarity analysis approach, the four-step similar-

ity analysis method, is presented, which includes dimensional analysis, intermediate

asymptotics, wake correction, and boundary correction. Based on this approach, the

modiÞed log-wake law is proposed, which is expressed in (3.30) or (3.31). The modiÞed

log-wake law satisÞes the upper boundary conditions. Furthermore, an eddy viscosity

model is deduced.
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Chapter 4

SHEAR VELOCITY IN SMOOTH

OPEN-CHANNELS

4.1 Introduction

One may skip this chapter if he simply accepts (4.16) and (4.23) as the equations

to estimate the centerline bed shear velocity in a rectangular channel. (4.16) is for the

aspect ratio a/h > 2.5 while (4.23) is for the aspect ratio a/h ≤ 2.5. After reading this
dissertation, if interested, one may come back to enjoy this mathematical derivation.

The shear velocity u∗, as a boundary condition, is a prerequisite in the study of

velocity proÞles. Conventionally, four methods for determining u∗ can be found in the

literature (Muste and Patel, 1997; Nezu, Kadita and Nakagawa, 1997): (1) from the

shear stress distribution; (2) from the log law; (3) using a global shear velocity based

on the hydraulic radius; and (4) using the shear velocity based on the ßow depth. The

Þrst two methods must be aided with experimental data and are cumbersome. The

third one is just a global value of u∗ while the shear velocity in the velocity proÞle

should be the local value. The last one is useful for a wide channel. However, most

laboratory ßume experiments belong to narrow channel ßows. Recently, Yang and

Lim (1997) presented a method for calculating the shear velocity in smooth open-

channels, based on an energy dissipation assumption. The method is excellent for the

estimation of the average bed shear velocity, but the calculation of the local shear
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velocity is still open. Besides, the equation is implicit and the calculation requires

an iterative process. Obviously, the determination of the shear velocity in an open-

channel is very difficult.

This study will begin with a conformal mapping of a rectangular cross-section into

a half-up plane (Section 4.2). Then the bed shear stress distribution (Section 4.3)

and the average bed shear stress (Section 4.4) will be derived. Section 4.5 summaries

the results of this chapter.

4.2 Conformal mapping from a rectangular cross-

section (z-plane) into a half upper plane (w-

plane)

Because of secondary ßows and nonuniform roughness distribution around the

wetted perimeter, it is impossible to get an exact solution for the boundary shear

stress distribution. To obtain an approximate solution, the following assumptions are

made: (1) the boundary is smooth; and (2) the velocity contours are parallel to the

boundary. That is, the boundary is a velocity contour and there are no secondary

ßows in the channel. The Þrst assumption can be met in most ßume experiments.

The second assumption is apparently not true, it will be considered in the solution

by introducing a correction factor.

Based on the above assumptions, the Schwartz-Christoffel transformation (Spiegel,

1993, p.206) can be used to Þnd the isovels (velocity contours, which are parallel to

the boundary) and the rays (curves which are perpendicular to the isovels and the

boundary). Considering a rectangular cross-section with width a and ßow depth h and

using the Schwartz-Christoffel transformation, one can map the physical ßow domain

(z−plane) into a half-upper plane (w−plane), shown in FIG. 4.1. The transformation
relation between them is

w =
a

π
sin
πz

a
(4.1)

30



FIG. 4.1: Scheme of ßow domain from a rectangular cross-section to a half upper

plane
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in which a is the channel width, and

z = x+ iy (4.2)

w = ξ + iη (4.3)

Relation (4.1) can be found in many text books of complex variables (for example,

Spiegel, 1993, p.206).

Substituting (4.2) and (4.3) into (4.1), one has

ξ + iη =
a

π
sin
π

a
(x+ iy)

=
a

π

³
sin
πx

a
cosh

πy

a
+ i cos

πx

a
sinh

πy

a

´
or

ξ =
a

π
sin
πx

a
cosh

πy

a
(4.4)

η =
a

π
cos

πx

a
sinh

πy

a
(4.5)

ξ = const in (4.4) is a ray equation. Similarly, η = const in (4.5) is an isovel equation,

shown in FIG. 4.1(a).

Since the water surface in the z−plane is described by the equation y = h, where
h is the ßow depth. Substituting this relation into (4.4) and (4.5) gives the water

surface mapping E0G0H 0F 0 in the w−plane, which is a half upper ellipse, as shown
in FIG. 4.1(b). The problem is usually solved in the w−plane. In this case, however,
one just goes back to the physical plane (z−plane) with the transformations (4.4)
and (4.5).

4.3 Bed shear stress distribution and centerline

shear velocity

Consider an inÞnitesimal strip, shown in FIG. 4.2, which is between the curves x =

f(x1, y) and x = f(x1+dx1, y) and dissipates its potential energy to the inÞnitesimal

boundary dx1, where x1 is a point at the bed. If the inÞnitesimal area is denoted as

32



FIG. 4.2: Scheme for computing bed shear stress distribution

dAb, considering the equilibrium between the gravity component of the strip in the

ßow direction and the bed shear force in dx1 gives

ρ0gSdAb = τbdx1 (4.6)

in which τb is the local bed shear stress. It is noted again that since x = f(x1, y) is

perpendicular to isovels, there is no shear stress between the strip and its neighbor

ßuid.

Equation (4.6) gives

τb = ρ0gS
dAb
dx1

(4.7)

From FIG. 4.2, one has

dAb =

Z h

0

[f(x1 + dx1, y)− f(x1, y)]dy (4.8)

Let dx1 → 0, one obtains
dAb
dx1

=

Z h

0

df(x1, y)

dx1
dy (4.9)

Since the point (x1, 0) is in the curve: x = f(x1, y), substituting it into (4.4), one gets

sin
πx

a
cosh

πy

a
= sin

πx1
a

(4.10)
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That is,

x = f(x1, y) =
a

π
sin−1

 sin πx1a
cosh

πy

a

 (4.11)

Differentiating the above equation with respect to x1 gives

df(x1, y)

dx1
=

cos
πx1
ar

cosh2
πy

a
− sin2 πx1

a

(4.12)

Substituting (4.12) into (4.9) then into (4.7) gives the bed shear stress distribution

as

τb = ρ0gS cos
πx1
a

Z h

0

dyr
cosh2

πy

a
− sin2 πx1

a

(4.13)

or
τb

ρ0ghS
= cos

πx1
a

Z 1

0

dts
cosh2

µ
πh

a
t

¶
− sin2

µ
πh

a

x1
h

¶ (4.14)

The above equation can not be integrated. A numerical plot of (4.14) is shown in

FIG. 4.3. It can be seen that a two-dimensional zone may be found if a/h = 5, where

the bed shear stress is about 0.94ρ0ghS. When a/h ≥ 10, the bed shear stress can

be approximated as ρ0ghS in practice.

This study only concerns the centerline shear stress, i.e., τb at x1 = 0. Substituting

x1 = 0 into (4.14) gives the centerline shear stress τbc as

τbc
ρ0ghS

=

Z 1

0

dt

cosh

µ
πh

a
t

¶ = Z 1

0

sech

µ
πh

a
t

¶
dt

=
a

πh

Z πh/a

0

sechxdx

=
a

πh
sin−1

µ
tanh

πh

a

¶
i.e.

φc ≡ τbc
ρ0ghS

=
a

πh
sin−1

µ
tanh

πh

a

¶
(4.15)
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FIG. 4.3: Bed shear stress distribution versus aspect ratio
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in which φc is deÞned as the side-wall correction factor for the centerline shear stress.

The corresponding shear velocity is obviously that

u∗ =
p
φcghS =

s
gaS

π
sin−1

µ
tanh

πh

a

¶
(4.16)

According to Yang and Lim (1997), when the aspect ratio a/h > 2, the effect

of secondary currents on the channel centerline may be neglected. This implies that

(4.15) and (4.16) may be valid when a/h > 2. To be safe, say a/h > 2.5 in this

dissertation. (4.15) and (4.16) will be examined using Wang and Qian�s experimental

data where a/h = 3− 3.75 and Muste�s data where a/h = 7.

4.4 Average bed shear stress and average bed shear

velocity

Although the above mapping model may not be valid for very narrow channels

where secondary currents are strong, the average bed shear stress is still based on

it. The result will be calibrated by introducing a secondary ßow correction factor.

Theoretically, the integration of (4.14) can give the average bed shear stress. However,

this is very complicated.

Consider the right half of the cross-section, shown in FIG. 4.1(a). The delimitation

CH in the z−plane corresponds to C 0H 0 in the w−plane, which is ξ = const. Since
(x, y) = (a

2
, 0) in the z−plane is a point in the delimitation CH, substituting this

point into (4.4) gives ξ = const = a
π
, so the equation of the curve CH in the z−plane

from (4.4) is

sin
πx

a
cosh

πy

a
= 1

i.e.

πy

a
= cosh−1

 1

sin
πx

a

 = ln

 1

sin
πx

a

+

vuut 1

sin2
πx

a

− 1
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FIG. 4.4: Scheme for computing average bed shear stress

= ln
1 + cos

πx

a

sin
πx

a

= ln
2 cos2

πx

2a

2 sin
πx

2a
cos

πx

2a

= − ln tan πx
2a

or
πx

2a
= tan−1 e−

πy
a (4.17)

For a steady uniform ßow, considering the equilibrium between the gravity com-

ponent of the ßuid of the subarea Ab, shown in FIG. 4.4, and the bed shear force in

the ßow direction, one has the following relation

ρ0gSAb = aτ b (4.18)

in which ρ0 is the water density; g is the gravitational acceleration; S is the bed

slope; a is the channel width; and τ b is the average bed shear stress. Note that the

delimitations are perpendicular to isovels, so there is no shear stress between the

subareas Ab and Aw. Solving for τ b in (4.18) gives

τ b =
ρ0gS

a
Ab (4.19)

37



Referring to FIG. 4.4 and considering (4.17), one gets the subarea Ab as

Ab = 2

Z h

0

xdy =
4a

π

Z h

0

tan−1 e−
πy
a dy

The integration of the above equation by parts yields

Ab =
4ah

π
tan−1 e−

ay
π + 4

Z h

0

ye−
πy
a

1 + e−
2πy
α

dy (4.20)

Numerical experiments show that the Þrst term on the right-hand side is the leading

term. The second term is only a small fraction of the Þrst one. Therefore, one may

approximate the second one asZ h

0

ye−
πy
a

1 + e−
2πy
α

dy ≈
Z λh

0

ye−
πy
a dy =

³a
π

´2 ·
1−

µ
1 +

λπh

a

¶
e−

λπh
a

¸
(4.21)

Since the integrand has been enlarged, the correction factor λ in the upper limit

must be in 0 < λ < 1. This can be considered a secondary ßow correction factor.

Physically, not all the potential energy in the subarea Ab is dissipated by the bed

shear stress. A small fraction of potential energy is used to maintain the secondary

ßows. Therefore, λ must be less than unit. Now the subarea Ab may be interpreted

as the effective ßow area where the potential energy is dissipated by the bed shear

stress. Obviously, the subarea Ab under study now is less than the area in FIG. 4.4.

For convenience, the effective subarea is still denoted by Ab.

Substituting (4.21) into (4.20) gives the effective subarea Ab corresponding to the

bed shear stress as

Ab =
4ah

π
tan−1 e−

πy
a + 4

³a
π

´2 ·
1−

µ
1 +

λπh

a

¶
e−

λπh
a

¸
Furthermore, substituting this equation into (4.19) gives

τ b =
ρ0gS

a

½
4ah

π
tan−1 e−

πy
a + 4

³a
π

´2 ·
1−

µ
1 +

λπh

a

¶
e−

λπh
a

¸¾
or

φm ≡ τ b
ρ0ghS

=
4

π
tan−1 e−

πy
a +

4a

π2h

·
1−

µ
1 +

λπh

a

¶
e−

λπh
a

¸
(4.22)

in which φm is deÞned as the side-wall correction factor for average bed shear stress.

The secondary correction factor λ is calibrated as 0.6691 using extensive experimental
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FIG. 4.5: Comparison of the theoretical side-wall correction factor with experimental

data
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Table 4.1: Comparison of side-wall correction factor with experiments

Measur.a Calcula.b Error Measur.a Calcula.b Error
a/h φm φc (%) a/h φm φc (%)
0.310 0.148 0.125 -0.158 3.090 0.636 0.629 -0.012
0.490 0.193 0.186 -0.035 3.120 0.644 0.632 -0.019
0.580 0.229 0.212 -0.075 3.350 0.644 0.653 0.014
0.670 0.238 0.234 -0.015 3.510 0.649 0.667 0.027
0.990 0.259 0.305 0.176 3.890 0.685 0.696 0.016
1.000 0.264 0.307 0.161 3.910 0.692 0.697 0.008
1.190 0.287 0.345 0.202 4.000 0.711 0.704 -0.010
1.210 0.330 0.349 0.057 4.310 0.718 0.723 0.008
1.310 0.393 0.368 -0.063 4.740 0.728 0.747 0.026
1.340 0.406 0.374 -0.078 5.000 0.744 0.760 0.021
1.470 0.416 0.399 -0.041 5.040 0.746 0.762 0.021
1.480 0.431 0.401 -0.070 5.650 0.761 0.787 0.034
1.510 0.433 0.406 -0.062 5.950 0.780 0.798 0.023
1.560 0.435 0.415 -0.045 6.670 0.801 0.820 0.023
1.570 0.448 0.417 -0.069 6.760 0.804 0.822 0.023
1.670 0.450 0.435 -0.033 6.790 0.815 0.823 0.010
1.700 0.451 0.440 -0.023 7.600 0.818 0.842 0.030
1.770 0.455 0.453 -0.005 7.730 0.840 0.845 0.006
1.820 0.487 0.461 -0.053 9.560 0.874 0.875 0.002
2.000 0.490 0.490 0.001 10.000 0.876 0.881 0.006
2.000 0.517 0.490 -0.052 10.020 0.880 0.881 0.002
2.000 0.525 0.490 -0.066 11.840 0.892 0.900 0.009
2.100 0.530 0.506 -0.046 12.500 0.917 0.906 -0.012
2.190 0.531 0.519 -0.022 14.590 0.917 0.920 0.003
2.270 0.551 0.531 -0.037 14.790 0.922 0.921 -0.001
2.400 0.555 0.549 -0.012 16.940 0.925 0.931 0.007
2.500 0.566 0.562 -0.008 19.120 0.931 0.939 0.009
2.910 0.567 0.610 0.076 20.000 0.938 0.942 0.004
3.000 0.591 0.619 0.048 23.730 0.944 0.952 0.008
3.020 0.600 0.621 0.036 50.000 0.975 0.977 0.003
a Data source: Knight, D. W., Demetriou, J. D. and Hamed M. E. (1984).
�Boundary shear in smooth rectangular channels.� J. Hydr. Engrg., ASCE,
110(4), 405-422.

b Theoretical formula:

φm =
4
π
tan−1 e−

πh
a + 4

π2
a
h

h
1− ¡1 + λπh

a

¢
e−λ

πh
a

i
in which λ = 0.6691.
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data (Knight et al., 1984). A comparison of (4.22) with experimental data is shown

in Table 4.1 and FIG. 4.5, where the correlation coefficient is 0.9961 and the average

relative error is 3.7%.

With the side-wall correction factor φm, the average bed shear velocity u∗ can be

calculated by the following:

u∗ =

r
τ b
ρ0
=
p
φmghS (4.23)

The above equation is derived from the model where the maximum velocity always

occurs at the water surface, but the parameter λ, determined experimentally, consid-

ers the effect of secondary ßows. Therefore, it is valid even if the maximum velocity

occurs below the water surface.

Empirically, (4.23) can be approximated as the centerline shear velocity when

a/h ≤ 2.5. This will be seen later from Coleman�s experimental data in Table 5.3,

where the aspect ratio a/h is about 2.

By the way, the side-wall shear stress distribution and its average shear stress

can also be calculated in a similar way. They are, however, neglected because of

irrelevance to this study.

4.5 Summary

In this chapter, the channel centerline shear velocity equation (4.16) is derived

based on the shear stress distribution along the bed. It may be valid for a/h > 2.5.

The average bed shear velocity, which is calculated from (4.22) and (4.23), may be

as a good approximation of the channel centerline shear velocity in narrow channels.

A secondary ßow correction factor is considered in the average bed shear velocity.
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Chapter 5

TEST OF THE MODIFIED

LOG-WAKE LAW IN CLEAR

WATER

5.1 Introduction

The purposes of this chapter are to examine that: (1) is the structure of the

modiÞed log-wake law reasonable? (2) if the structure of the modiÞed log-wake law is

correct, how do the model parameters κ0, Ω0 and λ0 vary with the Reynolds number

u∗h/ν or the aspect ratio a/h? and (3) if the modiÞed log-wake law is correct, does

the corresponding eddy viscosity model agree with experimental data?

Since pipe ßows are simpler than open-channel ßows, the maximum velocity u1max

at a pipe axis and the shear velocity u∗ in a pipe can be exactly measured or estimated,

this test starts with the examination of the modiÞed log-wake law in pipes in Section

5.2. Narrow channel ßows are then tested in Section 5.3. Wide channel experiments

are tested in Sections 5.4 and 5.5. Note that a wide channel ßow is different from

that in a narrow channel since their derivative boundary conditions are not the same.

This can be easily seen from (2.12) and (2.13) in Chapter 2. Finally, Section 5.6

summaries the results of this chapter.
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5.2 Test of the modiÞed log-wake law in pipes

5.2.1 ModiÞed log-wake law in pipes

Applying the boundary condition (2.13) to (3.30), or λ0 = 0 to (3.31), one gets

the modiÞed log-wake law in pipes as

u1max − u1
u∗

= − 1
κ0
ln ξ + Ω0 cos

2 πξ

2
− 1− ξ

κ0
(5.1)

in which ξ = x3/R and R is the radius of the pipe.

5.2.2 Data selection

Since the classical experiments by Nikuradse (1932), many pipe experiments

have been reported, a systematic review of these experiments can be found in Za-

garola�s (1996) dissertation. The latest accurate superpipe measurements by Za-

garola (1996) at the Gas Dynamics Lab in Princeton University will be used in this

study. Zagarola performed measurements of the mean velocity proÞles and static

pressure gradients at 26 different Reynolds numbers between 3.1×104 and 3.5×107.
The complete description of the experimental details and experimental data can be

found in his dissertation (Zagarola, 1996) or a Web site in Princeton University:

http://www.princeton.edu/�gasdyn/index.htmp. In this section, only the mean ve-

locity proÞle data are used to examine the modiÞed log-wake law. By the way, the

study of a power-wake law in pipes can be found in Appendix A. However, the power-

wake law is not emphasized in this dissertation.

In Zagarola�s experimental data, the maximum velocity u1max, shear velocity u∗,

and sample points (ξi, ui) are given. Hence, only the von Karman constant κ0 and

the wake strength coefficient Ω0 are Þtting parameters.

5.2.3 Methods for determining κ0 and Ω0

Two methods can be used to determine κ0 and Ω0, one is the asymptotic method,

the other is the least-squares method.
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Asymptotic method (Graphical method)

For a quick estimation, let ξ << 1, (5.1) reduces to the classical log law, i.e.

u1max − u1
u∗

= − 1
κ0
ln ξ + Ω0 − 1

κ0
(5.2)

Then the von Karman constant κ0 and the wake strength coefficient Ω0 can be de-

termined from the slope and intercept at ξ = 1 of a semilog plot of (u1max − u1) /u∗
versus ξ. This method is similar to that suggested by Coles (1956) and Coleman

(1986) in the log-wake law. It is illustrated in FIG. 5.4 (p.51). The asymptotic

method is only illustrated herein and not used in this study.

Least-squares method

To accurately estimate κ0 and Ω0, the least-squares method should be used. The

least-squares approximation can be represented by

S =
nX
i

·
u1max − u1i

u∗
+
1

κ0
(ln ξi + 1− ξi)−Ω0 cos2 πξi

2

¸2
=⇒ minimum (5.3)

in which S is the sum of the squares of the residuals; n is the number of sample points

(ξi, u1i); and u1max and u∗ are given. Then the model parameters κ0 and Ω0 can be

found by solving the following equations:

∂S

∂κ0
= 0 and

∂S

∂Ω0
= 0 (5.4)

That is,
nX
i

·
u1max − u1i

u∗
+
1

κ0
(ln ξi + 1− ξi)−Ω0 cos2 πξi

2

¸
(ln ξi + 1− ξi) = 0 (5.5)

and
nX
i

·
u1max − u1i

u∗
+
1

κ0
(ln ξi + 1− ξi)− Ω0 cos2 πξi

2

¸
cos2

πξi
2
= 0 (5.6)

The above two equations can be further written as

1

κ0

nX
i

(ln ξi + 1− ξi)2 − Ω0
nX
i

(ln ξi + 1− ξi) cos2 πξi
2

= −
nX
i

u1max − u1i
u∗

(ln ξi + 1− ξi) (5.7)
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and

1

κ0

nX
i

(ln ξi + 1− ξi) cos2 πξi
2
− Ω0

nX
i

cos4
πξi
2

= −
nX
i

u1max − u1i
u∗

cos2
πξi
2

(5.8)

(5.7) and (5.8) are linear equations with respect to 1/κ0 and Ω0. A MatLab program

has been written to handle this solving process (Appendix B).

5.2.4 Test of the structure of the modiÞed log-wake law

Theoretically, the modiÞed log-wake law is valid in the outer region (overlap +

wake layer + boundary effect layer). The lower limit of the overlap is usually taken

as y+ = 70. Therefore, the modiÞed log-wake law is valid in y+ ≥ 70 and ξ ≤ 1. FIG.
5.1 is a test of the structure of the modiÞed log-wake law. To emphasize the velocity

proÞle near the bed, a semilog plot is shown in FIG. 5.1a, where the modiÞed log-

wake law, the asymptotic log law and the asymptotic parabolic law are compared with

Zagarola�s (1996) experimental data. The same things are plotted in a rectangular

coordinate system in FIG. 5.1b to emphasize the velocity proÞle near the axis. It

can be seen that the modiÞed log-wake law agrees fairly well with experimental data.

The correlation coefficient r = 0.9999, shown in FIG. 5.1b. Besides, the asymptotic

log law can be considered valid until about ξ = 0.1; and the asymptotic parabolic law

can be considered valid above ξ = 0.6. All other proÞles are very similar to those in

FIG. 5.1. No doubt, the structure of the modiÞed log-wake law is reasonable.

5.2.5 Test of κ0 and Ω0 with Reynolds number

The structure of the modiÞed log-wake law has been checked to be correct. Are

the model parameters κ0 and Ω0 universal or Reynolds number dependable constants?

