DISSERTATION

TURBULENT VELOCITY PROFILES IN CLEAR WATER AND
SEDIMENT-LADEN FLOWS

Submitted by
Junke Guo

Department of Civil Engineering

In partial fulfillment of the requirements
for the Degree of Doctor of Philosophy
Colorado State University
Fort Collins, Colorado
Spring 1998



COLORADO STATE UNIVERSITY

December 18, 1997

WE HEREBY RECOMMEND THAT THE DISSERTATION PREPARED
UNDER OUR SUPERVISION BY JUNKE GUO ENTITLED TURBULENT
VELOCITY PROFILES IN CLEAR WATER AND SEDIMENT-LADEN
FLOWS BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS FOR
THE DEGREE OF DOCTOR OF PHILOSOPHY.

Committee on Graduate Work

Adviser

Department Head/Director



To my parents
my brothers and sisters

my wife Jun An and my son Hao

“Everything should be made as simple as possible,
but not simpler.”

——Albert Einstein



ABSTRACT OF DISSERTATION

TURBULENT VELOCITY PROFILES IN CLEAR WATER AND
SEDIMENT-LADEN FLOWS

This dissertation studies turbulent velocity profiles in pipes with clear water, and
centerline velocity profiles in open-channels with clear water and sediment-laden flows.
The main purpose is to find a suitable velocity profile law for the entire boundary
layer, particularly near the water surface, and to study the effects of sediment suspen-
sion on the model parameters. As a prerequisite for the study of velocity profiles in
open-channels, a theoretical method for determining the bed shear stress in smooth
rectangular channels is presented.

The major findings are:

(1) A wall shear turbulent velocity profile, in a velocity defect form, consists of
three parts: a log term, a wake correction term, and a boundary correction term which
is a linear function. The first two terms are the same as those in the classical log-wake
law. The third term is a major contribution of this study. This new velocity profile
law is referred to as the modified log-wake law. The new law considers the upper
derivative boundary condition, which is not satisfied in previous studies. Physically,
the log term reflects the inertia effect, the wake term reflects the large scale turbulent
mixing, and the linear term reflects the effect of the upper boundary condition. In
open-channels, the log term reflects the effect of the channel bed; the wake term
reflects the effect of the side-walls, which induce secondary flows in the corners and
then produce large scale turbulent mixing.

(2) For clear water flows in pipes, the new law contains two universal constants:
the von Karman constant xo = 0.406 and the wake strength coefficient {2y = 3.2.

(3) For clear water flows in narrow channels, the boundary layer thickness § is
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defined as the distance from the bed to the maximum velocity. The velocity profile
equation is similar to that in pipes except that the wake strength coefficient )
decreases with the aspect ratios. In particular, the new law can even reproduce the
velocity profile measurements beyond the boundary layer thickness.

(4) For clear water flows in wide channels, the effect of the side-walls is weakened,
also, the water surface limits large scale turbulent mixing, so the wake component
may be neglected. The modified log-wake law reduces to a log-linear law. The von
Karman constant « is still 0.406. The water surface shear stress is considered through
the parameter \g which is about a constant 0.065 for a smooth bed and small relative
roughness, but increases with the relative roughness in very rough beds.

(5) The modified log-wake law is also valid in sediment-laden flows. Sediment
suspension affects the velocity profile in two factors: concentration and density gra-
dient (the Richardson number R;). Both factors reduce the von Karman constant x.
However, if both concentration and density gradient near the water surface are very
small, they have little effect on the wake strength coefficient 2 in narrow channels
and the water surface shear effect factor A\ in wide channels.

(6) The modified log-wake law, including its reduction in wide channels, compares
quite well with over 100 experimental velocity profiles in pipes, narrow open-channels

and wide open-channels. The correlation coefficients r are always over 0.99.

Junke Guo

Department of Civil Engineering
Colorado State University

Fort Collins, CO 80523

Spring 1998
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Chapter 1

INTRODUCTION

1.1 Statement and significance of the problem

The study of wall shear turbulent velocity profiles is a basic subject in fluid me-
chanics. In particular, the study of turbulent velocity profiles in sediment-laden flows
is one of the most important subjects in sediment transport and river mechanics.
This study addresses the problem: what is the best functional form of the velocity
profile equation in a pipe or open-channel, and how does sediment suspension affect
the velocity profile in a sediment-laden flow?

Since the problem is a fundamental subject, its thorough understanding is re-
quired to study flow resistance and sediment transport capacity. Furthermore, its
accurate prediction is helpful for the analysis of a pipe flow, a river development and

management, reservoir operation, flood protection, etc.

1.2 Background

To answer the above questions, extensive investigations have been reported for
the last half century. The studies in clear water include Prandtl (Schlichting, 1979,
p.596), von Karman (Schlichting, 1979, p.608), Nikuradse (1932), Keulegan (1938),
Laufer (1954), Patel and Head (1969), Zagarola (1996), and many others. The studies

in sediment-laden flows include Vanoni (1946), Einstein and Chien (1955), Vanoni and
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Nomicos (1960), Elata and Ippen (1961), Coleman (1981, 1986), Janin (1986), Karim
and Kennedy (1987), Woo, Julien and Richardson (1988), Lyn (1986, 1988), Wang
and Qian(1989). All investigations of sediment-laden flows are to study the effects of
sediment suspension on the model parameters in the log law, the log-wake law or the
power law. However, a literature review shows that neither the log law, the log-wake
law nor the power law is the best functional form of the velocity profile model in pipes
and open-channels. This is because all of them do not satisfy the derivative boundary
condition at the pipe axis, the water surface or the boundary layer margin, where the
boundary layer thickness is defined as the distance from the bed to the maximum
velocity position in narrow channels. Obviously, the subject of the velocity profiles in

pipes and open-channels is still very challenging and a further research is indicated.

1.3 Objectives

The specific objectives addressed in this study are: (1) to establish a new velocity
profile model in clear water flows using a new similarity analysis method; (2) to create
a method for determining the bed shear stress (or the bed shear velocity) in a smooth
rectangular channel, based on a conformal mapping method; (3) to determine the
model parameters, i.e., the von Karman constant kg, the wake strength coefficient
o, and the water surface shear effect factor \g, in clear water flows, using a least-
squares method; (4) to prove that the new velocity profile model from clear water
flows is also valid in sediment-laden flows, based on the sediment-laden flow governing
equations and a magnitude order analysis; and (5) to study the effects of sediment

suspension on the model parameters, using a least-squares method.

1.4 Limitations and assumptions

This study is limited to the outer region velocity profiles in pipes and open-
channels, i.e., the inner region (the viscous sublayer and the buffer layer), where the

viscous shear stress is important, is excluded. In addition, the study assumes that: (1)
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the flow is steady, uniform and 2D (two-dimensional); (2) the 2D flow results may be
empirically extended to narrow channels; and (3) the volumetric concentration may
be very high for neutral particle-laden flows, but relative dilute for natural sediment-

laden flows, say, the volumetric concentration C' < 0.1.

1.5 Outline

This dissertation includes 9 chapters. Chapter 1 briefly introduces the subject and
states the objectives. Chapter 2 reviews previous major achievements in pipes and
open-channel flows. To meet Objective 1, Chapter 3 first presents a new similarity
analysis method and then proposes a new velocity profile law, the modified log-wake
law, in clear water. Chapter 4 discusses a method for determining the bed shear
velocity in a smooth rectangular channel (Objective 2). Chapter 5 tests the modified
log-wake law and studies the model parameters in clear water (Objective 3). Chapter
6 discusses the application of the velocity profile law from clear water to sediment-
laden flows (Objective 4). Chapter 7 studies the effects of sediment suspension on
the velocity profiles in sediment-laden flows (Objective 5). Chapter 8 illustrates the
procedures for applying the modified log-wake law. Finally, Chapter 9 summarites
the main results of this research. In addition, several appendixes, which show detailed

programs or analyses, appear at the end of the dissertation.



Chapter 2

LITERATURE REVIEW

2.1 Introduction

This chapter reviews the previous principal achievements regarding velocity pro-
files in pipes and open-channels. The velocity profile in clear water is first reviewed
in Section 2.2, Then, a review of the sediment-laden velocity profiles is followed in

Section 2.3. Section 2.4 summarizes the previous major results and weaknesses.

2.2 Velocity Profile in Clear Water

Experimental evidence shows that all wall shear turbulent velocity profiles, such
as pipe flows, open-channel flows, and boundary layer flows, over a smooth boundary
can be divided into two regions (Coles, 1956): an inner region where turbulence is
directly affected by the bed; and an outer region where the flow is only indirectly
affected by the bed through its shear stress. The inner region can be further divided
into a viscous sublayer, a buffer layer, and an overlap. Since the variation from the
inner region to the outer region is gradual, the overlap is also a part of the outer
regions (Kundu, 1990, p.451). Thus, the outer region can be further divided into the
overlap and a wake layer. In brief, the low domain in a wall shear turbulence can
be divided into four layers (or subregions): viscous sublayer, buffer layer, overlap (or

intermediate layer), and wake layer, shown in FIG. 2.1. The velocity profile in each
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FIG. 2.1: Sketch of a representative velocity profile in open-channels

layer is reviewed below.

2.2.1 Linear law in the viscous sublayer

Assume that the velocity profile near the bed can be expressed as a Taylor series,

i.e.
duy
23=0 + d.??g

where u; is the time mean velocity in the flow direction; and x3 is the distance from

1 &%y

T3+ 7 —— 2
59 da?

o (2.1)

Uy = ﬂ1|

x3=0 x3=0

the bed. The no-slip condition at the bed requires that

Wy = 0 (2:2)
According to Newton’s frictional law, % is related to the bed shear stress 7y,
x3=0
i.e.
di
To = Poly, = M dia
L3 x3=0
or
du u?
-1 - = (2.3)
drs|,,—g V



in which pg is the water density; u, = \/7'0/—p0 is the shear velocity; u = pov is the
water dynamic viscosity; and v is the water kinematic viscosity.

Substituting (2.2) and (2.3) into (2.1) and neglecting the higher order terms yield
the velocity profile near the bed as

U7 . U3
Uy N v
or
ut =yt (2.4)

in which u™ = % /u, and y* = u,x3/v are the inner variables. Experiments (Schlicht-
ing, 1979, p.601) show that the above equation is valid in the range of 0 < y* <5.
The buffer layer velocity profile is very complicated and cannot be expressed using

a simple function. It will be discussed in Subsection 2.2.4.

2.2.2 Log law in the overlap

Traditionally, the velocity profile in the overlap is expressed by the log law or the
power law. The log law is usually regarded as a complete success since it can be
derived from a complete similarity assumption (Kundu, 1990, p.451), i.e.

Uy = iy x3 + const (2.5)
Ko

The above equation is usually expressed in terms of the inner variables as

1
ut=—Inyt+C (2.6)
Ko

in which C} ~ 5, or in terms of the outer variables as

ﬂl max — U1

1
= ——Iné+ G (2.7)
U Iav)

in which %y n.x = the velocity at the water surface for a wide channel or at the
boundary layer margin for a narrow channel; £ = x3/6, and Cy ~ 1. Experiments
(Kundu, p.453) show that the log law is usually valid in the range of y* > 30 — 70
and ¢ < 0.15 — 0.2, which is shown in FIG. 2.1.
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Barenblatt (1996, p.271) has shown that the power law can be derived from an
incomplete similarity assumption and the log law is only a special case of the power
law. Zagarola (1996) experimentally shows that the power law has advantage over
the log law in the range of 50 < y* < 500. In practice, the log law may still be a

good approximation.

2.2.3 Parabolic law in the wake layer and upper boundary

conditions

The velocity profile near a water surface or a boundary layer margin can be

expressed as a Taylor series, i.e.

— _ du1 1 d2ﬂ1 9
= — — 1+ = -1
(%1 u1|§:1 + dé— - (5 ) + 2| d€2 - (6 )
1 d’w,
—— (£—-13+--. (2.8)
3l ded |,

The boundary conditions at the water surface of a 2D channel can be expressed
as:

Velocity at the water surface: ;| ¢=1 = Ul max (2.9)

and the shear stress at the water surface (White, 1991, p.149):

7—|§:1 = Cdeatir(‘/wimd — Uy max)2 (210)

in which % nax = the maximum velocity; pa, = 1.21 kg/m3 is the air density in
the standard atmosphere; Viing is the wind velocity over the water; and Cy = the
water surface drag coefficient which is in the order of 102 but difficult to determine
accurately (Roll, 1965, p.160). On the other hand, the shear stress (turbulent shear

stress) at the water surface relates to the velocity gradient by an eddy viscosity, i.e.

_ ot du,

Tlezy = €1 pous 3 - (2.11)
in which ¢] is the dimensionless eddy viscosity at the water surface. From the above
two equations, one derives that

duy _ Capair(Vivind — Tt max)?

d§ £=1 a £ poti.




(Vwind - H1 max)2
U

(2.12)

in which Mg = Cypair/ (€] po) is called the water surface shear effect factor. The above
equation shows that the shear stress at the water surface is usually nonzero except
that the wind velocity over the water is equal to the water surface velocity.
However, the boundary layer thickness in a narrow channel is not the water depth,
rather it is usually defined as the distance from the bed to the maximum velocity
position. In this case, the velocity gradient at the maximum velocity must be zero,

1.e.
dty
3

=0 (2.13)
e=1
The above condition is also required in a circular pipe flow. (2.13) may also be

expressed by (2.12) except that A\g = 0. (2.13) and (2.12) are shown in FIG. 2.2.

Now neglecting the 3rd and higher order terms in (2.8), one obtains

_ diy 1 d*my )
Uy = Ul max + —— E—1)+ = -1 2.14
or
U Uimax 1 dT 1 1 d*u )
— = —_—— 1)+ =— -1 2.15

The above equation can be rewritten as a defect form:

1 1 d%*q

<1_£)_§u_*d§2

Uimax — U1 1 dug
Uy Uy dE

(1-¢)? (2.16)
e=1

¢=1

in which ddlgl - is defined by (2.12) or (2.13); and i d;gﬂ;

is determined experi-

mentally.

If (2.13) is used, the previous parabolic law is obtained

W = A(1—¢)? (2.17)
in which A = —-L 2% is determined experimentally. Bazin suggested A = 6.3

2us  d€? e=1

for wide open-channels (Hu and Hui, 1995, p.31), Hama gave A = 9.6 in plane
boundary layers (Hinze, 1975, p.631) and Laufer proposed A = 7.2 in pipes (Hinze,
1975, p.732). The parabolic law is usually valid in £ > 0.15 — 0.2, which is shown in
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FIG. 2.3: The velocity defect law in the outer region (After Hinze, 1975, p.631)

FIG. 2.3. However, the velocity gradient at the water surface in a wide channel is not
necessary to be zero, as indicated in (2.12).

Equations (2.4), (2.7) and (2.16) are independent of any turbulent models and
are indeed three physical constraints to the velocity profile. A satisfactory turbulent
model must meet them simultaneously. In practice, the viscous and the buffer layers
may be neglected, in particular in a rough boundary. Therefore, (2.7) and (2.16) must

be at least met.

2.2.4 The law of the wall (general inner region law)

To describe the velocity profile in the buffer layer (5 < y* < 70), Spalding (White,
1991, p.415) deduced a composite law of the wall, based on an asymptotic matching
of (2.4) and (2.7), i.e.

+\2 +\2
y+ — u+ _'_ e*l’iOB €I€OH+ _ 1 _ lioqu _ (K’O,;L ) _ (KOZ ) (218)

in which k¢ = 0.4, and B = 5.5. This equation smoothly merges the linear and the log

laws and fits experimental data excellently, shown in FIG. 2.4. Therefore, it can be
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FIG. 2.4: The law of the wall in the inner region (After White, 1991, p.416)

regarded as a complete success in the inner region. The only weakness is its implicit

functional relation.

2.2.5 The law of the wake (general outer region law)

The law of the wake or the log-wake law, proposed by Coles (1956, 1969), is a
popular one in the outer region. Coles surveyed a lot of experiments of boundary
layer flows, all experimental data showed that the velocity defect law in the outer
region is a composite of two universal functions, i.e., the law of the wall and the law

of the wake. That is,

Uy — Uy 1 211 21T . T
ST — g+ | = sin® (5¢) (2.19)
Us Ko Ko Ko 2
The law ?),f the wall The law of the wake

in which II is the Coles wake strength coefficient and varies with the pressure gradient
in a boundary layer flow. The wake flow function is just a purely empirical function.

For convenience of applications, an equivalent equation is often written as

Ul max — U 1 211
Dmax 70~ In¢ + — cos® <E£) (2.20)
Uy Ko Ko 2
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Several hydraulicians (Coleman, 1981, 1986; Nezu and Nakagawa, 1993) system-
atically examined it in open-channels. They found that the wake flow function can
also improve the accuracy of velocity profiles in open-channels. For clear water, the
Coles wake strength coefficient II is about 0 — 0.2. Note that although many inves-
tigators regarded the log-wake law as a great success in the outer region, as Coles
(1969) stated, it is not valid near the upper boundary layer edge (¢ > 0.6 —0.9). This
is because it does not satisfy the boundary condition (2.12) or (2.13).

In summary, no existing velocity profile equation satisfies (2.12) or (2.13).

2.3 Velocity Profiles in Sediment-Laden Flows

Because more independent variables, such as sediment concentration and density
gradient, are involved in sediment-laden flow systems, velocity profiles in sediment-
laden flows are much more complicated than those in clear water. In this section, only
the applications of the log law and the log-wake law will be reviewed. The application

of the power law is neglected here although several studies have been reported.

2.3.1 Extension of the log law to sediment-laden flows

Vanoni (1946), Einstein and Chien (1955), Vanoni and Nomicos (1960), Elata
and Ippen (1961), and many others examined the log law in sediment-laden flows
experimentally. They concluded that the log law remains valid except that «, which is
the von Karman constant in sediment-laden flow, decreases with sediment suspension.
Furthermore, Einstein and Chien (1955) proposed a graphical relation to predict the
von Karman constant « based on an energy concept, as shown in FIG. 2.5. They also
pointed out that the main effect of sediment suspension occurs near the bed.

Later, Vanoni and Nomicos (1960) modified the Einstein and Chien parameter
with the average volumetric concentration near the bed. Barton and Lin (1955) dis-
cussed the variation of the von Karman constant s from the view of density gradient.
Chien and Wan (1983, p.396) unified various arguments with a Richardson number.

However, their study could not explain Elata and Ippen’s (1961) neutral particle ex-
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FIG. 2.5: Effect of suspended sediment on the von Karman constant (After Einstein

and Chien, 1955)
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periments. To explain his neutral particle experiments, Ippen (1971) argued that
suspended sediment affects the velocity profile mainly by changing water viscosity. A
good summary of this type of research can be found in the literature (Vanoni, 1975,
p.83-91; Chien and Wan, 1983, p.391-401; Hu and Hui, 1995, p.130-137).

Almost at the same time as Einstein and Chien (1955), Kolmogorov (1954) and
Barenblatt (1953, 1996) also analyzed the effect of sediment suspension on the log
law from a view of complete similarity. They considered the momentum equation, the
sediment concentration equation and the turbulent energy equation simultaneously
and concluded that the log law is still valid in sediment-laden flows except that the
von Karman constant becomes smaller. This is exactly the same conclusion as that
drawn by Einstein and Chien (1955). Barenblatt (1996, p.270) further pointed out
that the application of the log law in sediment-laden flows, as it in clear water, is
limited to the overlap zone. In other words, the log law may not be valid in the wake

layer and near the water surface.

2.3.2 Extension of the log-wake law to sediment-laden flows

Coleman (1981, 1986) introduced the log-wake law to open channels and studied
the effect of suspended sediment on the parameters x and II. He argued that if
the log-wake law is applied, the von Karman constant x remains the same as that
in clear water kg, but the wake strength coefficient II increases with a Richardson
number, shown in FIG. 2.6. He further pointed out that the previous conclusion, i.e.,
k decreases with sediment suspension, was obtained by incorrectly extending the log
law to the wake layer.

Coleman’s argument was supported by Parker and Coleman (1986), Cioffi and
Gallerano (1991). A similar result was obtained at CSU by Janin (1986) in a large
boundary layer wind tunnel. Coleman’s conclusion is actually an analogy to the ef-
fect of pressure-gradient on boundary-layer flows. However, the pressure equation of a
boundary layer flow in the normal direction is not similar to the sediment concentra-
tion equation in a sediment-laden flow. The pressure or pressure-gradient is regarded

as a constant at a certain cross-section in a boundary layer flow while the sediment

14



12k ® 0.105 J
A o.210
[J o.420

1.0} 4
Suspension Capacity Asymplote %

& ]
or gA
n o)

g g 2°
B E] Clegrwaler As
B ymptote ~
2 A
0 P 1 1 L [ B 1 ! (U
6 10° 2 4 6 10' 2 4 6 10

FIG. 2.6: Effect of suspended sediment on the wake strength coefficient

concentration is usually not uniform in the vertical direction. In other words, the von

Karman constant « is not necessarily

constant in sediment-laden flows.

Contrary to Coleman’s finding, Lyn (1986, 1988) believed that the effect of sedi-
ment suspension mainly occurs near the bed. In other words, the von Karman con-
stant k£ may decrease with sediment suspension while the wake strength coefficient II
may be independent of sediment suspension and kept about 0.2, the same as that in

clear water.

Recently, Kereselidze and Kutavaia (1995), from their own experiments, deduced

that both x and II vary with sediment suspension.

No doubt, the log-wake law can improve the accuracy of the velocity profiles in

sediment-laden flows. However, the effects of sediment suspension on x and II are

still debatable.
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2.3.3 Log-linear law and others

The log-linear law was originally proposed in temperature stratified flows (Kundu,

1990, p.463). It is written as

Uy K

ﬂl 1 |: I3
T30 Ly

In =% + 5ﬁ} (2.21)

in which x3q is a reference point; and Lj; is the Monin-Obukhov length. The above

equation can be written as a defect form as follows:

Hlmax_ﬂl 1 I3 (S—.?Ig
“max 7 2| 22
Us /€|: B o Ly, }
1 5 6
= ——1 —— (1 - 2.22
gt (1= 9) (2.22)

in which £ = z3/6. From the formula appearance, the log-linear law is another type
of the log-wake law, except that the wake function is a linear function rather than
a sine function. However, from its derivation (Duo, 1987, p.365), the log-linear law,
like the log law, is only valid in the overlap since it is assumed that the shear stress is
a constant. In addition, the above log-linear law is derived under the assumption of
small values of Richardson number R; (Roll, 1965, p.147). In other words, one cannot
expect that it will prove useful under conditions of great density gradient flows.

Itakura and Kishi (1980) and McCutcheon (1981) applied the log-linear law to
sediment-laden flows. However, this extension is not accepted by sediment researchers.
As pointed out by Lyn (1986), the foundation of the log-linear law, where the tur-
bulent temperature flux is a constant, is not applicable in sediment-laden flows since
the turbulent sediment concentration flux is not a constant in the vertical direction at
all. Although the log-linear law is not applicable in sediment-laden flows theoretically,
the comparison of the log-linear law with experimental data (Itakura and Kishi,1980;
McCutcheon, 1981) looks very good.

Besides the log-wake law and the log-linear law, some other wake function forms
can be found in literature. Ni and Hui (1988) proposed a wake flow function with two
terms: one indicates the effect of mean concentration; the other expresses the effect

of concentration gradient. Umeyama and Gerritsen (1992) and Zhou and Ni (1995)
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suggested a Taylor series to express the wake flow function. In addition, the study
of the power law was reported by Chien and Wan (1983), Chen (1984), Karim and
Kennedy (1987) and Woo, Julien and Richardson (1988).

2.4 Summary

No existing (outer region) velocity profile laws in clear water are fully satisfactory.
The log law is valid only in the overlap. The log-wake law does not satisfy the upper
boundary condition. The parabolic law is only valid near the water surface in narrow
channels. The log-linear law is good in temperature stratified flows, but the foun-
dation of its assumptions may not applicable in sediment-laden flows. Consequently,

the applications of these laws in sediment-laden flows are not satisfactory.
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Chapter 3

SIMILARITY ANALYSIS OF
CLEAR WATER VELOCITY
PROFILES

3.1 Introduction

Turbulence is complicated. Although the governing Navier-Stokes equations have
been established over a century, no solutions for turbulent flows (high Reynolds num-
ber flows) are yet available, even for a simple steady uniform 2D turbulence. To find
a time-averaged solution of turbulence, the Reynolds averaged equations are usually
applied. However, the average process brings new unknowns to the flow system. In
other words, the Reynolds equations are not closed and cannot be solved theoreti-
cally. Dimensional analysis or similarity analysis is usually helpful in such a case. The
new difficulty from the classical dimensional analysis is that it only gives similarity

parameters. It cannot give the specific functional relations.

Recently, Barenblatt (1996) has extended the dimensional analysis method. In
particular, the concept of the intermediate asymptotics suggested by him is very
powerful in a turbulence analysis. Based on previous studies, an improved similarity

analysis approach is first presented in Section 3.2. Then its application in the study
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of clear water velocity profile is discussed in Section 3.3. An eddy viscosity, based on
the new velocity profile law, is discussed in Section 3.4. Section 3.5 briefly summaries

the results of this chapter.