FIG. 5.2 is a test of κ0 and Ω0 with Reynolds number. It shows that an excellent

agreement is obtained for each run. The individual values of κ0 and Ω0 are tabulated

in Table 5.1, where κ0 varies between 0.38 and 0.41 and can be approximated by

κ0 = 0.3527 + 0.0049 lnRe∗ (5.9)
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Pipe data (Zagarola, 1996)
Modified log-wake law     
Asymptotic log law        
Asymptotic parabolic law  

18 20 22 24 26 28 30 32 34

10 -2

10 -1

10 0

Run 16

ξ=
x 3/

R

u−1/u*

(a)

Pipe data (Zagarola, 1996)
Modified log-wake law     
Asymptotic log law        
Asymptotic parabolic law  

18 20 22 24 26 28 30 32

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ξ=
x 3

/R

u−1/u*

Run 16

R = 6.35 cm

u* = 0.7 m/s

ū1max= 22.5 m/s

κ0 = 0.4058

Ω0 = 3.212

r = 0.9999

(b)

FIG. 5.1: Test of the structure of the modiÞed log-wake law [(a) in a semilog coordi-

nate system; (b) in a rectangular coordinate system.]
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FIG. 5.2: Comparison of the modiÞed log-wake law and Zagarola�s superpipe experi-

mental proÞles with y+ ≥ 70
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Table 5.1: The model parameters in the modiÞed log-wake law for

individual velocity proÞles (Velocity proÞle data source: Zagarola,

1996)

Reynolds Reynolds Karman Wake Correlation
Number Number Constant Strength Coefficient

Run Re (104) Re∗ (103) κ0 Ω0 r

1 3.16 0.85 0.387 3.286 0.9998
2 4.17 1.09 0.382 3.342 0.9998
3 5.67 1.43 0.379 3.347 0.9998
4 7.43 1.93 0.382 3.361 0.9998
5 9.88 2.34 0.384 3.336 0.9997

6 14.58 3.32 0.383 3.197 0.9998
7 18.54 4.12 0.388 3.205 0.9997
8 23.05 5.02 0.391 3.199 0.9997
9 30.95 6.59 0.401 3.191 0.9997
10 40.93 8.49 0.395 3.086 0.9999

11 53.91 10.94 0.395 3.041 0.9999
12 75.18 14.83 0.399 3.110 0.9999
13 102.38 19.68 0.398 3.075 0.9999
14 134.04 25.23 0.403 3.132 0.9999
15 178.75 32.88 0.400 3.155 0.9999

16 234.50 42.16 0.406 3.212 0.9999
17 309.81 54.65 0.409 3.227 0.9999
18 442.03 76.10 0.405 3.164 0.9998
19 607.27 102.19 0.404 3.187 0.9999
20 771.47 127.32 0.404 3.242 0.9999

21 1024.90 165.56 0.402 3.213 0.9998
22 1359.80 216.04 0.401 3.203 0.9999
23 1819.60 283.32 0.411 3.199 0.9998
24 2397.70 367.00 0.416 3.272 0.9998
25 2992.70 452.40 0.411 3.223 0.9998

26 3525.90 528.57 0.412 3.292 0.9998
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in which Re∗ = Ru∗/ν. (5.9) is shown in FIG. 5.3a. The wake strength coefficient Ω0

is about a constant of 3.21 which is shown in FIG. 5.3b.

Obviously, a universal constant of κ0 does not exist for y
+ ≥ 70. Motivated by

the suggestion of Zagarola (1996), i.e., the lower limit of the validation of the log law

is y+ = 500 instead of y+ = 70, one may try a plot of all experimental data with

y+ ≥ 500, shown in FIG. 5.4. This time an excellent complete similarity is obviously
obtained. The least-squares method gives the universal constants κ0 and Ω0 as

κ0 = 0.4056 ≈ 0.406 and Ω0 = 3.201 ≈ 3.2 (5.10)

with an overall correlation coefficient r = 0.9998.

One can now conclude that: (1) For large Reynolds number y+ ≥ 500, a complete
similarity velocity defect law exists. The universal constants κ0 and Ω0 are 0.406 and

3.2, respectively. (2) If the near bed data, 70 ≤ y+ < 500, are included, κ0 slightly

increases with the Reynolds number Re∗ and can be estimated by (5.9). In practice,

κ0 may still be taken as 0.406 as a good approximation. The wake strength coefficient

Ω0 can be approximated as a constant 3.2.

5.2.6 Test of the eddy viscosity model

The test of eddy viscosity model involves estimating the velocity gradient from a

set of data points. However, numerical differentiation is often an unreliable process

which can be highly sensitive to small ßuctuations in data. In particular, the velocity

gradient near the pipe axis is very small and, hence, very difficult to estimate accu-

rately. Therefore, this study does not try to differentiate the aforementioned velocity

proÞle data and get the eddy viscosity. Simply, the authoritative eddy viscosity data

calculated by Hinze (1975, p.730) from Laufer�s and Nunner�s data are examined.

Since the shear stress at a pipe axis τ |ξ=1 = 0 and du1
dξ

¯̄̄
ξ=1

= 0, (3.33) in pipes

reduces to

ε+ =
ξ

1

κ0
+
πΩ0
2

ξ sin πξ

1− ξ
(5.11)
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Data from experiments (Zagarola, 1996)
Curvefitting equation                 
Error with 2%                         

102 103 104 105 106 107
0.34

0.36

0.38

0.4

0.42

0.44

Re*

κ0

(a)

Data from experiments (Zagarola, 1996)
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FIG. 5.3: (a) Variation of κ0 versus Re∗; (b) Variation of Ω0 versus Re∗
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FIG. 5.4: Complete similarity: Comparison of the modiÞed log-wake law with Za-

garola�s (1996) superpipe experimental data with y+ ≥ 500
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Laufer's pipe data (Hinze, 1975)
Nunner's pipe data (Hinze, 1975)
From modified log-wake law      
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FIG. 5.5: Test of the eddy viscosity model from the modiÞed log-wake law

Near the pipe wall, ξ → 0, the above equation reduces to

ε+ → κ0ξ (5.12)

which is consistent with the mixing length model. Near the pipe axis, ξ → 1, one has

sin πξ

1− ξ =
sin π(1− ξ)
1− ξ → π

Thus,

ε+ → 1

1

κ0
+
π2Ω0
2

= const (5.13)

which is the same as the result of the parabolic law (Hinze, 1975, p.730).

Substituting the universal constants κ0 = 0.406 and Ω0 = 3.2 into (5.11), one can

get the eddy viscosity expression corresponding to the modiÞed log-wake law which

is drawn in FIG. 5.5.

FIG. 5.5 shows that the predicted eddy viscosity is compatible to Laufer�s and

Nunner�s experimental data. In addition, the present eddy viscosity model is physi-

cally reasonable. Since the eddy viscosity ε in the vertical direction is proportional
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to u03, the plot of the viscosity model is very similar to that of the measurements of

the turbulence intensity in the x3−direction (Hinze, 1975, p.725).

5.3 Test of the modiÞed log-wake law in narrow

open-channels

As stated earlier, the boundary layer thickness δ is the distance from the bed to

the maximum velocity u1max in narrow channels. The derivative boundary condition,

as it in pipes, is expressed by (2.13). Thus, the modiÞed log-wake law in narrow

channels is the same as that in pipes, i.e., (5.1), here ξ = x3/δ in narrow channels.

5.3.1 Data selection

Although many experiments in narrow ßumes are reported (Hu and Hui, 1995;

Sarma, Lakshminarayana and Rao, 1983), the original data can be found only in a few

papers. Three data sources are used here: Wang and Qian (1989), Coleman (1986),

and Kironoto (1993).

In Wang and Qian�s (1989) data, the experiments were run in a smooth ßume

(both side-walls and bed) with a bed slope S = 0.01, the aspect ratios are 3, 3.33

and 3.75. Therefore, the centerline shear velocity can be estimated from (4.16). The

detailed information can be found in Appendix C.

Coleman�s (1986) experiments are very similar to Wang and Qian�s (1989), except

that the bed slope S = 0.002 and the aspect ratios are about 2. Therefore, the

centerline shear velocity may be estimated from (4.23). Some information about

Coleman�s experiments is shown in Appendix D.

In both Wang and Qian�s (1989) and Coleman�s (1986) experiments, given the

shear velocity u∗, the Þtting parameters include δ, u1max, κ0, and Ω0. If κ0 is Þtted

as about 0.406 in these two data sets, it may be proved that the proposed equations

for determining the shear velocity u∗ in Chapter 4 are reasonable.

Kironoto (1993) did experiments over a rough bed (ks = 23 mm) ßume with the

53



aspect ratio a/h ≈ 2. So, the centerline shear velocity u∗ can be estimated from

neither (4.16) nor (4.23). In this case, one assumes that κ0 = 0.406, then the Þtting

parameters are u∗, δ, u1max, and Ω0. Some information about Kironoto�s (1993)

experiments can be found in Appendix E.

5.3.2 Method for determining δ and u1max

For a narrow channel where the maximum velocity occurs below the water surface,

one can assume that the velocity proÞle near the boundary layer margin (approxi-

mately ξ ≥ 0.6 from the pipe results) obeys the parabolic law, Þtting the experimental
data (x3i, u1i) near the boundary layer margin as a quadratic equation can give the

maximum velocity u1max and its corresponding boundary layer thickness δ.

SpeciÞcally, let the velocity proÞle near the boundary layer margin has the follow-

ing functional form:

u1 = a1x
2
3 + a2x3 + a3 (5.14)

in which a1, a2, and a3 are curve-Þtting constants. Using the experimental data

(x3i, u1i) near the boundary layer margin with the least-squares method, three con-

stants a1, a2, and a3 can be determined. Then, the boundary layer thickness δ and

the maximum velocity u1max can be easily estimated by setting the velocity gradient

du1/dx3 = 0, which gives

δ = − a2
2a1

(5.15)

u1max = a1δ
2 + a2δ + a3 (5.16)

With δ, u1max and u∗ or κ0 available, the exact same procedure as that in pipes

is used for determining Ω0 and κ0 or u∗.

5.3.3 Test of the modiÞed log-wake law

Wang and Qian�s (1989) experiments

As stated earlier, the centerline shear velocities can be calculated from (4.16).

After determining the values of δ and u1max from (5.15) and (5.16), respectively, κ0
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and Ω0 are estimated from (5.7) and (5.8). The calculated results are shown in Table

5.2. A representative velocity proÞle of Wang and Qian�s clear water experiments is

shown in FIG. 5.6, where the bed slope S = 0.01. Other proÞle analyses can be found

in Appendix C (Section: Clear water and salt water measurements).

Table 5.2: Calculated results of Wang-Qian�s clear and salt water experiments

RUN h a/h u∗ δ δ/h u1max Re∗ κ0 Ω0 r a

(cm) (cm/s) (cm) (m/s)
CW1 10 3.00 9.16 6.36 0.636 2.11 5826 0.419 1.32 0.9992
CW2 10 3.00 9.16 6.25 0.625 2.10 5725 0.412 1.49 0.9994
CW3 10 3.00 9.16 6.71 0.671 2.11 6146 0.390 1.20 0.9996
SW1 9 3.33 8.81 6.19 0.688 2.07 4957 0.385 1.45 0.9987
SW2 9 3.33 8.81 6.51 0.723 2.09 5213 0.424 1.91 0.9993
CW4 8 3.75 8.40 6.06 0.758 1.99 5544 0.412 1.70 0.9993
MEAN 0.407 1.51
a Fitting correlation coefficient

Coleman�s (1986) experiments

Since the aspect ratios in Coleman�s experiments are about 2.0, the secondary

ßows in the corners strongly affect the bed shear stress at the centerline, as an approx-

imation, the average bed shear velocity u∗ is used herein. Using the same procedure

as before, the values of δ, u1max, κ0 and Ω0 are calculated, shown in Table 5.3, where

the bed slope S = 0.002. A representative velocity proÞle of Coleman�s clear water

experiments is shown in FIG. 5.7. Other proÞles can be found in Appendix D.

Table 5.3: Calculated results of Coleman�s clear water experiments

RUN h a/h u∗ δ δ/h u1max Re∗ κ0 Ω0 r a

(cm) (cm/s) (cm) (m/s)
RUN1 17.2 2.07 4.11 13.26 0.771 1.054 5463 0.370 2.707 0.9997
RUN21 16.9 2.11 4.10 12.61 0.746 1.048 5542 0.400 2.598 0.9992
RUN32 17.3 2.06 4.12 12.88 0.745 1.025 5397 0.432 3.356 0.9997
MEAN 0.401
a Fitting correlation coefficient
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Data of Wang-Qian (1989)
Modified log-wake law   
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FIG. 5.6: Comparison of the modifed log-lake law with Wang-Qian�s experiments [(a)

in a semilog coordinate system, (b) in a rectangular coordinate system]
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Data of Coleman (1986)
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FIG. 5.7: Comparison between the modifed log-lake law and Coleman�s experimental

data [(a) in a semilog coordinate system , (b) in a rectangular coordinate system]
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Data of Kironoto (1993)

Modified log-wake law  
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FIG. 5.8: Comparison between the modifed log-lake law and Kironoto�s narrow ßume

data [(a) in a semilog coordinate system, (b) in a rectangular coordinate system]
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Table 5.4: Calculated results of Kironoto�s clear water experiments

RUN h a/h S u∗ δ δ/h u1max Re∗ Ω0 r
(cm) (cm/s) (cm) (m/s)

UGA3 28.5 2.11 1.0E-3 4.16 21.75 0.763 0.571 9048 1.637 0.9992
UGA5 28.5 2.11 1.0E-3 4.59 21.81 0.765 0.570 10011 1.259 0.9995
UGB3 29.0 2.07 7.5E-4 3.35 21.41 0.738 0.465 7172 2.119 0.9990
UGB5 29.0 2.07 7.5E-4 3.65 24.98 0.860 0463 9118 1.695 0.9977
Notes: Assume that κ0 = 0.406. r =Fitting correlation coefficient.

Kironoto�s (1993) experiments

As stated in Section 5.3.1, the shear velocity u∗ cannot be estimated from (4.16)

or (4.23). Since κ0 is independent of roughness and should be the same as that in pipe

ßows (based on previous knowledge), one may assume that κ0 = 0.406 in Kironoto�s

experiments. Then u∗ can be evaluated from a curve-Þtting. That is, rewrite (5.1) as

u1max − u1 = −u∗
κ0
[ln ξ + (1− ξ)] + u∗Ω0 cos2 πξ

2
(5.17)

Let

p1 =
u∗
κ0

and p2 = u∗Ω0 (5.18)

in (5.17), then p1 and p2 can be found using the least-squares method. Furthermore,

u∗ and Ω0 can be estimated (5.18), shown in Table 5.4. A representative velocity

proÞle is shown in FIG. 5.8 (p.58). Other proÞles can be found in Appendix E.

Results of narrow channel experiments

From Tables 5.2-5.4, and FIGS. 5.6-5.8, one can see that: (1) The modiÞed log-

wake law has a very high correlation with measurement data. (2) κ0 varies within

0.385 and 0.432, its average value is 0.405 which is compatible to both that in pipe

ßows in Section 5.2.5 and previous studies 0.40-0.41 (Kironoto and Graf, 1994; Muste

and Patel, 1997; Nezu, Kadota and Nakagawa, 1997). On the other hand, the values

of κ0 here show that the shear velocity equations (4.16) and (4.23) are reasonable.

(3) Ω0 may vary with the aspect ratio a/h and the relative roughness ks/h. This

will further be discussed in Subsection 5.4.4. (4) The modiÞed log-wake law can
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Data of Kironoto (1993)   
From modified log-wake law
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FIG. 5.9: Test of the eddy viscosity model from the modiÞed log-wake law

reproduce even the measurement data beyond the boundary layer thickness. This is

an important aspect of the modiÞed log-wake law.

5.3.4 Test of the eddy viscosity model

The eddy viscosity model in a narrow channel is the same as that in pipes, i.e.,

(5.11). From Table 5.4 or FIG. 5.8, one has κ0 = 0.406 and Ω0 = 1.259 for UGA5 of

Kironoto�s data sets (see Appendix E). Substituting these values into (5.11) gives the

corresponding eddy viscosity. FIG. 5.9 shows the comparison of the proposed model

with one of Kironoto�s (1993) data. Following Hinze (1975, p.730), the data beyond

ξ = 0.9 are omitted since the numerical estimation of the velocity gradient near the

boundary layer margin is very sensitive to small data ßuctuation. It can be seen from

the Þgure that the proposed model is compatible to the measurements. However, the

agreement is not as good as the corresponding velocity proÞle (FIG. 5.8). Again this

is because the velocity gradient is difficult to estimate numerically.
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5.4 Test of the modiÞed log-wake law in wide open-

channels

5.4.1 Data selection

In the test of the modiÞed log-wake law in wide channels, if one assumes κ0 =

0.406, there are still four Þtting parameters, u∗, Ω0, λ0 and u1max. More Þtting

parameters will reduce the reliability of the Þtting results. Therefore, this test will

only use the experimental data reported by Kironoto (1993), where the maximum

velocity u1max is measured. Only three parameters, u∗, Ω0, and λ0, need to be Þtted.

In addition, the channel side-walls are smooth and the bed is rough with ks = 4.8

mm. The aspect ratios a/h are between 5 and 7.

5.4.2 Method for determining u∗, Ω0, and λ0

The modiÞed log-wake law is described by (3.31) in wide open-channels, where

the water surface shear effect factor λ0 6= 0. Rewrite (5.23) as

u1max − u1 = −u∗
κ0
[ln ξ + (1− ξ)] + Ω0u∗ cos2 πξ

2

+λ0

µ
Vwind − u1max

u∗

¶2
u∗(1− ξ) (5.19)

Let

p1 =
u∗
κ0

, p2 = Ω0u∗ , p3 = λ0

µ
Vwind − u1max

u∗

¶2
u∗ (5.20)

then p1, p2 and p3 can be estimated by the least-squares method (linear regression).

A MatLab program to handle the above process is appended in Appendix B.

With p1, p2 and p3 available, one has

u∗ = κ0p1 , Ω0 = p2/u∗ , λ0 =
p3
u∗

µ
Vwind − u1max

u∗

¶−2

5.4.3 Test of the modiÞed log-wake law

The calculated results of Kironoto�s (1993) data in a wide ßume are shown in

Table 5.5. A representative velocity proÞle, along with the modiÞed log-wake law,
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Table 5.5: Results of Kironoto�s wide channel experiments from the

modiÞed log-wake law

RUN h a/h u∗ Re∗ ks/h Ω0 λ0 r
(cm) (cm/s)

UPA3 11.50 5.22 3.37 3636 0.042 -0.1642 0.0107 0.9992
UPA5 11.50 5.22 3.20 3445 0.042 -0.2831 0.0118 0.9996
UPB3 10.10 5.94 3.54 3355 0.048 -0.6431 0.0143 0.9993
UPB5 10.10 5.94 3.53 3339 0.048 -0.5015 0.0129 0.9993
UPC3 11.90 5.04 2.31 2576 0.040 1.0642 0.0063 0.9994
UPC5 11.90 5.04 2.26 2516 0.040 0.4360 0.0088 0.9994
UPD3 8.70 6.90 3.37 2752 0.055 -0.3178 0.0146 0.9992
UPD5 8.70 6.90 3.67 2995 0.055 -0.0845 0.0142 0.9996
Notes: Rough bed ks = 4.8 mm; assume κ0 = 0.406;

r = correlation coefficient.

is shown in FIG. 5.10. One can see that the modiÞed log-wake law compares the

data fairly well. However, the wake strength seems very small compared with that in

narrow channels.

5.4.4 Wake strength coefficient Ω0 in open-channels

A plot of the wake strength coefficient Ω0 against the aspect ratio a/h is shown

in FIG. 5.11. The data are from Tables 5.2, 5.3, 5.4 and 5.5. One can see that the

wake strength coefficient Ω0 decreases with the aspect ratio a/h in narrow channels.

However, when a/h ≥ 5, the wake strength coefficient Ω0 is about 0. This shows

that: (1) the wake strength coefficient Ω0 is, in essence, a factor to reßect the effect

of the side-walls; and (2) when the aspect ratio a/h ≥ 5, the side-wall effect may

be neglected and the wake strength coefficient Ω0 then tends to zero. Physically,

the wake function reßects large-scale turbulent mixing. In open-channels, secondary

ßows in the channel corners can be regarded as a kind of large scale eddies. For a

wide channels, secondary ßows may only be limited to near the corners and have little

effect on the centerline velocity proÞles. Hence, the wake function in a wide channel is

relatively small. On the other hand, the free surface suppresses the vertical turbulent

mixing and then further weaken the wake function. Finally, the wake strength Ω0 is
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Data of Kironoto (1993)
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FIG. 5.10: Comparison of the modiÞed log-wake law with Kironoto�s wide channel

data [(a) in a rectangular coordinate, (b) in a semilog coordinate]
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Coleman's (1986) data, smooth bed  
Wang-Qian's (1989) data, smooth bed
Kironoto's (1993) data, rough bed  
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FIG. 5.11: The wake strength coefficient Ω0 versus the aspect ratio a/h

very small or tends to zero in wide channels. An empirical equation for the estimation

of Ω0 is suggested as follows:

Ω0 =

(
−0.75a

h
+ 3.75 if a/h < 5

0 if a/h ≥ 5
(5.21)

5.5 SimpliÞcation of the modiÞed log-wake law and

its test in wide open-channels

5.5.1 SimpliÞcation of the modiÞed log-wake law (the log-

linear law) in wide open-channels

One may draw inspiration from FIG. 5.11, i.e., the wake component may be

neglected in wide channels. Thus, the modiÞed log-wake law reduces to a log-linear

law. This may also be proved mathematically. Referring to (3.23) and (3.25), one
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can expand the modiÞed log-wake law at the water surface, i.e.

u1max − u1
u∗

= − 1
u∗

du1
dξ

¯̄̄̄
ξ=1

(1− ξ) +
µ
1

2κ0
+ Ω0

¶
(1− ξ)2 + · · · (5.22)

In pipes and narrow channels, du1
dξ

¯̄̄
ξ=1

= 0, the leading term is a second order

term
³

1
2κ0
+ Ω0

´
(1 − ξ)2 near the water surface, which relates to the wake strength

coefficient Ω0. Therefore, the wake component is certainly important. In wide

channels, however, du1
dξ

¯̄̄
ξ=1

6= 0, the leading term is obviously a Þrst order term

− 1
u∗

du1
dξ

¯̄̄
ξ=1
(1 − ξ), which is irrelevant to the wake strength coefficient Ω0. As a

Þrst approximation, i.e., neglecting the second and higher order terms, one can see

that the wake strength coefficient Ω0 just has little effect on the ßow near the water

surface. That is, the wake component may be neglected in wide channels, i.e.,

u1max − u1
u∗

= − 1
κ0
ln ξ −

"
1

κ0
− 1

u∗

du1
dξ

¯̄̄̄
ξ=1

#
(1− ξ)

or

u1max − u1
u∗

= − 1
κ0
ln ξ −

"
1

κ0
− λ0

µ
Vwind − u1max

u∗

¶2#
(1− ξ) (5.23)

in which λ0 is the water surface shear effect factor and will be determined experimen-

tally. The above equation is the simpliÞcation of the modiÞed log-wake law in wide

open-channels. For simplicity, it is referred to as the log-linear law. Note that this

log-linear law is different from (2.22) where it is only valid for sediment-laden ßows.

Let κ0 = 0.406, the Þtting parameters in the log-linear law are u1max, u∗, and λ0.

5.5.2 Data selection

Besides the data of Kironoto (1993) in Subsection 5.4.1, experiments by Muste

(1995), McQuivey (1971), and Guy, Simons and Richardson (1966) will also be used

in this section. Muste (1995) recorded 3 clear water experiments (Appendix F) in a

smooth ßume in his dissertation. The aspect ratios are about 7. McQuivey (1971)

collected a huge data set in the CSU Hydraulics Laboratory. Only the 12 runs of his
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Þrst table (Appendix G) are used here, where the Þrst 6 runs were over a smooth

bed while last 6 runs over a rough bed. The aspect ratios are about 6. In addition,

several clear water velocity proÞle measurements in a wide ßume (8 ft wide) by Guy,

Simons and Richardson (1966) are tested, see Appendix H.

5.5.3 Method for determining u∗, λ0 and u1max

Rewrite (5.23) as

u1 =
u∗
κ0
[ln ξ + (1− ξ)]− λ0

µ
Vwind − u1max

u∗

¶2
u∗(1− ξ)− u1max (5.24)

Let

p1 =
u∗
κ0
, p2 = λ0

µ
Vwind − u1max

u∗

¶2
u∗, and p3 = u1max (5.25)

then p1, p2 and p3 can be estimated by the least-squares method (linear regression).

A MatLab program to handle the above process is appended in Appendix B.

With p1, p2 and p3 available, one has

u∗ = κ0p1 (5.26)

u1max = p3 (5.27)

λ0 =
p2
u∗

µ
Vwind − u1max

u∗

¶−2
(5.28)

In Kironoto�s (1993) experiments, the maximum velocity u1max is measured, then

only u∗ and λ0 are determined.