3.2 Four-step similarity analysis method

Suppose there is a physical system including a turbulent flow in a 2D pipe or
open-channel. The governing equations of the system are not closed, unknown, or
too difficult to solve. One may proceed with a similarity analysis in the following
way: dimensional analysis, intermediate asymptotics, wake correction, and boundary
correction. These four steps are referred to as the four-step similarity analysis method.

The following is the discussion of each step.

3.2.1 Dimensional analysis

For simplicity, one assumes an equilibrium physical system. The dimensional
analysis includes: (a) specifying governing parameters (independent and dependent
parameters) and their dimensions; (b) specifying the boundary conditions; (c¢) choos-
ing the repeated parameters; and (d) using Buckingham’s II theorem to normalize
the governing parameters and the boundary conditions with the repeated parameters
and putting the function under study into a dimensionless form, i.e.

The governing parameters

II=o(I, M, ---, I1,,) (3.1)
The boundary conditions
. .ol .01
iﬂﬂ—¢, ilgll“a_l'lj_gbl’ i%a—l-[?—¢27 (3.2)
in which II is the dependent similarity parameter; Iy, II5, - - -, and II,, are independent

similarity parameters; x — I' denotes the space variable tends to the boundary; ¢
denotes the boundary values; and subscripts 1 and 2 denote the values of the first

and the second derivatives; and j = 1,2,---,m. (3.1) is equivalent to the governing
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equations which may be a vector. The number of the boundary conditions depends
on the governing equations (ODE or PDE). However, if the governing equations are

unknown, try to write as many conditions as possible. (3.2) are constraints of (3.1).

3.2.2 Intermediate asymptotics

According to Barenblatt (1996, p. xiii), the intermediate asymptotics means that
for a certain governing similarity parameter, its value is intermediate, i.e., neither
too big nor too small. For a time-dependent problem, the intermediate asymptotics
means that the system is independent of the fine details of the initial conditions and
also far away from the equilibrium state. For an equilibrium problem, the physical
domain considered is far away from the boundary. In other words, the dependent
parameters under consideration are independent of the boundary conditions. The
intermediate asymptotics usually includes two steps: one is the test of “complete
similarity assumption”, and the other is the test of “incomplete similarity assump-
tion.”

Complete similarity. If the system is completely independent of a certain para-
meter, say, II,,, one says that the system is complete similarity with respect to II,,.
Then II,,, disappears in (3.1), the number of the independent parameters reduces to
m — 1.

Incomplete similarity: Suppose that ® tends to zero or infinity when II,, goes to
zero or infinity. This means that the quantity of II,, remains essential in the system,

and (3.1) may be rewritten as (Barenblatt, 1996, p. 24, p. 145, Chap. 5):

I, 1o, IT,,_1
M= (=, —, --- 3.3
mn (H%’Hfﬁ?’ ’ H%M> (3:3)
in which the exponents oy, as, - - -, and «,, must be determined experimentally. This

kind of similarity is called incomplete similarity.

3.2.3 Wake correction (or wake function)

From its definition, the intermediate asymptotics is not valid beyond the corre-

sponding intermediate domain. The deviation between the real values of II and the
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intermediate asymptotics beyond the intermediate domain is called the wake cor-
rection or wake function W. This is analogous to the Coles wake flow function in

turbulent boundary layers (Coles, 1956). Now one has
II=®(I0y, Iy, -+, q) + W, Iy, -+, IL,,) (3.4)

for a complete similarity, and

I, 1l 1,1
g2’ T2’ Tlam

II = H%lq) ( ) =+ W(HIJ H27 ) Hm) (35)

for an incomplete similarity. Obviously, the wake correction must be very small

compared with the first term when II,, goes to its intermediate values.

3.2.4 Boundary correction

Equation (3.4) or (3.5) has extended the solution near the boundary. However,
the boundary conditions are usually not satisfied. To meet the boundary condition,

another additional term which is called the boundary correction B may be added to

(3.4) and (3.5). Then one has

I Ig)(]:[l; H27 Ty Hm—ll_'_W(Hl; H27 ) Hmz_'_\B(Hlv H27 ) Hml (36)

Intermediate asymptotics Wake correction Boundary correction
or
I, I, II
T m—1
H_Hm(b(]:[a27 Ha37 Ty Ha +W<H17 H27 "'7Hm)+B(H1;H27 H';Hm>
N ~~ 4 Wake correction Boundary correction
Intermediate asymptotics
(3.7)

The boundary correction function B is usually a polynomial. The power of the polyno-
mial is equal to the highest order of derivative boundary condition. For example, if the
highest order of the derivative boundary condition is a first order, then the boundary
correction function B will be a linear function. The function B can be determined by
expanding the first two terms at the boundary. The detailed method for determining
the boundary correction function B will be illustrated in the following section.

One can see that a similarity solution may consist of three parts: intermediate
asymptotics, wake correction, and boundary correction. Take the velocity profile in

a pipe flow as an example, the above four steps can be summarized in FIG. 3.1.
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3.3 Velocity profile analysis

To give a complete procedure of the four-step similarity analysis method, some

previous results are cited in the following analysis.

3.3.1 Dimensional analysis

Like solving a system of partial differential equations, one must consider both
the governing parameters (corresponding to governing equations) and the boundary
conditions.

Traditionally, the velocity profile in a turbulent boundary shear flow is considered
in two different regions separately (White, 1986, p.298). For the inner region, Prandtl
deduced in 1930 that w; must be independent of the shear-layer thickness

= f(u, 7o, po, 3) (3.8)

By dimensional analysis, this is equivalent to

D p () (3.9)

U v
or
u
—=F(y") (3.10)

in which u, = \/70/po and v = 11/po. (3.9) or (3.10) is called the law of the wall. The
inner boundary condition corresponding to the law of the wall is the no slip condition.
In the literature review (Chapter 2), it has been pointed out that the law of the wall
has been well solved by Spalding (White, 1991, p.415). Therefore, this analysis will
focus on the outer region velocity profile.

For the outer region, von Karman in 1933 deduced that u%; in the outer region is
independent of molecular viscosity but its deviation from the stream velocity U max
(for a 2D open-channel flow, i.e., the water surface velocity) must depend on the

shear-layer thickness and the other properties

Hlmax _Hl = 9(67 To, Po, Z‘3) (311)
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Again, by dimensional analysis one writes this as

Hlmax - H1 o E
G ( : ) (3.12)
or
= O(g) (3.13)

in which £ = z3/6. (3.12) or (3.13) is called the velocity defect law. The boundary
conditions corresponding to the defect law should be (2.9) and (2.12) or (2.13). They

will be met by choosing the function G.

3.3.2 Intermediate asymptotics

Assume that the channel bed corresponds to the boundary I'y and the upper
boundary (the maximum velocity in a narrow channel or the water surface in a wide
channel) corresponds to the boundary I's in FIG. 3.1. Then the left part corresponds
to the inner region in a channel flow while the right part corresponds to the outer
region. Obviously, unlike previous studies, the outer region is now divided into three
layers: the overlap, the wake layer, and the boundary effect layer. The boundary
effect layer is emphasized here.

From FIG. 3.1, the intermediate layer or overlap belongs to both the inner region
and the outer region. Then both (3.10) and (3.13) are valid in the overlap. From
(3.10) one gets the velocity gradient as (Millikan, 1938; Kundu, 1990, p.452)

dﬂl U2 dF
_— == 3.14
dxs v dyt ( )
From (3.13) one has
dﬂl U dG
el 1
drs 6 d€ (3.15)
Equating (3.14) and (3.15) and multiplying by z3/u., one has
dG dF 1
E— t— = — (3.16)

i~V ayt T ko
which is valid for large y™ and small £. Since the left side is only a function of £ and

the right side is only a function of y*, both sides must be equal to the same universal
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constant, say 1/kg, where kg is the von Karman constant in clear water. Integration
of (3.16) gives
1
Fy") = — Iny" +C (3.17)
0

and

G(§) = %Oln€+02 (3.18)

in which kg, C7 and C5 are experimental constants. The above log law is actually
derived on the assumption of complete similarity with respect to Reynolds number
in the intermediate region.

Barenblatt (1996, p.269) showed that under the assumption of incomplete similar-
ity with Reynolds number, a power law in the intermediate region may be obtained.
This study will concentrate on the log law. The brief study of a power law, under the

assumption of incomplete similarity, in pipe flows is appended in Appendix A.

3.3.3 Wake correction to the log law

Based on (3.17), Coles (1956, 1969) analyzed a lot of experimental profiles and

determined that the wake correction can be well approximated as

W (&) = Qg sin? %5 (3.19)

in which €2y is the wake value at £ = 1. In other words, the log law may be extended

to the wake layer by adding the wake function (3.19) to (3.17), i.e.

u 1
e y* + Cy + Qpsin? me (3.20)
Uy Ko 2

Considering y* = Re.&, in which the Reynolds number Re, = u.6/v, the above

equation can be rewritten by the outer variable &, i.e.
1

— = —1In¢&+C3+ Qo sm”—5 (3.21)
Ko 2

in which C3 = 1/koInRe, + Cy. This is just the log-wake law proposed by Coles
(1956). As Coles (1969) stated later, this law is not valid near the upper boundary

layer since the derivative boundary condition at the boundary edge is not satisfied.
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3.3.4 Boundary correction to the log-wake law

According to (3.6), assume a boundary correction function B(), then (3.21) be-
comes

D L lng 4Gy + Qsin® T 4 B (3.22)
0

U
in which B(&) is a linear function since the highest derivative boundary condition is
a first order derivative.

One can expand the above equation at £ = 1. One has

e = M- (1—g) - -y L=
_ _(1_5)_(1—_25)2__... (3.23)
2 g e 1—(;087?5 _ % cos(7r2— 7€)
~- 1- li(_gz[ﬂ(l@—ifﬂ%
= 1—%2(1—5)2+--- (3.24)
and
cos? gg - %2(1 24 (3.25)

(3.25) will be used later. Now substituting (3.23) and (3.24) into (3.21) and neglecting
the 3rd and higher order terms yield that

A (1_5)2+03+QO (1—”—2(1—5)2>+B(g)

Uy Ko 2K

() - (i i —290) L-eP+BE)  (3.26)

It is assumed that B(&) is linear, comparing (3.26) and (2.15), one has

Cs+ Q= ﬂ{uma" (3.27)
|t _
B(¢) [“0 T 5_1] (1-9) (3.28)




Finally, the log-wake law is modified as

which can be rewritten as a velocity defect form

Ul max — U 1
Smax L Iné 4 Qgcos® = —
Uy Ko 2

7T§ [1 1 dﬂl

] (1-¢) (3.30)

in which ko and €2y are two experimental constants. This is the final velocity profile
equation based on the log law, which is called the modified log-wake law. The last
term is due to the boundary correction which is a main contribution of this study.

Considering (2.12) and (2.13), (3.30) may further be written as

Uy Ko Ko U

_max__ 1 1 win __max 2
u:——ln§+ﬂoc032%§— [——)\0 <Vd—u1)](1—§)

(3.31)

in which Ag = 0 for narrow channels and pipes, and A\g > 0 for wide channels.

3.4 Implication to turbulent eddy viscosity

The eddy viscosity is not a measurable variable. It is usually derived from some
assumptions, such as the mixing length hypothesis, or from the mean velocity profiles
for simple flows. If (3.30) is correct, an eddy viscosity model can be deduced.

Assume that the shear stress is linearly distributed along the flow depth and the
viscous shear stress can be neglected, the distribution of the eddy viscosity € may be

derived from

(=47l /mo o L=+ Tleny /70

Tp I T Tdm
6 d¢ Uy d€
or
+_ € _(1—€)+7'|g:1/70
=g T dw, (3.32)
Uy d€
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in which 7| ¢—1 1S the shear stress on the water surface; and et is defined as the
dimensionless eddy viscosity.

From (3.30), one has

i@_l—f WQO . 1 dﬂl
u, dé Kof 2 Uy dE

Substituting the above equation into (3.32) gives

1-8+7|._
IO (S Y .
1_$+W_§2()Sin7rg+i !
Kok 2 Uy d€ =1

which is the eddy viscosity model corresponding to the modified log-wake law. The

shear stress and the velocity gradient at the water surface are boundary conditions.
When ¢ — 0, (3.33) tends to

et — Ko (3.34)

which is the classical mixing length model. When £ — 1, (3.33) tends to

1 du,
Uy d€ |ey

5 = const (3.35)

which corresponds to the constant eddy viscosity model.

(3.33) along with (3.30) will be examined with experimental data later.

3.5 Summary

In this chapter, an improved similarity analysis approach, the four-step similar-
ity analysis method, is presented, which includes dimensional analysis, intermediate
asymptotics, wake correction, and boundary correction. Based on this approach, the
modified log-wake law is proposed, which is expressed in (3.30) or (3.31). The modified
log-wake law satisfies the upper boundary conditions. Furthermore, an eddy viscosity

model is deduced.
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Chapter 4

SHEAR VELOCITY IN SMOOTH
OPEN-CHANNELS

4.1 Introduction

One may skip this chapter if he simply accepts (4.16) and (4.23) as the equations
to estimate the centerline bed shear velocity in a rectangular channel. (4.16) is for the
aspect ratio a/h > 2.5 while (4.23) is for the aspect ratio a/h < 2.5. After reading this
dissertation, if interested, one may come back to enjoy this mathematical derivation.

The shear velocity u,, as a boundary condition, is a prerequisite in the study of
velocity profiles. Conventionally, four methods for determining u, can be found in the
literature (Muste and Patel, 1997; Nezu, Kadita and Nakagawa, 1997): (1) from the
shear stress distribution; (2) from the log law; (3) using a global shear velocity based
on the hydraulic radius; and (4) using the shear velocity based on the flow depth. The
first two methods must be aided with experimental data and are cumbersome. The
third one is just a global value of u, while the shear velocity in the velocity profile
should be the local value. The last one is useful for a wide channel. However, most
laboratory flume experiments belong to narrow channel flows. Recently, Yang and
Lim (1997) presented a method for calculating the shear velocity in smooth open-
channels, based on an energy dissipation assumption. The method is excellent for the

estimation of the average bed shear velocity, but the calculation of the local shear
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velocity is still open. Besides, the equation is implicit and the calculation requires
an iterative process. Obviously, the determination of the shear velocity in an open-

channel is very difficult.

This study will begin with a conformal mapping of a rectangular cross-section into
a half-up plane (Section 4.2). Then the bed shear stress distribution (Section 4.3)
and the average bed shear stress (Section 4.4) will be derived. Section 4.5 summaries

the results of this chapter.

4.2 Conformal mapping from a rectangular cross-
section (z-plane) into a half upper plane (w-

plane)

Because of secondary flows and nonuniform roughness distribution around the
wetted perimeter, it is impossible to get an exact solution for the boundary shear
stress distribution. To obtain an approximate solution, the following assumptions are
made: (1) the boundary is smooth; and (2) the velocity contours are parallel to the
boundary. That is, the boundary is a velocity contour and there are no secondary
flows in the channel. The first assumption can be met in most flume experiments.
The second assumption is apparently not true, it will be considered in the solution

by introducing a correction factor.

Based on the above assumptions, the Schwartz-Christoffel transformation (Spiegel,
1993, p.206) can be used to find the isovels (velocity contours, which are parallel to
the boundary) and the rays (curves which are perpendicular to the isovels and the
boundary). Considering a rectangular cross-section with width a and flow depth h and
using the Schwartz-Christoffel transformation, one can map the physical low domain
(z—plane) into a half-upper plane (w—plane), shown in FIG. 4.1. The transformation

relation between them is

w=Lgin 2 (4.1)
7T a
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in which a is the channel width, and

2 = x+1iy (4.2)

w = E4in (4.3)

Relation (4.1) can be found in many text books of complex variables (for example,
Spiegel, 1993, p.206).
Substituting (4.2) and (4.3) into (4.1), one has

. a . w ,
E+in = —sin—(x+iy)
T a

-2 <sin 2 cosh 22 + i cos ™2 sinh ﬂ)
T a a a a
or

a x

£ = —sin ™% cosh Y (4.4)
T a a
a x

1N = —cos T sinh Y (4.5)
T a a

¢ = const in (4.4) is a ray equation. Similarly, n = const in (4.5) is an isovel equation,
shown in FIG. 4.1(a).

Since the water surface in the z—plane is described by the equation y = h, where
h is the flow depth. Substituting this relation into (4.4) and (4.5) gives the water
surface mapping F'G'H'F’ in the w—plane, which is a half upper ellipse, as shown
in FIG. 4.1(b). The problem is usually solved in the w—plane. In this case, however,
one just goes back to the physical plane (z—plane) with the transformations (4.4)
and (4.5).

4.3 Bed shear stress distribution and centerline

shear velocity

Consider an infinitesimal strip, shown in FIG. 4.2, which is between the curves x =
f(z1,y) and = f(z1+dz1,y) and dissipates its potential energy to the infinitesimal

boundary dzx, where z; is a point at the bed. If the infinitesimal area is denoted as
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FIG. 4.2: Scheme for computing bed shear stress distribution

d Ay, considering the equilibrium between the gravity component of the strip in the

flow direction and the bed shear force in dx; gives
PogSdA, = Tpdxy (4.6)

in which 7, is the local bed shear stress. It is noted again that since x = f(z1,y) is
perpendicular to isovels, there is no shear stress between the strip and its neighbor
fluid.

Equation (4.6) gives

dA,
= —_— 4.
= pog Sy (4.7)
From FIG. 4.2, one has
h
= [ 11+ doi,y) — o)y (4.8)
0
Let dz; — 0, one obtains
dAb h df('rla y)
b RSt I 4.
dl’l /0 dl’l dy ( 9)

Since the point (z1,0) is in the curve: z = f(z1,y), substituting it into (4.4), one gets

sin = cosh ~2 = sin —-L (4.10)
a a a
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That is,

. T
sin —
= f(r1,y) = % sin~t 7%3/ (4.11)
m h—
cosh —

Differentiating the above equation with respect to x; gives

X1

df(fl’l,y) — COST (412)

dz Y T
) 1
cosh? == — gin? —=

a a

Substituting (4.12) into (4.9) then into (4.7) gives the bed shear stress distribution

as

Tp = PogS cos (4.13)

T, /h dy
a 0 o TY . 9 Ty
cosh® —= — sin® —
a a

or
Ty Ty dt

1
——— = cos /
poghS @ Jo o (Th . o (Thx
cosh” | —t | —sin® | ——
a a h

The above equation can not be integrated. A numerical plot of (4.14) is shown in

(4.14)

FIG. 4.3. It can be seen that a two-dimensional zone may be found if a/h = 5, where
the bed shear stress is about 0.94poghS. When a/h > 10, the bed shear stress can
be approximated as poghS in practice.

This study only concerns the centerline shear stress, i.e., 7, at 1 = 0. Substituting

x1 = 0 into (4.14) gives the centerline shear stress 7. as

1 1
Tb}cls = / Lh = / sech (ﬂt> dt
Pod 0 osh (77 ) 0 a

—t
a
a wh/a

= — i sechzdx

- sin™! (tanh ﬂ)
mh a

1.e.

_ Tuc a . 4 wh
= . tanh =~ 415
o) g~ Th sin ( an ) (4.15)
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FIG. 4.3: Bed shear stress distribution versus aspect ratio
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in which ¢, is defined as the side-wall correction factor for the centerline shear stress.

The corresponding shear velocity is obviously that

a

Ux = \/PeghS = \/@ sin™! (tanh W—h> (4.16)
T

According to Yang and Lim (1997), when the aspect ratio a/h > 2, the effect
of secondary currents on the channel centerline may be neglected. This implies that
(4.15) and (4.16) may be valid when a/h > 2. To be safe, say a/h > 2.5 in this
dissertation. (4.15) and (4.16) will be examined using Wang and Qian’s experimental

data where a/h = 3 — 3.75 and Muste’s data where a/h = 7.

4.4 Average bed shear stress and average bed shear

velocity

Although the above mapping model may not be valid for very narrow channels
where secondary currents are strong, the average bed shear stress is still based on
it. The result will be calibrated by introducing a secondary flow correction factor.
Theoretically, the integration of (4.14) can give the average bed shear stress. However,
this is very complicated.

Consider the right half of the cross-section, shown in FIG. 4.1(a). The delimitation
CH in the z—plane corresponds to C'H’ in the w—plane, which is £ = const. Since
(z,y) = (5, 0) in the z—plane is a point in the delimitation C'H, substituting this
point into (4.4) gives § = const = £, so the equation of the curve CH in the z—plane

from (4.4) is

. T Y
sin—cosh— =1
a
1.e.
Y _ 1 1
2 = cosh™! = | = In - +
a sin — sin —
a a
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FIG. 4.4: Scheme for computing average bed shear stress

T T
1+ cos— 2 cos? %
a a
= In Tz In T T
sin — 28in — cos —
a 2a 2a
Int T
= —Intan—
2a
or
T 1 Ty
— —tan e e 4.17
o (4.17)

For a steady uniform flow, considering the equilibrium between the gravity com-
ponent of the fluid of the subarea A,, shown in FIG. 4.4, and the bed shear force in

the flow direction, one has the following relation
PogS Ay = aty (4.18)

in which pg is the water density; g is the gravitational acceleration; S is the bed
slope; a is the channel width; and 7, is the average bed shear stress. Note that the
delimitations are perpendicular to isovels, so there is no shear stress between the

subareas A, and A,,. Solving for 7, in (4.18) gives

S
T, = Pog A,

(4.19)
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Referring to FIG. 4.4 and considering (4.17), one gets the subarea A, as

h h
4 x
Ay = 2/ xdy = _a/ tan ! e__aady
0 0

™

The integration of the above equation by parts yields

4ah ay b ye
Ay =—tante 7w + 4/ ————dy (4.20)
T 0 1+4e o

Numerical experiments show that the first term on the right-hand side is the leading
term. The second term is only a small fraction of the first one. Therefore, one may

approximate the second one as

e Moo 2 ATh\  an
/ Ly ~/ ye Ldy = (3) {1 - (1 + i) e—} (4.21)
0o 14+e = 0 m a

Since the integrand has been enlarged, the correction factor A in the upper limit
must be in 0 < A < 1. This can be considered a secondary flow correction factor.
Physically, not all the potential energy in the subarea A, is dissipated by the bed
shear stress. A small fraction of potential energy is used to maintain the secondary
flows. Therefore, A must be less than unit. Now the subarea A, may be interpreted
as the effective flow area where the potential energy is dissipated by the bed shear
stress. Obviously, the subarea A; under study now is less than the area in FIG. 4.4.
For convenience, the effective subarea is still denoted by Ap.
Substituting (4.21) into (4.20) gives the effective subarea A, corresponding to the
bed shear stress as
Ay = @taun’1 e 4 <2)2 {1 - (1 + M) e%]
T T a

Furthermore, substituting this equation into (4.19) gives

™ 2 ™
Ty = Pogs {@ tan e e 44 (2) [1 — (1 + m) e¥} }
a T T a

Fb 4 1 _Ty 4a ATh _ Amh
= ~ 24 iy b R b BRRAUILE I 4.2
o) g m an~em e + o { < +t—— e (4.22)

or

in which ¢,, is defined as the side-wall correction factor for average bed shear stress.