5.5.4 Test of the log-linear law

The calculated results of Kironoto�s (1993) wide ßume data over a rough bed,

Muste�s (1995) experiments over a smooth bed, McQuivey�s (1971) experiments over

a smooth bed and a rough bed, and Guy, Simons and Richardson�s (1966) experiments

over transition and rough beds are listed in Tables 5.6, 5.7, 5.8, and 5.9, respectively.

Four representative velocity proÞles, along with the log-linear law, from the experi-

ments of Kironoto, Muste, McQuivey, Guy et al. are shown in FIGS. 5.12, 5.13, 5.14,
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Table 5.6: Results of Kironoto�s wide channel experiments

RUN h a/h u∗ Re∗ ks/h λ0 r
(cm) (cm/s)

UPA3 11.50 5.22 3.37 3548 0.042 0.0101 0.9992
UPA5 11.50 5.22 3.20 3363 0.042 0.0109 0.9996
UPB3 10.10 5.94 3.55 3282 0.048 0.0115 0.9992
UPB5 10.10 5.94 3.54 3265 0.048 0.0108 0.9993
UPC3 11.90 5.04 2.30 2500 0.040 0.0101 0.9992
UPC5 11.90 5.04 2.25 2448 0.040 0.0102 0.9994
UPD3 8.70 6.90 3.38 2686 0.055 0.0133 0.9992
UPD5 8.70 6.90 3.67 2921 0.055 0.0137 0.9996
Notes: Rough bed ks = 4.8 mm; assume κ0 = 0.406;

r = correlation coefficient.

Table 5.7: Results of Muste�s wide channel experiments

RUN h a/h u1max u∗ Re∗ λ0 r
(cm) (m/s) (cm/s)

CW01 13.00 7.00 0.715 2.87 3502 0.00531 0.9995
CW02 12.80 7.11 0.729 2.89 3359 0.00584 0.9997
CW03 12.70 7.17 0.750 2.48 2885 0.00614 0.9993
Note: Smooth bed; assume κ0 = 0.406.

and 5.15, respectively. Other proÞles can be found in Appendixes E, F, G, and H. In

particular, comparing Tables 5.5 and 5.6, one sees that the log-linear law is very close

to the modiÞed log-wake law. However, the log-linear law is simpler and contains

only two model parameters.

In the above experiments, it is assumed that Vwind is zero in laboratories and the

von Karman constant κ0 = 0.406. It is evident, from Tables 5.6-5.9 and FIGS. 5.12-

5.15, that the neglect of the wake term in the modiÞed log-wake law is reasonable

in wide channels; and the log-linear law Þts the data quite well in the entire outer

region. The water surface shear effect factor λ0 is discussed next subsection.

5.5.5 The water surface shear effect factor λ0

It is assumed that the water surface shear effect factor λ0 relates to the water

viscosity ν, the velocity at the water surface u1max, and the gravitational acceleration
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Table 5.8: Results of McQuivey�s wide channel experiments

RUN h a/h u1max u∗ Re∗ λ0 r Remark
(cm) (m/s) (cm/s)

1 2.93 6.58 0.318 2.08 703 0.00715 0.9993 Smooth
2 3.08 6.26 0.462 2.57 915 0.00766 0.9999 Smooth
3 2.87 6.72 0.701 3.13 1051 0.00887 0.9976 Smooth
4 2.96 6.52 0.318 2.03 633 0.00888 0.9963 Smooth
5 3.02 6.38 0.462 2.25 718 0.00682 0.9996 Smooth
6 3.08 6.26 0.666 3.66 1191 0.00778 1.0000 Smooth

7 3.11 6.20 0.351 2.42 808 0.0163 0.9986 Rougha

8 3.02 6.38 0.591 4.72 1515 0.0148 1.0000 Rough
9 3.08 6.26 0.828 6.20 2017 0.0139 0.9999 Rough
10 3.26 5.91 0.346 2.58 912 0.0147 0.9989 Rough
11 3.20 6.02 0.631 4.55 1580 0.0128 0.9988 Rough
12 3.08 6.26 0.787 5.27 1761 0.0123 0.9991 Rough

a Only �shot rough� is given, the value of ks is not found.

Table 5.9: Results of Guy et al.�s wide channel experiments

RUN d50 h a/h u∗ u1max Re∗ ks/h
a λ0 r

(mm) (cm) (cm/s) (m/s)
22Cb 0.19 12.2 20.0 0.902 0.342 1023 1.55e-3 0.00648 0.9961
24 0.19 28.5 8.5 1.036 0.371 2786 6.66e-4 0.00470 0.9925
26 0.19 8.4 29.2 0.946 0.324 756 2.28e-3 0.00496 0.9983
19 0.93 29.7 8.2 2.344 0.492 6758 3.13e-3 0.00666 0.9941
20 0.93 29.9 8.2 3.477 0.617 10034 3.11e-3 0.00559 0.9990
25 0.93 29.9 8.1 2.441 0.558 7006 3.11e-3 0.00555 0.9968
26A 0.93 30.7 7.9 2.737 0.610 8005 3.03e-3 0.00601 0.9965
27 0.93 30.6 8.0 3.312 0.615 10571 3.04e-3 0.00563 0.9953

a According to Engelund (Chien and Wan, 1983, p.206), it is assumed
that ks = 2.5d50.
b RUNS 22C, 26, and 19 are transition beds, the rest are rough beds.
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Data of Kironoto (1993)
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λ0 = 0.0109
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FIG. 5.12: Comparison of the log-linear law with Kironoto�s experimental data [(a)

in a rectangular coordinate, (b) in a semilog coordinate]
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Data of Muste (1995)
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FIG. 5.13: Comparison between the log-linear law and Muste�s experimental data

[(a) in a rectangular coordinate, (b) in a semilog coordinate]
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Data of McQuivey (1971)
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FIG. 5.14: Comparison between the log-linear law and McQuivey�s experimental data

[(a) in a rectangular coordinate, (b) in a semilog coordinate]
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Data of Guy et al. (1966)
Log-linear law           
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FIG. 5.15: Comparison between the log-linear law and Guy et al.�s experimental data

[(a) in a rectangular coordinate system, (b) in a semilog coordinate system]
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g which is a main factor of the surface wave, i.e.

λ0 = f(ν, u1max, g) (5.29)

Since u1max ∝ U = F (u∗, u∗h/ν, ks/h), in which U = the vertical average velocity, f
is a functional sign, the above equation may be written as

λ0 = f

µ
ν, g, u∗,

u∗h
ν
,
ks
h

¶
(5.30)

which may further be written as a dimensionless form

λ0 = f

µ
u3∗
gν
,
u∗h
ν
,
ks
h

¶
(5.31)

If the water surface wave can be neglected and the momentum mixing between

water and air on the water surface is turbulent mixing, i.e., the effects of u
3∗
gν
and u∗h

ν

may be neglected. Then one has

λ0 = f

µ
ks
h

¶
(5.32)

A plot of λ0 versus ks/h, from Table 5.6 to Table 5.9 except the rough bed ex-

periments of McQuivey (where the roughness is not given), is shown in FIG. 5.16. It

can be seen that the water surface effect factor λ0 can be approximated as

λ0 ≈
(
0.065 for ks/h < 0.024

0.2163
ks
h
+ 0.0013 for ks/h ≥ 0.024 (5.33)

In most ßuvial channels, ks/h < 0.024, thus λ0 can be taken as 0.065 in practice.

5.5.6 Test of the eddy viscosity model

Neglecting the wake component, substituting (2.10) and (2.12) into (3.33) and

considering Vwind = 0 and τ0 = ρ0u
2
∗, one gets

ε+ =
(1− ξ) + Cdρair

ρ0

µ
u1max
u∗

¶2
1− ξ
κ0ξ

+ λ0

µ
u1max
u∗

¶2 (5.34)
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Smooth bed, Muste's data (1995)    
Smooth bed, McQuivey's data (1971) 
Rough bed, Guy et al.'s data (1966)
Rough bed, Kironoto's data (1993)  

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

ks/h

λ0

λ0 = 0.0065

λ 0 =
 0.2163

k s

h
__  + 0.0013

FIG. 5.16: The water surface effect factor λ0

in which Cd ≈ 0.001 (Roll, 1965, p.160).
Near the water surface, i.e., ξ → 1, one has

ε+ =
Cd
λ0

ρair
ρ0

(5.35)

Assuming Cd = 0.001, λ0 = 0.0065, ρair = 1.21 kg/m
2, and ρ0 = 1000 kg/m

3, one has

ε+ = 1.86× 10−4 (5.36)

which is negligibly small in practice.

A comparison of the above equation with Kironoto�s (1993) experimental data

(UPA5) is shown in FIG. 5.17, where it is assumed that ρair = 1.21 kg/m3 and

ρ0 = 1000 kg/m
3, the other parameters are shown in the Þgure. It is seen that the

proposed model is compatible to the measurement data. The scatter of the data is

ordinary because of the numerical differentiation of the velocity proÞle. Note that the

shear stress and the eddy viscosity are not zero at the water surface although they

may be very small.
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Data of Kironoto (1993)
From log-linear law    

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

UPA5

u* = 3.199 cm/s

κ0 = 0.406
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FIG. 5.17: Test of the eddy viscosity model from the log-linear law

5.6 Summary

The modiÞed log-wake law contains three model parameters: the von Karman

constant κ0, the wake strength coefficient Ω0, and the water surface shear effect

factor λ0. The examinations in pipes, narrow channels and wide channels show that:

(1) The von Karman constant κ0 expresses the effect of the pipe wall or the channel

bed. It is a universal constant 0.406 in pipes, narrow channels and wide channels.

(2) The wake strength coefficient Ω0 expresses the effect of the side-walls in open-

channels. It is a universal constant 3.2 in pipes. However, it decreases with the

aspect ratio a/h in narrow channels, shown in FIG. 5.11. In wide channels, a/h ≥ 5,
it can be approximated as zero. Therefore, the modiÞed log-wake law reduces to the

log-linear law in wide channels.

(3) The water surface shear effect factor λ0 expresses the effect of the shear stress

between the air and the water surface. The value of λ0 is 0 in pipes and narrow

channels since a free surface does not exist in a pipe axis or the boundary layer margin
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in a narrow channel. The value of λ0 is almost a constant 0.065 for smooth beds and

small roughness but increases with the relative roughness ks/h when ks/h ≥ 0.024,

see FIG. 5.16.

(4) The modiÞed log-wake law compares very well with experiments in pipes,

narrow channels and wide channels.

(5) The log-linear law, which is the reduction of the modiÞed log-wake law, com-

pares quite well with experiments in wide channels.

(6) The eddy viscosity models (5.11) and (5.34) from the modiÞed log-wake law

and the log-linear law are compatible to experimental data in popes, narrow channels

and wide channels.
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Chapter 6

THEORETICAL ANALYSIS OF

SEDIMENT-LADEN FLOWS

6.1 Introduction

In the study of clear water ßow, the governing equations are not used at all. The

modiÞed log-wake law is simply based on a similarity analysis. However, a similarity

analysis may not be very helpful in the study of sediment-laden ßows since more

variables are involved. To study the velocity proÞles in sediment-laden ßows, one

may start with the governing equations.

Section 6.2 treats of the governing equations in sediment-laden ßows. Section

6.3 discusses the applications of the governing equations in steady uniform 2D ßows.

Sections 6.4 and 6.5 discuss the effects of sediment suspension. Section 6.6 discusses

sediment-laden velocity proÞles. Section 6.7 summaries the results of this chapter.

6.2 Governing equations

6.2.1 Navier-Stokes equations in sediment-laden ßows

This study aims at the mean velocity proÞles in steady uniform 2D sediment-

laden ßows. However, the turbulent shear stress is signiÞcantly affected by turbulence
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intensity. To emphasize the effects of sediment suspension on turbulence intensity,

this study starts with unsteady 3D governing equations. To simplify the analysis,

the Boussinesq approximation (Spiegel and Veronis, 1960; Kundu, 1990, p.113)

on stratiÞed ßows is introduced, i.e., the effect of sediment concentration on the ßuid

density may be neglected in the continuity and the momentum equations, except in

the gravity term. The viscosity is also assumed constant in this assumption.

Continuity equation

Based on the Boussinesq assumption, the continuity equation in sediment-laden

ßows is the same as that in clear water, i.e.

∂ui
∂xi

= 0 (6.1)

in which ui is the velocity component in the xi direction and i = 1, 2, and 3.

Momentum equation

Similarly, the momentum equation in sediment-laden ßows is written as

∂ui
∂t
+ uj

∂ui
∂xj

=
ρ

ρm
gi − 1

ρm

∂p

∂xi
+ νm

∂2ui
∂xj∂xj

(6.2)

in which t is time; j is a dummy subscript; ρ is local density and varies with sediment

concentration; ρm is the (constant) space average of density ρ, i.e. ρm =
1
V

R
V
ρ dV ;

gi is the component of the gravitational acceleration in the xi direction; p is pressure;

and νm is the (constant) kinematic viscosity corresponding to ρm.

Sediment concentration equation

Applying the mass conservation law to sediment phase, one has the sediment

concentration equation as

∂C

∂t
+ uj

∂C

∂xj
=

∂

∂xj

µ
D
∂C

∂xj

¶
(6.3)

in which C is the sediment volumetric concentration; the Þrst term on the left-hand

side is the concentration change with time; uj , which is not necessary to be the
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same as that in (6.2), is the convective velocity of sediment; the second term on the

left-hand side is the transport by convection; D is the (constant) molecular diffusion

coefficient; and the right-hand side is the transport by molecular diffusion.

State equation or density equation

The density equation can be easily written as

ρ = ρ0 + (ρs − ρ0)C (6.4)

in which ρ0 is the clear water density; and ρs is the sediment density.

The above equation set (6.1-6.4) is closed since one has 6 equations (1 continuity,

3 momentum, 1 concentration and 1 density equation) with 6 unknowns (3 velocity

components ui, 1 pressure p, 1 density ρ, and 1 concentration C). However, like any

other turbulence, the above equations are very difficult to solve for large Reynolds

number ßows, i.e., turbulent ßows. To study the mean velocity Þeld of a turbulent

ßow, the Reynolds average method may be applied.

6.2.2 Reynolds mean equations and turbulent equations in

sediment-laden ßows

Following Reynolds, one must decompose a variable into its (time) mean part

denoted with an overbar, and a turbulent part denoted with a prime, i.e.

ui = ui + u
0
i p = p+ p0

ρ = ρ+ ρ0 C = C + C 0
(6.5)

Substituting (6.5) into (6.1-6.4) and introducing the Reynolds average method, one

can get the motion equations for the mean ßow and the turbulent ßow, respectively.

Continuity equation

Substituting the expressions (6.5) into (6.1) and taking the Reynolds average, one

has
∂ui
∂xi

= 0 (6.6)
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for the mean motion, and
∂u0i
∂xi

= 0 (6.7)

for the turbulent motion.

From the above two continuity equations, one can get the following two identities:

uj
∂f

∂xj
=
∂(ujf)

∂xj
u0j
∂f

∂xj
=
∂(u0jf)
∂xj

(6.8)

in which f can be any variable. These two identities will be frequently used in the

derivations later.

Momentum equation

Substituting (6.5) into (6.2), one gets

∂(ui + u
0
i)

∂t
+ (uk + u

0
k)
∂(ui + u

0
i)

∂xk
=
ρ+ ρ0

ρm
gi − 1

ρm

∂(p+ p0)
∂xi

+ νm
∂2

∂xk∂xk
(ui + u

0
i)

in which ρm =
1
V

R
V
ρ dV . Applying the identities (6.8) to the convective term and

expanding it, one obtains

∂(ui + u
0
i)

∂t
+
∂(uiuk + uiu

0
k + u

0
iuk + u

0
iu
0
k)

∂xk

=
ρ+ ρ0

ρm
gi − 1

ρm

∂(p+ p0)
∂xi

+ νm
∂2

∂xk∂xk
(ui + u

0
i) (6.9)

Taking the average over this equation and considering that the average of a ßuctuating

variable is zero, one has the following mean motion equation for sediment-laden ßow:

∂ui
∂t
+
∂(uiuk + u0iu

0
k)

∂xk
=
ρ

ρm
gi − 1

ρm

∂p

∂xi
+ νm

∂2ui
∂xk∂xk

(6.10)

or
∂ui
∂t
+ uk

∂ui
∂xk

=
ρ

ρm
gi − 1

ρm

∂p

∂xi
+ νm

∂2ui
∂xk∂xk

− ∂u
0
iu
0
k

∂xk
(6.11)

in which u0iu
0
k is the one-point turbulent velocity correlation. The product of ρm and

−u0iu0k is the so-called turbulent stress or Reynolds stress. (6.11) will be used to study
the mean velocity proÞles in sediment-laden ßows.

The subtraction of the mean motion equation (6.10) from the total motion equa-

tion (6.9) gives the turbulent motion equation, i.e.

∂u0i
∂t
+
∂(uiu

0
k + u

0
iuk + u

0
iu
0
k − u0iu0k)

∂xk
=
ρ0

ρm
gi − 1

ρm

∂p0

∂xi
+ νm

∂2u0i
∂xk∂xk
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or

∂u0i
∂t
+ u0k

∂ui
∂xk

+ uk
∂u0i
∂xk

+
∂u0iu

0
k

∂xk
− ∂u

0
iu
0
k

∂xk
=
ρ0

ρm
gi − 1

ρm

∂p0

∂xi
+ νm

∂2u0i
∂xk∂xk

(6.12)

This equation will serve to analyze the effects of sediment suspension on turbulence

intensity.

Sediment concentration equation

Applying (6.5) to (6.3) yields

∂
¡
C + C 0

¢
∂t

+ (uj + u
0
j)
∂
¡
C + C 0

¢
∂xj

=
∂

∂xj

Ã
D
∂
¡
C + C 0

¢
∂xj

!
or

∂C

∂t
+
∂C 0

∂t
+ uj

∂C

∂xj
+ uj

∂C 0

∂xj
+ u0j

∂C

∂xj
+
∂u0jC

0

∂xj
=

∂

∂xj

Ã
D
∂
¡
C + C 0

¢
∂xj

!
(6.13)

Taking the average over this equation gives the mean concentration equation:

∂C

∂t
+ uj

∂C

∂xj
=

∂

∂xj

µ
D
∂C

∂xj
− u0jC 0

¶
(6.14)

Similarly, the subtraction of (6.14) from (6.13) gives the turbulent concentration

equation:

∂C 0

∂t
+ uj

∂C 0

∂xj
+ u0j

∂C

∂xj
+
∂u0jC

0

∂xj
− ∂u

0
jC

0

∂xj
=

∂

∂xj

µ
D
∂C 0

∂xj

¶
(6.15)

State equation or density equation

Applying (6.5) to (6.4) results in

ρ+ ρ0 = ρ0 + (ρs − ρ0)
¡
C + C 0

¢
(6.16)

Taking the average over this equation gives the (time) mean density equation:

ρ = ρ0 + (ρs − ρ0)C (6.17)

Note that this mean density varies with space and has the relation with the space

mean ρm as: ρm =
R
V
ρ dV .

Similarly, one can obtain the turbulent density equation:

ρ0 = (ρs − ρ0)C 0 (6.18)
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Summary

In brief, the mean motion equations for sediment-laden ßows can be summarized

as follows:
∂ui
∂xi

= 0 (6.6)

∂ui
∂t
+ uk

∂ui
∂xk

=
ρ

ρm
gi − 1

ρm

∂p

∂xi
+ νm

∂2ui
∂xk∂xk

− ∂u
0
iu
0
k

∂xk
(6.11)

∂C

∂t
+ uj

∂C

∂xj
=

∂

∂xj

µ
D
∂C

∂xj
− u0jC 0

¶
(6.14)

ρ = ρ0 + (ρs − ρ0)C (6.17)

To solve this set of equations, one must make some assumptions about u0iu
0
k and u

0
jC

0.

This is known as the closure problem.

The turbulent motion equations are summarized as

∂u0i
∂xi

= 0 (6.7)

∂u0i
∂t
+ u0k

∂ui
∂xk

+ uk
∂u0i
∂xk

+
∂u0iu

0
k

∂xk
− ∂u

0
iu
0
k

∂xk
=
ρ0

ρm
gi − 1

ρm

∂p0

∂xi
+ νm

∂2u0i
∂xk∂xk

(6.12)

∂C 0

∂t
+ uj

∂C 0

∂xj
+ u0j

∂C

∂xj
+
∂u0jC

0

∂xj
− ∂u

0
jC

0

∂xj
=

∂

∂xj

µ
D
∂C 0

∂xj

¶
(6.15)

ρ0 = (ρs − ρ0)C 0 (6.18)

Only (6.12) of this set will be used to study the effects of sediment suspension on

turbulence intensity.

6.3 SimpliÞcations of governing equations in steady

uniform 2D ßows

To simplify the analysis, this study assumes that the mean ßow is 2D steady

uniform, shown in FIG. 6.1. That is,

steady :
∂( )

∂t
= 0 (6.19)

uniform :
∂( )

∂x1
= 0,

∂( )

∂x2
= 0 (6.20)

2D ßow : u1 = u1(x3), u2 = u3 = 0, C = C(x3) (6.21)
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FIG. 6.1: Scheme of steady uniform 2D sediment-laden ßows

in which t = time; ( ) means any (time) mean variable; u1 = (time) mean velocity

in the ßow direction x1; u2 = (time) mean velocity in the lateral direction x2, u3 =

(time) mean velocity in the vertical (normal) direction x3; and C = (time) mean

sediment concentration.

Based on the above assumptions, the mean continuity equation is automatically

satisÞed. The momentum equations reduce to

x1 − direction: ρg1 + µm
∂2u1
∂x23

− ρm∂u
0
1u
0
3

∂x3
= 0 (6.22)

x2 − direction:
∂u02u03
∂x3

= 0 (6.23)

x3 − direction: ρg3 − ∂p

∂x3
− ρm

∂u023
∂x3

= 0 (6.24)

Fortunately, (6.23) and (6.24) are not coupled with (6.22), then only (6.22) is used

to Þnd the velocity proÞle u1(x3). (6.22) can be further written as

− ∂

∂x3

µ
µm
∂u1
∂x3

− ρmu01u03
¶
= ρg1 (6.25)

in which µm = ρmνm is the mean kinetic viscosity of the mixture water. Considering

that the shear stress at the water surface is τ |ξ=1, i.e.,
¡
µm∂u1/∂x3 − ρmu01u03

¢
x3=h

=

τ |ξ=1, and substituting (6.17) into (6.25) and integrating yields

−
µ
µm
∂u1
∂x3

− ρmu01u03
¶¯̄̄̄h

x3

=

Z h

x3

¡
ρ0 + (ρs − ρ0)C

¢
g1dx3
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or

µm
∂u1
∂x3

− ρmu01u03 − τ |ξ=1 = ρ0g1 (h− x3) + (ρs − ρ0)g1
Z h

x3

Cdx3 (6.26)

Now one can see that the effects of sediment suspension on velocity proÞles may be

in three ways: (1) changing the ßuid viscosity µm and then changing the viscous shear

stress (1st term on the left-hand side); (2) changing the ßuid density and turbulence

intensity and consequently changing the turbulent shear stress (2nd term on the

left-hand side); and (3) producing density gradient and then increasing the gravity

component in the ßow direction (2nd term on the right-hand side). To further simplify

(6.26), a magnitude order for each term in (6.26) is analyzed as follows:

By experience, one may assume

u1 ∼ U , x3 ∼ h, u01u03 ∼ u2∗, C ∼ Ca, ρm ∼ ρ0

in which U is the vertical average velocity; u∗ is the shear velocity; and Ca is a near

bed concentration, then one has:

µm
∂u1
∂x3

−ρmu01u03 − τ |ξ=1 = ρ0g1h −ρ0g1x3 +(ρs − ρ0)g1
R h
x3
Cdx3

µmU

h
ρmu

2
∗ Keep ρ0g1h ρ0g1h (ρs − ρ0)g1hCa

Divided by ρmU
2

µm
ρmUh

³u∗
U

´2
Keep

ρ0
ρm

g1h

U2
ρ0
ρm

g1h

U2
ρs − ρ0
ρm

g1h

U2
Ca

Since u∗ =
√
ghS =

√
g1h, and ρm ∼ ρ0, one has

1

Re

³u∗
U

´2
Keep

³u∗
U

´2 ³u∗
U

´2 ρs − ρ0
ρm

³u∗
U

´2
Ca

Multiplying (U/u∗)2:

1

Re

µ
U

u∗

¶2
1 Keep 1 1

ρs − ρ0
ρm

Ca

In practice, Re > 104, U
u∗ ∼ 10, and let ρs−ρ0ρm

Ca < 0.1

< 0.01 1 Keep 1 1 < 0.1
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The above magnitude order analysis shows that the main effects of sediment sus-

pension on the mean velocity proÞles are by the turbulent shear stress. In other

words, the momentum equation in steady uniform 2D sediment-laden ßows can be

further simpliÞed as

−ρmu01u03 − τ |ξ=1 = ρ0g1 (h− x3) (6.27)

Note that τ |ξ=1 is kept in the above equation since it is the derivative boundary condi-
tion at the water surface although it may be very small. The above equation is similar

to that in clear water, but the turbulent shear stress must be modiÞed by sediment

suspension. Introducing the eddy viscosity concept, i.e., −u01u03 = ε+u∗hdu1/dx3, in
which ε+ is the dimensionless eddy viscosity, the above equation becomes

ρmε
+u∗h

du1
dx3

− τ |ξ=1 = ρ0g1 (h− x3) (6.28)

Furthermore, if one deÞnes ε+m = (ρm/ρ0)ε
+ as the dimensionless eddy viscosity in

sediment-laden ßows, then one obtains

ρ0ε
+
mu∗h

du1
dx3

− τ |ξ=1 = ρ0g1 (h− x3) (6.29)

The above equation is exactly the same as that in clear water except that the eddy

viscosity is modiÞed by sediment suspension.