The secondary correction factor A is calibrated as 0.6691 using extensive experimental
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data
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Table 4.1: Comparison of side-wall correction factor with experiments

Measur.” Calcula.! Error Measur. Calcula.? Error
a/h Pm Pe (%) | a/h Pm e (%)
0.310 0.148 0.125 -0.158 | 3.090 0.636 0.629 -0.012

0.490 0.193 0.186  -0.035 | 3.120 0.644 0.632 -0.019
0.580 0.229 0.212 -0.075 | 3.350 0.644 0.653 0.014
0.670 0.238 0.234  -0.015 | 3.510 0.649 0.667 0.027
0.990 0.259 0.305 0.176 | 3.890 0.685 0.696 0.016
1.000 0.264 0.307 0.161 | 3.910 0.692 0.697 0.008
1.190 0.287 0.345 0.202 | 4.000 0.711 0.704 -0.010
1.210 0.330 0.349 0.057 | 4.310 0.718 0.723 0.008
1.310 0.393 0.368  -0.063 | 4.740 0.728 0.747 0.026
1.340 0.406 0.374  -0.078 | 5.000 0.744 0.760 0.021
1.470 0.416 0.399  -0.041 | 5.040 0.746 0.762 0.021
1.480 0.431 0.401 -0.070 | 5.650 0.761 0.787 0.034
1.510 0.433 0.406  -0.062 | 5.950 0.780 0.798 0.023
1.560 0.435 0.415 -0.045 | 6.670 0.801 0.820 0.023
1.570 0.448 0.417  -0.069 | 6.760 0.804 0.822 0.023
1.670 0.450 0.435 -0.033 | 6.790 0.815 0.823 0.010
1.700 0.451 0.440  -0.023 | 7.600 0.818 0.842 0.030
1.770 0.455 0.453  -0.005 | 7.730 0.840 0.845 0.006
1.820 0.487 0.461 -0.053 | 9.560 0.874 0.875 0.002
2.000 0.490 0.490 0.001 | 10.000 0.876 0.881 0.006
2.000 0.517 0.490  -0.052 | 10.020 0.880 0.881 0.002
2.000 0.525 0.490  -0.066 | 11.840 0.892 0.900 0.009
2.100 0.530 0.506  -0.046 | 12.500 0.917 0.906 -0.012
2.190 0.531 0.519  -0.022 | 14.590 0.917 0.920 0.003
2.270 0.551 0.531 -0.037 | 14.790 0.922 0.921 -0.001
2.400 0.555 0.549  -0.012 | 16.940 0.925 0.931 0.007
2.500 0.566 0.562 -0.008 | 19.120 0.931 0.939 0.009
2.910 0.567 0.610 0.076 | 20.000 0.938 0.942 0.004
3.000 0.591 0.619 0.048 | 23.730 0.944 0.952 0.008
3.020 0.600 0.621 0.036 | 50.000 0.975 0.977 0.003

® Data source: Knight, D. W., Demetriou, J. D. and Hamed M. E. (1984).
“Boundary shear in smooth rectangular channels.” J. Hydr. Engrg., ASCE,
110(4), 405-422.

b Theoretical formula:
h

Gm = 2tante w + 54 [1 — (1+ A=) e”\%h}
in which A = 0.6691.
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data (Knight et al., 1984). A comparison of (4.22) with experimental data is shown
in Table 4.1 and FIG. 4.5, where the correlation coefficient is 0.9961 and the average
relative error is 3.7%.

With the side-wall correction factor ¢,,, the average bed shear velocity u. can be

calculated by the following:

Uy = ? =\ OmghS (4.23)
0

The above equation is derived from the model where the maximum velocity always
occurs at the water surface, but the parameter A, determined experimentally, consid-
ers the effect of secondary flows. Therefore, it is valid even if the maximum velocity
occurs below the water surface.

Empirically, (4.23) can be approximated as the centerline shear velocity when
a/h < 2.5. This will be seen later from Coleman’s experimental data in Table 5.3,
where the aspect ratio a/h is about 2.

By the way, the side-wall shear stress distribution and its average shear stress
can also be calculated in a similar way. They are, however, neglected because of

irrelevance to this study.

4.5 Summary

In this chapter, the channel centerline shear velocity equation (4.16) is derived
based on the shear stress distribution along the bed. It may be valid for a/h > 2.5.
The average bed shear velocity, which is calculated from (4.22) and (4.23), may be
as a good approximation of the channel centerline shear velocity in narrow channels.

A secondary flow correction factor is considered in the average bed shear velocity.
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Chapter 5

TEST OF THE MODIFIED
LOG-WAKE LAW IN CLEAR
WATER

5.1 Introduction

The purposes of this chapter are to examine that: (1) is the structure of the
modified log-wake law reasonable? (2) if the structure of the modified log-wake law is
correct, how do the model parameters kg, {29 and ¢ vary with the Reynolds number
uyh/v or the aspect ratio a/h? and (3) if the modified log-wake law is correct, does

the corresponding eddy viscosity model agree with experimental data?

Since pipe flows are simpler than open-channel flows, the maximum velocity Wy pax
at a pipe axis and the shear velocity u, in a pipe can be exactly measured or estimated,
this test starts with the examination of the modified log-wake law in pipes in Section
5.2. Narrow channel flows are then tested in Section 5.3. Wide channel experiments
are tested in Sections 5.4 and 5.5. Note that a wide channel flow is different from
that in a narrow channel since their derivative boundary conditions are not the same.
This can be easily seen from (2.12) and (2.13) in Chapter 2. Finally, Section 5.6

summaries the results of this chapter.
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5.2 Test of the modified log-wake law in pipes

5.2.1 Modified log-wake law in pipes

Applying the boundary condition (2.13) to (3.30), or Ay = 0 to (3.31), one gets

the modified log-wake law in pipes as

U max__ 1 11—
u:——lr1£+§2()(:os27r—$— S
Uy Ko 2 Ko

(5.1)

in which £ = z3/R and R is the radius of the pipe.

5.2.2 Data selection

Since the classical experiments by Nikuradse (1932), many pipe experiments
have been reported, a systematic review of these experiments can be found in Za-
garola’s (1996) dissertation. The latest accurate superpipe measurements by Za-
garola (1996) at the Gas Dynamics Lab in Princeton University will be used in this
study. Zagarola performed measurements of the mean velocity profiles and static
pressure gradients at 26 different Reynolds numbers between 3.1x10* and 3.5x107.
The complete description of the experimental details and experimental data can be
found in his dissertation (Zagarola, 1996) or a Web site in Princeton University:
http://www.princeton.edu/ gasdyn/index.htmp. In this section, only the mean ve-
locity profile data are used to examine the modified log-wake law. By the way, the
study of a power-wake law in pipes can be found in Appendix A. However, the power-
wake law is not emphasized in this dissertation.

In Zagarola’s experimental data, the maximum velocity U max, shear velocity u.,
and sample points (&;, ;) are given. Hence, only the von Karman constant ko and

the wake strength coefficient 2y are fitting parameters.

5.2.3 Methods for determining x; and ()

Two methods can be used to determine kg and €2y, one is the asymptotic method,

the other is the least-squares method.
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Asymptotic method (Graphical method)

For a quick estimation, let £ << 1, (5.1) reduces to the classical log law, i.e.
ﬂl max ~ ﬂl 1 1

:——lnf—FQo—— (52)
Ko

U Ko

Then the von Karman constant ko and the wake strength coefficient 2y can be de-
termined from the slope and intercept at & = 1 of a semilog plot of (U1 max — 1) /ux
versus . This method is similar to that suggested by Coles (1956) and Coleman
(1986) in the log-wake law. It is illustrated in FIG. 5.4 (p.51). The asymptotic

method is only illustrated herein and not used in this study.

Least-squares method

To accurately estimate k¢ and €2y, the least-squares method should be used. The

least-squares approximation can be represented by

n

Hmaux_ﬂi 1
S = Z {;—I—R—O(lnfi—kl—&)—ﬁgcos

U

2
2 &

2
— minimum (5.3)

7

in which S is the sum of the squares of the residuals; n is the number of sample points
(&, W1;); and Uy max and u, are given. Then the model parameters ko and €y can be

found by solving the following equations:

oS oS
- d _— = 5.4
B 0 an o0, 0 (5.4)
That is,
[ max — Uy | 1 o T
o — (& +1—&) — Qeos? 2| (In&+1-&)=0  (5.5)
i U* K/O 2
and
[ Uimax — Ui 1 i i
; [% + K—O(ln& +1—&) — Qo cos® %] cos® % =0 (5.6)
The above two equations can be further written as
1 n n 7_‘_&.'
— Y (In&+1-6)P2-Q In& +1—§&)cos® ==
oo (& HT =) =) (it 1—6)cos” S
- —ZW@&H—@) (5.7)
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and

1 « w&; " w&;
— Ing +1-¢ 22 Q) L=t
p” % (Ing& +1—¢&)cos 5 0 El cos” =

" Uy max — Ui o T&;
o 7éi 5.8
3o o 53)

(5.7) and (5.8) are linear equations with respect to 1/k¢ and 9. A MatLab program
has been written to handle this solving process (Appendix B).

5.2.4 Test of the structure of the modified log-wake law

Theoretically, the modified log-wake law is valid in the outer region (overlap +
wake layer + boundary effect layer). The lower limit of the overlap is usually taken
as yt = 70. Therefore, the modified log-wake law is valid in ™ > 70 and £ < 1. FIG.
5.1 is a test of the structure of the modified log-wake law. To emphasize the velocity
profile near the bed, a semilog plot is shown in FIG. 5.1a, where the modified log-
wake law, the asymptotic log law and the asymptotic parabolic law are compared with
Zagarola’s (1996) experimental data. The same things are plotted in a rectangular
coordinate system in FIG. 5.1b to emphasize the velocity profile near the axis. It
can be seen that the modified log-wake law agrees fairly well with experimental data.
The correlation coefficient r = 0.9999, shown in FIG. 5.1b. Besides, the asymptotic
log law can be considered valid until about ¢ = 0.1; and the asymptotic parabolic law
can be considered valid above £ = 0.6. All other profiles are very similar to those in

FIG. 5.1. No doubt, the structure of the modified log-wake law is reasonable.

5.2.5 Test of ky and )y with Reynolds number

The structure of the modified log-wake law has been checked to be correct. Are
the model parameters ¢ and €2y universal or Reynolds number dependable constants?
FIG. 5.2 is a test of kg and €2y with Reynolds number. It shows that an excellent
agreement is obtained for each run. The individual values of kg and {2y are tabulated

in Table 5.1, where K varies between 0.38 and 0.41 and can be approximated by

ko = 0.3527 + 0.0049 In Re, (5.9)
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FIG. 5.1: Test of the structure of the modified log-wake law [(a) in a semilog coordi-

nate system; (b) in a rectangular coordinate system.]
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Table 5.1: The model parameters in the modified log-wake law for
individual velocity profiles (Velocity profile data source: Zagarola,

1996)

Reynolds Reynolds Karman Wake  Correlation
Number  Number Constant Strength Coefficient

Run Re (10%) Re, (10?%) Ko Qo r
1 3.16 0.85 0.387 3.286 0.9998
2 4.17 1.09 0.382 3.342 0.9998
3 5.67 1.43 0.379 3.347 0.9998
4 7.43 1.93 0.382 3.361 0.9998
) 9.88 2.34 0.384 3.336 0.9997
6 14.58 3.32 0.383 3.197 0.9998
7 18.54 4.12 0.388 3.205 0.9997
8 23.05 5.02 0.391 3.199 0.9997
9 30.95 6.59 0.401 3.191 0.9997
10 40.93 8.49 0.395 3.086 0.9999
11 53.91 10.94 0.395 3.041 0.9999
12 75.18 14.83 0.399 3.110 0.9999
13 102.38 19.68 0.398 3.075 0.9999
14 134.04 25.23 0.403 3.132 0.9999
15 178.75 32.88 0.400 3.155 0.9999
16 234.50 42.16 0.406 3.212 0.9999
17 309.81 54.65 0.409 3.227 0.9999
18 442.03 76.10 0.405 3.164 0.9998
19 607.27 102.19 0.404 3.187 0.9999
20 771.47 127.32 0.404 3.242 0.9999
21 1024.90 165.56 0.402 3.213 0.9998
22 1359.80 216.04 0.401 3.203 0.9999
23 1819.60 283.32 0.411 3.199 0.9998
24 2397.70 367.00 0.416 3.272 0.9998
25 2992.70 452.40 0.411 3.223 0.9998
26 3525.90 528.57 0.412 3.292 0.9998
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in which Re, = Ru,/v. (5.9) is shown in FIG. 5.3a. The wake strength coefficient
is about a constant of 3.21 which is shown in FIG. 5.3b.

Obviously, a universal constant of kg does not exist for y* > 70. Motivated by
the suggestion of Zagarola (1996), i.e., the lower limit of the validation of the log law
is y* = 500 instead of y™ = 70, one may try a plot of all experimental data with
y™ > 500, shown in FIG. 5.4. This time an excellent complete similarity is obviously

obtained. The least-squares method gives the universal constants k¢ and {2y as
ko = 0.4056 =~ 0.406 and Qg =3.201 =~ 3.2 (5.10)

with an overall correlation coefficient » = 0.9998.

One can now conclude that: (1) For large Reynolds number y* > 500, a complete
similarity velocity defect law exists. The universal constants kg and §2y are 0.406 and
3.2, respectively. (2) If the near bed data, 70 < y* < 500, are included, ko slightly
increases with the Reynolds number Re, and can be estimated by (5.9). In practice,
ko may still be taken as 0.406 as a good approximation. The wake strength coefficient

Qo can be approrimated as a constant 3.2.

5.2.6 Test of the eddy viscosity model

The test of eddy viscosity model involves estimating the velocity gradient from a
set of data points. However, numerical differentiation is often an unreliable process
which can be highly sensitive to small fluctuations in data. In particular, the velocity
gradient near the pipe axis is very small and, hence, very difficult to estimate accu-
rately. Therefore, this study does not try to differentiate the aforementioned velocity
profile data and get the eddy viscosity. Simply, the authoritative eddy viscosity data

calculated by Hinze (1975, p.730) from Laufer’s and Nunner’s data are examined.

Since the shear stress at a pipe axis 7|,_, = 0 and % = 0, (3.33) in pipes
reduces to
. ¢
£ = 1 7wy Esinmg (5-11)
Ko 2 1— 6
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FIG. 5.5: Test of the eddy viscosity model from the modified log-wake law

Near the pipe wall, & — 0, the above equation reduces to
et — Koé (5.12)

which is consistent with the mixing length model. Near the pipe axis, & — 1, one has

sinté  sinm(l —¢§)

1—-¢ 1-—¢

— T

Thus,

1
€+ — W = const (513)

Ko 2
which is the same as the result of the parabolic law (Hinze, 1975, p.730).

Substituting the universal constants ko = 0.406 and €y = 3.2 into (5.11), one can
get the eddy viscosity expression corresponding to the modified log-wake law which
is drawn in FIG. 5.5.

FIG. 5.5 shows that the predicted eddy viscosity is compatible to Laufer’s and
Nunner’s experimental data. In addition, the present eddy viscosity model is physi-

cally reasonable. Since the eddy viscosity € in the vertical direction is proportional
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to u}, the plot of the viscosity model is very similar to that of the measurements of

the turbulence intensity in the zz—direction (Hinze, 1975, p.725).

5.3 Test of the modified log-wake law in narrow

open-channels

As stated earlier, the boundary layer thickness 6 is the distance from the bed to
the maximum velocity U; max in narrow channels. The derivative boundary condition,
as it in pipes, is expressed by (2.13). Thus, the modified log-wake law in narrow

channels is the same as that in pipes, i.e., (5.1), here £ = z3/6 in narrow channels.

5.3.1 Data selection

Although many experiments in narrow flumes are reported (Hu and Hui, 1995;
Sarma, Lakshminarayana and Rao, 1983), the original data can be found only in a few
papers. Three data sources are used here: Wang and Qian (1989), Coleman (1986),
and Kironoto (1993).

In Wang and Qian’s (1989) data, the experiments were run in a smooth flume
(both side-walls and bed) with a bed slope S = 0.01, the aspect ratios are 3, 3.33
and 3.75. Therefore, the centerline shear velocity can be estimated from (4.16). The
detailed information can be found in Appendix C.

Coleman’s (1986) experiments are very similar to Wang and Qian’s (1989), except
that the bed slope S = 0.002 and the aspect ratios are about 2. Therefore, the
centerline shear velocity may be estimated from (4.23). Some information about
Coleman’s experiments is shown in Appendix D.

In both Wang and Qian’s (1989) and Coleman’s (1986) experiments, given the
shear velocity u,, the fitting parameters include 8, Uy max, ko, and Qq. If kg is fitted
as about 0.406 in these two data sets, it may be proved that the proposed equations
for determining the shear velocity u, in Chapter 4 are reasonable.

Kironoto (1993) did experiments over a rough bed (ks = 23 mm) flume with the
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aspect ratio a/h ~ 2. So, the centerline shear velocity u, can be estimated from
neither (4.16) nor (4.23). In this case, one assumes that ko = 0.406, then the fitting
parameters are Uy, 0, Uimax, and {2g. Some information about Kironoto’s (1993)

experiments can be found in Appendix E.

5.3.2 Method for determining 6 and ujyax

For a narrow channel where the maximum velocity occurs below the water surface,
one can assume that the velocity profile near the boundary layer margin (approxi-
mately & > 0.6 from the pipe results) obeys the parabolic law, fitting the experimental
data (3;,71;) near the boundary layer margin as a quadratic equation can give the
maximum velocity U max and its corresponding boundary layer thickness 0.

Specifically, let the velocity profile near the boundary layer margin has the follow-
ing functional form:

U = a17; + apT3 + as (5.14)

in which a;, as, and asz are curve-fitting constants. Using the experimental data
(x3;,u1;) near the boundary layer margin with the least-squares method, three con-
stants ai, as, and a3 can be determined. Then, the boundary layer thickness ¢ and
the maximum velocity u; max can be easily estimated by setting the velocity gradient

duy /dzs = 0, which gives

ag
§=——2 1
20, (5.15)
ﬂl max — (11(52 + 0,26 + as (516)

With 6, %1 max and u, or kg available, the exact same procedure as that in pipes

is used for determining €2y and ko or .

5.3.3 Test of the modified log-wake law
Wang and Qian’s (1989) experiments

As stated earlier, the centerline shear velocities can be calculated from (4.16).

After determining the values of ¢ and Uy max from (5.15) and (5.16), respectively, ko
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and 2 are estimated from (5.7) and (5.8). The calculated results are shown in Table

5.2. A representative velocity profile of Wang and Qian’s clear water experiments is

shown in FIG. 5.6, where the bed slope S = 0.01. Other profile analyses can be found

in Appendix C (Section: Clear water and salt water measurements).

Table 5.2: Calculated results of Wang-Qian’s clear and salt water experiments

RUN h a/h Uy ) 0/h  Uimax Res Ko Qo ra
(cm) (cm/s) (cm) (m/s)
CW1 10 3.00 9.16 6.36 0.636 2.11 5826 0.419 1.32 0.9992
CW2 10  3.00 9.16 6.25 0.625 2.10 5725 0.412 1.49 0.9994
CW3 10 3.00 9.16 6.71 0.671 2.11 6146 0.390 1.20 0.9996
SW1 9 3.33 8.81 6.19 0.688 2.07 4957 0.385 1.45 0.9987
SW2 9 3.33 8.81 6.51 0.723 2.09 5213 0.424 1.91 0.9993
CW4 8 3.75 8.40 6.06 0.758 1.99 5544 0.412 1.70 0.9993
MEAN 0.407 1.51

¢ Fitting correlation coefficient

Coleman’s (1986) experiments

Since the aspect ratios in Coleman’s experiments are about 2.0, the secondary

flows in the corners strongly affect the bed shear stress at the centerline, as an approx-

imation, the average bed shear velocity u, is used herein. Using the same procedure

as before, the values of 0, U max, ko and 2y are calculated, shown in Table 5.3, where

the bed slope S = 0.002. A representative velocity profile of Coleman’s clear water

experiments is shown in FIG. 5.7. Other profiles can be found in Appendix D.

Table 5.3: Calculated results of Coleman’s clear water experiments

RUN h a/h Uy ) 8/h  Timax Rex Ko Qo r?
(cm) (cm/s) (cm) (m/s)
RUN1 | 17.2 2.07 4.11 13.26 0.771 1.0564 5463 0.370 2.707 0.9997
RUN21 | 169 2.11 4.10 12.61 0.746 1.048 5542 0.400 2.598 0.9992
RUN32 | 17.3 2.06 4.12 12.88 0.745 1.025 5397 0.432 3.356 0.9997
MEAN 0.401

¢ Fitting correlation coefficient
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FIG. 5.6: Comparison of the modifed log-lake law with Wang-Qian’s experiments [(a)

in a semilog coordinate system, (b) in a rectangular coordinate system)]
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— Modified log-wake law
0

10 - -

X3

)
107 F 4
10% b .

(a)
L L L L L
2 4 6 8 10 12 14
u/u.
12 UGA5 (k=23 mm) b
1r h =28.5cm u.=4.592 cm/s B
a/h =2.11 Ko = 0.406
0.8 - 6=21.81cm Q,=1.259 B
X3
_5_ 8/h = 0.7653 r=0.9995
0.6 - LT1max =0.57 m/s b
04 b
0.2 b
(b)
0

2 14

FIG. 5.8: Comparison between the modifed log-lake law and Kironoto’s narrow flume

data [(a) in a semilog coordinate system, (b) in a rectangular coordinate system)]
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Table 5.4: Calculated results of Kironoto’s clear water experiments

RUN h a/h S Uy ) 6/h  TWimax Res Qo r
(cm) (cm/s) (cm) (m/s)

UGA3 | 28,5 2.11 1.0E-3 4.16 21.75 0.763 0.571 9048 1.637 0.9992

UGA5 | 28,5 211 1.0E-3 459 21.81 0.765 0.570 10011 1.259 0.9995

UGB3 | 29.0 2.07 7.5E-4 3.35 21.41 0.738 0.465 7172 2.119 0.9990

UGB5 | 29.0 2.07 7.5E-4 3.65 24.98 0.860 0463 9118 1.695 0.9977

Notes: Assume that ko = 0.406. r =Fitting correlation coefficient.

Kironoto’s (1993) experiments

As stated in Section 5.3.1, the shear velocity wu, cannot be estimated from (4.16)
or (4.23). Since Ky is independent of roughness and should be the same as that in pipe
flows (based on previous knowledge), one may assume that ko = 0.406 in Kironoto’s

experiments. Then u, can be evaluated from a curve-fitting. That is, rewrite (5.1) as

Ut max — U1 = —%[lnﬁ 4+ (1 — €)] + 1. cos? %6 (5.17)
0
Let
Uy
pr=— and  py=u.ll (5.18)
Ko

in (5.17), then p; and p, can be found using the least-squares method. Furthermore,
uy and €y can be estimated (5.18), shown in Table 5.4. A representative velocity

profile is shown in FIG. 5.8 (p.58). Other profiles can be found in Appendix E.

Results of narrow channel experiments

From Tables 5.2-5.4, and FIGS. 5.6-5.8, one can see that: (1) The modified log-
wake law has a very high correlation with measurement data. (2) ko varies within
0.385 and 0.432, its average value is 0.405 which is compatible to both that in pipe
flows in Section 5.2.5 and previous studies 0.40-0.41 (Kironoto and Graf, 1994; Muste
and Patel, 1997; Nezu, Kadota and Nakagawa, 1997). On the other hand, the values
of ko here show that the shear velocity equations (4.16) and (4.23) are reasonable.
(3) Qo may vary with the aspect ratio a/h and the relative roughness k;/h. This
will further be discussed in Subsection 5.4.4. (4) The modified log-wake law can
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O Data of Kironoto (1993)
—— From modified log-wake law
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FIG. 5.9: Test of the eddy viscosity model from the modified log-wake law

reproduce even the measurement data beyond the boundary layer thickness. This is

an important aspect of the modified log-wake law.

5.3.4 Test of the eddy viscosity model

The eddy viscosity model in a narrow channel is the same as that in pipes, i.e.,
(5.11). From Table 5.4 or FIG. 5.8, one has k¢ = 0.406 and €y = 1.259 for UGA5 of
Kironoto’s data sets (see Appendix E). Substituting these values into (5.11) gives the
corresponding eddy viscosity. FIG. 5.9 shows the comparison of the proposed model
with one of Kironoto’s (1993) data. Following Hinze (1975, p.730), the data beyond
¢ = 0.9 are omitted since the numerical estimation of the velocity gradient near the
boundary layer margin is very sensitive to small data fluctuation. It can be seen from
the figure that the proposed model is compatible to the measurements. However, the
agreement is not as good as the corresponding velocity profile (FIG. 5.8). Again this

is because the velocity gradient is difficult to estimate numerically.
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5.4 Test of the modified log-wake law in wide open-

channels

5.4.1 Data selection

In the test of the modified log-wake law in wide channels, if one assumes kg =
0.406, there are still four fitting parameters, u,, g, Ag and Uimax. More fitting
parameters will reduce the reliability of the fitting results. Therefore, this test will
only use the experimental data reported by Kironoto (1993), where the maximum
velocity Uy max is measured. Only three parameters, u,, {29, and Ay, need to be fitted.
In addition, the channel side-walls are smooth and the bed is rough with ks = 4.8

mm. The aspect ratios a/h are between 5 and 7.

5.4.2 Method for determining u., ¢}y, and )\

The modified log-wake law is described by (3.31) in wide open-channels, where

the water surface shear effect factor A\g # 0. Rewrite (5.23) as

Ul max — U1 = —E[lnﬁ + (1 = &)] + Qou, cos? i
Ko 2
Vwin - max 2
+Xo <du—“1) u (1 =€) (5.19)
Let )
U Vwin —u max
pr=— , p2=8u , p3=2X (A) Uy (5.20)
Ro U

then p1, po and p3 can be estimated by the least-squares method (linear regression).
A MatLab program to handle the above process is appended in Appendix B.
With pq, po and p3 available, one has

D3 [ Viind — U -
3 wind — %1lmax
Uy = KopP1 QO = pZ/u* ’ )\0 = U_ <U—)

5.4.3 Test of the modified log-wake law

The calculated results of Kironoto’s (1993) data in a wide flume are shown in

Table 5.5. A representative velocity profile, along with the modified log-wake law,
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Table 5.5: Results of Kironoto’s wide channel experiments from the

modified log-wake law

RUN h  a/h Use Re. ks/h Qo Ao T
(cm) (cm/s)
UPA3 | 11.50 5.22  3.37 3636 0.042 -0.1642 0.0107 0.9992
UPA5 | 11.50 5.22  3.20 3445 0.042 -0.2831 0.0118 0.9996
UPB3 | 10.10 5.94 3.54 3355 0.048 -0.6431 0.0143 0.9993
UPB5 | 10.10 5.94 3.53 3339 0.048 -0.5015 0.0129 0.9993
UPC3 | 11.90 5.04 231 2576 0.040 1.0642 0.0063 0.9994
UPC5 | 11.90 5.04 226 2516 0.040 0.4360 0.0088 0.9994
UPD3 | 870 6.90 3.37 2752 0.055 -0.3178 0.0146 0.9992
UPD5 | 870 6.90 3.67 2995 0.055 -0.0845 0.0142 0.9996
Notes: Rough bed k;, = 4.8 mm; assume kg = 0.406;

r = correlation coefficient.

is shown in FIG. 5.10. One can see that the modified log-wake law compares the
data fairly well. However, the wake strength seems very small compared with that in

narrow channels.

5.4.4 Wake strength coefficient (), in open-channels

A plot of the wake strength coefficient €)y against the aspect ratio a/h is shown
in FIG. 5.11. The data are from Tables 5.2, 5.3, 5.4 and 5.5. One can see that the
wake strength coefficient )y decreases with the aspect ratio a/h in narrow channels.
However, when a/h > 5, the wake strength coefficient )y is about 0. This shows
that: (1) the wake strength coefficient ) is, in essence, a factor to reflect the effect
of the side-walls; and (2) when the aspect ratio a/h > 5, the side-wall effect may
be neglected and the wake strength coefficient 2y then tends to zero. Physically,
the wake function reflects large-scale turbulent mixing. In open-channels, secondary
flows in the channel corners can be regarded as a kind of large scale eddies. For a
wide channels, secondary flows may only be limited to near the corners and have little
effect on the centerline velocity profiles. Hence, the wake function in a wide channel is
relatively small. On the other hand, the free surface suppresses the vertical turbulent

mixing and then further weaken the wake function. Finally, the wake strength ) is
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o Data of Kironoto (1993)
— Modified log-wake law
10° | 4
X3 r UPA5
)
107 b 1
107 | 1
(a)
1 1 1 1 1 1 1
6 8 10 12 14 16 18
u,/u.
O Data of Kironoto (1993)
— Modified log-wake law
1k i
UPAS (k= 4.8 mm)
0.8 b
h=11.5cm K, = 0.406
X3
_5_0.6 r a/h =5.22 Q,=-0.2831 b
u. =3.195 cm/s Ao =0.01182
04 Usmax= 0.579 m/s r=0.9996 B
0.2 b
(b)
0 1 1

16 18

u,/u.

FIG. 5.10: Comparison of the modified log-wake law with Kironoto’s wide channel

data [(a) in a rectangular coordinate, (b) in a semilog coordinate]
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O  Coleman's (1986) data, smooth bed
+  Wang-Qian's (1989) data, smooth bed
¥ Kironoto's (1993) data, rough bed

Narrow channels

Wide channels

FIG. 5.11: The wake strength coefficient €2y versus the aspect ratio a/h

10

very small or tends to zero in wide channels. An empirical equation for the estimation

of Qg is suggested as follows:

QOI

a
_075% 437
{ 0.752 +3.75

if a/h <5
if a/h >5

(5.21)

5.5 Simplification of the modified log-wake law and

its test in wide open-channels

5.5.1 Simplification of the modified log-wake law (the log-

linear law) in wide open-channels

One may draw inspiration from FIG. 5.11, i.e., the wake component may be

neglected in wide channels. Thus, the modified log-wake law reduces to a log-linear

law. This may also be proved mathematically. Referring to (3.23) and (3.25), one
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can expand the modified log-wake law at the water surface, i.e.

—_—_— = 1— — + Q) (1 — 5.22

- | 00 (%0 n ) (1-ep+ (5.22)

In pipes and narrow channels, ‘% = 0, the leading term is a second order
¢=1

term (2—1140 + Q()) (1 — &)? near the water surface, which relates to the wake strength

coefficient €2g. Therefore, the wake component is certainly important. In wide

channels, however, ddig # 0, the leading term is obviously a first order term
¢=1
—= % (1 — &), which is irrelevant to the wake strength coefficient Q5. As a
* 521

first approximation, i.e., neglecting the second and higher order terms, one can see
that the wake strength coefficient )y just has little effect on the flow near the water

surface. That is, the wake component may be neglected in wide channels, i.e.,

H1ma‘x _Ul 1 1 1 dﬂl
Uy Ko . [Féo Uy d€ .5:1] ( 6)
or
— = 1 1 . — 77 2
Ul max — U1 _ 1115 . [_ _ )\0 (M) ] (1 — g) (523)
Uy Ko Ko *

in which A is the water surface shear effect factor and will be determined experimen-
tally. The above equation is the simplification of the modified log-wake law in wide
open-channels. For simplicity, it is referred to as the log-linear law. Note that this
log-linear law is different from (2.22) where it is only valid for sediment-laden flows.

Let ko = 0.406, the fitting parameters in the log-linear law are Wy pmax, Us, and Ag.

5.5.2 Data selection

Besides the data of Kironoto (1993) in Subsection 5.4.1, experiments by Muste
(1995), McQuivey (1971), and Guy, Simons and Richardson (1966) will also be used
in this section. Muste (1995) recorded 3 clear water experiments (Appendix F) in a
smooth flume in his dissertation. The aspect ratios are about 7. McQuivey (1971)

collected a huge data set in the CSU Hydraulics Laboratory. Only the 12 runs of his
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first table (Appendix G) are used here, where the first 6 runs were over a smooth
bed while last 6 runs over a rough bed. The aspect ratios are about 6. In addition,
several clear water velocity profile measurements in a wide flume (8 ft wide) by Guy,

Simons and Richardson (1966) are tested, see Appendix H.

5.5.3 Method for determining u,, Ao and U yax

Rewrite (5.23) as

U Vwin —u max 2 —
m= g (-9 - o (PRI o w620
Ko U
Let 9
* Vwin —u max -
pr=—2 pa=Xo (d—m> Uy, and  p3 = Ui max (5.25)
Ko U

then p1, po and p3 can be estimated by the least-squares method (linear regression).
A MatLab program to handle the above process is appended in Appendix B.
With py, p2 and p3 available, one has

Us = KoP1 (5.26)
H1 max — P3 (527)
Vwin —u max -
P (d—ul) (5.28)
U U

In Kironoto’s (1993) experiments, the maximum velocity U max is measured, then

only u, and )¢ are determined.

5.5.4 Test of the log-linear law

The calculated results of Kironoto’s (1993) wide flume data over a rough bed,
Muste’s (1995) experiments over a smooth bed, McQuivey’s (1971) experiments over
a smooth bed and a rough bed, and Guy, Simons and Richardson’s (1966) experiments
over transition and rough beds are listed in Tables 5.6, 5.7, 5.8, and 5.9, respectively.
Four representative velocity profiles, along with the log-linear law, from the experi-

ments of Kironoto, Muste, McQuivey, Guy et al. are shown in FIGS. 5.12, 5.13, 5.14,
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Table 5.6: Results of Kironoto’s wide channel experiments

RUN h  a/h Us Re. ks/h Ao r
(cm) (cm/s)
UPA3 | 11.50 5.22  3.37 3548 0.042 0.0101 0.9992
UPA5 | 11.50 5.22  3.20 3363 0.042 0.0109 0.9996
UPB3 | 10.10 5.94 3.55 3282 0.048 0.0115 0.9992
UPB5 | 10.10 5.94 3.54 3265 0.048 0.0108 0.9993
UPC3 | 11.90 5.04 230 2500 0.040 0.0101 0.9992
UPC5 | 11.90 5.04 2.25 2448 0.040 0.0102 0.9994
UPD3 | 870 6.90 3.38 2686 0.055 0.0133 0.9992
UPD5 | 870 6.90 3.67 2921 0.055 0.0137 0.9996
Notes: Rough bed ks = 4.8 mm; assume o = 0.406;

r = correlation coefficient.

Table 5.7: Results of Muste’s wide channel experiments

RUN h a/h  Uimax Uy Re, Ao r
(cm) (m/s) (cm/s)

CWO01 | 13.00 7.00 0.715 2.87 3502 0.00531 0.9995
CW02 | 12.80 7.11 0.729 2.89 3359 0.00584 0.9997
CWO03 | 12.70 7.17 0.750  2.48 2885 0.00614 0.9993
Note: Smooth bed; assume kg = 0.406.

and 5.15, respectively. Other profiles can be found in Appendixes E, F, G, and H. In
particular, comparing Tables 5.5 and 5.6, one sees that the log-linear law is very close
to the modified log-wake law. However, the log-linear law is simpler and contains
only two model parameters.

In the above experiments, it is assumed that V;,q is zero in laboratories and the
von Karman constant kg = 0.406. It is evident, from Tables 5.6-5.9 and FIGS. 5.12-
5.15, that the neglect of the wake term in the modified log-wake law is reasonable
in wide channels; and the log-linear law fits the data quite well in the entire outer

region. The water surface shear effect factor Ay is discussed next subsection.

5.5.5 The water surface shear effect factor )\

It is assumed that the water surface shear effect factor Ay relates to the water

viscosity v, the velocity at the water surface u; max, and the gravitational acceleration
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Table 5.8: Results of McQuivey’s wide channel experiments

RUN h a/h  Ujmax Uy Re, Ao r Remark
(cm) (m/s) (cm/s)
1 293 6.58 0.318 2.08 703  0.00715 0.9993 Smooth
2 3.08 6.26 0.462 2.57 915 0.00766 0.9999 Smooth
3 2.87 6.72 0.701 3.13 1051 0.00887 0.9976 Smooth
4 296 6.52 0.318 2.03 633 0.00888 0.9963 Smooth
5 3.02 6.38 0.462 2.25 718 0.00682 0.9996 Smooth
6 3.08 6.26 0.666 3.66 1191 0.00778 1.0000 Smooth
7 3.11 6.20 0.351 2.42 808  0.0163 0.9986 Rough®
8 3.02 6.38 0.591 4.72 1515 0.0148 1.0000 Rough
9 3.08 6.26 0.828 6.20 2017 0.0139 0.9999 Rough
10 3.26 5.91 0.346 2.58 912  0.0147 0.9989 Rough
11 3.20 6.02 0.631 4.55 1580 0.0128 0.9988 Rough
12 3.08 6.26 0.787 5.27 1761  0.0123 0.9991 Rough

® Only “shot rough” is given, the value of k4 is not found.

Table 5.9: Results of Guy et al.’s wide channel experiments

RUN d50 h &/h U ﬂl max Re* k’s/h a )\0 T
(mm) | (cm) (cm/s) (m/s)

22C° | 0.19 | 12.2 20.0 0.902 0.342 1023 1.55e-3 0.00648 0.9961
24 0.19 | 2855 85 1.036 0.371 2786 6.66e-4 0.00470 0.9925
26 0.19 | 84 292 0946 0.324 756 2.28e-3 0.00496 0.9983
19 093 | 29.7 82 2344 0.492 6758 3.13e-3 0.00666 0.9941
20 093 | 299 82 3477 0.617 10034 3.11e-3 0.00559 0.9990
25 093 | 299 81 2441 0.558 7006 3.11e-3 0.00555 0.9968
26A | 093 | 30.7 7.9 2737 0.610 8005 3.03e-3 0.00601 0.9965
27 093 | 30.6 8.0 3.312 0.615 10571 3.04e-3 0.00563 0.9953

2 According to Engelund (Chien and Wan, 1983, p.206), it is assumed
that k’s = 2.5d50.
b RUNS 22C, 26, and 19 are transition beds, the rest are rough beds.
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o Data of Kironoto (1993)
— Log-linear law
10° b 1
X3 r UPAS5
8
10" b 1
1071 4
(a)
1 1 1 1 1 1 1
6 8 10 12 14 16 18
u/u.
O Data of Kironoto (1993)
— Log-linear law
1k J
UPAS (k= 4.8 mm)
0.8 1
h=11.5cm Ko = 0.406
X3
5061 a/h =5.22 Q,=0 a
u. =3.199 cm/s Ao =0.0109
04 Uimax= 0.579 m/s r=0.9996 b
0.2 1
(b)
0 1 1

16 18

u,/u.

FIG. 5.12: Comparison of the log-linear law with Kironoto’s experimental data [(a)

in a rectangular coordinate, (b) in a semilog coordinate]

69



o) Data of Muste (1995)
— Log-linear law
10° + 4
X cwo2
107 F 4
10% b .
(a)
1 1 1 1 1 1
12 14 16 18 20 22 24 26
u/u.
O Data of Muste (1995)
— Log-linear law
1k i
CWO02 (Smooth bed)
0.8 b
h=12.8cm K, = 0.406
X3
FO.(S r a/h =7.109 Q,=0 b
u. = 2.885 cm/s Ao = 0.005844
0.4 Uimax= 0.7294 m/s r=0.9997 b
0.2 b
(b)
0 |
12 24 26

FIG. 5.13: Comparison between the log-linear law and Muste’s experimental data

[(a) in a rectangular coordinate, (b) in a semilog coordinate]
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O Data of McQuivey (1971)
— Log-linear law
10° |
Xg f RUN 6
h
107
102
(a)
L L L L L L
6 8 10 12 14 16 18
u/u.
O Data of McQuivey (1971)
— Log-linear law
1 [
RUN 6 (Smooth bed)
0.8
h =3.078 cm K, = 0.406
X3
_h_0.6 r a/h = 6.257 Q,=0
Usmax= 0.6663 m/s Ao =0.007775
04 u. = 3.662 cm/s r=1
0.2
(b)
0 |
6 18

FIG. 5.14: Comparison between the log-linear law and McQuivey’s experimental data

[(a) in a rectangular coordinate, (b) in a semilog coordinate]
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O Data of Guy et al. (1966)
Log-linear law
10° | :
RUN26
X3
e o
107k :
107 .
(a)
1 1 1 1 1 1 1 1
18 20 22 24 26 28 30 32 34
u/u.
O Data of Guy et al. (1966)
1L | — Log-linear law i
RUN26 (dso= 0.19 mm)
0.8 b
h =8.352 cm K, = 0.406
X3
_6_0'6 r a/h =29.2 Q,=0
u. = 0.9461 cm/s Ao = 0.004961
0.4 Ugmax= 0.3243 m/s r=0.9983
0.2 b
(b)
0 1 1
18 32 34

FIG. 5.15: Comparison between the log-linear law and Guy et al.’s experimental data

[(a) in a rectangular coordinate system, (b) in a semilog coordinate system|]
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g which is a main factor of the surface wave, i.e.

)\0 = f(Vaﬂlmaxag) (529)

Since Uy max X U = F(uy, ush/v, ks/h), in which U = the vertical average velocity, f

is a functional sign, the above equation may be written as

ush kg
)‘sz(y7g7u*777ﬁ> (530)
which may further be written as a dimensionless form
ud uh k
- R . 31
=i (20 5) (5.31)

If the water surface wave can be neglected and the momentum mixing between

. . C 3
water and air on the water surface is turbulent mixing, i.e., the effects of Z—; and “Th

e (5) o3

A plot of Ay versus kg/h, from Table 5.6 to Table 5.9 except the rough bed ex-

may be neglected. Then one has

periments of McQuivey (where the roughness is not given), is shown in FIG. 5.16. It

can be seen that the water surface effect factor Ay can be approximated as

~

o ~

0.065 for ky/h < 0.024
(5.33)

ks
0.2163% + 0.0013 for ks/h > 0.024

In most fluvial channels, ks/h < 0.024, thus Ay can be taken as 0.065 in practice.

5.5.6 Test of the eddy viscosity model

Neglecting the wake component, substituting (2.10) and (2.12) into (3.33) and

considering Viing = 0 and 79 = pou?, one gets

— 2
(1 . g) + Cdpair <u1max)

et = Po 5
1 - u max
¢, AO( : )
505 Us
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0.02

O Smooth bed, Muste's data (1995)
0018 |+ Smooth bed, McQuivey's data (1971) )
X Rough bed, Guy et al.'s data (1966)
0.016 - | ¥ Rough bed, Kironoto's data (1993) b
0.014 - b
0.012 - b
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+
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T
0.006 - 8 b
o
X
0.004 - b
0.002 - 7
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ke/h

FIG. 5.16: The water surface effect factor \g

in which Cy ~ 0.001 (Roll, 1965, p.160).

Near the water surface, i.e., & — 1, one has

€+ _ ﬁpair
Ao Po

(5.35)
Assuming Cy = 0.001, Ao = 0.0065, p.i = 1.21 kg/m?, and py = 1000 kg/m3, one has
et =186 x107* (5.36)

which is negligibly small in practice.

A comparison of the above equation with Kironoto’s (1993) experimental data
(UPA5) is shown in FIG. 5.17, where it is assumed that p,, = 1.21 kg/m?® and
po = 1000 kg/m?, the other parameters are shown in the figure. It is seen that the
proposed model is compatible to the measurement data. The scatter of the data is
ordinary because of the numerical differentiation of the velocity profile. Note that the
shear stress and the eddy viscosity are not zero at the water surface although they

may be very small.
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¢} Data of Kironoto (1993)
0.14 - From log-linear law ]
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FIG. 5.17: Test of the eddy viscosity model from the log-linear law
5.6 Summary

The modified log-wake law contains three model parameters: the von Karman
constant kg, the wake strength coefficient {2y, and the water surface shear effect
factor Ag. The examinations in pipes, narrow channels and wide channels show that:

(1) The von Karman constant kg expresses the effect of the pipe wall or the channel
bed. It is a universal constant 0.406 in pipes, narrow channels and wide channels.

(2) The wake strength coefficient €y expresses the effect of the side-walls in open-
channels. It is a universal constant 3.2 in pipes. However, it decreases with the
aspect ratio a/h in narrow channels, shown in FIG. 5.11. In wide channels, a/h > 5,
it can be approximated as zero. Therefore, the modified log-wake law reduces to the
log-linear law in wide channels.

(3) The water surface shear effect factor Ag expresses the effect of the shear stress
between the air and the water surface. The value of )y is 0 in pipes and narrow

channels since a free surface does not exist in a pipe axis or the boundary layer margin
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in a narrow channel. The value of )y is almost a constant 0.065 for smooth beds and
small roughness but increases with the relative roughness k;/h when k;/h > 0.024,
see FIG. 5.16.

(4) The modified log-wake law compares very well with experiments in pipes,
narrow channels and wide channels.

(5) The log-linear law, which is the reduction of the modified log-wake law, com-
pares quite well with experiments in wide channels.

(6) The eddy viscosity models (5.11) and (5.34) from the modified log-wake law
and the log-linear law are compatible to experimental data in popes, narrow channels

and wide channels.
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Chapter 6

THEORETICAL ANALYSIS OF
SEDIMENT-LADEN FLOWS

6.1 Introduction

In the study of clear water flow, the governing equations are not used at all. The
modified log-wake law is simply based on a similarity analysis. However, a similarity
analysis may not be very helpful in the study of sediment-laden flows since more
variables are involved. To study the velocity profiles in sediment-laden flows, one
may start with the governing equations.

Section 6.2 treats of the governing equations in sediment-laden flows. Section
6.3 discusses the applications of the governing equations in steady uniform 2D flows.
Sections 6.4 and 6.5 discuss the effects of sediment suspension. Section 6.6 discusses

sediment-laden velocity profiles. Section 6.7 summaries the results of this chapter.

6.2 (Governing equations

6.2.1 Navier-Stokes equations in sediment-laden flows

This study aims at the mean velocity profiles in steady uniform 2D sediment-

laden flows. However, the turbulent shear stress is significantly affected by turbulence
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intensity. To emphasize the effects of sediment suspension on turbulence intensity,
this study starts with unsteady 3D governing equations. To simplify the analysis,
the Boussinesq approximation (Spiegel and Veronis, 1960; Kundu, 1990, p.113)
on stratified flows is introduced, i.e., the effect of sediment concentration on the fluid
density may be neglected in the continuity and the momentum equations, except in

the gravity term. The viscosity is also assumed constant in this assumption.

Continuity equation

Based on the Boussinesq assumption, the continuity equation in sediment-laden

flows is the same as that in clear water, i.e.

3u7;
8.7?7;

=0 (6.1)

in which u; is the velocity component in the x; direction and ¢ = 1, 2, and 3.

Momentum equation

Similarly, the momentum equation in sediment-laden flows is written as

ou; ' ou; P 1 Op 0%u;

Tyt =Ly — Py,
ot ? Ox; pmg P OT; Ox;0x;

(6.2)

in which ¢ is time; 7 is a dummy subscript; p is local density and varies with sediment
concentration; p,, is the (constant) space average of density p, i.e. p,, = % fv pdV;
g; is the component of the gravitational acceleration in the x; direction; p is pressure;

and vy, is the (constant) kinematic viscosity corresponding to py,.

Sediment concentration equation

Applying the mass conservation law to sediment phase, one has the sediment

concentration equation as

oC oC 0 (Dao) (6.3)

E + Ujal’j - al’j al’j

in which C' is the sediment volumetric concentration; the first term on the left-hand

side is the concentration change with time; u;, which is not necessary to be the
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same as that in (6.2), is the convective velocity of sediment; the second term on the
left-hand side is the transport by convection; D is the (constant) molecular diffusion

coefficient; and the right-hand side is the transport by molecular diffusion.

State equation or density equation

The density equation can be easily written as

p=po+(ps—po)C (6.4)

in which py is the clear water density; and p, is the sediment density.

The above equation set (6.1-6.4) is closed since one has 6 equations (1 continuity,
3 momentum, 1 concentration and 1 density equation) with 6 unknowns (3 velocity
components u;, 1 pressure p, 1 density p, and 1 concentration C'). However, like any
other turbulence, the above equations are very difficult to solve for large Reynolds
number flows, i.e., turbulent flows. To study the mean velocity field of a turbulent

flow, the Reynolds average method may be applied.

6.2.2 Reynolds mean equations and turbulent equations in

sediment-laden flows

Following Reynolds, one must decompose a variable into its (time) mean part
denoted with an overbar, and a turbulent part denoted with a prime, i.e.

u =" +u; p=p+p
Substituting (6.5) into (6.1-6.4) and introducing the Reynolds average method, one

can get the motion equations for the mean flow and the turbulent flow, respectively.

Continuity equation

Substituting the expressions (6.5) into (6.1) and taking the Reynolds average, one
has

au;

8.7?7; N

0 (6.6)
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for the mean motion, and

ou,
=0 6.7
. (6.7)

for the turbulent motion.

From the above two continuity equations, one can get the following two identities:

_of  o(uf) , of  O(u;f)

in which f can be any variable. These two identities will be frequently used in the

derivations later.

Momentum equation

Substituting (6.5) into (6.2), one gets

O(u; + uj) O +uj) p+p 1 0F+p) *
ot Oy, B Pm & Pm oz;

-+(ﬂk%—u;)

in which p,, = + [, pdV. Applying the identities (6.8) to the convective term and

expanding it, one obtains

0(w; + uj) N O(uuy, + uyu), + uimy, + uwjuy,)

ot 8xk
_ptp 1 0(@+P) 02 L
= g = U, p T (T; + u) (6.9)

Taking the average over this equation and considering that the average of a fluctuating

variable is zero, one has the following mean motion equation for sediment-laden flow:

i U U U P 1 °T;
@+a(uuk+uzuk>:£gi__8ﬁ+ym 0% (6.10)
ot oxy Pm Pm O 0x,0xk

or
U i P 1 U, )
ou ﬂkaﬂ N op O Ouyuy, (6.11)

ot orr pmgl B p_mazni + Vm 0x,0xy, oxy,
in which m is the one-point turbulent velocity correlation. The product of p,, and
—u/ul, is the so-called turbulent stress or Reynolds stress. (6.11) will be used to study
the mean velocity profiles in sediment-laden flows.
The subtraction of the mean motion equation (6.10) from the total motion equa-
tion (6.9) gives the turbulent motion equation, i.e.
Ou;

P 0@y, 4w + wjug, —wiug) o 1 oy O,

+ U
8xk6xk

ot Oz, T o pm O
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or

o, ou. ou, Oujuj, Ol 1 oy N 0?u
Vm

ot Oz, 0zy,

Ut Tt 4 =Ly,
k al'k k - i
This equation will serve to analyze the effects of sediment suspension on turbulence

- — 12
9z " Owe  Om o pmdm (6.12)

intensity.

Sediment concentration equation
Applying (6.5) to (6.3) yields

a(6+0/)+(ﬂj+u()a(6+c/): o <D6(6+0/)>

6t 6:1: j 6:1: j

or

oC oc' _oC _oc' 00 ouC o [ _9(C+C)
o "ot T Yom P on, Yo, T on, o \ P om, (6.13)

Taking the average over this equation gives the mean concentration equation:

oc _oC 9 0C  ——
5 + 9z, o, <D8xj ujC) (6.14)

Similarly, the subtraction of (6.14) from (6.13) gives the turbulent concentration

equation:
oc’ _aCc  ,0C ouiCt ouiCt 9 [ _dC
o P o TYan Y an T Tan on (D axJ) (6.15)
State equation or density equation
Applying (6.5) to (6.4) results in
B+ =po+ (ps —po) (C+C) (6.16)
Taking the average over this equation gives the (time) mean density equation:
7= po+ (ps — po)C (6.17)

Note that this mean density varies with space and has the relation with the space
mean pp, as: pm = [, pdV.