Note that the assumption of (ρs−ρ0)/ρmCa < 0.1 means that for plastic sediments
(speciÞc gravity G = 1.05), Ca can be very large; for natural sediments (G = 2.65),

Ca < 0.1. When Ca ≥ 0.1 in natural sediment-laden ßows, the effect of sediment

suspension on the gravity must be included.

Similarly, for steady uniform 2D ßows, the sediment concentration equation (6.14)

reduces to

−ω ∂C
∂x3

=
∂

∂x3

µ
D
∂C

∂x3
− u03C 0

¶
(6.30)

in which u3 = −ω, where ω is sediment settling velocity. Integrating (6.30) gives that

D
∂C

∂x3
− u03C 0 + ωC = const
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Considering that no sediments enter into ßow from the water surface, one has

D
∂C

∂x3
− u03C 0 + ωC = 0

Usually the molecular diffusion ßux of sediment is much smaller than the turbulent

ßux, i.e., the above equation may be simpliÞed as

−u03C 0 + ωC = 0 (6.31)

According to Reynolds analogy, introducing −u03C 0 = ε+s u∗hdC/dx3, in which ε+s is
the turbulent sediment diffusion coefficient, the above equation becomes

ε+s u∗h
dC

dx3
+ ωC = 0 (6.32)

Equations (6.29) and (6.32) constitute the governing equations in steady uniform

2D sediment-laden ßows. The eddy viscosity models from clear water, i.e., (5.11) for

narrow channels and (5.34) for wide channels, may be used for the problem closure.

Again, the effects of the sediment suspension on the eddy viscosity models must be

considered.

6.4 Effects of sediment suspension on turbulence

intensities

Sediment suspension is due to turbulent kinetic energy. The eddy viscosity ε in

the vertical direction relates to a characteristic length scale and the vertical turbu-

lence intensity u03. The larger the turbulence intensity u
0
3, the stronger the turbulent

diffusion or mixing, i.e.

ε ∼ δ u03 (6.33)

in which δ is the boundary layer thickness (characteristic length scale). For wide

channels, δ = h. Hence, the study of the effects of sediment suspension on the

turbulence intensities (the kinetic energy budget and the eddy viscosity) is important.
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6.4.1 Turbulence intensity u0iu
0
j in sediment-laden ßows

One may start with (6.12), the equation for the turbulent velocity component u0i.

One can also write the same equation for the velocity component u0j . Multiplying the

equation for u0i by u
0
j and the equation for u

0
j by u

0
i, one gets

u0j
∂u0i
∂t
+ u0ju

0
k

∂ui
∂xk

+ u0juk
∂u0i
∂xk

+ u0j
∂(u0iu

0
k − u0iu0k)
∂xk

=
u0jρ

0

ρm
gi −

u0j
ρm

∂p0

∂xi
+ νmu

0
j

∂2u0i
∂xk∂xk

and

u0i
∂u0j
∂t

+ u0iu
0
k

∂uj
∂xk

+ u0iuk
∂u0j
∂xk

+ u0i
∂(u0ju

0
k − u0ju0k)
∂xk

=
u0iρ

0

ρm
gj − u0i

ρm

∂p0

∂xj
+ νmu

0
i

∂2u0j
∂xk∂xk

Adding the above two equations gives

∂u0iu
0
j

∂t
+ u0ju

0
k

∂ui
∂xk

+ u0iu
0
k

∂uj
∂xk

+ uk
∂u0iu

0
j

∂xk
+ u0j

∂(u0iu
0
k − u0iu0k)
∂xk

+ u0i
∂(u0ju

0
k − u0ju0k)
∂xk

=
u0jρ

0

ρm
gi +

u0iρ
0

ρm
gj −

u0j
ρm

∂p0

∂xi
− u0i
ρm

∂p0

∂xj
+ νm

µ
u0j

∂2u0i
∂xk∂xk

+ u0i
∂2u0j
∂xk∂xk

¶
The average over this equation yields the correlation equation of u0iu

0
j, i.e.

∂u0iu
0
j

∂t
+ u0ju

0
k

∂ui
∂xk

+ u0iu
0
k

∂uj
∂xk

+ uk
∂u0iu

0
j

∂xk

= −
Ã
u0j
∂u0iu

0
k

∂xk
+ u0i

∂u0ju
0
k

∂xk

!
+
1

ρm

¡
u0jρ0gi + u

0
iρ
0gj
¢

− 1

ρm

µ
u0j
∂p0

∂xi
+ u0i

∂p0

∂xj

¶
+ νm

Ã
u0j

∂2u0i
∂xk∂xk

+ u0i
∂2u0j
∂xk∂xk

!
(6.34)

The terms on the right-hand side of this equation may be transformed to measurable

forms.

Applying the identities (6.8), the stuff within the bracket of the Þrst term on the

right-hand side becomes

u0j
∂u0iu

0
k

∂xk
+ u0i

∂u0ju
0
k

∂xk
= u0ju

0
k

∂u0i
∂xk

+ u0i
∂u0ju

0
k

∂xk
=
∂u0iu

0
ju
0
k

∂xk
(6.35)

Considering (6.18), the stuff within the bracket of the second term on the right-hand

side becomes

u0jρ0gi + u
0
iρ
0gj = (ρs − ρ0)

¡
u0jC 0gi + u

0
iC

0gj
¢

(6.36)
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The stuff within the bracket of the third term on the right-hand side may be written

as

u0j
∂p0

∂xi
+ u0i

∂p0

∂xj
=

∂p0u0j
∂xi

− p0∂u
0
j

∂xi
+
∂p0u0i
∂xj

− p0 ∂u
0
i

∂xj

=

Ã
∂p0u0j
∂xi

+
∂p0u0i
∂xj

!
− p0

µ
∂u0j
∂xi

+
∂u0i
∂xj

¶
(6.37)

Since

∂2

∂xk∂xk
u0iu

0
j =

∂

∂xk

µ
u0i
∂u0j
∂xk

+ u0j
∂u0i
∂xk

¶
=

∂u0i
∂xk

∂u0j
∂xk

+ u0i
∂2u0j
∂xk∂xk

+
∂u0j
∂xk

∂u0i
∂xk

+ u0j
∂2u0i
∂xk∂xk

= u0i
∂2u0j
∂xk∂xk

+ u0j
∂2u0i
∂xk∂xk

+ 2
∂u0i
∂xk

∂u0j
∂xk

one can get the fourth term on the right-hand side as

u0i
∂2u0j
∂xk∂xk

+ u0j
∂2u0i
∂xk∂xk

=
∂2

∂xk∂xk
u0iu

0
j − 2

∂u0i
∂xk

∂u0j
∂xk

(6.38)

Substituting (6.35-6.38) into (6.34) yields the one-point velocity correlation equa-

tion:

∂u0iu
0
j

∂t
+ uk

∂u0iu
0
j

∂xk
= −

µ
u0ju

0
k

∂ui
∂xk

+ u0iu
0
k

∂uj
∂xk

¶
+
ρs − ρ0
ρm

¡
u0jC 0gi + u

0
iC

0gj
¢

−∂u
0
iu
0
ju
0
k

∂xk
− 1

ρm

Ã
∂p0u0j
∂xi

+
∂p0u0i
∂xj

!
+
1

ρm
p0
µ
∂u0j
∂xi

+
∂u0i
∂xj

¶
+νm

∂2u0iu
0
j

∂xk∂xk
− 2νm ∂u

0
i

∂xk

∂u0j
∂xk

(6.39)

This equation is the same as that in clear water (Hinze, 1975, p.324) except an extra

term which relates to sediment suspension. The above equation is the general one-

point velocity correlation equation. It can be used to study any second order velocity

correlations, such as u021 , u
0
1u
0
2, u

0
1u
0
3, u

02
2 , u

0
2u
0
3, u

02
3 , and turbulent kinetic energy

1
2
u0iu

0
i.

In this section, only the turbulent kinetic energy 1
2
u0iu

0
i and the vertical turbulence

intensity u023 are concerned since they relate to the Richardson number and the eddy

viscosity in sediment-laden ßows.
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6.4.2 Turbulent kinetic energy budget and Richardson num-

ber in sediment-laden ßows

To study the turbulent kinetic energy budget, let i = j in (6.39), then one has

∂u0iu
0
i

∂t
= −2u0iu03

∂ui
∂x3

+2
ρs − ρ0
ρm

u0iC 0gi−
∂u0iu

0
iu
0
3

∂x3
− 2

ρm

∂p0u03
∂x3

+νm
∂2u0iu

0
i

∂x3∂x3
−2νm ∂u

0
i

∂xk

∂u0i
∂xk

or

∂

∂t

q2

2
= −u01u03

∂u1
∂x3| {z }

turb. production

+
ρs − ρ0
ρm

u0iC 0gi| {z }
sediment suspension

− ∂

∂x3

µ
q2

2
+
p0

ρm

¶
u03| {z }

turbulent transport

+ νm
∂2

∂x23

Ã
q2

2

!
| {z }
viscous transport

− νm
∂u0i
∂xk

∂u0i
∂xk| {z }

energy dissipation

(6.40)

in which q2 = u0iu
0
i. The transport by viscous diffusion is usually neglected. The

turbulent transport may also be neglected if the turbulence intensity is not very

strong. This is because p0 ∝ q2 > 0, p0u03 ∝ q2u03 ≈ 0. Thus, (6.40) reduces to
∂

∂t

q2

2
= −u01u03

∂u1
∂x3| {z }

turb. production

+
ρs − ρ0
ρm

u0iC 0gi| {z }
sediment suspension

− νm
∂u0i
∂xk

∂u0i
∂xk| {z }

energy dissipation

(6.41)

Experiments (Vanoni, 1946; Einstein and Chien, 1955; Elata and Ippen, 1961; and

others) have shown that both −u01u03 and ∂u1
∂x3

are positive and increase with sediment

suspension. This implies that the effect of sediment suspension on the turbulent

production ampliÞes the turbulent kinetic energy.

Because the concentration Þeld is homogeneous in the x1 and the x2 directions,

the mean turbulent mixing ßuxes in these directions must be zero, i.e.

u01C 0 = u02C 0 = 0 (6.42)

Thus,
ρs − ρ0
ρm

u0iC 0gi =
ρs − ρ0
ρm

u03C 0g3

To balance the sediment settling from upward, the turbulent mixing ßux u03C 0 in the

x3 direction must be positive, i.e.

u03C 0 > 0 (6.43)
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Considering g3 = −g cos θ ≈ −g (in which θ is the angle between the channel bed
and the datum), one has

ρs − ρ0
ρm

u03C 0g3 < 0 (6.44)

which implies that sediment suspension decreases the turbulent kinetic energy. In

other words, the energy supported suspended-load comes from the turbulent kinetic

energy rather than the mean ßow energy.

Since sediment presence increases the viscosity νm, it is expected that the energy

dissipation increases in sediment-laden ßow.

Of all three terms on the right-hand side in (6.41), two of them are negative

(sediment suspension + energy dissipation) and one (turbulent production) is positive,

the resultant of the right-hand side may increase and may decrease the turbulent

kinetic energy. However, in any case, sediment suspension will increase the mean

ßow energy loss. This is because sediment suspension increases turbulent production

which, in turn, comes from the mean ßow energy.

The Richardson number Ri is deÞned as the ratio of the sediment suspension

energy to the turbulent production in (6.41), i.e.

Ri =

ρs − ρ0
ρm

u03C 0g

−u01u03
du1
dx3

(6.45)

Introducing

−u01u03 = εm
du1
dx3

−u03C 0 = εs
dC

dx3

in which the turbulent sediment diffusion coefficient εs is proportional to the momen-

tum eddy viscosity εm. Therefore,

Ri ∝ −(ρs − ρ0)g
ρm

dC

dx3µ
du1
dx3

¶2
90



The global Richardson number is deÞned as

Ri ∝ −(ρs − ρ0)g
ρm

C1 − C0.05
δµ

u1max
δ

¶2
in which C1 is the concentration at ξ = 1; and C0.05 is the concentration at ξ = 0.05.

Considering u1max ∝ u∗, and ρm = ρ0 + (ρs − ρ0)Cm in which Cm is the average

vertical concentration, the above equation may be written as an equality,

Ri =
gδ

u2∗

ρs − ρ0
ρ0

C0.05 − C1
1 +

ρs − ρ0
ρ0

Cm

(6.46)

This Richardson number is very important. It expresses the density gradient intensity

in a sediment-laden ßow. In a neutral sediment-laden ßow, C0.05 = C1, thus Ri = 0.

In a density sediment-laden ßow, C0.05 > C1, thus Ri > 0. The stronger the density

gradient, the larger the Richardson number. The Richardson number will be used as

an indicator of the density gradient effect on the velocity proÞle model parameters.

To estimate the Richardson number Ri from (6.46), one must know the concen-

tration proÞle which may be solved from (6.32) and will be discussed in the next

chapter.

By the way, considering ρ = ρ0 + (ρs − ρ0)C, (6.46) can also be written as

Ri =
gδ

u2∗

ρ0.05 − ρ1
ρm

(6.47)

which appears in Coleman�s (1981, 1986) classical papers.

6.4.3 Effects of sediment suspension on the vertical eddy vis-

cosity

To study the effect of sediment suspension on u023 , let i = j = 3 in (6.39), one gives

∂u023
∂t

+ uk
∂u023
∂xk

= −2u03u0k
∂u3
∂xk

+ 2
ρs − ρ0
ρm

u03C 0g3
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−∂u
0
3u
0
3u
0
k

∂xk
− 2

ρm

∂p0u03
∂x3

+
2

ρm
p0
∂u03
∂x3

+νm
∂2u023
∂x23

− 2νm∂u
0
3

∂xk

∂u03
∂xk

(6.48)

Considering (6.20) and (6.21) gives that

uk
∂u023
∂xk

= 0 (6.49)

Considering u3 = 0 gives that

u03u
0
k

∂u3
∂xk

= 0 (6.50)

Considering (6.20) gives that

∂u03u03u0k
∂xk

=
∂u033
∂x3

(6.51)

Then (6.48) becomes

∂u023
∂t

= 2
ρs − ρ0
ρm

u03C 0g3| {z }
sediment suspension

−∂u
03
3

∂x3
− 2

ρm

∂p0u03
∂x3

+
2

ρm
p0
∂u03
∂x3| {z }

turbulent transport

+ νm
∂2u023
∂x23| {z }

vis. transp.

− 2νm
∂u03
∂xk

∂u03
∂xk| {z }

energy dissipation

(6.52)

In the following, one will assume a clear water running in a ßume, then add some

sediments to the ßow to see how u023 adjusts according to the right-hand side terms.

Assume that the viscous and the turbulent transport terms are neglected or sec-

ondary. Then the effects of sediment suspension on u023 are mainly through two terms:

sediment suspension and energy dissipation.

As those in (6.41), both the sediment suspension term and the energy dissipation

term are negative. They will damp the turbulence intensity u03. Consequently, sedi-

ment suspension damps the eddy viscosity in the vertical direction. The decrease of

the eddy viscosity weakens turbulent mixing compared with a clear water ßow. In

other words, the outer region (overlap + wake layer + boundary effect layer) velocity

gradient in a sediment-laden ßow increases compared with a clear water ßow.
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6.5 ModiÞcation of the eddy viscosity model in

sediment-laden ßows

Assume that the structure of the eddy viscosity model (3.33) obtained in clear

water ßows is still valid in sediment-laden ßows. Then the incorporation of the effect

of sediment concentration may be four alternatives:

Alternative 1: To consider the sediment damping effect, following Monin and

Obukhov (Duo, 1987, p.365), a concentration factor Φs may be introduced to the

eddy viscosity expression, i.e.

ε+m =
1

Φs

(1− ξ) + τ |ξ=1 /τw
1− ξ
κ0ξ

+
πΩ0
2
sin πξ +

1

u∗

du1
dξ

¯̄̄̄
ξ=1

(6.53)

in which Φs is a function of concentration C , i.e.

Φs = 1 + α1C + α2C
2
+ · · · (6.54)

where α1 and α2 are experimental constants. In this case, the concentration equation

(6.32) must be coupled with (6.29). Besides, if C is replaced by a characteristic

concentration Ca and if Ca is very small, then sediment concentration will not affect

the von Karman constant κ0 and the wake strength coefficient Ω0. Only an additional

term is added in the clear water velocity proÞle equation, like the Monin-Obukhov

equation in an atmosphere ßow (Kundu, 1990, p.463). Note that the subscript �0�

denotes values in clear water.

Alternative 2: Both the von Karman constant κ and the wake strength coefficient

Ω in sediment-laden ßows vary with a characteristic concentration, i.e., the sediment

damping may be considered by decreasing κ and increasing Ω. That is, κ < κ0, and

Ω > Ω0.

Alternative 3: κ may become smaller with a characteristic concentration, i.e.,

κ < κ0, while Ω may keep the same as that in clear water, i.e., Ω = Ω0.

Alternative 4: κ may keep the same as that in clear water, i.e., κ = κ0 = 0.406,

while Ω may increase with a characteristic concentration, i.e., Ω > Ω0.
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Alternative 1 is cumbersome. Alternatives 2, 3 and 4 are relative simple since

one can choose a near bed concentration or the vertical mean concentration to reßect

the effect of sediment suspension. In this dissertation, only last three alternatives are

examined.

6.6 Velocity proÞles in sediment-laden ßows

Of course, for the last three alternatives, the velocity proÞle equations are similar

to those in clear water except that the von Karman constant κ, the wake strength

coefficient Ω, and the water surface shear effect factor λ may vary with sediment

suspension. That is, the velocity proÞles in narrow channels can still be described

by (5.1), and the velocity proÞles in wide channels can still be expressed by (5.23).

However, one has

κ,Ω,λ = F (characteristic concentration, density gradient)

= F (Ca, Ri) (6.55)

in which Ca = C0.05 for κ and Ca = C1 for Ω and λ. This is because the von Karman

constant is determined by the near bed ßow while the wake strength coefficient Ω and

the water surface shear effect factor λ are determined by the ßow near the boundary

layer margin or the water surface.

6.7 Summary

In this chapter, one starts with the full governing equations in sediment-laden

ßows and obtains the steady uniform 2D governing equations. Based on the turbu-

lent kinetic energy equation, the global Richardson number Ri is derived. Based on

the equation of the turbulence intensity u023 , it is shown that sediment suspension

affects the eddy viscosity in two ways: increasing the molecular viscosity and then

increasing energy dissipation, and losing turbulent energy to support sediment sus-

pension. Both ways will damp the vertical eddy viscosity. Using a magnitude order
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analysis method, it is shown that the velocity proÞle equation in a sediment-laden

ßow takes the same form as that in clear water, except the model parameters may

vary with a characteristic concentration and density gradient.
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Chapter 7

TEST OF THE MODIFIED

LOG-WAKE LAW IN

SEDIMENT-LADEN FLOWS

7.1 Introduction

The modiÞed log-wake law has been tested to be true in clear water in Chapter

5. Chapter 6 shows that it may be true for sediment-laden ßows. However, sediment

suspension may modify the parameters κ, Ω and λ. This chapter will test the modiÞed

log-wake law in sediment-laden ßows and study the variations of κ, Ω and λ with

sediment suspension.

Section 7.2 presents a test strategy, i.e., using two extreme experiments to test the

effects of molecular viscosity and density gradient. Sections 7.3 and 7.4 discuss the

effects of sediment suspension on the model parameters in narrow and wide channels.

Section 7.5 summaries the results of this chapter.

7.2 Preliminary analysis of the model parameters

In Chapter 6, one sees that sediment suspension affects the velocity proÞles of

sediment-laden ßows in two ways: one is that sediment concentration increases mole-

96



cular viscosity and then increases energy dissipation and consequently damps tur-

bulence intensity; the other is that to balance sediment settling due to the gravity,

suspended sediments obtain energy from turbulent kinetic energy and then damp

turbulence intensity. These two effects can be examined in two kinds of extreme ex-

periments: one is neutral sediment-laden experiments where the concentration can be

very high, the effect of viscosity is emphasized, but sediment suspension does not cost

turbulent energy at all; the other is density (stratiÞed) sediment-laden experiments

where the concentration keeps so small that the effect of molecular viscosity may be

neglected but the effect of the density gradient is emphasized.

For neutral sediment-laden ßows, C = C0.05 = C1, Ri = 0, then (6.55) reduces to

κ,Ω,λ = F1
¡
C
¢

(7.1)

For density sediment-laden ßows with dilute concentration, the effect of viscosity may

be neglected. Then (6.55) reduces to

κ,Ω,λ = F2 (Ri) (7.2)

(7.1) and (7.2) are two asymptotic expressions. A composite expression for (6.55)

may be expressed as

κ,Ω,λ = F1
¡
Ca
¢
+ F2 (Ri)− (κ,Ω,λ)|clear water (7.3)

In the following, one will Þnd the functional forms of F1 and F2 for each parameter

κ, Ω and λ.

7.3 Test of the modiÞed log-wake law in narrow

open-channels

The model parameters in narrow channels include κ and Ω. The plastic particle

experiments by Wang and Qian (1989) will serve to test the effect of molecular vis-

cosity. The sediment experiments by Coleman (1986) will serve to study the effect of

density gradient.
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7.3.1 Effect of molecular viscosity

Wang and Qian (1989) did three types of experiments: clear water and pure salt

water (see Section 5.3.3), neutral sediment-laden ßows (salt water + plastic parti-

cles), and density sediment-laden ßows (clear water + plastic particles, clear water

+ natural sands). The speciÞc gravity of plastic particles G = 1.05, the particle con-

centration distribution in clear water is close to uniform, so the clear water + plastic

particle experiments can be regarded as quasi-neutral sediment-laden ßows, i.e., the

effect of density gradient may be neglected herein. In the experiments, three sediment

sizes (Þne, middle and coarse) were used, see Appendix C. The ßume perimeters were

kept the same (smooth boundary, ßow depth h = 9 cm, ßume width a = 30 cm, and

bed slope S = 0.01), the differences among individual runs are only attributed to

different concentrations. The maximum volumetric concentration was 20%.