Similarly, one can obtain the turbulent density equation:
p = (ps — po)C’ (6.18)
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Summary

In brief, the mean motion equations for sediment-laden flows can be summarized

as follows:
gz 0 (6.6)
R R A ek
7= po+ (ps — po)C (6.17)

To solve this set of equations, one must make some assumptions about wjuj, and u;C".
This is known as the closure problem.

The turbulent motion equations are summarized as

ou;,
o =0 (6.7)
ou, 0w, _ Ou, Oulul, Oulul p 1 oy 0?u,
- =L - = " 6.12
ot + U oz, + uk&vk + 0y, 0z pmg Pm O T 0x, 0%k ( )
aC" aoc’ oc  ouiC' ouiC" 9 aoc’
0. ! — = D 1
ot " “on, "Yon, T Ton, 0w,  om ( axj) (6.15)

p' = (ps — po)C' (6.18)
Only (6.12) of this set will be used to study the effects of sediment suspension on

turbulence intensity.

6.3 Simplifications of governing equations in steady
uniform 2D flows

To simplify the analysis, this study assumes that the mean flow is 2D steady
uniform, shown in FIG. 6.1. That is,

steady : % =0 (6.19)

comn . 90 _, 90 _
uniform : o5, 0, e 0 (6.20)
2D flow U = Hl(l'g), Uy = ﬂg = O, U = 6(1‘3) (621)
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FIG. 6.1: Scheme of steady uniform 2D sediment-laden flows

in which ¢ = time; () means any (time) mean variable; w; = (time) mean velocity
in the flow direction z1; Ty = (time) mean velocity in the lateral direction xo, U3 =
(time) mean velocity in the vertical (normal) direction x3; and C = (time) mean
sediment concentration.

Based on the above assumptions, the mean continuity equation is automatically

satisfied. The momentum equations reduce to

0% aﬁ
x1 — direction: Dg1 + fhm 8:)12)1 — Pm 5;7:3 =0 (6.22)
WA
xe — direction: % =0 (6.23)
€3
op ou?
xg — direction: g3 — an — ﬁm% =0 (6.24)
3 3

Fortunately, (6.23) and (6.24) are not coupled with (6.22), then only (6.22) is used
to find the velocity profile w;(x3). (6.22) can be further written as
0 I T
—— | pyy—t — oy, =7 6.25
. <u oz, Pmiats | = Por (6.25)
in which p,, = pmVm is the mean kinetic viscosity of the mixture water. Considering
that the shear stress at the water surface is 7[._;, i.e.,(um0us /O — pmu’lug)%:h =

7|¢_;, and substituting (6.17) into (6.25) and integrating yields

Hmaxg PmUiUg

h h
= / (po + (ps — po)C) grdazs
T3 X

3
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or
h
uma—3 — Pty — Tlemy = pogi (h —x3) + (ps — Po)gl/ Cdz; (6.26)
z3

Now one can see that the effects of sediment suspension on velocity profiles may be
in three ways: (1) changing the fluid viscosity p,, and then changing the viscous shear
stress (1st term on the left-hand side); (2) changing the fluid density and turbulence
intensity and consequently changing the turbulent shear stress (2nd term on the
left-hand side); and (3) producing density gradient and then increasing the gravity
component in the flow direction (2nd term on the right-hand side). To further simplify
(6.26), a magnitude order for each term in (6.26) is analyzed as follows:

By experience, one may assume

uy ~ U, x3~h, u/lugwuz, C~Cq pm~po

in which U is the vertical average velocity; u, is the shear velocity; and C, is a near

bed concentration, then one has:

- Y —

Hm —pmtiUy =Tl = pogih —pogizs  +(ps — po)gr [, Cdxs
pmU > =
- P2 Keep pogih  pogih (ps — po)g1hC,q

Divided by p,,U?

i (u_)2 Keep Po gih po gih Ps — o gil
pmUR U om U2 pp, U? om U2
Since u, = v/ghS = +\/g1h, and p,, ~ pg, one has
1 Uy \ 2 Uy \ 2 Uy \ 2 Ps — Po (U2 =
= (F) @ & =5rE
Re <U) i U U ) ¢
Multiplying (U/u.)?:
1 2 — Po—
— (g) 1 Keep 1 1 uCa
Re \ u, Pm

In practice, Re > 104, ug ~ 10, and let %@UQ <0.1

< 0.01 1 Keep 1 1 < 0.1
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The above magnitude order analysis shows that the main effects of sediment sus-
pension on the mean velocity profiles are by the turbulent shear stress. In other
words, the momentum equation in steady uniform 2D sediment-laden flows can be

further simplified as
—pmuyty — T|e_y = pogi (h — x3) (6.27)

Note that 7'\521 is kept in the above equation since it is the derivative boundary condi-
tion at the water surface although it may be very small. The above equation is similar
to that in clear water, but the turbulent shear stress must be modified by sediment
suspension. Introducing the eddy viscosity concept, i.e., —Fug = etu,hdu, /drs, in
which % is the dimensionless eddy viscosity, the above equation becomes

du
= — 7le_y = pog1 (h — x3) (6.28)

+ h——
P e

Furthermore, if one defines ¢} = (pm/po)e™ as the dimensionless eddy viscosity in

sediment-laden flows, then one obtains

du
Poé?xzu*hd—x; — Tlez1 = pog1 (h — x3) (6.29)

The above equation is exactly the same as that in clear water except that the eddy
viscosity is modified by sediment suspension.

Note that the assumption of (ps—pg)/pmCa < 0.1 means that for plastic sediments
(specific gravity G = 1.05), C, can be very large; for natural sediments (G = 2.65),
C, < 0.1. When C, > 0.1 in natural sediment-laden flows, the effect of sediment
suspension on the gravity must be included.

Similarly, for steady uniform 2D flows, the sediment concentration equation (6.14)

reduces to
oC 0 oC ——
— = D — uhC" 6.30
waflfg 61’3 ( 8:)33 U ) ( )
in which 73 = —w, where w is sediment settling velocity. Integrating (6.30) gives that
oC —
D— —u3C" 4+ wC = const
83:3
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Considering that no sediments enter into flow from the water surface, one has

86 el o
Da—%—ug,C' —i—wC’—O

Usually the molecular diffusion flux of sediment is much smaller than the turbulent

flux, i.e., the above equation may be simplified as
—ubC" +wC =0 (6.31)

According to Reynolds analogy, introducing —u5C" = efu,hdC/dxs, in which 7 is

the turbulent sediment diffusion coefficient, the above equation becomes

ac —
Tu h— = 2
£, u*hdxg +wC =0 (6.32)

Equations (6.29) and (6.32) constitute the governing equations in steady uniform
2D sediment-laden flows. The eddy viscosity models from clear water, i.e., (5.11) for
narrow channels and (5.34) for wide channels, may be used for the problem closure.
Again, the effects of the sediment suspension on the eddy viscosity models must be

considered.

6.4 Effects of sediment suspension on turbulence

intensities

Sediment suspension is due to turbulent kinetic energy. The eddy viscosity ¢ in
the vertical direction relates to a characteristic length scale and the vertical turbu-
lence intensity uj. The larger the turbulence intensity uj, the stronger the turbulent
diffusion or mixing, i.e.

e~ buy (6.33)

in which § is the boundary layer thickness (characteristic length scale). For wide
channels, 6 = h. Hence, the study of the effects of sediment suspension on the

turbulence intensities (the kinetic energy budget and the eddy viscosity) is important.
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6.4.1 Turbulence intensity w;u; in sediment-laden flows

One may start with (6.12), the equation for the turbulent velocity component w.
One can also write the same equation for the velocity component u}. Multiplying the

equation for u; by u} and the equation for v} by u, one gets

ou, ou; ou, Oy, — ulul) — uwjp' u; Opf 0?u
u. L u v + ' iy u ik i k) d P — _J + I/mul- %
7ot Ik Oy, J kaxk J 0T, Pm 9 Pm Ox; 7 0z, 0y,
and
ou', U o/, o', — u' ! r 1o 0%/,
ug—J+u;u;ﬂ+ugﬂk L+ uj (il — i) — P gj_&_p‘l’l/m’u; /
ot 0y, oxy 0y, Pm Pm O%; 0xL0xy,

Adding the above two equations gives

1o 10 I 7 Y )
auiuj ;o Ju; 11 aﬂj — auiuj / a(“zuk - uzuk) /a<ujuk ujuk)
1t 1 / ’ / / 2,/ 2.,/
;P ;P u; Op u; Op Ty <u' 97 u; N 0"u; )
m

= L g+ . A !
Pm g Pm 9i Pm OT;  pm aﬂij 1 01,0z, 0z, 0xy,

The average over this equation yields the correlation equation of wju’, i.e.

!,
_ Ouu;

8xk

/.,
Quju;

ot J

ouu) ou/uj, 1 — -
= - (w par vl Rl CERT D)

m

1 (,0p ,0p . 0% , 0%
_ it 22 A ¢  J .34
Pm (u] ox; i axj) + Vm (uj 0x0xy, T 0z, 0xy, (6.34)

The terms on the right-hand side of this equation may be transformed to measurable

forms.
Applying the identities (6.8), the stuff within the bracket of the first term on the

right-hand side becomes

!,/ ! oy !/ !5, Iod oyl
Oupuy 0wy, Oup  Oujuy  Qujuyu,
: u) = ujuy, + = (6.35)

Considering (6.18), the stuff within the bracket of the second term on the right-hand
side becomes

uip'gi + uip'g; = (ps — po) (€;C"g; + u;Cg;) (6.36)
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The stuff within the bracket of the third term on the right-hand side may be written

as
o0 o 0P dup dpup Dy
ujal‘i +ui8xj n 891:2 P 81‘1 * 8a:j P al‘j
W oy (0o
= ( 9 + axj ) —p (6_1:7,+8_x]) (6.37)
Since
o2 7 _ 0 8u iy 8u;
8xk8xk Ui ] n 8 8xk jaxk
_ auz auﬂ / 82U9 au; au; / azué
L R T T

one can get the fourth term on the right-hand side as

0*u; 02, 02

/ /
' I _ v — auz auj
Z@xkaxk J &Bkaxk &)skékvk v &nk al’k

(6.38)

Substituting (6.35-6.38) into (6.34) yields the one-point velocity correlation equa-

tion:
au{u/. au’.u’. _aﬂ _aﬂ Ps — Po —~— -
vt - vty 1o/l ? Y J S ,'C,i .
5 T Uk o (u g+ ’ukﬁxk> + . (u;C"g; + uC'g;)
oujuful, 1 (Op'u;  Op'ul 1 [Ou, O
[ e A J + L + _p < J + )
oxy, Pm \ Ox; Ox; Or; Ox;
vl o, 8u
™ L 2y, 6.39
T 8xk6:ck 6a:k 8xk ( )

This equation is the same as that in clear water (Hinze, 1975, p.324) except an extra
term which relates to sediment suspension. The above equation is the general one-

point velocity correlation equation. It can be used to study any second order Velocity

2 o2

7, ujub, uhus, uf, ubus, u3 , and turbulent kinetic energy 3 bl

correlations, such as u
In this section, only the turbulent kinetic energy 3 u u; and the vertical turbulence
intensity u3 are concerned since they relate to the Richardson number and the eddy

viscosity in sediment-laden flows.
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6.4.2 Turbulent kinetic energy budget and Richardson num-

ber in sediment-laden flows

To study the turbulent kinetic energy budget, let i = j in (6.39), then one has

Quju; _ g T o Ps — Por oulululy uy 2 Oplug , O?ulul Oul, oul
ot 8 Og Pm a 83:3 Pm O0T3 maxgaxg axk oxy,
or
0 ¢ — U ps—po—m O (P
—— = —uju + u,C'g; —— | =+ — | ul
ot 2 . ! 383:31 _ Pm ! g/ ozs\ 2 pm) °
turb. p?orduction sediment‘guspension turbulent\,transport
2 (¢ Oul; oul;
Oxs \ 2 &Bk axk
—_— ————

. energy dissipation
viscous transport &y p

in which ¢> = uju,. The transport by viscous diffusion is usually neglected. The

turbulent transport may also be neglected if the turbulence intensity is not very

strong. This is because p’ o ¢* > 0, p'uj o< ¢?ul ~ 0. Thus, (6.40) reduces to

0 q2 8 Uy Ps — Po—— e Oul, oul,
ot 2 N 8 3 . Pm 8xk 8xk
turb. production sediment :uspenslon energy d1551pat10n

Experiments (Vanoni, 1946; Einstein and Chien, 1955; Elata and Ippen, 1961; and
others) have shown that both —u/u} and 3_2 are positive and increase with sediment
suspension. This implies that the effect of sediment suspension on the turbulent
production amplifies the turbulent kinetic energy.

Because the concentration field is homogeneous in the z; and the x5 directions,

the mean turbulent mixing fluxes in these directions must be zero, i.e.

wC"'=utC' =0 (6.42)

Thus,
p pO /C/gz — p pO /C/g3

m m

To balance the sediment settling from upward, the turbulent mixing flux u4C” in the

x3 direction must be positive, i.e.
usC" >0 (6.43)
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Considering g3 = —gcosf ~ —g (in which 6 is the angle between the channel bed

and the datum), one has

Ls PO Cigs < 0 (6.44)

which implies that sediment suspension decreases the turbulent kinetic energy. In
other words, the energy supported suspended-load comes from the turbulent kinetic
energy rather than the mean flow energy.

Since sediment presence increases the viscosity v,,, it is expected that the energy
dissipation increases in sediment-laden flow.

Of all three terms on the right-hand side in (6.41), two of them are negative
(sediment suspension + energy dissipation) and one (turbulent production) is positive,
the resultant of the right-hand side may increase and may decrease the turbulent
kinetic energy. However, in any case, sediment suspension will increase the mean
flow energy loss. This is because sediment suspension increases turbulent production
which, in turn, comes from the mean flow energy.

The Richardson number R; is defined as the ratio of the sediment suspension

energy to the turbulent production in (6.41), i.e.

Rj=—Pm (6.45)

Introducing

wu, = € i,
_ = gp—r
1%3 d$3

— dC
—usC’ Es—
3 d$3
in which the turbulent sediment diffusion coefficient €, is proportional to the momen-
tum eddy viscosity &,,. Therefore,
dC

(ps - pO)g d!lfg
Prm i, \

d!lfg
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The global Richardson number is defined as

61 - 60.05
Riooc =g 5

Pm Ul max 2
0

in which C; is the concentration at ¢ =1;and Cl.05 is the concentration at & =0.05.

Considering y max o Uy, and p,, = po + (ps — po)Cpm in which C,, is the average

vertical concentration, the above equation may be written as an equality,

R — @Ps — Po 60.05 —61
w2 po Ps — Po

(6.46)
Po

This Richardson number is very important. It expresses the density gradient intensity
in a sediment-laden flow. In a neutral sediment-laden flow, C o5 = C4, thus R; = 0.
In a density sediment-laden flow, Cy 5 > C;, thus R; > 0. The stronger the density
gradient, the larger the Richardson number. The Richardson number will be used as
an indicator of the density gradient effect on the velocity profile model parameters.

To estimate the Richardson number R; from (6.46), one must know the concen-
tration profile which may be solved from (6.32) and will be discussed in the next
chapter.

By the way, considering p = po + (ps — po)C, (6.46) can also be written as

R, = 9_5,00.05 — P1 (6.47)

2
w2 P

which appears in Coleman’s (1981, 1986) classical papers.

6.4.3 Effects of sediment suspension on the vertical eddy vis-
cosity
To study the effect of sediment suspension on u_ff, let i = j = 3 in (6.39), one gives

GE o o e po—e
+ 7 = —2ukLu! +2 unC’
ot kaxk 37k 1 Pm 393
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COuguguy 2 Opluy 2 Oug

Oy, pm O3 pm' Ox3

22 duly Ol
e — Wy 6.48
v 83:% g 8xk 8xk ( )
Considering (6.20) and (6.21) gives that
gu
m =0 6.49
T g (6.49)
Considering uz = 0 gives that
A
L, —— =0 6.50
Considering (6.20) gives that
Qubulul,  Oufp
= 6.51
axk 8.713 ( )
Then (6.48) becomes
Qi b= Py, O 2 O 2 O
ot N Pm ’ R 8.7?3 Pm 8.7?3 Pm 81‘31
sediment\guspension turbulen‘;rtransport
- — 2w, 6.52
v 0z3 Y Oz, O, (6.52)
—_—— N——
vis. transp. energy dissipation

In the following, one will assume a clear water running in a flume, then add some

sediments to the flow to see how u? adjusts according to the right-hand side terms.

Assume that the viscous and the turbulent transport terms are neglected or sec-

ondary. Then the effects of sediment suspension on u% are mainly through two terms:

sediment suspension and enerqy dissipation.

As those in (6.41), both the sediment suspension term and the energy dissipation
term are negative. They will damp the turbulence intensity uj. Consequently, sedi-
ment suspension damps the eddy viscosity in the vertical direction. The decrease of
the eddy viscosity weakens turbulent mixing compared with a clear water flow. In
other words, the outer region (overlap + wake layer + boundary effect layer) velocity

gradient in a sediment-laden flow increases compared with a clear water flow.
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6.5 Modification of the eddy viscosity model in

sediment-laden flows

Assume that the structure of the eddy viscosity model (3.33) obtained in clear
water flows is still valid in sediment-laden flows. Then the incorporation of the effect
of sediment concentration may be four alternatives:

Alternative 1: To consider the sediment damping effect, following Monin and
Obukhov (Duo, 1987, p.365), a concentration factor ®; may be introduced to the

eddy viscosity expression, i.e.

1 1—=&)+ Ty /Tw
ko€ 2 uy d€ |,
in which ®, is a function of concentration C | i.e.
D, =14 C + a0+ (6.54)

where oy and as are experimental constants. In this case, the concentration equation
(6.32) must be coupled with (6.29). Besides, if C is replaced by a characteristic
concentration C, and if C, is very small, then sediment concentration will not affect
the von Karman constant kg and the wake strength coefficient €y. Only an additional
term is added in the clear water velocity profile equation, like the Monin-Obukhov
equation in an atmosphere flow (Kundu, 1990, p.463). Note that the subscript “0”
denotes values in clear water.

Alternative 2: Both the von Karman constant x and the wake strength coefficient
() in sediment-laden flows vary with a characteristic concentration, i.e., the sediment
damping may be considered by decreasing x and increasing 2. That is, k < kg, and
Q > Q.

Alternative 8: k may become smaller with a characteristic concentration, i.e.,
Kk < Ko, while 2 may keep the same as that in clear water, i.e., {2 = ).

Alternative 4. k may keep the same as that in clear water, i.e., kK = kKo = 0.406,

while €2 may increase with a characteristic concentration, i.e., 2 > ).
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Alternative 1 is cumbersome. Alternatives 2, 3 and 4 are relative simple since
one can choose a near bed concentration or the vertical mean concentration to reflect
the effect of sediment suspension. In this dissertation, only last three alternatives are

examined.

6.6 Velocity profiles in sediment-laden flows

Of course, for the last three alternatives, the velocity profile equations are similar
to those in clear water except that the von Karman constant x, the wake strength
coefficient (2, and the water surface shear effect factor A may vary with sediment
suspension. That is, the velocity profiles in narrow channels can still be described
by (5.1), and the velocity profiles in wide channels can still be expressed by (5.23).

However, one has

k,Q, A = F(characteristic concentration, density gradient)

= F(Cu Ry) (6.55)

in which C, = Cy o5 for k and C, = C; for  and . This is because the von Karman
constant is determined by the near bed flow while the wake strength coefficient €2 and
the water surface shear effect factor A are determined by the flow near the boundary

layer margin or the water surface.

6.7 Summary

In this chapter, one starts with the full governing equations in sediment-laden
flows and obtains the steady uniform 2D governing equations. Based on the turbu-
lent kinetic energy equation, the global Richardson number R; is derived. Based on
the equation of the turbulence intensity u_g?, it is shown that sediment suspension
affects the eddy viscosity in two ways: increasing the molecular viscosity and then
increasing energy dissipation, and losing turbulent energy to support sediment sus-

pension. Both ways will damp the vertical eddy viscosity. Using a magnitude order
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analysis method, it is shown that the velocity profile equation in a sediment-laden
flow takes the same form as that in clear water, except the model parameters may

vary with a characteristic concentration and density gradient.
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Chapter 7

TEST OF THE MODIFIED
LOG-WAKE LAW IN
SEDIMENT-LADEN FLOWS

7.1 Introduction

The modified log-wake law has been tested to be true in clear water in Chapter
5. Chapter 6 shows that it may be true for sediment-laden flows. However, sediment
suspension may modify the parameters x, 2 and A. This chapter will test the modified
log-wake law in sediment-laden flows and study the variations of x, €2 and A with
sediment suspension.

Section 7.2 presents a test strategy, i.e., using two extreme experiments to test the
effects of molecular viscosity and density gradient. Sections 7.3 and 7.4 discuss the
effects of sediment suspension on the model parameters in narrow and wide channels.

Section 7.5 summaries the results of this chapter.

7.2 Preliminary analysis of the model parameters

In Chapter 6, one sees that sediment suspension affects the velocity profiles of

sediment-laden flows in two ways: one is that sediment concentration increases mole-
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cular viscosity and then increases energy dissipation and consequently damps tur-
bulence intensity; the other is that to balance sediment settling due to the gravity,
suspended sediments obtain energy from turbulent kinetic energy and then damp
turbulence intensity. These two effects can be examined in two kinds of extreme ex-
periments: one is neutral sediment-laden experiments where the concentration can be
very high, the effect of viscosity is emphasized, but sediment suspension does not cost
turbulent energy at all; the other is density (stratified) sediment-laden experiments
where the concentration keeps so small that the effect of molecular viscosity may be
neglected but the effect of the density gradient is emphasized.

For neutral sediment-laden flows, C' = Cy o5 = C1, R; = 0, then (6.55) reduces to

K, QA =F (O) (7.1)

For density sediment-laden flows with dilute concentration, the effect of viscosity may

be neglected. Then (6.55) reduces to
K, Q, A= F2 (Rl) (72)

(7.1) and (7.2) are two asymptotic expressions. A composite expression for (6.55)

may be expressed as

kLA =F (Co) + F2 (Ry) — (k,Q,\)| (7.3)

clear water

In the following, one will find the functional forms of F; and F; for each parameter

k, £ and \.

7.3 Test of the modified log-wake law in narrow
open-channels

The model parameters in narrow channels include « and €2. The plastic particle
experiments by Wang and Qian (1989) will serve to test the effect of molecular vis-
cosity. The sediment experiments by Coleman (1986) will serve to study the effect of
density gradient.
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7.3.1 Effect of molecular viscosity

Wang and Qian (1989) did three types of experiments: clear water and pure salt
water (see Section 5.3.3), neutral sediment-laden flows (salt water + plastic parti-
cles), and density sediment-laden flows (clear water + plastic particles, clear water
+ natural sands). The specific gravity of plastic particles G = 1.05, the particle con-
centration distribution in clear water is close to uniform, so the clear water + plastic
particle experiments can be regarded as quasi-neutral sediment-laden flows, i.e., the
effect of density gradient may be neglected herein. In the experiments, three sediment
sizes (fine, middle and coarse) were used, see Appendix C. The flume perimeters were
kept the same (smooth boundary, flow depth A = 9 cm, flume width a = 30 cm, and
bed slope S = 0.01), the differences among individual runs are only attributed to
different concentrations. The maximum volumetric concentration was 20%.

In the following tests, the shear velocity u,, as it in clear water, is determined by
(4.16) since it is a kinematic variable. The kinematic molecular viscosity v, due to

volumetric sediment concentration is calculated by (Coleman, 1986)

o p(1 4250+ 6.25C + 15.62C") 74
" po+ (ps = po)C '

in which y is the kinetic molecular viscosity of water; and C'is the volumetric sediment
concentration. The velocity profile analysis procedure is the exact same as that in

clear water.

Velocity profiles

A representative velocity profile, along with the modified log-wake law, of neutrally-
buoyant sediment-laden flows is shown in FIG. 7.1. All other profiles can be found in
Appendix C. Four velocity profiles of the fine particle (medium size dsy = 0.268 mm)
experiments with different concentrations are plotted in FIG. 7.2. From the above
two figures, one sees that: (1) The sediment concentration amplifies the thickness of
the viscous layer (the viscous sublayer + the buffer layer). The higher the concentra-

tion, the thicker the viscous layer. (2) As the concentration increases, the position of
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O Data of Wang-Qian (1989)
0 — Modified log-wake law
10 - 1
X_3
10" b 1
10% £ 1
@ |
1 1
10 15 B 20 25
uy/u.