In the following tests, the shear velocity u∗, as it in clear water, is determined by

(4.16) since it is a kinematic variable. The kinematic molecular viscosity νm due to

volumetric sediment concentration is calculated by (Coleman, 1986)

νm =
µ(1 + 2.5C + 6.25C

2
+ 15.62C

3
)

ρ0 + (ρs − ρ0)C
(7.4)

in which µ is the kinetic molecular viscosity of water; and C is the volumetric sediment

concentration. The velocity proÞle analysis procedure is the exact same as that in

clear water.

Velocity proÞles

A representative velocity proÞle, along with the modiÞed log-wake law, of neutrally-

buoyant sediment-laden ßows is shown in FIG. 7.1. All other proÞles can be found in

Appendix C. Four velocity proÞles of the Þne particle (medium size d50 = 0.268 mm)

experiments with different concentrations are plotted in FIG. 7.2. From the above

two Þgures, one sees that: (1) The sediment concentration ampliÞes the thickness of

the viscous layer (the viscous sublayer + the buffer layer). The higher the concentra-

tion, the thicker the viscous layer. (2) As the concentration increases, the position of
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Data of Wang-Qian (1989)
Modified log-wake law   
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h = 10 cm

a/h = 3

δ = 7.187 cm

δ/h = 0.7187

C̄a = 0.0807

C̄m = 0.0399

ū1max = 2.186 m/s

u* = 9.161 cm/s

κ = 0.3544

Ω = 1.867

r = 0.9997

(b)

FIG. 7.1: A representative velocity proÞle of neutral sediment-laden ßows in narrow

channels [(a) in a semilog coordinate; (b) in a rectangular coordinate]
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FIG. 7.2: The effect of molecular viscosity on the velocity proÞles [o: Wang and

Qian�s data (1989); �: The modiÞed log-wake law]

the maximum velocity moves up and closes to the water surface. (3) The modiÞed

log-wake law (solid line) is still valid in the outer region (y+ ≥ 70) of sediment-laden
ßows. (4) The von Karman constant κ decreases with sediment concentration. (5)

The variation of the wake strength coefficient Ω with sediment concentration is not

clear at this moment. The quantitative study of κ and Ω is followed in the next

subsection.

The von Karman constant κ and the wake strength coefficient Ω

The calculated results of all neutral and quasi-neutral particle experiments are

shown in Tables 7.1 and 7.2, respectively. Except SF3 and SF4 (which may be
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Table 7.1: Calculated results of Wang-Qian�s neutral particle experiments

h a/h S u∗ δ u1max C κ Ω r
RUN (cm) (cm/s) (cm) (m/s)

NF1 9 3.33 0.01 8.81 6.77 2.14 0.02 0.389 1.96 0.9994
NF2 9 3.33 0.01 8.81 7.00 2.17 0.08 0.355 1.88 0.9987
NF3 9 3.33 0.01 8.81 7.61 2.16 0.15 0.339 2.12 0.9984

NM1 10 3.00 0.01 9.16 6.79 2.08 0.02 0.419 2.01 0.9987
NM2 10 3.00 0.01 9.16 7.04 2.12 0.07 0.365 2.10 0.9990
NM3 10 3.00 0.01 9.16 7.65 2.13 0.13 0.374 2.29 0.9975
NM4 10 3.00 0.01 9.16 7.94 2.12 0.20 0.327 2.09 0.9989

NC1 10 3.00 0.01 9.16 6.33 2.10 0.02 0.400 2.02 0.9985
NC2 10 3.00 0.01 9.16 7.44 2.10 0.07 0.409 2.11 0.9968
NC3 10 3.00 0.01 9.16 6.94 2.11 0.13 0.353 2.09 0.9984
NC4 10 3.00 0.01 9.16 7.16 2.12 0.20 0.340 2.42 0.9982

outliers) in Table 7.2, a plot between C and κ, including clear water and pure salt

water experiments in Table 5.2, is shown in FIG. 7.3, where the MIT neutral particle

result in pipes (Chien andWan, 1983, p.410) is also plotted. It is clear that the present

results from narrow channels are compatible to those from pipes at MIT. The data

scatter may be due to the slight density gradient in the quasi-neutral sediment-laden

experiments. The von Karman constant κ decreases with sediment concentration C.

A linear relation between C and κ exists, i.e., the function F1 in (7.3) for κ may be

written as

κ = F1(C) = κ0 − αC (7.5)

in which the experimental constant κ0 is determined to be 0.406, the value in clear

water. The constant α is determined to be 0.372. (7.5) can be rewritten as

κ

κ0
= 1− 0.92C (7.6)

A plot of the volumetric sediment concentration C (the average values are taken for

quasi-neutral particle experiments) versus the wake strength coefficient Ω is plotted

in FIG. 7.4. It is shown that the wake strength coefficient Ω increases with sediment
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Table 7.2: Calculated results of Wang-Qian�s quasi-neutral particle experiments

h a/h u∗ δ u1max C0.05 Cm κ Ω r
RUN (cm) (cm) (m/s) (%) (%)

SF1 10 3.00 9.16 6.66 2.12 0.53 0.41 0.435 1.83 0.9987
SF2 10 3.00 9.16 6.60 2.09 1.39 1.02 0.396 1.44 0.9991
SF3 10 3.00 9.16 6.57 2.07 2.86 2.28 0.465 1.94 0.9982
SF4 10 3.00 9.16 7.44 2.08 5.55 4.60 0.449 2.12 0.9987
SF5 8 3.75 8.40 5.29 1.96 10.08 9.06 0.360 1.85 0.9980
SF6 9 3.49 8.65 9.01 2.16 14.73 13.26 0.356 2.51 0.9980

SM1 10 3.00 9.16 7.06 2.11 0.74 0.42 0.421 1.46 0.9992
SM2 10 3.00 9.16 6.55 2.15 2.74 1.20 0.416 1.71 0.9989
SM3 10 3.00 9.16 7.07 2.16 5.07 2.38 0.398 2.00 0.9997
SM4 10 3.00 9.16 7.19 2.19 7.99 3.99 0.354 1.87 0.9997
SM5 10 3.00 9.16 8.83 2.20 11.56 6.23 0.375 1.90 0.9991
SM6 10 3.00 9.16 9.40 2.21 14.40 7.54 0.348 1.70 0.9953
SM7 10 3.00 9.16 8.68 2.23 21.72 13.72 0.355 2.68 0.9995

SC1 10 3.00 9.16 6.43 2.12 1.04 0.43 0.402 1.81 0.9993
SC2 10 3.00 9.16 6.79 2.10 2.06 0.85 0.380 1.29 0.9995
SC3 10 3.00 9.16 6.64 2.11 4.18 1.98 0.378 1.86 0.9997
SC4 10 3.00 9.16 7.19 2.13 7.31 3.40 0.378 2.02 0.9992
SC5 10 3.00 9.16 7.35 2.15 11.72 6.51 0.357 2.42 0.9992
SC6 10 3.00 9.16 7.54 2.17 17.10 9.37 0.337 2.46 0.9990
SC7 10 3.00 9.16 7.73 2.16 21.00 12.25 0.317 2.15 0.9985

concentration (molecular viscosity). For Wang and Qian�s (1989) experiments where

a/h ≈ 3, the following regression equation can be obtained:

Ω = 1.65 + 3.71C (7.7)

When C = 0, Ω = 1.65 which is compatible to FIG. 5.11. In density sediment-laden

ßows, C in the above equation should be replaced by the water surface concentration

C1. Fortunately, all sediment-laden ßows in practice are density ßows. In such a

ßow, C1 is usually very small. Therefore, the effect of the concentration on the wake

strength coefficient Ω may be neglected. In other words, in density sediment-laden

ßows, one has Ω ≈ Ω0, which can be estimated from (5.21) or FIG. 5.11.
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Data of Wang and Qian (1989)         
Curve fitting equation (7.5)         
MIT pipe result (Chien and Wan, 1983)
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FIG. 7.3: The effect of molecular viscosity on the von Karman constant

h = 10 cm, Wang and Qian (1989)
h = 9 cm, Wang and Qian (1989) 
h = 8 cm, Wang and Qian (1989) 
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FIG. 7.4: The effect of molecular viscosity on the wake strength coefficient
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7.3.2 Effect of density gradient

The experimental studies of the effect of density gradient on velocity proÞles in

sediment-laden ßows were reported by Vanoni (1946), Einstein and Chien (1955),

and Coleman (1986). Vanoni (1946) did not publish the experimental data. Einstein

and Chien�s (1955) data were widely cited, however, they just measured the velocity

proÞle near the bed (about x3/h < 0.4). The velocity proÞle data near the water

surface are necessary in the test of the modiÞed log-wake law. Hence, Einstein and

Chien�s data cannot be used here. Coleman�s (1986) data set is a valuable source. It

includes all necessary information to test the modiÞed log-wake law in sediment-laden

ßows.

Like Wang and Qian�s (1989) experiments, the ßow conditions (smooth boundary,

h ≈ 170 mm, a = 356 mm, S = 0.002) were kept the same in all runs. The maximum
local volumetric concentration is 2.3%. Hence, the effect due to molecular viscosity

may be neglected. The differences of the velocity proÞles among individual runs are

just attributed to the density gradient.

Velocity proÞles

FIGS. 7.5 shows a representative velocity proÞle of Coleman�s (1986) measure-

ments with the modiÞed log-wake law. FIG. 7.6 shows a comparison of 5 velocity

proÞles with different Richardson number Ri. Other proÞles can be found in Appen-

dix D. Again, the modiÞed log-wake law agrees fairly well with experimental data.

The von Karman constant κ deceases with Ri while the variation of the wake strength

coefficient Ω is not clear at this moment.

The von Karman constant κ and the wake strength coefficient Ω

As stated in Chapter 5, the density gradient effect on the model parameters κ and

Ω may be expressed by the Richardson number Ri. From (6.46), one sees that the

estimation of Ri requires the values of C0.05, C1 and Cm. Fortunately, in Coleman�s

(1986) experiments, the sediment concentration proÞles are all measured. Therefore,

104



Data of Coleman (1986)
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FIG. 7.5: A representative velocity proÞle of sediment-laden ßows in narrow channels

[(a) in a semilog coordinate; (b) in a rectangular coordinate]
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FIG. 7.6: The effect of density gradient on velocity proÞles [o: Coleman�s data (1986);

�: The modiÞed log-wake law]

Ri can be easily calculated without a concentration proÞle equation. The calculated

results of all Coleman�s (1986) experimental proÞles are shown in Table 7.3 . A plot

of the von Karman constant κ versus the Richardson number Ri is shown in FIG. 7.7.

It can be seen that the density gradient (the Richardson number Ri) has a signiÞcant

effect on the von Karman constant κ. The stronger the density gradient, the smaller

the von Karman constant. An exponential relation between κ and Ri may exist, i.e.,

the function F2 for κ in (7.2) may be written as

κ

κ0
= exp {−βRmi } (7.8)
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d=0.105 mm, Data of Coleman (1986)
d=0.210 mm Data of Coleman (1986) 
d=0.42 mm Data of Coleman (1986)  
Curve-fitting, Equation (7.8)     
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FIG. 7.7: The effect of density gradient on the von Karman constant

in which κ0 is the von Karman constant, 0.406, in clear water ßows. β and m are

determined to be 0.065 and 0.716, respectively, using experimental data. The general

correlation coefficient is 0.89. The very small concentration is usually difficult to

measure accurately, so the data scatters when Ri < 5.

The relation between the wake strength coefficient Ω and the Richardson number

Ri is plotted in FIG. 7.8, which shows that the effect of density gradient on the wake

strength coefficient Ω is trivial. This again shows that the wake strength coefficient

Ω, in essence, expresses the effect of the side-wall.

7.3.3 Combination of the effects of molecular viscosity and

density gradient

Substituting (7.6) and (7.8) into (7.3) for the composite expression of κ, one gets

κ

κ0
= exp {−βRmi }− αC0.05 (7.9)
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d=0.105 mm, Data of Coleman (1986)
d=0.210 mm Data of Coleman (1986) 
d=0.42 mm Data of Coleman (1986)  
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FIG. 7.8: The effect of density gradient on the wake strength coefficient

in which κ0 = 0.406, β = 0.0636, m = 0.716, and α = 0.92. Considering the value of

κ is determined by the near bed ßow, C0.05 is used herein for density gradient ßows.

The further accurate values of α, β and m may be obtained if a two dimensional

curve-Þtting method is applied to (7.9).

As stated earlier, the effects of both concentration and density gradient in practice

are so small that they may be neglected. That is, the wake strength coefficient Ω is

only affected by the side-walls (the aspect ratio a/h), i.e., Ω ≈ Ω0.

7.4 Test of the log-linear law in natural rivers

7.4.1 Test of the log-linear law in natural rivers

As stated earlier, the modiÞed log-wake law reduces to the log-linear law in wide

open-channels. Vanoni�s (1946) experiments, Elata and Ippen�s experiments (1961),

Guy, Simons and Richardson�s (1966) experiments, and Muste�s (1995) experiments
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can be regarded as wide channel experiments. However, both Vanoni (1946) and

Elata and Ippen (1961) did not publish their experimental data. Guy, Simons and

Richardson (1966) collected a huge data set of sediment transport. Most of their runs

have bed forms which create difficulty in determining the shear velocity u∗. Therefore,

their experiments are not very suitable to this study. Muste�s (1995) recorded four

sediment-laden experiments. He concluded that sediment suspension has little effect

on ßuid velocity proÞle. This is because both concentration (C ≈ 10−5) and density
gradient in his experiments are very small.

The end of this study is to predict the velocity proÞles in natural rivers. Thus, the

test of the log-linear law in rivers is necessary. However, bedforms in natural streams

create difficulty for determining the shear velocity (corresponding to the skin friction).

The study of bedform resistance is beyond the scope of this dissertation. To avoid

the error due to the determination of the shear velocity, only dimensional velocity

proÞles in natural rivers are compared with the log-linear law in this subsection.

To build the Xiao-Lang-Di Reservoir and the Three Gorges Reservoir, Chinese

engineers collected many velocity and concentration proÞles in the Yellow River and

the Yangtze River. Appendix I tabulates some measurement data in the Yellow River

and the Yangtze River1. FIGS. 7.9 and 7.10 show the comparisons of the log-linear

law with some measurement velocity proÞles. One can see that the log-linear law

agrees fairly well with the Þeld measurements. This reveals that the structure of the

log-linear law in wide open-channels is correct.

7.4.2 Conjecture of the effects of sediment suspension in wide

open-channels

Fortunately, the von Karman constant κ only relates to the near bed ßow. The

near bed velocity proÞles in narrow and wide channels are similar, one naturally

reaches that (7.9) may also be valid in wide open-channels.

The water surface shear effect factor λ in a wide channel, like the wake strength

1Provided by Prof. Yu-Jia Hui, Tsinghua University, Beijing, China
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coefficient Ω in narrow channels, only relates to the near surface ßow. Since both

concentration and density gradient at the water surface are usually very small, their

effects on λ may be neglected. Thus, (5.33), from clear water, may also be valid in

sediment-laden ßows.

7.5 Summary

In this chapter, the modiÞed log-wake law Þrst compares with neutral particle-

laden experiments in narrow channels. It shows that the von Karman constant κ de-

creases with volumetric sediment concentration and can be estimated from (7.6). This

is because sediment concentration increases molecular viscosity and then increases

energy dissipation. The wake strength coefficient Ω slightly increases with sediment

concentration, but its effect may, in practice, be neglected in density sediment-laden

ßows. Note that a neutral particle-laden ßow belongs to a two-phase ßow, which is

different from a one-phase thick ßuid. Given the same boundary condition, a two-

phase ßow dissipates more energy than a one-phase thick ßow. This is because in a

two-phase (liquid + solid particles) ßow, solid particles increase the effective surface

between ßuid and solid boundaries.

The modiÞed log-wake is then tested with density sediment-laden experiments in

narrow channels. It shows that the von Karman constant κ also decreases with the

Richardson number Ri (density gradient) and can be estimated from (7.8). Unlike κ,

the wake strength coefficient Ω has little to do with the Richardson number Ri. It

may still be estimated from (5.21).

The log-linear law, which is the reduction of the log-wake law in wide channels,

compares quite well with measurement velocity proÞles in the Yellow River and the

Yangtze River. It is conjectured that like the wake strength coefficient Ω, sediment

suspension may have little effect on the water surface shear correction factor λ.

The combination of the effects of concentration and density gradient on the von

Karman constant κ may be expressed by (7.9). It may be valid in both narrow and

wide channels.
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Chapter 8

APPLICATIONS OF THE

MODIFIED LOG-WAKE LAW

8.1 Applications of the modiÞed log-wake law in

pipes

8.1.1 Relation between the maximum velocity u1max and the

average velocity U

Neglecting the viscous sublayer and the buffer layer and integrating (5.1) over the

cross-sectional area, one obtains that

u1max − U
u∗

= 2

Z 1

0

·
− 1
κ0
ln ξ + Ω0 cos

2 πξ

2
− 1− ξ

κ0

¸
(1− ξ) dξ

= − 2
κ0

Z 1

0

(1− ξ) ln ξ + 2Ω0
Z 1

0

(1− ξ) cos2 πξ
2
dξ − 2

κ0

Z 1

0

(1− ξ)2dξ

Since Z 1

0

(1− ξ) ln ξ =

Z 1

0

ln ξdξ −
Z 1

0

ξ ln ξdξ

= −1−
·
ξ2

2
ln ξ − ξ

2

4

¸1
0

= −1 + 1
4
= −3

4

115



Z 1

0

(1− ξ) cos2 πξ
2
dξ

=

Z 1

0

cos2
πξ

2
dξ −

Z 1

0

ξ cos2
πξ

2
dξ

=
2

π

Z π/2

0

cos2 ξdξ −
Z 1

0

1 + cos πξ

2
ξdξ

=
1

2
−
µ
1

4
+
1

2

Z 1

0

ξ cosπξdξ

¶
=

1

4
− 1
2

µ
1

π2
cosπξ +

ξ

π
sin πξ

¶1
0

=
1

4
+
1

π2

and Z 1

0

(1− ξ)2dξ = 1

3

one has

u1max − U
u∗

= − 2
κ0

·
−3
4

¸
+ 2Ω0

·
1

4
+
1

π2

¸
− 2

κ0

µ
1

3

¶
=

5

6κ0
+

µ
1

2
+
2

π2

¶
Ω0

Taking κ0 = 0.406 and Ω0 = 3.2, one obtains

u1max − U
u∗

= 4.3 (8.1)

8.1.2 Position of the average velocity U

Equating the right-hand side of (5.1) to the right-hand side of (8.1) and solving

the resultant equation, one obtains the position of the average velocity U , which is

ξ = 0.25 (8.2)

This equation can be used to measure the pipe average velocity at one point.

8.1.3 Procedures for applying the modiÞed log-wake law

Provided that the pipe diameter d, the shear velocity u∗ (or the pipe length L and

the pressure drop ∆p), one can calculate the pipe velocity proÞle as follows:
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Step 1: Estimate the friction factor f , which is deÞned as f = 8 (u∗/U)
2, and

the average velocity U . The study of the friction factor is beyond this dissertation.

Prandtl�s classical equation (Schlichting, 1979, p.611, p.624) or Zagarola�s (1996)

resistance formula may be used.

Prandtl�s formula (Schlichting, 1979, p.611, p.624):

1√
f
= 2 log

³
Re
p
f
´
− 0.8 (hydraulically smooth) (8.3)

in which Re= Ud/ν. The above equation is valid up to Re= 3.4× 106.

f =
1³

2 log R
ks
+ 1.74

´2 (completely rough) (8.4)

in which R is the pipe radius; and ks is roughness.

Zagarola�s (1996, p.204) formula (hydraulically smooth):

1√
f
= 1.872 log

³
Re
p
f
´
− 0.2555− 228¡

Re
√
f
¢0.89 (8.5)

which is valid for Re= 3.1× 104 − 3.5× 107.
Step 2: With the average velocity U available, the maximum velocity u1max can

be estimated using (8.1).

Step 3: Given the maximum velocity u1max, the shear velocity u∗, κ0 = 0.406, and

Ω0 = 3.2, the velocity proÞle can be estimated using (5.1), i.e.

u1max − u1
u∗

= − 1
κ0
ln ξ + Ω0 cos

2 πξ

2
− 1− ξ

κ0

8.2 Applications of the modiÞed log-wake law in

open-channels

The ßow in a narrow open-channel is three-dimensional and much more compli-

cated than that in a wide open-channel. The velocity proÞle over the whole cross-

section in a narrow channel is not studied in this dissertation. So, a full application

of the modiÞed log-wake law in narrow channels cannot be recommended at this mo-

ment. However, the log-linear law, which is the reduction of the modiÞed log-wake

law in wide channels, has been ready to apply in wide open-channel ßows.
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8.2.1 Magnitude of the linear term in the log-linear law

From (5.23), the linear term in the log-linear law is

−
"
1

κ
− λ0

µ
Vwind − u1max

u∗

¶2#
(1− ξ)

in which κ is the von Karman constant in sediment-laden ßows and varies between

0.2 and 0.406, λ0 ≈ 0.0065. Usually, u1max/u∗ = 10− 30. If Vwind = 0, one has

−5 < −
"
1

κ
− λ0

µ
Vwind − u1max

u∗

¶2#
< 4 (8.6)

One can see that the coefficient of the linear term may be positive and may be

negative. In some cases, the coefficient may be close to zero, the linear term may be

neglected and the classical log law is restored. However, this cannot be generalized.

In particular, the linear term cannot be neglected in a sediment-laden ßow. This can

be easily seen from FIGS. 7.9 and 7.10, where the velocity proÞles are not straight

lines in a semilog coordinate system.

8.2.2 Relation between the maximum velocity u1max and the

average velocity U

For a wide open-channel (2D), neglecting the viscous sublayer and the buffer layer

and integrating the log-linear law (5.23) over the entire ßow depth, one has

u1max − U
u∗

=

Z 1

0

(
−1
κ
ln ξ −

"
1

κ
− λ0

µ
Vwind − u1max

u∗

¶2#
(1− ξ)

)
dξ

= −1
κ

Z 1

0

ln ξdξ −
"
1

κ
− λ0

µ
Vwind − u1max

u∗

¶2#Z 1

0

(1− ξ)dξ

=
1

κ
− 1
2

"
1

κ
− λ0

µ
Vwind − u1max

u∗

¶2#

=
1

2κ
+
λ0
2

µ
Vwind − u1max

u∗

¶2
(8.7)

i.e.
λ0
2

µ
Vwind − u1max

u∗

¶2
− u1max − U

u∗
+
1

2κ
= 0 (8.8)
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FIG. 8.1: Position of the average velocity versus the water surface shear correction

in which κ is the von Karman constant in sediment-laden ßows.

Given Vwind, U , κ, and λ0, one can solve for the maximum velocity u1max.

8.2.3 Position of the average velocity U

Equating the right-hand side of (5.23) and the right-hand side of (8.7) and rear-

ranging them, one gets

1 + ln ξ +

"
1− κλ0

µ
Vwind − u1max

u∗

¶2#µ
1

2
− ξ
¶
= 0 (8.9)

Again, it is assumed that κ = 0.2−0.406,λ0 ≈ 0.0065, Vwind = 0, u1max/u∗ = 10−30.
Then one has

0 < κλ0

µ
Vwind − u1max

u∗

¶2
< 2.5 (8.10)

Solving (8.9) for ξ under the condition of (8.10), one obtains the position of the

average velocity, which is shown in FIG. 8.1. It can be seen that after the water

surface shear correction, the position of the average velocity varies between 0.3 and

0.42.
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8.2.4 Procedures for applying the log-linear law

Assume a uniform ßow in a wide channel with a plane bed. Provided that the

ßow depth h, the bed slope S, the sediment size ds, and the volumetric sediment

concentration C0.05, one may estimate the velocity proÞle in the following way:

Step 1: Estimate the shear velocity u∗, i.e., u∗ =
√
ghS, where g is the gravita-

tional acceleration. Note that for bedform channels, the skin shear velocity u0∗ should

be used.