1.4
121 SM4 N
1 h=10cm Ugmax = 2.186 m/s .

alh=3 u.=9.161 cm/s
0.8+ 6=7.187 cm Kk = 0.3544 R
X3
Y &/h =0.7187 Q=1.867
0.6 C, =0.0807 r=0.9997 N
C,, = 0.0399
0.4r N
0.2+ B
(b)
0
10 25

u,/u.

FIG. 7.1: A representative velocity profile of neutral sediment-laden flows in narrow

channels [(a) in a semilog coordinate; (b) in a rectangular coordinate]
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10 shift
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FIG. 7.2: The effect of molecular viscosity on the velocity profiles [o: Wang and
Qian’s data (1989); —: The modified log-wake law]

the maximum velocity moves up and closes to the water surface. (3) The modified
log-wake law (solid line) is still valid in the outer region (y* > 70) of sediment-laden
flows. (4) The von Karman constant x decreases with sediment concentration. (5)
The variation of the wake strength coefficient {2 with sediment concentration is not
clear at this moment. The quantitative study of x and 2 is followed in the next

subsection.

The von Karman constant « and the wake strength coefficient ()

The calculated results of all neutral and quasi-neutral particle experiments are

shown in Tables 7.1 and 7.2, respectively. Except SF3 and SF4 (which may be
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Table 7.1: Calculated results of Wang-Qian’s neutral particle experiments

h a/h S Uy 0  Uimax | C K Q r
RUN | (cm) (cm/s) (cm) (m/s)

NF1 9 333 0.01 881 677 214 |0.02[0.389 1.96 0.9994
NEF2 9 333 0.01 88 700 217 |0.08[0.355 1.88 0.9987
NF3 9 333 001 88 761 216 |0.15[0.339 2.12 0.9984

NM1| 10 3.00 0.01 9.16 6.79 2.08 |0.020.419 2.01 0.9987
NM2| 10 3.00 0.01 916 7.04 212 |0.07]0.365 2.10 0.9990
NM3 | 10 3.00 0.01 916 765 213 |0.13]0.374 229 0.9975
NM4 | 10 3.00 0.01 916 794 212 |0.20]0.327 2.09 0.9989

NC1| 10 3.00 001 916 633 210 |0.02[0.400 2.02 0.9985
NC2 | 10 3.00 001 916 744 210 |0.07[0.409 2.11 0.9968
NC3 | 10 3.00 0.01 916 694 211 |0.13]0.353 2.09 0.9984
NC4 | 10 3.00 0.01 916 716 2.12 |0.20|0.340 2.42 0.9982

outliers) in Table 7.2, a plot between C and , including clear water and pure salt
water experiments in Table 5.2, is shown in FIG. 7.3, where the MIT neutral particle
result in pipes (Chien and Wan, 1983, p.410) is also plotted. It is clear that the present
results from narrow channels are compatible to those from pipes at MIT. The data
scatter may be due to the slight density gradient in the quasi-neutral sediment-laden
experiments. The von Karman constant x decreases with sediment concentration C.
A linear relation between C and r exists, i.e., the function F} in (7.3) for x may be
written as

k= F(C) = Ky —aC (7.5)

in which the experimental constant kg is determined to be 0.406, the value in clear

water. The constant « is determined to be 0.372. (7.5) can be rewritten as

L _1-092C (7.6)
Ko

A plot of the volumetric sediment concentration C' (the average values are taken for
quasi-neutral particle experiments) versus the wake strength coefficient Q) is plotted

in FIG. 7.4. It is shown that the wake strength coefficient () increases with sediment
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Table 7.2: Calculated results of Wang-Qian’s quasi-neutral particle experiments

h a/h U (5 Hl max 60_05 Cm K Q T
RUN | (cm) (cm) (m/s)| (%) (%)

SF1 10 3.00 9.16 6.66 212 | 0.53 0.41 | 0435 1.83 0.9987
SEF2 10 3.00 9.16 6.60 2.09 | 1.39 1.02 | 0.396 1.44 0.9991
SF3 | 10 3.00 9.16 6.57 2.07 | 2.86 2.28 | 0.465 1.94 0.9982
SkF4 | 10 3.00 9.16 7.44 2.08 | 555 4.60 | 0.449 2.12 0.9987
SF5 8 3.7 840 529 196 |10.08 9.06 | 0.360 1.85 0.9980
SF6 9 349 865 9.01 216 |14.73 13.26 | 0.356 2.51 0.9980

SM1 | 10 3.00 9.16 7.06 211 | 0.74 042 | 0421 1.46 0.9992
SM2 | 10 3.00 9.16 6.55 215 | 2.74 1.20 | 0.416 1.71 0.9989
SM3 | 10 3.00 9.16 7.07 216 | 507 238 |0.398 2.00 0.9997
SM4 | 10 3.00 9.16 719 219 | 799 399 |0.354 1.87 0.9997
SM5 | 10 3.00 9.16 8.83 220 |11.56 6.23 | 0.375 1.90 0.9991
SM6 | 10 3.00 9.16 9.40 221 | 1440 7.54 |0.348 1.70 0.9953
SM7 | 10 3.00 9.16 8.68 223 |21.72 13.72 | 0.355 2.68 0.9995

SC1 10 3.00 9.16 643 212 | 1.04 0.43 | 0.402 1.81 0.9993
SC2 10 3.00 9.16 6.79 210 | 2.06 0.85 | 0.380 1.29 0.9995
SC3 10 3.00 9.16 6.64 211 | 418 1.98 | 0378 1.86 0.9997
SC4 | 10 3.00 916 719 213 | 731 3.40 |0.378 2.02 0.9992
SCH 10 3.00 9.16 735 215 |[11.72 6.51 | 0.357 2.42 0.9992
SC6 10 3.00 9.16 7.54 217 [17.10 9.37 | 0.337 2.46 0.9990
SCr | 10 3.00 9.16 7.73 216 |21.00 12.25|0.317 2.15 0.9985

concentration (molecular viscosity). For Wang and Qian’s (1989) experiments where

a/h = 3, the following regression equation can be obtained:
Q=1.65+3.71C (7.7)

When C = 0, = 1.65 which is compatible to FIG. 5.11. In density sediment-laden
flows, C' in the above equation should be replaced by the water surface concentration
C,. Fortunately, all sediment-laden flows in practice are density flows. In such a
flow, C'; is usually very small. Therefore, the effect of the concentration on the wake

strength coefficient €2 may be neglected. In other words, in density sediment-laden

flows, one has Q & €, which can be estimated from (5.21) or FIG. 5.11.

102



0.45

O Data of Wang and Qian (1989)
— Curve fitting equation (7.5)
0o % MIT pipe result (Chien and Wan, 1983)
o
0.4r: b
K =0.406 - 0.372C
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0.3r B
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0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
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FIG. 7.3: The effect of molecular viscosity on the von Karman constant

O h=10cm, Wang and Qian (1989)
4.5F + h=9cm, Wang and Qian (1989) a
X h=8cm, Wang and Qian (1989)

3.5 b

0.5 1 1 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

FIG. 7.4: The effect of molecular viscosity on the wake strength coefficient
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7.3.2 Effect of density gradient

The experimental studies of the effect of density gradient on velocity profiles in
sediment-laden flows were reported by Vanoni (1946), Einstein and Chien (1955),
and Coleman (1986). Vanoni (1946) did not publish the experimental data. Einstein
and Chien’s (1955) data were widely cited, however, they just measured the velocity
profile near the bed (about z3/h < 0.4). The velocity profile data near the water
surface are necessary in the test of the modified log-wake law. Hence, Einstein and
Chien’s data cannot be used here. Coleman’s (1986) data set is a valuable source. It
includes all necessary information to test the modified log-wake law in sediment-laden
flows.

Like Wang and Qian’s (1989) experiments, the flow conditions (smooth boundary,
h ~ 170 mm, a = 356 mm, S = 0.002) were kept the same in all runs. The maximum
local volumetric concentration is 2.3%. Hence, the effect due to molecular viscosity
may be neglected. The differences of the velocity profiles among individual runs are

just attributed to the density gradient.

Velocity profiles

FIGS. 7.5 shows a representative velocity profile of Coleman’s (1986) measure-
ments with the modified log-wake law. FIG. 7.6 shows a comparison of 5 velocity
profiles with different Richardson number R;. Other profiles can be found in Appen-
dix D. Again, the modified log-wake law agrees fairly well with experimental data.
The von Karman constant x deceases with R; while the variation of the wake strength

coeflicient €2 is not clear at this moment.

The von Karman constant « and the wake strength coefficient )

As stated in Chapter 5, the density gradient effect on the model parameters x and
2 may be expressed by the Richardson number R;. From (6.46), one sees that the
estimation of R; requires the values of Cy s, C; and C,,. Fortunately, in Coleman’s

(1986) experiments, the sediment concentration profiles are all measured. Therefore,
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O  Data of Coleman (1986)
— Modified log-wake law
0
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0.2 B
(b)
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FIG. 7.5: A representative velocity profile of sediment-laden flows in narrow channels

[(a) in a semilog coordinate; (b) in a rectangular coordinate]
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FIG. 7.6: The effect of density gradient on velocity profiles [o: Coleman’s data (1986);

—: The modified log-wake law]

R; can be easily calculated without a concentration profile equation. The calculated
results of all Coleman’s (1986) experimental profiles are shown in Table 7.3 . A plot
of the von Karman constant x versus the Richardson number R; is shown in FIG. 7.7.
It can be seen that the density gradient (the Richardson number R;) has a significant
effect on the von Karman constant x. The stronger the density gradient, the smaller
the von Karman constant. An exponential relation between x and R; may exist, i.e.,

the function F» for x in (7.2) may be written as

5 = exp {—fR["} (7.8)
0
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05" O d=0.105 mm, Data of Coleman (1986)
+ d=0.210 mm Data of Coleman (1986)
X d=0.42 mm Data of Coleman (1986)

0.45¢ —— Curve-fitting, Equation (7.8) 7
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FIG. 7.7: The effect of density gradient on the von Karman constant

40

in which k¢ is the von Karman constant, 0.406, in clear water flows. § and m are

determined to be 0.065 and 0.716, respectively, using experimental data. The general

correlation coefficient is 0.89. The very small concentration is usually difficult to

measure accurately, so the data scatters when R; < 5.

The relation between the wake strength coefficient {2 and the Richardson number

R; is plotted in FIG. 7.8, which shows that the effect of density gradient on the wake

strength coefficient €2 is trivial. This again shows that the wake strength coefficient

(), in essence, expresses the effect of the side-wall.

7.3.3 Combination of the effects of molecular viscosity and

density gradient

Substituting (7.6) and (7.8) into (7.3) for the composite expression of x, one gets

[{, J—
— =exp{—0R"} — aCyos
Ko
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O d=0.105 mm, Data of Coleman (1986)
d=0.210 mm Data of Coleman (1986)
X d=0.42 mm Data of Coleman (1986)
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FIG. 7.8: The effect of density gradient on the wake strength coefficient

in which kg = 0.406, 8 = 0.0636, m = 0.716, and o = 0.92. Considering the value of
% is determined by the near bed flow, C o5 is used herein for density gradient flows.
The further accurate values of «, # and m may be obtained if a two dimensional
curve-fitting method is applied to (7.9).

As stated earlier, the effects of both concentration and density gradient in practice
are so small that they may be neglected. That is, the wake strength coefficient €2 is
only affected by the side-walls (the aspect ratio a/h), i.e., Q = Q.

7.4 'Test of the log-linear law in natural rivers

7.4.1 Test of the log-linear law in natural rivers

As stated earlier, the modified log-wake law reduces to the log-linear law in wide
open-channels. Vanoni’s (1946) experiments, Elata and Ippen’s experiments (1961),

Guy, Simons and Richardson’s (1966) experiments, and Muste’s (1995) experiments
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can be regarded as wide channel experiments. However, both Vanoni (1946) and
Elata and Ippen (1961) did not publish their experimental data. Guy, Simons and
Richardson (1966) collected a huge data set of sediment transport. Most of their runs
have bed forms which create difficulty in determining the shear velocity u,. Therefore,
their experiments are not very suitable to this study. Muste’s (1995) recorded four
sediment-laden experiments. He concluded that sediment suspension has little effect
on fluid velocity profile. This is because both concentration (C' = 107°) and density
gradient in his experiments are very small.

The end of this study is to predict the velocity profiles in natural rivers. Thus, the
test of the log-linear law in rivers is necessary. However, bedforms in natural streams
create difficulty for determining the shear velocity (corresponding to the skin friction).
The study of bedform resistance is beyond the scope of this dissertation. To avoid
the error due to the determination of the shear velocity, only dimensional velocity
profiles in natural rivers are compared with the log-linear law in this subsection.

To build the Xiao-Lang-Di Reservoir and the Three Gorges Reservoir, Chinese
engineers collected many velocity and concentration profiles in the Yellow River and
the Yangtze River. Appendix I tabulates some measurement data in the Yellow River
and the Yangtze River!. FIGS. 7.9 and 7.10 show the comparisons of the log-linear
law with some measurement velocity profiles. One can see that the log-linear law
agrees fairly well with the field measurements. This reveals that the structure of the

log-linear law in wide open-channels is correct.

7.4.2 Conjecture of the effects of sediment suspension in wide

open-channels

Fortunately, the von Karman constant x only relates to the near bed flow. The
near bed velocity profiles in narrow and wide channels are similar, one naturally
reaches that (7.9) may also be valid in wide open-channels.

The water surface shear effect factor A in a wide channel, like the wake strength

!Provided by Prof. Yu-Jia Hui, Tsinghua University, Beijing, China
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coefficient €2 in narrow channels, only relates to the near surface flow. Since both
concentration and density gradient at the water surface are usually very small, their
effects on A\ may be neglected. Thus, (5.33), from clear water, may also be valid in

sediment-laden flows.

7.5 Summary

In this chapter, the modified log-wake law first compares with neutral particle-
laden experiments in narrow channels. It shows that the von Karman constant « de-
creases with volumetric sediment concentration and can be estimated from (7.6). This
is because sediment concentration increases molecular viscosity and then increases
energy dissipation. The wake strength coefficient €2 slightly increases with sediment
concentration, but its effect may, in practice, be neglected in density sediment-laden
flows. Note that a neutral particle-laden flow belongs to a two-phase flow, which is
different from a one-phase thick fluid. Given the same boundary condition, a two-
phase flow dissipates more energy than a one-phase thick flow. This is because in a
two-phase (liquid + solid particles) flow, solid particles increase the effective surface
between fluid and solid boundaries.

The modified log-wake is then tested with density sediment-laden experiments in
narrow channels. It shows that the von Karman constant « also decreases with the
Richardson number R; (density gradient) and can be estimated from (7.8). Unlike &,
the wake strength coefficient €2 has little to do with the Richardson number R;. It
may still be estimated from (5.21).

The log-linear law, which is the reduction of the log-wake law in wide channels,
compares quite well with measurement velocity profiles in the Yellow River and the
Yangtze River. It is conjectured that like the wake strength coefficient €2, sediment
suspension may have little effect on the water surface shear correction factor \.

The combination of the effects of concentration and density gradient on the von
Karman constant £ may be expressed by (7.9). It may be valid in both narrow and

wide channels.
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Chapter 8

APPLICATIONS OF THE
MODIFIED LOG-WAKE LAW

8.1 Applications of the modified log-wake law in
pipes

8.1.1 Relation between the maximum velocity ;. and the

average velocity U

Neglecting the viscous sublayer and the buffer layer and integrating (5.1) over the

cross-sectional area, one obtains that

U1 max L ! |: 1 2 ”5 1 £:|
= 92 ——1n Q - _ 1— d
/; 5 0 COS 2 ( g) 5

U Ko Ko

B 2 1 1 7T§ 2 1
= = [a-omeron [(1-geoe Tas-= [ 1-era
Since
/1<1 £)In¢ /11 cde /151 de
—&8Iné¢ = n — n
0 0 0
B % &1
1 3
= rg=g
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Taking ko = 0.406 and §2y = 3.2, one obtains

Uimax —U o (8.1)

U

8.1.2 Position of the average velocity U

Equating the right-hand side of (5.1) to the right-hand side of (8.1) and solving

the resultant equation, one obtains the position of the average velocity U, which is

£=025 (8.2)

This equation can be used to measure the pipe average velocity at one point.

8.1.3 Procedures for applying the modified log-wake law

Provided that the pipe diameter d, the shear velocity u. (or the pipe length L and

the pressure drop Ap), one can calculate the pipe velocity profile as follows:
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Step 1: Estimate the friction factor f, which is defined as f = 8 (u,/U)?, and
the average velocity U. The study of the friction factor is beyond this dissertation.
Prandtl’s classical equation (Schlichting, 1979, p.611, p.624) or Zagarola’s (1996)
resistance formula may be used.

Prandtl’s formula (Schlichting, 1979, p.611, p.624):

1 .
NGi = 2log (Re \/?) - 0.8 (hydraulically smooth) (8.3)

in which Re= Ud/v. The above equation is valid up to Re= 3.4 x 10°.
1

= (21ogk—ff + 1.74)2

(completely rough) (8.4)

in which R is the pipe radius; and k; is roughness.
Zagarola’s (1996, p.204) formula (hydraulically smooth):
228

1
— = 1.872log (Re \/?) —0.2555 — o™

vii
which is valid for Re= 3.1 x 10* — 3.5 x 107.

(8.5)

Step 2. With the average velocity U available, the maximum velocity @y max can
be estimated using (8.1).

Step 3. Given the maximum velocity Uy max, the shear velocity u,, kg = 0.406, and
Qo = 3.2, the velocity profile can be estimated using (5.1), i.e.

u max__ 1 11—
u:——lr1£+§2()(:os27r—£— S
Uy Ko 2 Ko

8.2 Applications of the modified log-wake law in
open-channels

The flow in a narrow open-channel is three-dimensional and much more compli-
cated than that in a wide open-channel. The velocity profile over the whole cross-
section in a narrow channel is not studied in this dissertation. So, a full application
of the modified log-wake law in narrow channels cannot be recommended at this mo-
ment. However, the log-linear law, which is the reduction of the modified log-wake

law in wide channels, has been ready to apply in wide open-channel flows.
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8.2.1 Magnitude of the linear term in the log-linear law

From (5.23), the linear term in the log-linear law is

1 Vwind_ﬂlmax ?
- [;_)\0 (u—*) ] (1_5)

in which & is the von Karman constant in sediment-laden flows and varies between

0.2 and 0.406, A\g ~ 0.0065. Usually, T max/u« = 10 — 30. If Viing = 0, one has

1 o 2
5 < — [;_)\0 (M) ] <4 (8.6)

U

One can see that the coefficient of the linear term may be positive and may be
negative. In some cases, the coefficient may be close to zero, the linear term may be
neglected and the classical log law is restored. However, this cannot be generalized.
In particular, the linear term cannot be neglected in a sediment-laden flow. This can
be easily seen from FIGS. 7.9 and 7.10, where the velocity profiles are not straight

lines in a semilog coordinate system.

8.2.2 Relation between the maximum velocity ;. and the

average velocity U

For a wide open-channel (2D), neglecting the viscous sublayer and the buffer layer

and integrating the log-linear law (5.23) over the entire flow depth, one has

ﬂ1 max ~_ U o ! 1 1 Vwind _Ul max 2
Do U /0{—;1116—[;—)\0(—“* )](1—5>}ds
1 ! 1 Vwind_ﬂlmax 2 !
~ 2 [ et — |1 - (—u )]/0<1—5>d5

1 1 [1 (Vwind - Ul max)2]
= - — = __)\0 e 2 e
2 |k U

K
. 1 )\0 vwind — H1 max 2
= =+ ( - ) (8.7)

1.e.

)\ Vwin —u max 2 u max ~ U 1
_0<d—u1) _Wmex 7 L 0 (8.8)
2 Uy
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FIG. 8.1: Position of the average velocity versus the water surface shear correction

in which & is the von Karman constant in sediment-laden flows.

Given Viying, U, kK, and A\, one can solve for the maximum velocity %7 max-

8.2.3 Position of the average velocity U

Equating the right-hand side of (5.23) and the right-hand side of (8.7) and rear-

— 2
1 — KXo <M) ] <% - 5) =0 (8.9)

Again, it is assumed that £ = 0.2 — 0.406, \g =~ 0.0065, Viyina = 0, U1 max/u« = 10 — 30.

ranging them, one gets

1+Iné&+

Then one has

Vigind — T ?
0 < KA <M) <25 (8.10)

Us
Solving (8.9) for ¢ under the condition of (8.10), one obtains the position of the
average velocity, which is shown in FIG. 8.1. It can be seen that after the water

surface shear correction, the position of the average velocity varies between 0.3 and

0.42.
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8.2.4 Procedures for applying the log-linear law

Assume a uniform flow in a wide channel with a plane bed. Provided that the
flow depth h, the bed slope S, the sediment size dg, and the volumetric sediment
concentration Cy o5, one may estimate the velocity profile in the following way:

Step 1: Estimate the shear velocity wu,, i.e., u, = v/ghS, where g is the gravita-
tional acceleration. Note that for bedform channels, the skin shear velocity w!, should
be used.

Step 2: Estimate the average velocity U. The classical resistance equation by

Keulegan (Chien and Wan, 1983, p.205) may be used, i.e.

hu,
ug = 5.75log ( :j ) +3.25 (hydraulically smooth) (8.11)
U h
— =5.75log T +6.25 (completely rough) (8.12)

in which v is the water kinematic viscosity; and the roughness ks is usually taken as
(2 — 7)dso (Chien and Wan, 1983, p.206; Julien, 1995, p.96). For sand bed channels,
ks = 2.5d59 may be used.

Step 3 Estimate the Richardson number from (6.46), i.e.

R — 9_505 — fo 60.05 —61
' Uz Po ]__I_'Os_poa
Po "

in which 6 = h for wide open-channels. For density sediment-laden flows, usually

C << 50,05, and C,, << 1. Then the above expression reduces to

5 ps — Pom
R = LT (8.13)
Uy Po

Step 4: Estimate the von Karman constant x from (7.9), i.e.
K . —
— = exp{—ﬁRi } — OCCO.()E,
Ko

in which kg = 0.406, 3 = 0.0636, m = 0.716, and a = 0.92.
Step 5. Assume Ao = 0.0065 for sand channels or calculate A\g from (5.33) for

gravel channels. With k, u, and U, estimate the maximum velocity % max from (8.8).
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Step 6: Estimate the velocity profile with the log-linear law, i.e.

U1 max Uy 1 1 ! wind U1 max ?
_ = ——lnf-—- |- - T 1—
K 6 [:‘i >‘0 ( ) ] ( S)

U U

in which V,;,q may be assumed to be zero in laboratory or measured in field cases.
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Chapter 9

SUMMARY AND
CONCLUSIONS

9.1 Summary

Turbulent velocity profiles in pipes and open-channels with clear water and sediment-
laden flows are investigated. A new similarity analysis method, the four-step similarity
analysis method, is first presented, which includes dimensional analysis, intermediate
asymptotics, wake correction, and boundary correction. Based on the four-step simi-
larity analysis method, a clear water velocity profile model, the modified log-wake law,
is proposed. The modified log-wake law consists of three components: a log term, a
wake term, and a linear term. Physically, the log term expresses the inertia effect; the
wake term expresses the large-scale turbulent mixing; and the linear term expresses
the boundary condition effect. In open-channels, the wake term reflects the side-wall
effect. A theoretical analysis and a magnitude order analysis show that the modified
log-wake law is also valid in sediment-laden flows. In particular, the modified log-
wake law considers the derivative boundary condition at the boundary layer margin,
which is not satisfied in previous studies.

The modified log-wake law has compared quite well with experiments in pipes,
narrow open-channels and wide open-channels, including both clear water flows and

sediment-laden flows.
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In wide channels, the wake component may be neglected. The reduction of the
log-wake law is called the log-linear law. The log-linear law agrees excellently with
both laboratory experiments and field measurements.

Theoretical and experimental analyses show that sediment suspension affects the
velocity profile in two ways: changing the fluid viscosity, and obtaining energy from
the turbulent energy. Both ways will damp the turbulence intensity and increase the
velocity gradient.

As a prerequisite of the velocity profiles in open-channels, an equation for de-
termining the bed shear velocity, based on a conformal mapping method, in smooth
rectangular channels is also presented. In addition, an eddy viscosity model is derived

from the log-wake law.