Step 2: Estimate the average velocity U . The classical resistance equation by

Keulegan (Chien and Wan, 1983, p.205) may be used, i.e.

U

u∗
= 5.75 log

µ
hu∗
ν

¶
+ 3.25 (hydraulically smooth) (8.11)

U

u∗
= 5.75 log

µ
h

ks

¶
+ 6.25 (completely rough) (8.12)

in which ν is the water kinematic viscosity; and the roughness ks is usually taken as

(2− 7)d50 (Chien and Wan, 1983, p.206; Julien, 1995, p.96). For sand bed channels,
ks = 2.5d50 may be used.

Step 3: Estimate the Richardson number from (6.46), i.e.

Ri =
gδ

u2∗

ρs − ρ0
ρ0

C0.05 − C1
1 +

ρs − ρ0
ρ0

Cm

in which δ = h for wide open-channels. For density sediment-laden ßows, usually

C1 << C0.05, and Cm << 1. Then the above expression reduces to

Ri =
gδ

u2∗

ρs − ρ0
ρ0

C0.05 (8.13)

Step 4: Estimate the von Karman constant κ from (7.9), i.e.

κ

κ0
= exp{−βRmi }− αC0.05

in which κ0 = 0.406, β = 0.0636,m = 0.716, and α = 0.92.

Step 5: Assume λ0 = 0.0065 for sand channels or calculate λ0 from (5.33) for

gravel channels. With κ, u∗ and U , estimate the maximum velocity u1max from (8.8).
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Step 6: Estimate the velocity proÞle with the log-linear law, i.e.

u1max − u1
u∗

= −1
κ
ln ξ −

"
1

κ
− λ0

µ
Vwind − u1max

u∗

¶2#
(1− ξ)

in which Vwind may be assumed to be zero in laboratory or measured in Þeld cases.
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Chapter 9

SUMMARY AND

CONCLUSIONS

9.1 Summary

Turbulent velocity proÞles in pipes and open-channels with clear water and sediment-

laden ßows are investigated. A new similarity analysis method, the four-step similarity

analysis method, is Þrst presented, which includes dimensional analysis, intermediate

asymptotics, wake correction, and boundary correction. Based on the four-step simi-

larity analysis method, a clear water velocity proÞle model, the modiÞed log-wake law,

is proposed. The modiÞed log-wake law consists of three components: a log term, a

wake term, and a linear term. Physically, the log term expresses the inertia effect; the

wake term expresses the large-scale turbulent mixing; and the linear term expresses

the boundary condition effect. In open-channels, the wake term reßects the side-wall

effect. A theoretical analysis and a magnitude order analysis show that the modiÞed

log-wake law is also valid in sediment-laden ßows. In particular, the modiÞed log-

wake law considers the derivative boundary condition at the boundary layer margin,

which is not satisÞed in previous studies.

The modiÞed log-wake law has compared quite well with experiments in pipes,

narrow open-channels and wide open-channels, including both clear water ßows and

sediment-laden ßows.
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In wide channels, the wake component may be neglected. The reduction of the

log-wake law is called the log-linear law. The log-linear law agrees excellently with

both laboratory experiments and Þeld measurements.

Theoretical and experimental analyses show that sediment suspension affects the

velocity proÞle in two ways: changing the ßuid viscosity, and obtaining energy from

the turbulent energy. Both ways will damp the turbulence intensity and increase the

velocity gradient.

As a prerequisite of the velocity proÞles in open-channels, an equation for de-

termining the bed shear velocity, based on a conformal mapping method, in smooth

rectangular channels is also presented. In addition, an eddy viscosity model is derived

from the log-wake law.

9.2 Conclusions

9.2.1 Clear water ßows

1. Clear water velocity proÞles in pipes and open-channels can be described by the

modiÞed log-wake law, i.e.

u1max − u1
u∗

= − 1
κ0
ln ξ + Ω0 cos

2 πξ

2
−
"
1

κ0
− λ0

µ
Vwind − u1max

u∗

¶2#
(1− ξ)
(3.31)

in which u1max = the maximum velocity; u∗ = the shear velocity; u1 = the

velocity at normalized distance ξ = x3/δ (δ = R for pipes and δ = h for wide

channels) from the bed; κ0 = the von Karman constant in clear water; Ω0 =

the wake strength coefficient in clear water; λ0 = the water surface shear effect

factor; and Vwind = the wind velocity over the water surface. The Þrst term

on the right-hand side is the so-called intermediate asymptotics which is the

classical log law and reßects the effect of the channel bed; the second term is

the so-called wake correction which is the Coles wake function and reßects the

effect of the side-walls; and the third term is the so-called boundary correction

and reßects the effect of the boundary condition at the boundary layer margin.
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2. For pipe ßows, λ0 = 0. This is because there does not exist a free surface along

a pipe axis. Therefore, the modiÞed log-wake law reduces to

u1max − u1
u∗

= − 1
κ0
ln ξ + Ω0 cos

2 πξ

2
− 1− ξ

κ0
(5.1)

Superpipe experiments show that κ0 and Ω0 are two universal constants 0.406

and 3.2 for y+ ≥ 500, respectively. However, κ0 may slightly increases with

the Reynolds number Re∗ = u∗R/ν, where R = radius of pipe, and ν = water

kinematic viscosity, if the data of 70 < y+ < 500 are included.

3. For narrow channels (a/h < 5), where the boundary layer thickness is deÞned

as the distance from the bed to the maximum velocity position, as it in pipes,

a free surface at the boundary layer margin does not exist. In other words, the

velocity gradient and the shear stress are zero at ξ = 1. Therefore, the velocity

proÞle equation is the same as that in pipes. Narrow ßume experiments show

that κ0 is the same as that in pipes, 0.406 (the average value is 0.405 in narrow

channel tests) while Ω0 decreases with the aspect ratio a/h, see FIG. 5.11. Ω0

can be estimated by

Ω0 =

(
−0.75a

h
+ 3.75 if a/h < 5

0 if a/h ≥ 5
(5.18)

4. For wide channels (a/h ≥ 5), the wake component is very small and negligible,
see FIG. 5.11. The modiÞed log-wake law is, then, reduces to the log-linear law

as follows:

u1max − u1
u∗

= − 1
κ0
ln ξ −

"
1

κ0
− λ0

µ
Vwind − u1max

u∗

¶2#
(1− ξ) (5.20)

in which the water surface shear effect factor can be estimated by the following

empirical relation:

λ ≈
(
0.065 for ks/h < 0.024

0.2163
ks
h
+ 0.013 for ks/h ≥ 0.024 (5.30)

in which h = the ßow depth; ks = 2.5ds; and ds = sediment diameter. The

above equation is valid for both smooth and rough beds. The log-linear law

has compared well with 47 laboratory experiments and Þeld measurements, the

correlation coefficient r is always greater than 0.99.
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9.2.2 Sediment-laden ßows

1. The theoretical analysis and experimental data show that the structure of the

modiÞed log-wake law is also valid in sediment-laden ßows. However, sediment

suspension modiÞes the velocity proÞle in two factors: sediment concentration

and density gradient (the global Richardson number Ri). Since both concen-

tration and density gradient are large near the bed, the effects of sediment

suspension mainly occur near the bed.

2. The von Karman constant κ decreases with both concentration and density

gradient in a sediment-laden ßow. It can be estimated by

κ

κ0
= exp {−βRmi }− αC0.05 (7.15)

in which κ0 is the von Karman constant in clear water, 0.406; β = 0.062 and

m = 0.716. The Richardson number Ri is deÞned as

Ri =
gδ

u2∗

ρs − ρ0
ρ0

C0.05 − C1
1 +

ρs − ρ0
ρ0

Cm

(6.46)

in which ρ0 = water density; and ρs = sediment density. Given a reference

concentration Ca at ξa. Usually, in sediment-laden ßows, C1 << C0.05, and

Cm << 1. Then, the Richardson number may reduce to

Ri =
gδ

u2∗

ρs − ρ0
ρ0

C0.05

3. The wake strength coefficient Ω may slightly increase with the concentration.

However, in practice, the concentration C1 is usually very small in a density

sediment-laden ßow. Its effect may be neglected. In addition, like the con-

centration near the water surface, the density gradient is also very small near

the water surface. Therefore, the effect of the density gradient may also be

neglected. In other words, the wake strength coefficient Ω in sediment-laden

ßows can be approximated as Ω ≈ Ω0, which is estimated from (5.21).

4. Like the wake strength coefficient Ω, both concentration and density gradient

have little effect on the water surface shear effect factor λ, i.e., λ ≈ λ0, which
is estimated from (5.33).
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5. A procedure for applying the modiÞed log-wake law is presented in Chapter 8.

However, several parameters, such as the boundary layer thickness δ and the

maximum velocity u1max in narrow open-channels, are needed to fully describe

velocity proÞles in sediment-laden ßows.

6. An eddy viscosity model from the modiÞed log-wake law is derived as

ε+ =
(1− ξ) + τ |ξ=1 /τ0

1− ξ
κξ

+
πΩ

2
sin πξ +

1

u∗

du1
dξ

¯̄̄̄
ξ=1

(3.33)

in which ε+ = ε/(u∗δ) is the dimensionless eddy viscosity. The above model is

compatible to experiments in pipes, narrow channels and wide channels.

9.3 Recommendations

Except those questions raised in the above section, an immediate recommendation

is to apply the modiÞed log-wake over a dune-bed ßow and to correlate the pressure

gradient to the wake strength coefficient Ω0. Then a reasonable velocity proÞle model

for dune-bed ßows may be derived. This is very helpful to study the skin friction in

a bedform channel.

Another immediate recommendation is to try a three-dimensional velocity proÞle

law over the whole cross-section in narrow channels, based on the modiÞed log-wake

law.

In addition, based on the power law in the overlap, a power-wake law in open-

channels, as it in pipes (Appendix A), may be worthy to try in the future.
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Appendix A

POWER-WAKE LAW IN

TURBULENT PIPE FLOWS

Development of the power-wake law

Similar to the development of the modiÞed log-wake law in Chapter 3, a power-

wake law can be derived based on the four-step similarity analysis method and the

assumption of incomplete similarity.

Dimensional analysis

Considering the velocity gradient in a turbulent shear ßow, one has (Barenblatt,

1996, p.269):

∂u1
∂x3

= f(τ0, ρ0, x3, ν, δ) (A.1)

in which u1 is the velocity in the ßow direction x1, x3 is the distance from the wall;

τ0 is the wall shear stress; ρ0 is the ßuid density; ν is the ßuid kinematic viscosity;

and δ is the boundary layer thickness or the pipe radius.

The above equation can be rewritten as a dimensionless form, i.e.

x3
u∗

∂u1
∂x3

= Φ1

µ
u∗x3
ν
,
u∗δ
ν

¶
(A.2)
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Intermediate asymptotics

Following Barenblatt (1996, p.271), one assumes that the ßow is incomplete sim-

ilarity with respect to the local Reynolds number u∗x3/ν and lack of self-similarity

with respect to the global Reynolds number u∗δ/ν. According to (3.3), (A.2) may be

written as follows:
x3
u∗

∂u1
∂x3

=
³u∗x3
ν

´α
Φ

µ
u∗δ
ν

¶
(A.3)

in which α is an experimental parameter.

The integration of the above equation gives that

u1
u∗
= Ci

³u∗x3
ν

´α
+ C4 (A.4)

in which Ci = (1/α)Φ(u∗δ/ν); and C4 is usually taken as zero experimentally. This

equation is the so-called power law in the intermediate subregion.

If one writes the above power law in terms of the outer variable ξ = x3/δ, then

one has
u1
u∗
= Coξ

α (A.5)

in which Co = Ci(u∗δ/ν)α.

Wake correction

Similar to the modiÞed log-wake law, the Coles wake function is regarded as a

good approximation of the wake correction function. Then the above power law may

be extended to the wake layer by adding the Coles wake function, i.e.

u1
u∗
= Coξ

α + Ω0 sin
2 πξ

2
(A.6)

Boundary correction

The above equation does not satisfy the derivative boundary condition at the axis,

i.e. du1/dξ = 0 is not satisÞed at ξ = 1. To force it to satisfy the derivative boundary

condition, one must add a linear term αCo(1− ξ), i.e.
u1
u∗
= Coξ

α + Ω0 sin
2 πξ

2
+ αCo(1− ξ) (A.7)
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Considering the relation
u1max
u∗

= C0 + Ω0 (A.8)

the above equation may be written as a defect form, i.e.

u1max − u1
u∗

= C0(1− ξα) + Ω0 cos2 πξ
2
− αCo(1− ξ) (A.9)

This equation is referred to as the power-wake law. It is similar to the modiÞed

log-wake law, except the intermediate asymptotics is different. Like the modiÞed

log-wake law, it is a two parameter model since given u1max, Co and Ω0 must satisfy

(A.8).

Determinations of α and Co in the power-wake law

The least-squares method is also used to Þnd α and Co. The least-squares ap-

proximation is written as

S =
nX
i

·
u1i
u∗
− Coξαi −

µ
u1max
u∗

− Co
¶
sin2

πξi
2
− αCo(1− ξi)

¸2
=⇒ minimum (A.10)

in which (A.8) has been used; α and Co are solving parameters; and all others are

the same as those in (5.3). The parameters α and Co are solved by setting

∂S

∂α
= 0 and

∂S

∂Co
= 0 (A.11)

i.e.,
nX
i

·
u1i
u∗
− Coξαi −

µ
u1max
u∗

− Co
¶
sin2

πξi
2

−αC0(1− ξi)] [ξαi ln ξi + (1− ξi)]
= 0 (A.12)

nX
i

·
u1i
u∗
− Coξαi −

µ
u1max
u∗

− Co
¶
sin2

πξi
2

−αC0(1− ξi)]
·
ξαi − sin2

πξi
2
+ α(1− ξi)

¸
= 0 (A.13)
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Unlike (5.7) and (5.8), the above two equations are complicated nonlinear equations.

Fortunately, the least-squares function in MATLAB can ease this process.

Test of the power-wake law

The power-wake law is based on the assumption of incomplete similarity, hence

the parameters α and Co certainly vary with Reynolds number Re∗. According to

Zagarola (1996), the lower limit of the power law is y+ = 50. A comparison of the

power-wake law with some experimental proÞles is shown in FIG. A.1 (dashed line).

An excellent agreement is again obtained for each run. The individual values of α

and Co, computed by the least-squares method, are listed in Table A.1. Following the

suggestion of Barenblatt (1993), α and Co may be series in terms of 1/lnRe∗. Using

the data of Table A.1, α and Co may be approximated by

α =
3.605

lnRe∗
− 81.5

ln2Re∗
+
890.1

ln3Re∗
− 2962.3

ln4Re∗
+ · · · (A.14)

and

Co = 1.8125 lnRe∗ + 14.11− 42.39

lnRe∗
+ · · · (A.15)

The above two equations along with experimental data are shown in FIG. A.2a and

FIG. A.2b. Apparently, this analysis shows that the structure of the power-wake law

is also correct, the parameters α and Co vary systematically with Reynolds number

Re∗.

The comparison of the power-wake law and the modiÞed log-wake law in FIG.

A.1 shows that both the modiÞed log-wake law and the power wake law are excellent

approximations for turbulent ßows in pipes.
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Table A.1: The model parameters in the power-wake law

for individual velocity proÞles (Velocity proÞle data source:

Zagarola, 1996)

Reynolds Reynolds Correlation
Number Number α Co Coefficient

Run Re (104) Re∗ (103) r

1 3.16 0.85 0.211 20.08 0.9998
2 4.17 1.09 0.213 20.69 0.9998
3 5.67 1.43 0.209 21.40 0.9999
4 7.43 1.93 0.203 22.07 0.9999
5 9.88 2.34 0.196 22.70 0.9999

6 14.58 3.32 0.189 23.66 0.9999
7 18.54 4.12 0.183 24.21 0.9999
8 23.05 5.02 0.177 24.70 0.9999
9 30.95 6.59 0.169 25.25 0.9998
10 40.93 8.49 0.164 25.93 0.9998

11 53.91 10.94 0.157 26.47 0.9997
12 75.18 14.83 0.147 27.09 0.9997
13 102.38 19.68 0.141 27.74 0.9997
14 134.04 25.23 0.134 28.24 0.9998
15 178.75 32.88 0.131 28.86 0.9998

16 234.50 42.16 0.124 29.40 0.9999
17 309.81 54.65 0.120 29.89 0.9999
18 442.03 76.10 0.117 30.62 0.9998
19 607.27 102.19 0.113 31.28 0.9999
20 771.47 127.32 0.110 31.83 0.9999

21 1024.90 165.56 0.108 32.49 0.9999
22 1359.80 216.04 0.106 33.01 0.9999
23 1819.60 283.32 0.100 33.53 1.0000
24 2397.70 367.00 0.096 34.00 1.0000
25 2992.70 452.40 0.096 34.48 0.9999

26 3525.90 528.57 0.094 34.73 0.9999
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FIG. A.1: Comparison among the power-wake law, the modiÞed log-wake law and

Zagarola�s superpipe experimental data (y+ ≥ 50)
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Superpipe data (Zagarola, 1996)
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FIG. A.2: The variations of the model parameters with Reynolds number: (a) α

versus Re∗, (b) Co versus Re∗
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Appendix B

MATLAB PROGRAMS

Program for solving κ and Ω in the modiÞed log-

wake law

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% MATLAB PROGRAM FOR SOLVING THE VON KARMAN CONSTANT kappa AND

% THE WAKE STRENGTH COEFFICIENT W_0

%

% GIVEN:

% u_1max: MAXIMUM VELOCITY;

% u_*: SHEAR VELOCITY; and

% (xi_i, u_1i): SAMPLE POINTS.

%

% FIND: kappa AND Omega

%

% Written by Junke Guo, Mar. 20, 1997

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Replace the following question marks with right numbers

u1max = ?; % maximum velocity

ustar = ?; % shear velocity

x = [?]; % normalized distance by flow depth, x = xi

u1 = [?]; % sampling velocity

% Define the velocity defect phi

phi = (u1max - u1)./ustar;

% Plot sample data

semilogx(x,phi,�+�), hold on

% Find kappa, Omega and correlation coefficient r

p = curvefit(x,phi,�[-log(x)-(1-x) cos(pi./2.*x).^2]�,[1 1 0 �+�]); %Function

kappa = 1./p(1); Omega = p(2); r = p(3); % Correlation coefficient

% Plot fitting equation
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x = logspace(log10(0.005),0,100);

y = p(1).*(-log(x)-(1-x)) + p(2).*cos(pi./2.*x).^2;

semilogx(x,y,�r�), hold off

legend(�Measured data�,�Modified log-wake law�)

sxlabel(�\xi = x_3/R�)

sylabel(�\frac{u{\left{6.7}\up{5}\-}_{1max} \- u{\left{6.7}\up{5}\-}_1}{u_*}�)

%xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

function pr=curvefit(x,y,arg3,options)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% CURVEFIT Curve fitting and plotting routine

% pr = [parameters_fitted; corrcoef].

%

% CURVEFIT(X,Y) plots the points specified by the vectors

% X and Y using the symbol �*�, and simultaneously plots a

% straight line that represents the best linear fit to

% the data.

%

% CURVEFIT(X,Y,N) for integer N fits an Nth order polynomial

% to the data.

%

% CURVEFIT(X,Y,�[F1(x) F2(x) ...]�) fits Y to the closest

% linear combinations of the vectors F1(x), F2(x), etc.

% This is useful for fitting arbitrary functions of X to Y.

% (Ie. curvefit(X,Y,�[exp(X) cos(2*X)]�)

%

% P=CURVEFIT(X,Y,...) returns the estimated fitting

% coefficients in the vector P. In the polynomial fitting case,

% the P coefficients are ordered highest order first (slope,

% then y-intercept in the 1st order case).

%

% CURVEFIT(X,Y,N,OPTIONS) allow the caller to specify certain

% options. If OPTIONS(1)=1, then no plot is generated. This

% useful if the caller is only interested in the returned

% values. If OPTIONS(2)=1, then the X-axis is plotted on

% a log scale. If OPTIONS(3)=1, then the Y-axis is plotted on

% a log scale. If OPTIONS(4) is specified, it�s value is

% assumed to be a character representing the symbol to use

% to plot the original data, which has a default value of �*�.

% This element can be set to the character �i� for invisible if

% only the best-fit curve is desired in the plot.

%

% Written by Junke Guo, Dec. 29, 1996

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if nargin<2, error(�too few arguements�); end

f = [];

if nargin<4,

options=[0 0 0 �*�];

else

options=options(:)�; %Forces options to be a row vector

% This zeros all non-existent terms.
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if length(options)<4, options(4)=�*�; end

end

% Regulate input data to columns

x = x(:); y = y(:);

if nargin<3,

N=1; % Fit a straight line

else

% if arg3 is a scalar, set N to it.

[r,c]=size(arg3);

if max([r,c])==1, N=arg3;

else

f=eval(arg3);

end

end

if isempty(f),

P = polyfit(x,y,N);

yfitted = polyval(P,x);

else

% Determine the size of f

[r c] = size(f);

N = c;

% Determine the matrix of linear system equations

for j=1:N

for k=1:N, a = f(:,j).*f(:,k); A(j,k) = sum(a); end

b = f(:,j).*y; B(j) = sum(b);

end

B = B(:);

% Determine the fitted coefficients

P = A\B;

% Determine the fitted values of y

yfitted = f*P;

end

% Calculate correlation coefficient

R = corrcoef(y,yfitted); R = R(1,2);

if options(1)~=1, % If we are plotting...

% Determine which plot command to use.

if options(2)==0,

if options(3)==0,

plotcmd = �plot�;

else

plotcmd = �semilogy�;

end

else

if options(3)==0,

plotcmd = �semilogx�;
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else

plotcmd = �loglog�;

end

end

% Plot data

eval([plotcmd �(x,y,options(4))�]); hold on

% Plot fitted equation

x = linspace(min(x),max(x),100); x=x(:);

if isempty(f)

y1 = polyval(P,x);

else

f = eval(arg3);

y1 = f*P;

end

plot(x,y1); hold off

end

if isempty(f)

pr = [P R];

else

pr = [P� R];

end

Program for solving κ, u1max and λ in the log-linear

law

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Program for solving kappa or u_star, u_1max and epsilon_0

% in the log-linear law

%

% Given:

% kappa: the vonKarman constant; and

% (xi_i, u_1i): sample data.

%

% Find:

% u_star: shear velocity;

% u_1max: water surface velocity; and

% lambda: dimensionless eddy viscosity at the water surface.

%

% Written by Junke Guo, Mar. 23, 1997

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Repalce the following question marks with right values

x = [?]; %x = xi; normalized distance from the bed

u = [?]; %measured velocity with dimension.