9.2 Conclusions

9.2.1 Clear water flows

1. Clear water velocity profiles in pipes and open-channels can be described by the
modified log-wake law, i.e.

_max__ 1 1 Vwin __max 2
u:——1n5+9060827r_§‘[_‘%(d—m) (1-¢)
Uy Ko 2 Ko

*

(3.31)
in which % pay = the maximum velocity; u, = the shear velocity; u; = the
velocity at normalized distance £ = z3/6 (6 = R for pipes and é = h for wide
channels) from the bed; ko = the von Karman constant in clear water; g =
the wake strength coefficient in clear water; Ao = the water surface shear effect
factor; and Vii,q = the wind velocity over the water surface. The first term
on the right-hand side is the so-called intermediate asymptotics which is the
classical log law and reflects the effect of the channel bed; the second term is
the so-called wake correction which is the Coles wake function and reflects the
effect of the side-walls; and the third term is the so-called boundary correction

and reflects the effect of the boundary condition at the boundary layer margin.
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2. For pipe flows, Ay = 0. This is because there does not exist a free surface along

a pipe axis. Therefore, the modified log-wake law reduces to

_max__ 1 1-—
u:——lr1£+§2()(:os27r—§— S
Uy Ko 2 Ko

(5.1)

Superpipe experiments show that kg and €}y are two universal constants 0.406
and 3.2 for y*© > 500, respectively. However, ko may slightly increases with
the Reynolds number Re, = u,R/v, where R = radius of pipe, and v = water

kinematic viscosity, if the data of 70 < y™ < 500 are included.

3. For narrow channels (a/h < 5), where the boundary layer thickness is defined
as the distance from the bed to the maximum velocity position, as it in pipes,
a free surface at the boundary layer margin does not exist. In other words, the
velocity gradient and the shear stress are zero at ¢ = 1. Therefore, the velocity
profile equation is the same as that in pipes. Narrow flume experiments show
that ko is the same as that in pipes, 0.406 (the average value is 0.405 in narrow
channel tests) while €2y decreases with the aspect ratio a/h, see FIG. 5.11. g
can be estimated by

a .
Q, = _0'75E +3.75 if a/h <5 (5.18)
ifa/h >5
4. For wide channels (a/h > 5), the wake component is very small and negligible,
see FIG. 5.11. The modified log-wake law is, then, reduces to the log-linear law

as follows:

u max —u 1 1 Vwin —u max 2
T T Ly [_ o (VT ] i-g ()
U Ko Ko U
in which the water surface shear effect factor can be estimated by the following

empirical relation:
0.065 for ks/h < 0.024
AR { 0.2163% 10013 for ky/h > 0.024 (5.30)
in which A = the flow depth; k; = 2.5d,; and d, = sediment diameter. The
above equation is valid for both smooth and rough beds. The log-linear law

has compared well with 47 laboratory experiments and field measurements, the

correlation coefficient r is always greater than 0.99.
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9.2.2 Sediment-laden flows

1. The theoretical analysis and experimental data show that the structure of the
modified log-wake law is also valid in sediment-laden flows. However, sediment
suspension modifies the velocity profile in two factors: sediment concentration
and density gradient (the global Richardson number R;). Since both concen-
tration and density gradient are large near the bed, the effects of sediment

suspension mainly occur near the bed.

2. The von Karman constant x decreases with both concentration and density

gradient in a sediment-laden flow. It can be estimated by
K —
/-{_ = exp {—ﬁR:n} — &00.05 (715)
0

in which kg is the von Karman constant in clear water, 0.406; 3 = 0.062 and
m = 0.716. The Richardson number R; is defined as

_ @Ps — Po 60.05 - 61
uz  po 14 Ps — Poa
Po "

in which py = water density; and ps = sediment density. Given a reference

R;

(6.46)

concentration C, at &. Usually, in sediment-laden flows, C; << Cog5, and

C,, << 1. Then, the Richardson number may reduce to

R; = g—gps — '0060.05
Uy pPo

3. The wake strength coefficient 2 may slightly increase with the concentration.

However, in practice, the concentration C is usually very small in a density

sediment-laden flow. Its effect may be neglected. In addition, like the con-

centration near the water surface, the density gradient is also very small near

the water surface. Therefore, the effect of the density gradient may also be

neglected. In other words, the wake strength coefficient €2 in sediment-laden

flows can be approximated as 2 & )y, which is estimated from (5.21).

4. Like the wake strength coefficient €2, both concentration and density gradient
have little effect on the water surface shear effect factor A, i.e., A & \g, which

is estimated from (5.33).
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5. A procedure for applying the modified log-wake law is presented in Chapter 8.
However, several parameters, such as the boundary layer thickness 6 and the
maximum velocity U max in narrow open-channels, are needed to fully describe

velocity profiles in sediment-laden flows.

6. An eddy viscosity model from the modified log-wake law is derived as

+_ (1-&+ 7"5:1 /To
1-¢ 70 1 duy

K€ +7SH17T€+U—* d—f -

€

(3.33)

in which et = ¢/(u,0) is the dimensionless eddy viscosity. The above model is

compatible to experiments in pipes, narrow channels and wide channels.

9.3 Recommendations

Except those questions raised in the above section, an immediate recommendation
is to apply the modified log-wake over a dune-bed flow and to correlate the pressure
gradient to the wake strength coefficient €)5. Then a reasonable velocity profile model
for dune-bed flows may be derived. This is very helpful to study the skin friction in
a bedform channel.

Another immediate recommendation is to try a three-dimensional velocity profile
law over the whole cross-section in narrow channels, based on the modified log-wake
law.

In addition, based on the power law in the overlap, a power-wake law in open-

channels, as it in pipes (Appendix A), may be worthy to try in the future.

126



REFERENCES

Barenblatt, G. I. (1953). “On the motion of suspended particles in a turbulent flow.”
Prikl. Mat. Mekh., 17(3), 261-274.

Barenblatt, G. I. (1996). “Scaling, self-similarity, and intermediate asymptotics.”
Cambridge University Press.

Barton, J. K. and Lin, P. N. (1955). “A study of sediment transport in alluvial
channels.” Report No. 55JRB2, Civil Engineering Department, Colorado State
University, Fort Collins, CO.

Chen, Y. (1984). “Vertical distribution of suspended sediment in open channel.” J.
Sediment Research, Beijing, China, (1), 31-40 (in Chinese).

Chien, N. and Wan, Z. H. (1983). Sediment Transport Mechanics. China Science
Press, Beijing, China (in Chinese).

Cioffi F. and Gallerano, F. (1991). “Velocity and concentration profiles of solid
particles in a channel with movable and erodible bed.” J. Hydr. Engrg., ASCE,
29(3), 387-401.

Coleman, N. L. (1970). “Flume studies of the sediment transport coefficient.” Water
Resources Research, AGU, 6(3), 801-809.

Coleman, N. L. (1981). “Velocity profiles with suspended sediment.” J. Hydr. Res.,
19(3), 211-229.

Coleman, N. L. (1986). “Effects of suspended sediment on the open-channel distri-
bution.” Water Resources Research, AGU, 22(10), 1377-1384.

127



Coles, D. E. (1956). “The law of the wake in the turbulent boundary layer.” .J.
Fluid Mechanics, 1, 191-226.

Coles, D. (1969). “The young person’s guide to the data.” Proceedings Computation
of Turbulent Boundary Layers — 1968 AFOSR-IFP-STANFORD CONFER-
ENCE, 2, 1-19.

Dou, Guoren (1987). Turbulence, Vol. 2, Higher Education Press, Beijing, China
(in Chinese).

Einstein, H. A. and Chien, N. (1955). “Effects of heavy sediment concentration near
the bed on velocity and sediment distribution.” U. S. Army Corps of Engineers,

Missouri River Division Rep. No. 8.

Elata, C. and Ippen, A. T. (1961). “The dynamics of open channel flow with suspen-
sions of neutrally buoyant particles.” Technical Report No. 45, Hydrodynamics
Lab, MIT.

Guy, H. P., Simons, D. B. and Richardson, E. V. (1966). Summary of alluvial
channel data from flume experiments, 1956-1961. USGS Professional Paper
462-1.

Hinze, J. O. (1975). Turbulence. 2nd Ed., McGraw-Hill, New York.

Hu, C. H. and Hui, Y. J. (1995). Mechanical and Statistical Laws in Open-Channel

Flows. China Science Press, Beijing, China (in Chinese).

Ippen, A. T. (1971). “A new look at sedimentation in turbulent streams.” J. Boston
Civil Engineers, 58(3), 131-163.

Itakura, T. and Kishi, T. (1980). “Open channel flow with suspended sediments.”
J. Hydr. Div., ASCE, 106(8), 1325-1343.

Janin, L. F. (1986). “Sediment-laden velocity profiles developed in a large boundary-
layer wind tunnel..” PhD dissertation, Colorado State University, Fort Collins,

CO.

128



Julien, P. Y. (1995). Erosion and Sedimentation. Cambridge University Press.

Karim, M. F. and Kennedy, J. F. (1987). “velocity and sediment-concentration
profiles in river flows.” J. Hydr. Engrg., ASCE, 113(2), 159-178.

Kereselidze, N. B. and Kutavaia, V. 1. (1995). “Experimental research on kinematics

of flows with high suspended solid concentration.” J. Hydr. Res., 33(1), 65-75.

Keulegan, G. H. (1938). “Laws of turbulent flow in open channels.” J. Research.,
Nat. Bureau of Standards, 21(6), 707-741.

Kironoto, B. A. (1993). Turbulence characteristics of uniform and non-uniform,
rough open-channel flow. PhD Dissertation, Swiss Federal Institute of Technol-

ogy at Lausanne, Switzerland.

Kironoto, B. A. and Graf, W. H. (1994). “Turbulence characteristics in rough uni-
form open-channel flow.” Proc. Instn Civ. Engrs Wat. Marit. € Energy,
106(12), 333-344.

Knight, D. W., Demetriou, J. D. and Hamed M. E. (1984). “Boundary shear in
smooth rectangular channels.” J. Hydr. Engrg., ASCE, 110(4), 405-422.

Kolmogorov, A. N. (1954). “On a new variant of the gravitational theory of motion

of suspended sediment.” Vestn. MGU, 3, 41-45.
Kundu, P. K. (1990). Fluid Mechanics. Academic Press, Inc., New York.

Laufer, J. (1954). The structure of turbulence in fully developed pipe flow. Report
1174, National Advisory Committee for Aeronautics, Washington, D. C.

Lyn, D. A. (1986). Turbulence and turbulent transport in sediment-laden open-
channel flows. W. M. Keck Laboratory of Hydraulics and Water Resources,

California Institute of Technology, Pasadena, California.

Lyn, D. A. (1988). “A similarity approach to turbulent sediment-laden flows in open
channels.” J. Fluid Mechanics, 193, 1-26.

129



McCutcheon, S. C. (1981). “Vertical velocity profiles in stratified flows.” J. Hydr.
Div., ASCE, 107(8), 973-988.

McQivey, R. S. (1971). Summary of turbulent data from rivers, conveyance channels,

and laboratory flumes. USGS Professional Paper 802-B.

McTigue, D. F. (1981). “Mixture theory for suspended sediment transport.” J.
Hydr. Engrg., ASCE, 107(6), 659-673.

Millikan, C. B. A. (1938). Proc. of 5th international congress on applied mechanics.
John Wiley, 386-392.

Muste, M. (1995). Particle and liquid velocity measurements in sediment-laden flows
with a discriminator laser-doppler velocimeter. PhD Dissertation, University of

lowa, Towa City, lowa.

Muste, M. and Patel, V. C. (1997). “Velocity profiles for particles and liquid in
open-channel flow with suspended sediment.” J. Hydr. Engrg., ASCE, 123(9),
742-751.

Nezu, I. and Nakagawa, H. (1993). Turbulence in open-channel flows. IAHR Mono-
graph Series, A.A. Balkema Publishers, Old Post Road, Brookfield, VT, USA.

Nezu, 1., Kadoto, A., and Nakagawa, H. (1997). “Turbulent structure in unsteady
depth-varying open-channel flows.” J. Hydr. Engrg., ASCE, 123(9), 764-773.

Ni, J. and Hui, Y. (1988). “The relation between the velocity distribution and the
suspended concentration distribution.” J. Sediment Research, Beijing, China,

(2), 17-27 (in Chinese).

Nikuradse, J. (1932). Gesetzmaéssigkeiten der turbulenten stromung in glatten rohren.

VDI Forschungscheft No. 356.

Parker, G. and Coleman, N. L. (1986). “Simple model of sediment-laden flows.” J.
Hydr. Engrg., ASCE, 112(5), 356-375.

130



Patel, V. C. and Head, M. R. (1969). “Some observations on skin friction and
velocity profiles in fully developed pipe and channel flows.” J. Fluid Mechanics,
38(1), 181-201.

Roll, H. U. (1965). Physics of the Marine Atmosphere. Academic Press, New York

and London.

Sarma, K. V. N., Lakshminarayana, P., and Rao, N. S. L. (1983). “Velocity distri-
bution in smooth rectangular open channels.”, J. Hydr. Engrg., ASCE, 109(2),
271-289.

Schlichting, H. (1979). Boundary-layer Theory. McGraw-Hill Book Company, New
York.

Spiegel, E. A. and Veronis, G. (1960). “On the Boussinesq approximation for a
compressible fluid.” Astrophysical Journal, 131, 442-447.

Spiegel, M. R. (1993). Complex Variables. McGraw-Hill, Inc., New York.

Umeyama, M. and Gerritsen, F. (1992). “Velocity distribution in uniform sediment-

laden flow.” J. Hydr. Engrg., ASCE, 118(2), 229-245.

van Rijn, L. C. (1984). “Sediment transport, Part II: Suspended load transport.”
J. Hydr. Engrg., ASCE, 110(11), 1613-1641.

Vanoni, V. A. (1946). “Transportation of suspended sediment by running water.”

Trans., ASCE, 111, 67-133.

Vanoni, V. A. (1975). Sedimentation Engineering. ASCE Manual, Washington D.
C.

Vanoni, V. A. and Nomicos, G. N. (1960). “Resistance properties in sediment-laden

streams.” Trans., ASCE, 125, Paper No. 3055, 1140-1175.

Wang, X. and Qian, N. (1989). “Turbulence characteristics of sediment-laden flows.”
J. Hydr. Engrg., ASCE, 115(6), 781-799.

131



White, F. M. (1986). Fluid Mechanics. 2nd ed., McGraw-Hill Book Company, New
York.

White, F. M. (1991). Viscous fluid flow. McGraw-Hill Book Company, New York.

Woo, H. S., Julien, P. Y. and Richardson, E. V. (1988). “Suspension of large con-
centration of sands.” J. Hydr. Engrg., ASCE, 114(8), 888-889.

Yang, Shu-Qing and Lim, Siow-Yong (1997). “Mechanism of energy transportation
and turbulent flow in a 3D channel.” J. Hydr. Engrg., ASCE, 123(8), 684-692.

Zagarola, M. V. (1996). “Mean-flow scaling of turbulent pipe flow.” PhD Disserta-

tion, Princeton University, Princeton, NJ.

Zhou, D. and Ni, J. R. (1995). “Effects of dynamic interaction on sediment-laden
turbulent flows.” J. Geophy. Res., AGU, 100(C1), 981-996.

132



Appendix A

POWER-WAKE LAW IN
TURBULENT PIPE FLOWS

Development of the power-wake law

Similar to the development of the modified log-wake law in Chapter 3, a power-
wake law can be derived based on the four-step similarity analysis method and the

assumption of incomplete similarity.

Dimensional analysis

Considering the velocity gradient in a turbulent shear flow, one has (Barenblatt,

1996, p.269):
uy

8_x3 = f(To,,Oo,.?::g, v, 5) (Al)

in which w; is the velocity in the flow direction x, x3 is the distance from the wall;
To is the wall shear stress; pg is the fluid density; v is the fluid kinematic viscosity;

and ¢ is the boundary layer thickness or the pipe radius.

The above equation can be rewritten as a dimensionless form, i.e.

Uy OT3 v v

B0y, (1 10)
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Intermediate asymptotics

Following Barenblatt (1996, p.271), one assumes that the flow is incomplete sim-
ilarity with respect to the local Reynolds number u,z3/v and lack of self-similarity

with respect to the global Reynolds number u.6/v. According to (3.3), (A.2) may be

w3 O _ <u*x3>aq) (ué) (A.3)

Uy OT3 v v

written as follows:

in which « is an experimental parameter.

The integration of the above equation gives that

2 (2) +a (A4)

Uy

in which C; = (1/a)®(u.6/v); and Cy is usually taken as zero experimentally. This
equation is the so-called power law in the intermediate subregion.

If one writes the above power law in terms of the outer variable & = z3/6, then
one has

— = (¢ (A.5)

in which C, = C;(u.6/v)*.

Wake correction

Similar to the modified log-wake law, the Coles wake function is regarded as a
good approximation of the wake correction function. Then the above power law may
be extended to the wake layer by adding the Coles wake function, i.e.

uy

= L&Y + Qg sin? %ﬁ (A.6)

Boundary correction

The above equation does not satisfy the derivative boundary condition at the axis,
i.e. duy/d§ = 0 is not satisfied at £ = 1. To force it to satisfy the derivative boundary
condition, one must add a linear term aC,(1 —£), i.e.

@ = Oga + QO Sin2 %6 + 0500(1 - 5) <A7)

*
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Considering the relation

U1 max _ CO + QO (AS)

Uy

the above equation may be written as a defect form, i.e.

_u—lma; B Co(1 — £%) + Qg cos? %6 —aC,(1—=¥¢) (A.9)

This equation is referred to as the power-wake law. It is similar to the modified
log-wake law, except the intermediate asymptotics is different. Like the modified

log-wake law, it is a two parameter model since given u; may, C, and €0y must satisfy

(A.8).

Determinations of a and C, in the power-wake law

The least-squares method is also used to find a and C,. The least-squares ap-

proximation is written as

S = Z {HM — C,& — (Hlmax — C’o) sin? %& —aCy,(1=&)

U U

2

—> minimum (A.10)
in which (A.8) has been used; o and C, are solving parameters; and all others are

the same as those in (5.3). The parameters a and C, are solved by setting

oS oS
v 0 and ac.

0 (A.11)

i.e.,

n

Z |:u1i _ Cofia _ (ulmax _ Co) gin2 &
— Lu U 2

* *

—aCy(1 = &) & Ing + (1 - &)

0 (A.12)
i {ZI: — O — <_u—17z:ax — Co) sin? 7T2£i
~aCuf1 - &) & — sn? B+ a1 - )
. (A.13)
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Unlike (5.7) and (5.8), the above two equations are complicated nonlinear equations.

Fortunately, the least-squares function in MATLAB can ease this process.

Test of the power-wake law

The power-wake law is based on the assumption of incomplete similarity, hence
the parameters o and C, certainly vary with Reynolds number Re,. According to
Zagarola (1996), the lower limit of the power law is y™ = 50. A comparison of the
power-wake law with some experimental profiles is shown in FIG. A.1 (dashed line).
An excellent agreement is again obtained for each run. The individual values of «
and C,, computed by the least-squares method, are listed in Table A.1. Following the
suggestion of Barenblatt (1993), a and C, may be series in terms of 1/InRe,. Using
the data of Table A.1, a and C, may be approximated by

3.605 81.5 890.1 2962.3

— ~ T ~ .. A.14
* T IRe. In’Re. ' In°Re. In’Re. (A.14)
and
42,
O = 1.8125InRe, + 14.11 — 239 . (A.15)
In Re,

The above two equations along with experimental data are shown in FIG. A.2a and
FIG. A.2b. Apparently, this analysis shows that the structure of the power-wake law
is also correct, the parameters a and C, vary systematically with Reynolds number
Re..

The comparison of the power-wake law and the modified log-wake law in FIG.
A.1 shows that both the modified log-wake law and the power wake law are excellent

approximations for turbulent flows in pipes.
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Table A.1: The model parameters in the power-wake law
for individual velocity profiles (Velocity profile data source:

Zagarola, 1996)

Reynolds Reynolds Correlation
Number  Number o c, Coeflicient
Run Re (10%) Re, (10%) r
1 3.16 0.85 0.211 20.08 0.9998
2 4.17 1.09 0.213 20.69 0.9998
3 5.67 1.43 0.209 21.40 0.9999
4 7.43 1.93 0.203 22.07 0.9999
5 9.88 2.34 0.196 22.70 0.9999
6 14.58 3.32 0.189 23.66 0.9999
7 18.54 4.12 0.183 24.21 0.9999
8 23.05 5.02 0.177 24.70 0.9999
9 30.95 6.59 0.169 25.25 0.9998
10 40.93 8.49 0.164 25.93 0.9998
11 53.91 10.94 0.157 26.47 0.9997
12 75.18 14.83 0.147 27.09 0.9997
13 102.38 19.68 0.141 27.74 0.9997
14 134.04 25.23 0.134 28.24 0.9998
15 178.75 32.88 0.131 28.86 0.9998
16 234.50 42.16 0.124 29.40 0.9999
17 309.81 54.65 0.120 29.89 0.9999
18 442.03 76.10 0.117 30.62 0.9998

19 607.27 102.19 0.113 31.28 0.9999
20 771.47 127.32 0.110 31.83 0.9999

21 1024.90 165.56  0.108 32.49 0.9999
22 1359.80 216.04 0.106 33.01 0.9999
23 1819.60 283.32 0.100 33.53 1.0000
24 2397.70 367.00 0.096 34.00 1.0000
25 2992.70 452.40 0.096 34.48 0.9999

26 3525.90 528.57 0.094 34.73 0.9999
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FIG. A.1: Comparison among the power-wake law, the modified log-wake law and

Zagarola’s superpipe experimental data (y™ > 50)
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FIG. A.2: The variations of the model parameters with Reynolds number: (a) «

versus Re,, (b) C, versus Re,
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Appendix B
MATLAB PROGRAMS

Program for solving x and ) in the modified log-

wake law

TooToTolo o oo Toto Tolo oo o fots fo o oot ot fo o fo o oo To oo fo o oo To o to fo o Fodo Fo oo Foto Voo Foito To foto Foto o ot Yoo fodo o foth o
% MATLAB PROGRAM FOR SOLVING THE VON KARMAN CONSTANT kappa AND

% THE WAKE STRENGTH COEFFICIENT W_O

A

% GIVEN:

% u_lmax: MAXIMUM VELOCITY;

% u_*: SHEAR VELOCITY; and

% (xi_i, u_1i): SAMPLE POINTS.

A

% FIND: kappa AND Omega

%

% Written by Junke Guo, Mar. 20, 1997

TotoTo o ToTo To o To Tt oo o Toto Todo Fo o o oo Joto Fo o fo o oo oo o Toa Foto fo o oo o Fo a Foto foto oo o Fo o o o foto oo oo oo ta Fo o Fo o o

% Replace the following question marks with right numbers
ulmax = ?7; % maximum velocity

ustar = ?7; % shear velocity

x = [?]; % normalized distance by flow depth, x = xi

ul = [7]; % sampling velocity

% Define the velocity defect phi
phi = (ulmax - ul)./ustar;

% Plot sample data
semilogx(x,phi,’+’), hold on

% Find kappa, Omega and correlation coefficient r
p = curvefit(x,phi,’[-log(x)-(1-x) cos(pi./2.*x)."2]’,[1 1 0 ’+’]); %Function
kappa = 1./p(1); Omega = p(2); r = p(3); % Correlation coefficient

% Plot fitting equation
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x = logspace(log10(0.005),0,100);

y = p(1) . *(-log(x)-(1-x)) + p(2).*cos(pi./2.*x).72;

semilogx(x,y,’r’), hold off

legend(’Measured data’,’Modified log-wake law’)

sxlabel(’\xi = x_3/R’)

sylabel (’\frac{u{\left{6. 7 \up{5}\-}_{1max} \- u{\left{6.7F\up{6I\-}_1}{u_x3}’)

%XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

function pr=curvefit(x,y,arg3,options)

ToToTototo oo ToToto o o oo To o Too 1o o o oo ToTo to o o o ToTo o o o o o o To o 1o o oo o To To o o oo o T To T 1o oo o o Jo o 2o o o o
% CURVEFIT Curve fitting and plotting routine

% pr = [parameters_fitted; corrcoef].

)

% CURVEFIT(X,Y) plots the points specified by the vectors

A X and Y using the symbol ’*’, and simultaneously plots a

% straight line that represents the best linear fit to

% the data.

h

% CURVEFIT(X,Y,N) for integer N fits an Nth order polynomial

A to the data.

h

% CURVEFIT(X,Y,’ [F1(x) F2(x) ...]’) fits Y to the closest

% linear combinations of the vectors Fi1(x), F2(x), etc

% This is useful for fitting arbitrary functions of X to Y.