% Find u_star, u_1max and epsilon_0

p = curvefit(x,u,�[(log(x)+1-x) -(1-x) ones(size(x))]�,[1 1 0 �+�]);
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k = 0.406;

ustar = 0.406.*p(1);

lambda = p(2)./ustar./(max(u)./ustar).^2;

x1 = 0.01:0.01:1;

y1 = -1./k.*(log(x1)+1-x1) + p(2)./ustar.*(1-x1);

figure(1)

semilogy(u./ustar,x,�o�,max(u)./ustar-y1,x1)

sxlabel(�u{\left{7}\up{7}\-}_1/u_*�)

sylabel(�\down{-30}\frac{x_3}{\delta}�,�Rot�,0)

xmin = floor(min(max(u)./ustar-y1)-0.5);

xmax = ceil(max(max(u)./ustar-y1)+0.5);

axis([xmin xmax 0.004 4])

leg = legend(�Data of Kironoto (1993)�,�Log-linear law�);

set(leg,�position�,[0.15 0.75 0.4 0.15])

t3 = xmin + 0.2.*(xmax - xmin);

stext(t3,0.3,run)

t4 = xmin + 0.9.*(xmax - xmin);

stext(t4,0.008,�(a)�)

eval([�printsto �,run,�a�])

figure(2)

plot(u./ustar,x,�o�,max(u)./ustar-y1,x1)

axis([xmin xmax 0 1.2])

sxlabel(�u{\left{7}\up{7}\-}_1/u_*�)

sylabel(�\down{0}\frac{x_3}{\delta}�,�Rot�,0)

legend(�Data of Kironoto (1993)�,�Log-linear law�)

set(leg,�position�,[0.15 0.75 0.4 0.15])

t0 = xmin + 0.225.*(xmax - xmin);

stext(t0,0.85,[run,� (k_s= 4.8 mm)�])

t1 = xmin + 0.1.*(xmax - xmin);

stext(t1,0.7,[�h = �,num2str(h*100),� cm�])

stext(t1,0.6,[�a/h = �,num2str(wh)])

stext(t1,0.5,[�u_* = �,num2str(ustar*100),� cm/s�])

stext(t1,0.4,[�u\bar_{1max}= �,num2str(max(u)),� m/s�])

t2 = xmin + 0.43.*(xmax - xmin);

stext(t2,0.7,[�\kappa = �,num2str(k)])

stext(t2,0.6,[�\lambda = �,num2str(lambda)])

stext(t2,0.5,[�r = �,num2str(p(3))])

stext(t4,0.14,�(b)�)

eval([�printsto �,run,�b�])
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Appendix C

ANALYSIS OF WANG-QIAN�S

EXPERIMENTAL DATA

Introduction of the experiments

Xing-Kui Wang, under the guidance of Dr. Ning Qian, did a series of experiments

with both plastic particles and natural sediments in the Sedimentation Laboratory,

Tsinghua University, Beijing, China (Wang and Qian, 1989). The experiments were

conducted in a recirculating, tilting ßume 20 m long, 30 cm wide, and 40 cm high. The

velocity and concentration proÞles were taken at the central vertical of the section

12.3 m downstream from the entrance. The channel bed was lined with concrete

plate and analysis of time-average velocity data connected with these data indicated

a hydraulic smooth surface. The bed slope S = 0.01.

During the experiment, a uniform ßow was maintained. As the bases of the study,

6 clear water and pure salt water experiments were measured, i.e., CW1, CW2, CW3,

CW4, SW1, and SW2. To study the effects of molecular viscosity, several neutral

particle-laden velocity proÞles (salt water + plastic particles) were measured, NF1,

NF2, NF3, NF4, NF5, NM1, NM2, NM3, NM4, NM5, NM6, NM7, NC1, NC2, NC3,

NC4, NC5, NC6, and NC7. To study the effects of density gradient effects, several

density experiments (water + plastic particles, G = 1.05; water + natural sediments,

G = 2.64) were measured, i.e., SF1, SF2, SF3, SF4, SF5, SF6, SM1, SM2, SM3, SM4,

SM5, SM6, SM7, SC1, SC2, SC3, SC4, SC5, SC6, SC7, SQ1, SQ2, and SQ3.

The ßow depth h is shown in the following tables and plots. The sediment sizes
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are as follows:

� NF1-3: Salt water + Þne plastic particles (dm = 0.266 mm, d50 = 0.268 mm)

� NM1-4: Salt water + middle plastic particles (dm = 0.96 mm, d50 = 0.96 mm)

� NC1-4: Salt water + coarse plastic particles (dm = 1.42 mm, d50 = 1.42 mm)

� SF1-6: Clear water + Þne plastic particles (dm = 0.266 mm, d50 = 0.268 mm)

� SM1-7: Clear water + middle plastic particles (dm = 0.96 mm, d50 = 0.96

mm)

� SC1-7: Clear water + coarse plastic particles (dm = 1.42 mm, d50 = 1.42 mm)

� SQ1-3: Clear water + Qin-Huang-Dao beach sands (dm = 0.15 mm, d50 =

0.137 mm)

Measurements of velocity proÞle and concentration

proÞle data (Wang and Qian, 1989)

The velocity proÞle data of clear water and salt water ßows are listed in Table C.1.

The neutral particle experiment data are listed in Table C.2. The density velocity

proÞle data are tabulated in Table C.3. The concentration proÞle data of the density

ßows are shown in Table C.4.

Velocity proÞle analysis

All velocity proÞle analyses are attached after the tables. Run numbers are shown

in the Þgures. In each Þgure, (a) is a semilog plot where the velocity proÞle near the

bed is emphasized; and (b) is a rectangular plot where the velocity proÞle near the

water surface is emphasized.

146



�
��
��
�
��
	


��
�
�
��
�
��
��
��
��
�
��
��
��
�
��
��
��
��
�
��
��
�
��
�
��
�
��
��
��
�
 
��
��
��
!
��
��
 
��
��

�


�

�


"

�


#

�


$

%


�

%


"

�
�
��

�
�

�
�

�
�

�
�

�
�

�
�

��
&�
�
��
&�
�
��
&�
�
��
&�
�
��
&�
�
��
&�
�

'�
''
�

��
"(
�

��
"#
�

��
��
�

��
�(
(

��
"'
�

��
""
)

'�
'�
'

��
#'
(

��
"(
(

��
"#
#

��
�*
�

��
"�
#

��
"#
�

'�
'�
"

��
#�
�

��
#'
�

��
#�
'

��
"�
)

��
"(
�

��
"*
�

'�
'�
(

��
#�
(

��
#$
(

��
#*
#

��
"$
�

��
#'
(

��
#"
)

'�
'"
'

��
$#
#

��
$�
#

��
$'
$

��
#�
*

��
#"
'

��
#�
)

'�
'"
(

��
$(
�

��
$*
�

��
$(
)

��
#(
�

��
#�
�

��
$#
)

'�
'#
#

��
*#
*

��
*"
(

��
*�
�

��
$'
$

��
$)
�

��
$�
"

'�
'$
'

��
*�
*

��
*#
)

��
*)
�

��
$$
"

��
*"
�

��
*�
*

'�
'*
'

��
(#
)

��
('
*

��
('
�

��
$�
$

��
*#
�

��
*)
�

'�
'(
*

��
(�
(

��
((
�

��
()
(

��
*"
)

��
(�
)

��
("
'

'�
'�
'

��
)$
(

��
(�
�

��
)'
(

��
*)
"

��
($
*

��
(#
(

'�
�'
'

��
)�
'

��
)*
�

��
)*
(

��
(�
'

��
)#
"

��
)'
'

'�
�*
'

��
�*
'

��
�#
)

��
�*
�

��
)'
�

��
)�
"

��
)�
�

'�
""
'

��
�#
*

��
�"
#

��
�"
�

��
)�
"

��
�(
�

��
�$
�

'�
#'
'

��
��
)

��
��
#

��
��
�

��
�#
'

��
�#
(

��
�'
#

'�
$'
'

"�
'*
"

"�
'*
#

"�
'*
(

��
�'
(

"�
''
�

��
�)
�

'�
*'
'

"�
�'
'

"�
')
�

"�
'�
�

��
�"
$

"�
'#
*

"�
'$
�

'�
('
'

"�
��
�

"�
�'
#

"�
��
(

��
�(
(

"�
')
'

"�
'�
)

'�
)'
'

"�
�'
�

"�
'�
'

"�
�'
*

"�
''
#

"�
')
�

"�
'�
*

'�
�'
'

"�
')
'

"�
'(
$

"�
'�
)

��
��
�

"�
'$
�

"�
'(
'

'�
�'
'

"�
'*
'

"�
'"
�

"�
')
$

��
�(
�

"�
'#
�

"�
')
'

�
��
�
�

�'
�'

�'
�

�
�



�
��
��
�
�"
	


��
�
�
��
�
��
��
��
��
�
��
��
��
�
��
��
��
+�
��
��
��
�
��
�
��
�
��
�
��
��
��
�
��
��
��
�
��
!
��
,
� 
�

-
.
�

-
.
"

-
.
#

-
/
�

-
/
"

-
/
#

-
/
$

-
�
�

-
�
"

-
�
#

-
�
$

�
�
��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��
&�
�
��
&�
�
��
&�
�
��
&�
�
��
&�
�
��
&�
�
��
&�
�
��
&�
�
��
&�
�
��
&�
�
��
&�
�

'�
''
�

��
"'
$

��
�*
�

��
�"
)

��
�*
#

��
�$
�

��
�$
#

��
'�
'

��
��
�

��
�*
#

��
�$
"

��
'(
�

'�
'�
'

��
"#
'

��
"'
*

��
�(
#

��
""
$

��
�(
$

��
�$
�

��
�"
)

��
"'
'

��
�)
#

��
�*
*

��
'(
#

'�
'�
"

��
"*
$

��
"*
'

��
��
�

��
"*
)

��
�(
(

��
"�
�

��
�'
�

��
"$
*

��
"�
�

��
��
'

��
�'
(

'�
'�
(

��
#�
(

��
")
*

��
"#
$

��
#'
"

��
"#
"

��
"*
�

��
�#
�

��
#�
'

��
"�
#

��
""
�

��
�(
�

'�
'"
'

��
#(
'

��
#*
�

��
"(
(

��
#"
*

��
"�
*

��
"�
*

��
��
�

��
##
�

��
#'
#

��
")
"

��
��
)

'�
'"
(

��
$'
�

��
$'
(

��
")
*

��
#(
$

��
#�
"

��
#"
*

��
""
*

��
#(
�

��
#�
#

��
")
�

��
"(
#

'�
'#
#

��
$(
*

��
$$
*

��
#*
)

��
$#
*

��
#�
'

��
#(
(

��
#�
�

��
$$
�

��
$"
�

��
#)
'

��
"�
$

'�
'$
'

��
*�
*

��
$�
)

��
$"
$

��
$)
'

��
$*
#

��
$'
'

��
#"
�

��
$�
$

��
$(
#

��
$#
'

��
#$
�

'�
'*
'

��
*(
"

��
*(
'

��
$�
�

��
*"
)

��
*'
�

��
*'
�

��
$'
"

��
*)
*

��
*�
$

��
$(
�

��
$�
"

'�
'(
*

��
('
#

��
(�
(

��
*#
)

��
*�
"

��
*$
"

��
*"
"

��
$�
)

��
("
"

��
*$
�

��
*$
*

��
$�
(

'�
'�
'

��
((
"

��
(*
$

��
('
*

��
(#
�

��
*�
)

��
*(
�

��
*"
�

��
((
'

��
("
'

��
*)
�

��
*�
�

'�
�'
'

��
)�
�

��
(�
*

��
(�
�

��
((
)

��
(*
*

��
("
)

��
*�
�

��
)'
�

��
((
*

��
("
(

��
("
�

'�
�*
'

��
)�
�

��
�'
)

��
)$
$

��
))
*

��
)$
�

��
)�
'

��
)#
$

��
)(
�

��
)#
#

��
))
*

��
(�
�

'�
""
'

��
�)
*

��
��
�

��
�*
�

��
�(
"

��
�*
)

��
��
*

��
��
�

��
��
(

��
�*
)

��
�(
�

��
�'
(

'�
#'
'

��
��
#

"�
''
)

��
��
)

��
�#
(

��
�$
�

��
�#
"

��
��
'

��
�#
(

��
�"
$

��
�#
�

��
�"
(

'�
$'
'

"�
'�
)

"�
'(
'

��
��
�

"�
'�
'

"�
'"
�

"�
'�
*

��
��
$

"�
'*
"

��
��
�

"�
'�
*

��
�)
*

'�
*'
'

"�
'�
'

"�
�#
$

"�
'*
�

"�
'*
(

"�
'�
�

"�
'(
�

"�
'#
�

"�
'(
�

"�
'$
)

"�
'*
"

"�
'*
�

'�
('
'

"�
�"
"

"�
�$
�

"�
�'
)

"�
')
)

"�
�'
"

"�
�'
#

"�
'�
)

"�
�'
(

"�
'(
�

"�
��
�

"�
��
*

'�
)'
'

"�
�#
(

"�
�*
�

"�
�$
�

"�
')
�

"�
�'
�

"�
�#
"

"�
�"
"

"�
'�
�

"�
')
�

"�
�"
)

"�
�"
�

'�
�'
'

"�
�$
$

"�
�)
�

"�
�(
�

"�
'(
�

"�
�"
'

"�
�#
"

"�
�'
"

"�
'$
�

"�
��
'

"�
'�
�

"�
'�
�

'�
�'
'

"�
��
$

"�
�(
*

"�
�*
'

"�
'#
)

"�
')
�

"�
��
(

"�
��
�

"�
'�
�

"�
'$
#

"�
'(
*

"�
')
)

�
�0
�

"
�

�*
"

)
�#

"'
"

)
�#

"'

�
��
�
�

�
�

�
�'

�'
�'

�'
�'

�'
�'

�'



�
��
��
�
�#
	


��
�
�
��
�
��
�
��
��
��
�
��
��
��
+�
��
��
��
�
��
�
��
�
��
!
��
��
��
��
!
��
��
�
��
!
��
,
� 
�

V
I
4

V
I
5

V
I
6

V
I
7

V
I
8

V
I
9

V
P
4

V
P
5

V
P
6

V
P
7

V
P
8

V
P
9

V
P
:

{
�
@
k

x
�

x
�

x
�

x
�

x
�

x
�

x
�

x
�

x
�

x
�

x
�

x
�

x
�

+p
2
v,

+p
2
v,

+p
2
v,

+p
2
v,

+p
2
v,

+p
2
v,

+p
2
v,

+p
2
v,

+p
2
v,

+p
2
v,

+p
2
v,

+p
2
v,

+p
2
v,

3
13
3
;

4
15
8
<

4
14
<
9

4
15
7
5

4
14
9
9

4
13
9
:

4
14
4
8

4
15
6
:

4
15
8
<

4
14
<
5

4
14
5
7

4
14
8
9

4
14
9
<

4
13
9
5

3
13
4
3

4
15
;
8

4
15
5
<

4
15
:
<

4
14
;
<

4
14
8
9

4
13
<
3

4
15
;
5

4
15
<
<

4
15
5
6

4
14
8
:

4
14
:
3

4
15
3
9

4
14
7
8

3
13
4
5

4
16
4
8

4
15
8
;

4
16
5
7

4
15
;
8

4
14
6
;

4
14
8
;

4
15
:
4

4
16
7
:

4
15
9
;

4
15
4
:

4
14
<
:

4
15
6
:

4
14
;
6

3
13
4
9

4
16
;
3

4
16
7
:

4
16
9
6

4
16
4
5

4
14
8
;

4
14
:
3

4
16
9
6

4
16
;
4

4
16
5
9

4
15
;
8

4
15
;
;

4
15
<
6

4
15
5
5

3
13
5
3

4
16
<
7

4
16
9
:

4
16
:
7

4
16
8
:

4
15
4
<

4
15
8
9

4
17
4
4

4
17
3
:

4
16
;
6

4
16
8
9

4
16
7
4

4
15
<
9

4
15
;
4

3
13
5
9

4
17
8
5

4
17
6
8

4
17
6
;

4
16
<
6

4
15
6
5

4
15
<
8

4
17
;
3

4
17
:
8

4
17
6
:

4
16
<
8

4
17
4
5

4
16
3
<

4
16
4
9

3
13
6
6

4
18
4
9

4
17
<
6

4
17
:
;

4
17
6
7

4
16
7
8

4
16
4
5

4
18
6
9

4
18
5
6

4
17
:
<

4
17
9
3

4
17
8
6

4
16
;
;

4
16
;
7

3
13
7
3

4
18
7
9

4
17
<
8

4
17
;
:

4
17
:
3

4
16
;
4

4
16
9
5

4
18
9
3

4
19
3
5

4
18
5
9

4
18
4
5

4
18
5
4

4
17
5
:

4
17
6
4

3
13
8
3

4
18
<
6

4
18
8
:

4
18
6
:

4
18
4
5

4
17
4
4

4
17
8
7

4
19
3
<

4
19
5
<

4
18
9
3

4
18
9
7

4
18
8
9

4
17
;
7

4
17
9
;

3
13
9
8

4
19
7
6

4
19
7
;

4
19
4
5

4
18
:
8

4
17
;
;

4
17
:
<

4
19
:
3

4
19
;
4

4
19
7
:

4
19
7
5

4
19
5
6

4
18
<
8

4
18
6
<

3
13
;
3

4
1:
4
<

4
19
;
4

4
19
8
9

4
19
4
8

4
18
5
4

4
18
4
5

4
1:
3
;

4
1:
4
6

4
19
;
;

4
19
<
3

4
19
7
:

4
19
4
;

4
19
5
9

3
14
3
3

4
1:
7
:

4
1:
6
9

4
1:
3
4

4
19
8
5

4
18
<
<

4
19
3
<

4
1:
7
<

4
1:
:
6

4
1:
4
8

4
1:
4
8

4
1:
5
<

4
1:
3
;

4
19
9
<

3
14
8
3

4
1;
3
<

4
1;
4
9

4
1:
;
4

4
1:
7
8

4
19
5
9

4
19
:
7

4
1;
4
7

4
1;
6
;

4
1;
5
7

4
1;
7
6

4
1;
4
5

4
1;
4
3

4
1:
9
7

3
15
5
3

4
1<
4
<

4
1;
<
7

4
1;
9
5

4
1;
4
;

4
1:
7
3

4
1:
9
5

4
1;
<
;

4
1<
8
6

4
1<
4
;

4
1<
6
3

4
1;
:
;

4
1<
5
5

4
1;
8
7

3
16
3
3

4
1<
:
4

4
1<
9
7

4
1<
7
<

4
1<
3
;

4
1;
3
;

4
1;
9
8

4
1<
9
3

5
13
3
<

4
1<
:
7

5
13
3
4

4
1<
:
8

4
1<
<
:

4
1<
8
5

3
17
3
3

5
13
:
8

5
13
6
;

4
1<
<
7

4
1<
<
3

4
1;
:
5

4
1<
:
7

5
13
5
5

5
13
;
;

5
13
8
9

5
13
9
9

5
13
7
7

5
13
:
3

5
13
6
8

3
18
3
3

5
13
<
:

5
13
9
6

5
13
8
5

5
13
5
;

4
1<
5
3

4
1<
;
8

5
13
:
;

5
14
5
5

5
14
3
;

5
14
7
5

5
13
:
9

5
13
<
5

5
14
3
6

3
19
3
3

5
14
3
9

5
13
<
8

5
13
9
:

5
13
:
8

4
1<
7
9

5
13
8
8

5
14
4
7

5
14
7
:

5
14
7
:

5
14
:
8

5
14
5
<

5
14
6
6

5
14
9
<

3
1:
3
3

5
14
4
9

5
13
;
9

5
13
9
:

5
13
9
9

4
1<
9
7

5
14
3
6

5
13
<
:

5
14
6
:

5
14
8
8

5
14
;
8

5
15
3
:

5
14
;
<

5
15
3
<

3
1;
3
3

5
13
<
7

5
13
9
9

5
13
6
<

5
13
:
6

5
13
8
3

5
14
6
6

5
14
3
6

5
14
4
6

5
14
7
7

5
14
:
3

5
15
3
<

5
15
4
:

5
15
5
;

3
1<
3
3

5
13
:
7

5
13
7
6

5
13
4
9

5
13
9
:

5
13
9
9

5
14
7
9

5
13
;
5

5
13
<
5

5
14
4
;

5
14
8
8

5
14
;
6

5
14
<
5

5
15
5
7

k
+f
p
,

4
3

4
3

4
3

4
3

;
<

4
3

4
3

4
3

4
3

4
3

4
3

4
3



�
��
��
�
�#
��
��
��
�
�
�!
�

%
�
�

%
�
"

%
�
#

%
�
$

%
�
*

%
�
(

%
�
)

%
�
�

%
�
"

%
�
#

�
�
��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��
&�
�
��
&�
�
��
&�
�
��
&�
�
��
&�
�
��
&�
�
��
&�
�
��
&�
�
��
&�
�
��
&�
�

'�
''
�

��
"�
#

��
��
'

��
�"
*

��
�$
�

��
'�
�

��
'�
(

��
'#
(

��
�#
#

��
�'
*

��
'�
#

'�
'�
'

��
"$
�

��
"'
(

��
�*
*

��
�$
*

��
'�
�

��
'�
(

��
'(
#

��
�$
'

��
�'
)

��
'�
�

'�
'�
"

��
"�
(

��
"(
�

��
"'
�

��
�)
�

��
�#
�

��
�#
$

��
'�
�

��
�)
)

��
�#
)

��
�'
)

'�
'�
(

��
#"
$

��
#"
�

��
"(
'

��
"#
#

��
"'
�

��
��
"

��
��
)

��
""
�

��
"'
�

��
�(
(

'�
'"
'

��
#�
�

��
#(
�

��
##
'

��
##
�

��
"#
�

��
"�
�

��
"�
�

��
"(
"

��
")
$

��
��
�

'�
'"
(

��
$$
�

��
$�
�

��
#�
'

��
#)
$

��
"�
*

��
"�
'

��
"(
#

��
#*
'

��
##
'

��
"#
$

'�
'#
#

��
$(
(

��
$(
�

��
$"
�

��
$$
�

��
#*
#

��
##
(

��
"�
�

��
#�
(

��
#$
*

��
"�
�

'�
'$
'

��
*"
�

��
*#
$

��
$�
�

��
$�
'

��
$$
'

��
$'
�

��
#*
�

��
$"
*

��
#�
(

��
##
'

'�
'*
'

��
*)
)

��
*�
$

��
*$
#

��
*�
(

��
*'
)

��
$(
*

��
$(
�

��
$(
�

��
$*
'

��
#�
(

'�
'(
*

��
($
�

��
("
(

��
('
'

��
*�
�

��
*#
�

��
*(
*

��
*"
$

��
*�
#

��
$�
"

��
$$
#

'�
'�
'

��
()
#

��
(�
'

��
(*
�

��
(#
$

��
*�
)

��
*�
*

��
*�
�

��
*$
$

��
*"
�

��
$�
�

'�
�'
'

��
)$
(

��
)*
"

��
)'
(

��
(�
*

��
(*
$

��
(*
"

��
($
�

��
('
$

��
*$
)

��
*#
�

'�
�*
'

��
�#
'

��
��
)

��
)�
*

��
)�
"

��
)*
)

��
))
*

��
)*
#

��
(�
*

��
(*
�

��
((
(

'�
""
'

��
�'
)

��
��
)

��
�(
*

��
�#
�

��
�"
�

��
�*
�

��
�#
*

��
)*
�

��
)(
*

��
)(
$

'�
#'
'

��
��
(

��
�)
'

��
�$
"

��
�#
�

��
�#
*

��
��
(

��
��
#

��
)�
$

��
�#
(

��
�'
$

'�
$'
'

"�
'*
)

"�
'#
"

"�
''
�

��
��
�

��
��
�

"�
'�
�

"�
'�
(

��
�)
*

��
��
*

��
�(
(

'�
*'
'

"�
'�
�

"�
'*
$

"�
')
�

"�
')
#

"�
'�
)

"�
'(
�

"�
'*
$

��
�#
#

��
�(
"

��
�#
(

'�
('
'

"�
�"
#

"�
��
'

"�
��
"

"�
��
�

"�
�"
�

"�
�*
�

"�
�#
)

��
��
�

��
��
*

"�
''
*

'�
)'
'

"�
��
"

"�
�'
#

"�
�'
$

"�
�#
$

"�
�*
�

"�
��
'

"�
�)
*

"�
''
*

"�
'�
#

"�
''
#

'�
�'
'

"�
'�
)

"�
'�
'

"�
')
$

"�
��
�

"�
�$
�

"�
�(
$

"�
�$
*

"�
')
�

"�
'�
"

"�
'#
�

'�
�'
'

"�
'*
�

"�
'*
$

"�
'$
#

"�
'�
#

"�
��
"

"�
�$
*

"�
�$
)

"�
'(
�

"�
'*
�

"�
'�
�

�
��
�
�

�'
�'

�'
�'

�'
�'

�'
�

�
�



�
��
��
�
�$
	


��
�
�
��
�
��
��
��
��
�
��
��
��
�
��
��
��
��
�
��
�
��
��
��
�
�
��
�
��
�

%
.
�

%
.
"

%
.
#

%
.
$

%
.
*

%
.
(

%
/
�

%
/
"

%
/
#

%
/
$

%
/
*

%
/
(

%
/
)

�
�
��

�
�

�
�

�
�

�
�

�
�

�
�

�

�0
�

�0
�

�0
�

�0
�

�0
�

�0
�

�0
�

�0
�

�0
�

�0
�

�0
�

�0
�

�0
�

'�
'�
(

'�
("

��
#*

"�
�'

*�
)(

�'
�$
#

�*
�*
�

'�
�$

"�
�(

*�
#(

��
#�

�"
�*
�

�#
��
�

"'
��
*

'�
'"
(

'�
*#

��
#�

"�
��

*�
($

�'
�$
)

�*
��
*

'�
�'

"�
�"

*�
#'

��
$$

�"
�*
*

�#
��
)

"'
�(
)

'�
'$
'

'�
**

��
#�

"�
�#

*�
*#

�'
�*
'

�$
�)
�

'�
)�

"�
(*

$�
�*

)�
��

��
�(
)

�$
�$
#

"�
�*
�

'�
'(
*

'�
*#

��
#"

"�
)#

*�
#�

�'
�#
$

�$
��
�

'�
(*

"�
$�

$�
)'

)�
(�

��
��
$

�#
�)
)

"�
�#
�

'�
�'
'

'�
$)

��
��

"�
($

*�
"$

�'
��
�

�$
��
#

'�
*�

"�
#"

$�
#(

)�
�"

��
��
"

�#
�"
'

"�
�"
�

'�
"'
'

'�
$)

��
�*

"�
*�

*�
�(

�'
�'
*

�$
�)
#

'�
$�

��
��

#�
((

(�
�"

��
�'

��
�"
�

��
�#
$

'�
#'
'

'�
$'

��
�(

"�
*#

*�
'�

��
��

�$
�(
#

'�
$'

��
**

#�
'"

*�
"�

��
)*

�'
�$
�

�)
�)
*

'�
$'
'

'�
$)

��
�'

"�
$#

*�
'�

��
)#

�$
��
*

'�
#$

��
"*

"�
)(

$�
((

)�
#)

��
'$

�*
�)
*

'�
*'
'

'�
$#

��
'(

"�
$"

$�
�"

��
*(

�#
�(
(

'�
"�

��
')

"�
�#

#�
)#

*�
�)

)�
*�

�$
�#
)

'�
('
'

'�
$'

'�
��

"�
��

$�
(*

��
#'

�#
�*
�

'�
#"

'�
�"

��
)*

#�
'�

$�
)�

*�
)�

�"
��
�

'�
)'
'

'�
$�

'�
��

"�
"#

$�
#�

��
'#

�#
�*
"

'�
��

'�
(�

��
$�

"�
")

#�
$)

$�
$�

��
)*

'�
�'
'

'�
$'

'�
�#

"�
�)

$�
#*

��
�*

�#
��
*

'�
�(

'�
*)

��
�'

��
)�

"�
*�

#�
$)

)�
#(

'�
�'
'

'�
#)

'�
�$

"�
�)

$�
#�

��
()

�"
�)
)

'�
��

'�
$#

'�
�'

��
*$

"�
""

"�
�#

��
�$

�
f
�
�

'�
*(

��
#(

"�
�*

*�
('

�'
�$
$

�*
�'
�

��
#�
'

"�
)$
'

*�
�'
'

��
')
'

�"
��
*'

�$
�'
*

"�
��
)

�
6

'�
$�

��
'"

"�
"�

$�
(

��
'(

�#
�"
(

'�
$"
'

��
"'
'

"�
#�
'

#�
��
'

(�
"#
'

)�
*$
'

�#
�)
"'



�
��
��
�
�$
��
��
��
�
�
�!
�

%
�
�

%
�
"

%
�
#

%
�
$

%
�
*

%
�
(

%
�
)

%
�
�

%
�
"

%
�
#

�
�
��

�
�

�
�

�
�

�
�

�
�

�0
�

�0
�

�0
�

�0
�

�0
�

�0
�

�0
�

�0
�

�0
�

�0
�

'�
'�
(

��
'"
'

"�
"'
'

$�
*�
'

)�
$)
'

��
��
)'

�)
��
�'

"�
�'
''

"�
�)
'

)�
�*
'

��
($
'

'�
'"
(

��
'*
'

"�
�#
'

$�
#*
'

)�
$�
'

�"
�(
$'

�)
�'
�'

"�
�'
''

"�
��
'

)�
(#
'

��
*$
'

'�
'$
'

��
'"
'

"�
'�
'

$�
'$
'

)�
"*
'

��
�$
�'

�)
�'
�'

"�
�'
''

��
)�
'

(�
"*
'

��
#"
'

'�
'(
*

'�
�#
'

��
)�
'

#�
�'
'

(�
((
'

��
�)
"'

�(
�#
)'

"�
�'
''

��
$"
'

*�
�)
'

(�
�#
'

'�
�'
'

'�
�$
'

��
($
'

#�
('
'

(�
"�
'

��
�(
#'

�*
��
�'

"'
��
''

��
'�
'

$�
$$
'

*�
*�
'

'�
"'
'

'�
(�
'

��
$�
'

"�
��
'

*�
"(
'

�'
�"
*'

�$
�)
('

�)
�)
$'

'�
��
'

"�
))
'

#�
**
'

'�
#'
'

'�
**
'

��
�#
'

"�
**
'

$�
#(
'

��
�(
'

�"
�(
�'

�)
��
�'

'�
('
'

"�
'"
'

"�
*'
'

'�
$'
'

'�
$�
'

'�
�*
'

"�
��
'

#�
�#
'

)�
)$
'

��
�"
''

�*
�"
�'

'�
$)
'

��
$*
'

��
(�
'

'�
*'
'

'�
#�
'

'�
)�
'

��
�)
'

#�
"$
'

(�
$"
'

��
*�
'

�#
��
"'

'�
#�
'

��
'�
'

��
'�
'

'�
('
'

'�
#'
'

'�
*�
'

��
$)
'

"�
$�
'

*�
'(
'

)�
$"
'

�'
�"
)'

'�
"�
'

'�
�#
'

'�
()
'

'�
)'
'

'�
"$
'

'�
$(
'

��
�*
'

��
��
'

#�
��
'

*�
('
'

)�
�*
'

'�
"#
'

'�
*$
'

'�
$$
'

'�
�'
'

'�
"�
'

'�
#�
'

'�
�(
'

��
**
'

"�
�(
'

$�
$#
'

*�
((
'

'�
��
'

'�
#�
'

'�
")
'

'�
�'
'

'�
')
'

'�
'�
'

'�
��
'

��
#'
'

"�
$(
'

#�
#"
'

$�
#)
'

'�
�$
'

'�
"�
'

'�
�)
'

�
�

��
'�
'

"�
'*

$�
""

)�
"$

��
�(
"

�(
��
(

"�
�'
''

��
�'
'

(�
�*
'

��
)"
'

�
6

'�
$#
'

'�
�*
'

��
��
'

#�
$'
'

(�
*�
'

��
#)
'

�"
�"
*'

'�
*#
'

��
))
'

"�
�'
'



D
at

a 
of

 W
an

g-
Q

ia
n 

(1
98

9)
M

od
ifi

ed
 lo

g-
w

ak
e 

la
w

   

12
14

16
18

20
22

24

10
-2

10
-1

10
0

u− 1/u
*

x 3 δ__
_

C
W

1

(a
)

y+  
= 

70

12
14

16
18

20
22

24
0

0.
2

0.
4

0.
6

0.
81

1.
2

1.
4

1.
6

u− 1/
u *

x 3 δ___

C
W

1

h 
= 

10
 c

m

a/
h 

= 
3

δ  
= 

6.
36

2 
cm

δ /
h 

= 
0.

63
62
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Appendix D

ANALYSIS OF COLEMAN�S

EXPERIMENTAL DATA

Coleman (1986) did experiments in a smooth ßume which is 356 mm wide and

15 m long. During the experiments, the energy slope S was kept to be 0.002 except

the last three runs where S = 0.0022. The ßow depths are about 171 cm. Runs

1, 21, and 32 are clear water ßows. Run2 2-20 are with Þne sands of ds = 0.105

mm; Runs 22-31 are with middle sands of ds = 0.21 mm; and Runs 33-40 are with

coarse sands of ds = 0.42 mm. The temperatures are between 19.5 and 25.3◦C.

Detailed experimental information can be found in literature (Coleman, 1986). The

measurements of velocity and concentration proÞles are shown in Table D.1. All

velocity proÞle analyses are attached after the table.
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ū 1
m

ax
 =

 1
.0

81
 m

/s

C̄
0.

05
 =

 0
.0

11
49

R
i =

 1
3.

98

κ  
= 

0.
26

12

Ω
 =

 3
.4

08

r =
 0

.9
97

9

(b
)

D
at

a 
of

 C
ol

em
an

 (
19

86
)

M
od

ifi
ed

 lo
g-

w
ak

e 
la

w
 

8
10

12
14

16
18

20
22

24
26

10
-2

10
-1

10
0

u− 1/u
*

x 3 δ__
_

R
U

N
12

(a
)

y+
 =

 7
0

8
10

12
14

16
18

20
22

24
26

0

0.
2

0.
4

0.
6

0.
81

1.
2

u− 1/
u *

x 3 δ___

R
U

N
12

h 
= 

17
.3

 c
m

a/
h 

= 
2.

05
8

u *
 =

 4
.1

17
 c

m
/s

δ  
= 

13
.7

4 
cm

δ /
h 

= 
0.

79
41
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ū 1
m

ax
 =

 1
.0

69
 m

/s

C̄
0.

05
 =

 0
.0

06
40

2

R
i =

 7
.5

45

κ  
= 

0.
31

95

Ω
 =

 3
.7

17

r =
 0

.9
97

4

(b
)

D
at

a 
of

 C
ol

em
an

 (
19

86
)

M
od

ifi
ed

 lo
g-

w
ak

e 
la

w
 

10
12

14
16

18
20

22
24

26

10
-2

10
-1

10
0

u− 1/u
*

x 3 δ__
_

R
U

N
28

(a
)

y+  
= 

70

10
12

14
16

18
20

22
24

26
0

0.
2

0.
4

0.
6

0.
81

1.
2

u− 1/
u *

x 3 δ___

R
U

N
28

h 
= 

17
 c

m

a/
h 

= 
2.

09
4

u *
 =

 4
.1

04
 c

m
/s

δ  
= 

12
.9

1 
cm

δ /
h 

= 
0.

75
96
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Appendix E

ANALYSIS OF KIRONOTO�S

EXPERIMENTAL DATA

Kironoto (1993), under the guidance of Prof. Walter Graf at Swiss Federal In-

stitute of Technology, Lausanne, Switzerland, did experiments on both uniform and

non-uniform ßows. Only the uniform ßow experimental data are cited here. The

experimental data include both mean velocity proÞles and turbulence intensity dis-

tribution, see next page. All velocity proÞle analyses are attached after the tables.
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Appendix F

ANALYSIS OF MUSTE�S

EXPERIMENTAL DATA

Muste (1995) did three runs of clear water experiments and three runs of sediment-

laden experiments in a smooth wide ßume with 30 m long, 0.91 m wide and 0.45 deep.

He measured both ßuid and sediment particles velocities in sediment-laden ßows.

However, only the three clear water experiments are cited here. The experimental

conditions and measurement data are shown in Table F.1. The three velocity proÞle

analyses are attached after the table.
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Table F.1: Muste�s (1995)a measurements of velocity proÞles

CW01 CW02 CW03
h = 13 cm h = 12.8 cm h = 12.7 cm
S =7.41E-4 S = 7.71E-4 S = 8.11E-4
x3/h u1 x3/h u1 x3/h u1

(m/s) (m/s) (m/s)
0.0923 0.5240 0.0933 0.5270 0.0945 0.5340
0.1154 0.5410 0.1167 0.5450 0.1181 0.5490
0.1385 0.5550 0.1400 0.5570 0.1417 0.5660
0.1615 0.5670 0.1634 0.5709 0.1654 0.5730
0.1846 0.5750 0.1867 0.5790 0.1890 0.5870
0.2077 0.5840 0.2100 0.5936 0.2126 0.5980
0.2308 0.5960 0.2334 0.5980 0.2362 0.6030
0.2538 0.6000 0.2567 0.6040 0.2598 0.6080
0.3000 0.6140 0.3034 0.6187 0.3071 0.6250
0.3462 0.6260 0.3501 0.6306 0.3543 0.6370
0.3923 0.6330 0.3967 0.6416 0.4016 0.6470
0.4462 0.6420 0.4512 0.6511 0.4567 0.6610
0.4923 0.6540 0.4979 0.6607 0.5039 0.6690
0.5615 0.6600 0.5679 0.6744 0.5748 0.6810
0.6308 0.6760 0.6379 0.6853 0.6457 0.6920
0.7000 0.6830 0.7079 0.6955 0.7165 0.7090
0.7692 0.6910 0.7779 0.7030 0.7874 0.7170
0.8385 0.6990 0.8246 0.7084 0.8346 0.7310
a Data were obtained by private communication.
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Appendix G

ANALYSIS OF McQUIVEY�S

EXPERIMENTAL DATA

McQuivey (1971) collected a lot of experimental data. The data in a 20 centimeter-

wide ßume with a rigid boundary are cited and analyzed here, see attached table and

Þgures.

220





D
at

a 
of

 M
cQ

ui
ve

y 
(1

97
1)

Lo
g-

lin
ea

r 
la

w
   

   
   

4
6

8
10

12
14

16

10
-2

10
-1

10
0

u− 1/u
*

x 3 h__
_

R
U

N
 1

(a
)

D
at

a 
of

 M
cQ

ui
ve

y 
(1

97
1)

Lo
g-

lin
ea

r 
la

w
   

   
   

4
6

8
10

12
14

16
0

0.
2

0.
4

0.
6

0.
81

u− 1/
u *

x 3 h___

R
U

N
 1

 (S
m

oo
th

 b
ed

)

h 
= 

2.
92

6 
cm

a/
h 

= 
6.

58
3
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ū 1
m

ax
= 

0.
70

1 
m

/s

u *
 =

 3
.1

3 
cm

/s

κ 0
 =

 0
.4

06

λ 0
 =

 0
.0

08
86

8

r =
 0

.9
97

6

(b
)

D
at

a 
of

 M
cQ

ui
ve

y 
(1

97
1)

Lo
g-

lin
ea

r 
la

w
   

   
   

4
6

8
10

12
14

16

10
-2

10
-1

10
0

u− 1/u
*

x 3 h__
_

R
U

N
 4

(a
)

D
at

a 
of

 M
cQ

ui
ve

y 
(1

97
1)

Lo
g-

lin
ea

r 
la

w
   

   
   

4
6

8
10

12
14

16
0

0.
2

0.
4

0.
6

0.
81

u− 1/
u *

x 3 h___

R
U

N
 4

 (S
m

oo
th

 b
ed

)

h 
= 

2.
95

7 
cm

a/
h 

= 
6.

51
5
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Appendix H

ANALYSIS OF GUY, SIMONS

AND RICHARDSON�S

EXPERIMENTAL DATA

Eight velocity proÞle measurements over plane beds by Guy, Simons and Richard-

son (1966) are cited. The ßow conditions and measurement data are listed in Table

H.1. The analyses of velocity proÞle are attached after the table.
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ū 1
m

ax
= 

0.
61

67
 m

/s

κ 0
 =

 0
.4

06

Ω
0 =

 0

λ 0
 =

 0
.0

05
58

8

r =
 0

.9
99

(b
)



D
at

a 
of

 G
uy

 e
t a

l. 
(1

96
6)

Lo
g-

lin
ea

r 
la

w
   

   
   

  

18
20

22
24

26
28

30
32

34
36

38

10
-2

10
-1

10
0

u− 1/
u *

x 3 δ___

D
at

a 
of

 G
uy

 e
t a

l. 
(1

96
6)

Lo
g-

lin
ea

r 
la

w
   

   
   

  

18
20

22
24

26
28

30
32

34
36

38
0

0.
2

0.
4

0.
6

0.
81

u− 1/
u *

x 3 δ___

R
U

N
22

C
  (

d 5
0=

 0
.1

9 
m

m
)

h 
= 

12
.2

2 
cm

a/
h 

= 
19

.9
5

u *
 =

 0
.9

02
 c

m
/s
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Appendix I

MEASUREMENT DATA IN THE

YELLOW RIVER AND THE

YANGTZE RIVER1

Measurements of velocity and concentration proÞles

at Hua-Yuan-Kou Hydrologic Station, the Yellow

River, China

Time: 7/27/83
h = 3.3 m
S = 3.7× 10−4

ξ u1 C
(m/s) (kg/m3)

0.97 2.33 10.40
0.80 2.00 12.00
0.60 1.60 16.30
0.40 1.36 20.20
0.30 1.14 22.00
0.20 0.98 23.80
0.10 0.82 27.10
0.03 0.65 30.00

Time: 8/15/83
h = 2.4 m
S = 7.2× 10−4

ξ u1 C
(m/s) (kg/m3)

0.97 2.33 11.80
0.80 2.00 12.30
0.60 1.60 12.80
0.40 1.36 13.30
0.30 1.14 13.50
0.20 0.98 15.30
0.10 0.82 18.80
0.03 0.65 39.30

1Provided by Prof. Yu-jia Hui, Tsinghua University, Beijing, China
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Time: 8/15/83
h = 2.5 m
S = 7.2× 10−4

ξ u1 C
(m/s) (kg/m3)

0.96 3.09 11.40
0.80 2.96 10.40
0.60 2.70 13.50
0.40 2.41 14.30
0.30 2.25 17.40
0.20 2.01 18.90
0.10 1.74 24.00
0.04 1.53 29.00

Time: 8/15/83
h = 2.5 m
S = 7.2× 10−4

ξ u1 C
(m/s) (kg/m3)

0.96 3.11 8.14
0.80 2.96 12.20
0.60 2.74 14.00
0.40 2.46 16.00
0.30 2.31 17.10
0.20 2.10 19.80
0.10 1.86 20.30
0.04 1.64 24.90

Time: 8/15/83
h = 2.3 m
S = 7.2× 10−4

ξ u1 C
(m/s) (kg/m3)

0.96 3.34 7.15
0.80 3.18 7.63
0.60 3.03 11.20
0.40 2.84 15.60
0.30 2.65 18.40
0.20 2.48 19.00
0.10 2.29 23.40
0.04 1.97 22.60

Time: 8/14/83
h = 2.4 m
S = 7.8× 10−4

ξ u1 C
(m/s) (kg/m3)

0.96 3.34 7.50
0.80 3.18 11.20
0.60 2.93 11.60
0.40 2.70 15.10
0.30 2.53 15.80
0.20 2.39 16.50
0.10 2.15 18.40
0.04 1.99 24.80

Time: 8/14/83
h = 2.3 m
S = 7.7× 10−4

ξ u1 C
(m/s) (kg/m3)

0.96 3.38 7.62
0.80 3.11 10.20
0.60 3.02 10.90
0.40 2.62 14.60
0.30 2.48 16.30
0.20 2.27 18.00
0.10 2.01 20.80
0.04 1.81 27.20

Time: 8/15/83
h = 2.5 m
S = 8.0× 10−4

ξ u1 C
(m/s) (kg/m3)

0.96 3.38 3.95
0.80 3.11 8.38
0.60 3.02 10.50
0.40 2.62 12.40
0.30 2.48 14.00
0.20 2.27 15.90
0.10 2.01 14.60
0.04 1.81 19.70
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Measurements of velocity and concentration proÞles

at Feng-Jie Hydrologic Station, the Yangtze River,

China

Time: 8/25/76
h = 28.7 m
S = 1× 10−4

ξ u1 C
(m/s) (kg/m3)

0.9983 2.87 1.74
0.8000 2.81 1.84
0.4000 2.57 2.03
0.2000 2.21 2.19
0.1000 1.96 2.35
0.0174 1.43 2.97
0.0035 1.10 4.18

Time: 9/02/76
h = 37.1 m
S = 7.5× 10−5

ξ u1 C
(m/s) (kg/m3)

0.9987 2.74 1.31
0.8000 2.70 1.45
0.4000 2.41 1.65
0.2000 2.28 1.67
0.1000 1.88 1.63
0.0135 1.65 2.34
0.0027 1.33 4.01

Time: 9/03/76
h = 34.2 m
S = 8.3× 10−5

ξ u1 C
(m/s) (kg/m3)

0.9985 2.64 1.60
0.8000 2.61 1.66
0.4000 2.28 1.74
0.2000 2.10 1.72
0.1000 1.87 1.82
0.0146 1.56 1.93
0.0029 1.31 4.71

Time: 7/19
h = 42.2 m
S = 5.8× 10−5

ξ u1 C
(m/s) (kg/m3)

0.9988 2.82 1.41
0.8000 2.82 1.70
0.4000 2.46 1.83
0.2000 2.22 1.93
0.1000 2.03 2.26
0.0118 1.63 2.26
0.0024 1.41 4.93

Time: 8/21/81
h = 44.4 m
S = 5.1× 10−5

ξ u1 C
(m/s) (kg/m3)

0.9989 2.91 2.94
0.8000 2.83 3.58
0.4000 2.59 3.97
0.2000 2.35 4.16
0.0023 1.71 4.15

Time: 5/21/81
h = 15.4 m
S = 1.16× 10−4

ξ u1 C
(m/s) (kg/m3)

0.9989 2.77 0.75
0.8000 2.72 0.88
0.4000 2.45 0.98
0.2000 2.16 1.31
0.0023 1.59 1.59
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Time: 8/27/76
h = 33.6 m
S = 7.6× 10−5

ξ u1 C
(m/s) (kg/m3)

0.9985 2.90 2.52
0.8000 2.88 2.53
0.4000 2.58 2.85
0.2000 2.29 3.16
0.1000 2.02 3.24
0.0149 1.79 4.64
0.0030 1.53 8.86

Time: 7/21/76
h = 45.9 m
S = 5× 10−5

ξ u1 C
(m/s) (kg/m3)

0.9989 2.94 1.57
0.8000 2.85 2.03
0.4000 2.58 2.18
0.2000 2.34 2.19
0.1000 2.08 2.77
0.0109 1.89 3.00
0.0022 1.57 3.87

Time: 8/19/81
h = 32.3 m
S = 7.5× 10−5

ξ u1 C
(m/s) (kg/m3)

0.9985 2.85 1.29
0.8000 2.79 1.37
0.4000 2.51 1.67
0.2000 2.30 1.77
0.0031 1.62 1.89

Time: 8/21/81
h = 44.4 m
S = 5.1× 10−5

ξ u1 C
(m/s) (kg/m3)

0.9988 2.91 2.94
0.8000 2.83 3.58
0.4000 2.59 3.97
0.2000 2.35 4.16
0.0024 1.71 4.15

Time: 8/21/81
h = 44.4 m
S = 5.1× 10−5

ξ u1 C
(m/s) (kg/m3)

0.9989 2.91
0.8000 2.83
0.4000 2.59
0.2000 2.35
0.0023 1.71
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