% (Te. curvefit(X,Y,’ [exp(X) cos(2xX)]?)

h

% P=CURVEFIT(X,Y,...) returns the estimated fitting

% coefficients in the vector P. In the polynomial fitting case,
% the P coefficients are ordered highest order first (slope,

% then y-intercept in the 1st order case).

b

% CURVEFIT(X,Y,N,OPTIONS) allow the caller to specify certain
% options. If OPTIONS(1)=1, then no plot is generated. This
% useful if the caller is only interested in the returned

% values. If OPTIONS(2)=1, then the X-axis is plotted on

% a log scale. If OPTIONS(3)=1, then the Y-axis is plotted on
A a log scale. If OPTIONS(4) is specified, it’s value is

% assumed to be a character representing the symbol to use

% to plot the original data, which has a default value of ’*’.
% This element can be set to the character ’i’ for invisible if
A only the best-fit curve is desired in the plot.

h

% Written by Junke Guo, Dec. 29, 1996

Tt o616 1o 167610 To oo oto o o o o o o o o ToTo o To o o o o o o oo oo ToToTo o o o o o oo oo oo To oo oo o o oo oo oo o oo

if nargin<2, error(’too few arguements’); end

f=10;

if nargin<4,

options=[0 0 0 ’*’];

else

options=options(:)’; %Forces options to be a row vector

% This zeros all non-existent terms.
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if length(options)<4, options(4)=’*’; end
end

% Regulate input data to columns

x=x0); y=y0);

if nargin<3,
N=1; % Fit a straight line
else
% if arg3 is a scalar, set N to it.
[r,c]l=size(arg3);
if max([r,c])==1, N=arg3;
else
f=eval (arg3);
end
end

if isempty(f),

P = polyfit(x,y,N);
yfitted = polyval(P,x);
else

% Determine the size of f
[r c] = size(f);

N = c;

% Determine the matrix of linear system equations

for j=1:N
for k=1:N, a = £(:,j).*xf(:,k); A(j,k) = sum(a); end
b = £(:,j).*y; B(j) = sum(b);

end

B = B(:);

% Determine the fitted coefficients
P = A\B;

% Determine the fitted values of y
yfitted = £*P;
end

% Calculate correlation coefficient
R = corrcoef(y,yfitted); R = R(1,2);

if options(1)~=1, % If we are plotting...

% Determine which plot command to use.
if options(2)==0,

if options(3)==0,

plotcmd = ’plot’;

else

plotcmd = ’semilogy’;
end
else

if options(3)==0,

plotcmd = ’semilogx’;
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else

plotcmd = ’loglog’;
end
end

% Plot data
eval ([plotcmd ’(x,y,options(4))’]); hold on

% Plot fitted equation

x = linspace(min(x) ,max(x),100); x=x(:);
if isempty(f)

yl = polyval(P,x);

else
f = eval(arg3);
yl = £*P;
end
plot(x,y1); hold off
end

if isempty(f)

pr = [P R];
else

pr = [P’ RI;
end

Program for solving k, U, and X in the log-linear

law

Tl lo 16161676 ToTo oo Toto o o o o oo To o ToTo o To o o i o o o oo To oo To oo oo o o o oo oo oo oo Jo Jo o o
% Program for solving kappa or u_star, u_lmax and epsilon_0

% in the log-linear law

%

% Given:

% kappa: the vonKarman constant; and

% (xi_i, u_1i): sample data.

A

% Find:

% u_star: shear velocity;

% u_lmax: water surface velocity; and

% lambda: dimensionless eddy viscosity at the water surface.

b

% Written by Junke Guo, Mar. 23, 1997

oot TotoToTo o To o To o oo o o o o o o o o 1o o o o o o o o oo foto foTo o To o To o To o oo o o o o o o o o o o o o o oo
% Repalce the following question marks with right values

x = [?]; %x = xi; normalized distance from the bed

u = [?]; Ymeasured velocity with dimension.

% Find u_star, u_lmax and epsilon_O
p = curvefit(x,u,’[(log(x)+1-x) -(1-x) ones(size(x))]’,[1 1 0 ’+’]);
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k = 0.406;
ustar = 0.406.*p(1);
lambda = p(2)./ustar./(max(u)./ustar)."2;

x1 =0.01:0.01:1;
yl = -1./k.*(log(x1)+1-x1) + p(2)./ustar.*(1-x1);
figure(1)

semilogy(u./ustar,x,’o’ ,max(u) ./ustar-y1,x1)
sxlabel (Cu{\left{7H\up{7}\-}_1/u_*’)
sylabel (’\down{-30}\frac{x_3}{\delta}’, ’Rot’,0)

xmin = floor (min(max(u)./ustar-y1)-0.5);
xmax = ceil(max(max(u)./ustar-y1)+0.5);
axis([xmin xmax 0.004 4])

leg = legend(’Data of Kironoto (1993)’,’Log-linear law’);
set(leg,’position’, [0.15 0.75 0.4 0.15])

t3 = xmin + 0.2.*(xmax - xmin);
stext(t3,0.3,run)

t4 = xmin + 0.9.*(xmax - xmin);
stext (t4,0.008,’(a)’)

eval ([’printsto ’,run,’a’])

figure(2)
plot(u./ustar,x,’o’,max(u)./ustar-y1,x1)
axis([xmin xmax 0 1.2])

sxlabel (Cuf{\left{7 \up{7}\-}_1/u_*’)

sylabel (’\down{0}\frac{x_3}{\delta}’,’Rot’,0)

legend(’Data of Kiromnoto (1993)’,’Log-linear law’)
set(leg,’position’, [0.15 0.75 0.4 0.15])

t0 = xmin + 0.225.*(xmax — xmin);
stext(t0,0.85, [run,’ (k_s= 4.8 mm)’])

t1l = xmin + 0.1.*(xmax - xmin);

stext(t1,0.7,[’h = ’ ,num2str(h*100),’ cm’])
stext(t1,0.6,[’a/h > num2str(wh)]1)

stext(t1,0.5, [Pu_x* >, num2str (ustar*100),’ cm/s’])
stext(t1,0.4, [’u\bar_{1max}= ’ ,num2str(max(u)),’ m/s’])

t2 = xmin + 0.43.*(xmax - xmin);

stext (£2,0.7, [’ \kappa = ’,num2str(k)])
stext(t2,0.6,[’\lambda = ’,num2str(lambda)l])
stext(£2,0.5,[’r = 7 ,num2str(p(3))]1)

stext(t4,0.14,’ (b))

eval ([’printsto ’,run,’b’])
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Appendix C

ANALYSIS OF WANG-QIAN’S
EXPERIMENTAL DATA

Introduction of the experiments

Xing-Kui Wang, under the guidance of Dr. Ning Qian, did a series of experiments
with both plastic particles and natural sediments in the Sedimentation Laboratory,
Tsinghua University, Beijing, China (Wang and Qian, 1989). The experiments were
conducted in a recirculating, tilting flume 20 m long, 30 cm wide, and 40 cm high. The
velocity and concentration profiles were taken at the central vertical of the section
12.3 m downstream from the entrance. The channel bed was lined with concrete
plate and analysis of time-average velocity data connected with these data indicated
a hydraulic smooth surface. The bed slope S = 0.01.

During the experiment, a uniform flow was maintained. As the bases of the study,
6 clear water and pure salt water experiments were measured, i.e., CW1, CW2, CW3,
CW4, SW1, and SW2. To study the effects of molecular viscosity, several neutral
particle-laden velocity profiles (salt water + plastic particles) were measured, NF1,
NF2, NF3, NF4, NF5, NM1, NM2, NM3, NM4, NM5, NM6, NM7, NC1, NC2, NC3,
NC4, NC5, NC6, and NC7. To study the effects of density gradient effects, several
density experiments (water + plastic particles, G = 1.05; water + natural sediments,
G = 2.64) were measured, i.e., SF1, SF2, SF3, SF4, SF5, SF6, SM1, SM2, SM3, SM4,
SMb5, SM6, SM7, SC1, SC2, SC3, SC4, SCh, SC6, SC7, SQ1, SQ2, and SQ3.

The flow depth A is shown in the following tables and plots. The sediment sizes
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are as follows:

e NF1-3: Salt water + fine plastic particles (d,, = 0.266 mm, d5o = 0.268 mm)
e NMI1-4: Salt water + middle plastic particles (d,, = 0.96 mm, dso = 0.96 mm)
e NCI1-4: Salt water + coarse plastic particles (d,, = 1.42 mm, d5y = 1.42 mm)
e SF1-6: Clear water + fine plastic particles (d,, = 0.266 mm, d5y = 0.268 mm)

e SM1-7: Clear water + middle plastic particles (d,, = 0.96 mm, dsy = 0.96

mm)
e SC1-7: Clear water + coarse plastic particles (d,, = 1.42 mm, d5o = 1.42 mm)

e SQ1-3: Clear water + Qin-Huang-Dao beach sands (d,, = 0.15 mm, d5y =
0.137 mm)

Measurements of velocity profile and concentration
profile data (Wang and Qian, 1989)

The velocity profile data of clear water and salt water flows are listed in Table C.1.
The neutral particle experiment data are listed in Table C.2. The density velocity
profile data are tabulated in Table C.3. The concentration profile data of the density

flows are shown in Table C.4.

Velocity profile analysis

All velocity profile analyses are attached after the tables. Run numbers are shown
in the figures. In each figure, (a) is a semilog plot where the velocity profile near the
bed is emphasized; and (b) is a rectangular plot where the velocity profile near the

water surface is emphasized.
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Appendix D

ANALYSIS OF COLEMAN’S
EXPERIMENTAL DATA

Coleman (1986) did experiments in a smooth flume which is 356 mm wide and
15 m long. During the experiments, the energy slope S was kept to be 0.002 except
the last three runs where S = 0.0022. The flow depths are about 171 cm. Runs
1, 21, and 32 are clear water flows. Run2 2-20 are with fine sands of ds = 0.105
mm; Runs 22-31 are with middle sands of dy = 0.21 mm; and Runs 33-40 are with
coarse sands of dy = 0.42 mm. The temperatures are between 19.5 and 25.3°C.
Detailed experimental information can be found in literature (Coleman, 1986). The
measurements of velocity and concentration profiles are shown in Table D.1. All

velocity profile analyses are attached after the table.
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Appendix E
ANALYSIS OF KIRONOTO’S

EXPERIMENTAL DATA

Kironoto (1993), under the guidance of Prof. Walter Graf at Swiss Federal In-
stitute of Technology, Lausanne, Switzerland, did experiments on both uniform and
non-uniform flows. Only the uniform flow experimental data are cited here. The
experimental data include both mean velocity profiles and turbulence intensity dis-

tribution, see next page. All velocity profile analyses are attached after the tables.
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RUN : UGA3 - Flow parmmeters
L <

ya P Z
” - )
Sew 000025 [De0286m U w 0.50f mve | U« O.572. V8 |uus 0.097 mve
Bra= .00 N= 0.04 Re 873 10" [Fre020 W0 - 2,71
$=0X224m fom 0.0 m S0 m 4 .15 Ben=1/30
4
RUN : UGA3 - Velo:ity distribution
yx 1 u ik w0 s {Usrulle, e witse
{m}) {mig} {-} {-) £} {-) {-} {-)
a.ao g.282 0038 0.028 0.352 5852 0.45%9 7.111
1.80 0.200 0.04% 0.03% Q.439 7.542 0.50T T.88S
1.30 2.317 0.058 0.048 1.570 r.220 0.55% B.800
1.50 0.324 0.06T 0.053 9.457 7.097 0.568 A.778
1.00 ©.341 008t 0084 O0.787 £.573 0.508 9.234
2.00 0.357 0.080 0.07Y 0874 1138 0.824 9.687
2.30 0.362 0.103 0.041 1.004 3.952 ¢.533 9.818
2.50 0.389 0.112 0088 1.091 5.753 0.645 0.939
200 0.388 0.125 0.099 1.222 5.198 0.57% 10,521
3.00 O0.388 O0.134 0108 1.309 $.177 0878 10.310
3.30 0.397 Q.14 0118 1.429 4.095 0.894 10.756
3.0 Q.408 0.170 0.t34 1.857 4.549 0.713  11.045
4.40 0.420 0.197 0.155 1,917 4174 0,734 11,277
4.90 0,435 0.219 0172 2,135 3.674 0.785 11,151
5.90 0.457 0,284 0.208 2.570 1.083 0.800 12.197
7.40 0485 0.330 0.280 3.222 2.350 C.847 13110
B.90 0.504 0,397 0.3'7  3.874 1.433 0.B3Y  13.551
10.40 0.5186 0.484 0.38. £.526 1.51% 0.902 13.975
14,90 0.529 0.5317 D418  5.179 t. 184 0,924 14,324
13,40 0.541 O0.598 0,471 5830 0.831 D948 14.858
14,90 0.550 9.8665 TU.824 5.483 0.591 0.962 14.902
16,40 055§ 0.732 0.578 7.1 0.434 4.97T2 15,080
15.40 0.553 0.82% 0.847 3.004 9.291 0.985 15264
20.40 0.572 0.910 0.717 ABT4 0.001 0.999 15,497
22.40 0.572 0.999 O0.7TAT 9.743 9.c00 1.000 15,402
2440 Q.587 1.08% 04857 10.833 - .89t 15,157
26.90 0.538 1.200 0.9485 11 700 . 8.975 15114

RUN : UGA3 - Turbulence distribution

Kex0.0230

yx 102y dufdy u s Uik ettt fxt0f vyEa. s
{m) {~} {178} (m/a) (m¥sdy (-} (mirs) (B {~) {~)
0.8¢  0.036 p ags 9,086 000131 1.779 1.2%54 0348 O0.015 0.015
1.30 0.058 7.531 0.071 0.00128 1.936 1.707 OG.478 0.020 0.02t
1.8¢  0.080 $.288 0.07T 00125 1.934 2373 G.6¥0 0.028 0.030
2.36  6.103 3767 0.070 0.00122 1.A85 3,250 0.928 0,039  0.04%
280 G125 2.958 D087 0.00119 1.822 4023 1.166 0.048 0082
330 0147 2.739  0.070 0.00118 1,892 4,248 T.245  0.06T G088
3.80 0.170 2.862 0.082 000713 1.574 4.422 1.314 0.053 0.089
440 0,996 2380 0.057 D0.00109 1.552 4848 1,403 0.058 0.083
490 0219 2,200 (.082 0.00106 1,882 4848 1,484 0058 (.088
£90 0.363 1302 0.086 0.00t00 1.520 5285 1.687 0.081 Q.074
T.40  0.330 1.512 0.051 O0.0009t 1,430 6.043 1.99% 0.073 0.089
8.90 0397 1.190 0.044 O0.00082 1183 6917 2410 C.083  0.107
10.40  0.484 (.937 G.045 000073 1.220 7.401 2.88% 0.094 C.139
11.90 0.531 0.751 0.038 000084 1.037 &£.517 1388 ..167 0.1%0
12.46 N385 0.614 0.036 0.00055 0.97% 95328 1.813 0.167 0.170
1490 0.865 0.502 0.030 0.00048 0816 9.10t 4.2%58 0.108 0.190
16,40 .73 (0.4%7 0.032 0.00006 0859 N.7&S 4.535 0.105 0.204
15,40  0.827 ¢.345 4.029 0.00024 0,783 7.081 4.525 0.085  0.202
20.40 G.9%1 0320 0.023 000012 0.681 1ROT  3.440 0048 D.154
22.40  1.000 . 9.023 0.00000 0,833 - - - -
24.40  1.089 . 0.027 . 0.722 . - - .
Uy 15 culudatod a8, Ot = W 2(1.y/8)
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RUN : UGAS - Flow parameters

S = 000028 D=2 m Ue 0502 mip [LUige 0.5/ 0w e 0040 ms
Bre 2.00 Mw -0.0% Re w572 10" |[Fr = 0.20 o0 - 214
ffm02tam (650034 m |8s002m |H 158 Ba=-100

RUN : UGAS - Velocity distribution

yx 102 u yiE y/D kg {Ue-ujiu. wille ufu.

{m) {m/s) {-) {~} [~} l-) {-} {-]

0.3¢ 0,239 0,029, 0.029 0,359 2.315 0,418  6.101

1,00 0,271 0.048. 0.036 0. 448 7.52% 0.473 B.90)

1.30  0.304 0.082 0.047 0,578 5.691 0.519  7.749

1.50  A.316  0.071 0,084 0.882 £.377 0.553  2.087

1.80  ©£.341 0.085 0.084 0.793 5.749 0587 6.704

2.00 0.340 0.09%5 0.071 0.880 5.554 0.61C  8.902 -

2.30 0.381 0.109 0082 1.411 5.263 .61  9.208 F_;-«O-OJ&,’O

2.50 0,373 0.113 0.08¢ 1.098 £.958 0.852 9.507

2.80  0.385 0.132 0.099 1.228 4.849 0.673 9.52%

3.00 0.39¢ 0.141 Q108 1315 - 4,525 0.082 0.947

3,30 0,391 0,156 0117  1.448 4.498 0.584 9.974

3.80 0.411  0.17% 0.135 1.883 3.997 0.779 10,483

440 0.426 0.207 0,156 1.92¢ 3.815 6.745 10.872

490 0.433  0.230 0.173  Z.141 3.453 £.757 11,038

5.90  0.455 0.277 0.208 2.57¢ 2.838 6706 11.6%4

7.40  0.481 0,347 G261 3,228 2.249 0.8B40 12.259

500 0.496 0.477 0.314  3.880 1.955 ¢.668 12.660

10.40 0.514 0.487 0,167 4.533 1.404 0.099 13.1%8

11.9¢ 0,529 0.557 0.420 5.18% 1.042 0.924  12.488

13.40 0.542 0.827 0.472 5437 0.714 C.947 13812

14.90 D.549 G.8697 Q525 €. 489 0.523 0.967 14.012

16.40 0,536 0.767 u.57@ 7141 0.357 0.972 14181

V7.90  0.565 0.837 0.831 7.793 0.130 0.908 14,411

19.40  0.568 0.907 0,683 9.445 0.055 0.993 14.488

21.40 0.570 1,000 D.754 9,315 0.000 1.000 14,543

23.40 0.563 1093 0.824 10.1A5 . 0.992 14,479

2%.40 0,563 1.187 0.894 11.054 - 0.984 14.351

26.90 0.560 1,257 0.947 11.707 . 0.97¢ 14.28%

RUN : UGAS - Turbulence distribution

yx 102y duldy v AU Ve yxat $x10? vesu. LS
{m) (-} {v/s) (mis) (m¥s?) (-}  (m¥s)  (m) £-} (-)
0.80 0.03% $1.740 0.074 0.00152 1.87% 1.299 0.333 0.015 0,016
1.30° 0.062 8.917 0.077 0.00149 1.957 1.58F 0.433 0.020 0.020
1.8¢ 0.085 &5.5BE <O.085 0.00145 2174 2,202 0§72 0.026 0.027
230 0.109 4,752 0.062 0.00141 2085 2.975 0.791 0.035 0,037
Z.80 0.132 3.490 0071 O0.00138 1.820 4.037 1.088 0048 0.051
330 0.155 2.581 0,071 0.00134 1.788 5.331 1.429 0.062 0.067
3.80 0.17% 2207 O0.087 0.00130 1,702 5902 1.835 0.0T0  0.076
4.40 0.207 2080 0067 0.00128 1.700 6.049 1.705 0.072 ©.080
490 0.23C 1.371 0.065 0.00122 1.656 &.19 1.773 D.074 0.083
5.9¢ 0.277 1771 0.058 0.CO115  1.488 8£.477 1912 0.07Y  0.089
7.40 0.347  1.497 0.083 0.00104 1,807 6.92% 2.150 0.082 0100
B.90 0.417 1253 0.05% J.00003 1.395 T.383  2.427 0.088 O0.113
$0.40 0.487 1040 0,050 O.0008% 1,288 7.028 2.743 0.093 0.128
$1.90  0.557 0.B59 0.043 000070 1.102 81858 3.087 0.097 0.144
12.40 0.627 0.70t 0.039 0.00059 D.998 A.448  3.471 0,10t  0.182
14.90 0.697 0.558 0036 000048 0.918 8.827 3.93t 0.103  O0.183
16.40 0.767 0.437 0031 0.00037 O.788 B8.536 4.483 0,102 c©.204
17,96 0.837 0.317 0.030 000026 0.78e K17V 5,077 0.007 0,237
19.40 0,907 0.224 0,027 0.00015 0.892 &.808 5431 Q079  0.254
.21.4G 1000 0.120 0.028 0.60000C 0.7%4 0.000 0.000 ©0.000 0,000
23.40 1.093 . 0.027 - 0.997 . . . .
25.40  1.187 - 0.031 . 0.792 - . . .

e is ealeulared wa U, = 0 3 (1.p7E)
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RUN : UGB3 - Flow parameters

S50 a 000050 {Dw 0200 m U = 0.405 mvg | Licw 0465 nve fu.e 0.032 mve
’r-. llm M e v 47090 JE =« 021
C=0Z0m |f=00Mm P QDI [H &1.53 foe 100

RUN : UGB3 - Velocity distribution

200

yx 10F u Y& ¥D yikn {Ugru)fu. whic Wik

{m) (min) (=) (- {-3 (=) £ (=}

0.95 0.290 0.041% 2.033 Q.413 8001 0.452 &.500

1,30 0.244 0.057 0.048 0O.5T0 5.852 0.524 7.638

1.80 0.28T 0979 0082 J.7m7 8.2 0.574 0,389

.30 0,288 0.101  O.0mD  1.004 5.581 0519 $.029

- 2.80 2,308 0.123 0.098 1.222 4,908 0.450 $5.602

3.30 8.32%14 0.144 R115 1 ean 4.73% 0.67% 9,258

. 9.8 0.8 0.188 0.133 1,057 4.835 0.502 9.954

4,40 0327 0.192 0.154 1017 4.228 0.704 10.264 :

4.90 0.34% 0.214 Q171 2,735 4.843% 0.750 10,941 -0.02

.40 0.354 0.238 d.18% 1252 3.505 0.760 11,084 - * 3 o

590 0.357 0.288 0308 2870 3.358 0.768 11.202

T.40 0.382 0.32] 0.2580 3222 2.810 oc.h21 11,880

5.90 0.392 0.389 0310 3474 .30 Q.p42 12,288

10.40 G409 O0.454 0.3863 4.528 1.782 0.879 12.828

11,40 0420 0.498 0.398 4.951 1,438 0,902 13,180

12.90 0.4321 O0.%84 0450 5.813 1.09% 0.925 13.497

14.90 0.444 0.651  0.520 6.483 0.584 0.9%3 13,901

16.90 0.457 0.738 0.5B9 7.352 0.250 0963 14,340

15.90 0.485 0.825 O0.850 §.227 D.008 1.000 14.583

20.90 0,465 0.913 3,779  9.0%1 2011 c.0009 14.579

22.90 O.485F 1.000  0.79% 9.561 9.000 1,000 14.580

24,40 OC.43%5 1,087 G868 10,830 . 0.977 14,256

25.90 0.453 1131 0.903 11.285 . 0.974 14.209

26.90 0.45C¢ 1175 0,938 11.700 - 0,967 14.11%

27.90 Q.449 1.218 0,972 12,138 . 2.985 1401

20.40 0,448 1.240 0.990 12.352 - 0.958 13.970

RUN : UGB3 - Turbuience distributions

yx 102 yE du/dy w v Ry UKL PR TR 5 R 7 TPV v 10¢ Lx 102 o, Ln
{m) (=) {179} {mis) {mie) {milad) {-) {-1 {-) [~} fm2te) {m) {-) [=-)
.95 £.047 60857 0.085 0.034 Q.00090 2.034  1.08% 0.888 0.413 1.488 0.4048 0.018 8.022
1.30 Q.087 5,127 0.065 0.035 0.0009% 2.029 1.086 c.975 Q. 442 1,835 0.814 0.024 0.027
1.8¢ 0.079 4208 0.063 0.038 C.00058 1.965 1,113 0.945 0.432 2.237 0721 0.027 2.0
230 0.101 3.573 0.083 0.025 000098 1.98Y 1107 0962 0428 2739 0875 0043 0.028
. 2.8% 2123 2,030 0.082 0.037 0.00109 1,839 1,157 1.072 0.478 3.897 1.11% 0,045 0.049
T 3.20 0,144 2,430 0.082 0.035 0.00101 1.934 1,108 0.992 0.483 4,153 1,207 0.08% 0.058T
200 0188 2013 . 0.058 0,035 0.00087 1.803 1087 0855 0.430 4324 1468 O0.053  0.084
440 0,192 1.847 0080 0032 0.00087 1.392 1017 0.453 0.444  8.271 L.7ES . 0.044  0.078
490 0214 1,456 0038 0.035 0.00098 1.827 1.08§ 0.958 0.485 5.69T 2.14% 0.002 0,094
5.40° D238 1.367 0.0%9 0.034 Q.00085 1.262 1,058 0,844 D.430 8.285 2.144 0.077 0.054
5.50 0.25% 1.323 0.057 0.032 0.00084 1.790 0.992 2.924 0.467 5.329 2.18% 9.07T7 0.09%
7.40  0.321 1.200 0.043 0.029 O0.00048 1119 0001 04890 0339 3973 1.820 0.048 0.879
.90 .0.380 T.080 D.048 0.030 0.0007¢ 1.490 0.940 00893 0.495 6.525 Z.458  0.080  0.107
10.40 0,434 0.980 0.040 0.028 0.00045 1,289 0.863 0.438 0400 4.595 2178 0,058 9.09%
.40 0.488 0.900 0,042 0028 0.00053 1.302 0.831 O.510 0452 S.859 2.857 0.072 -0.111
¥2.80 Q0.584 Q. 792 0.03% 0.02% 000033 <210 0770 Q.37 0,400 4.787 2.458 0.058 0.1087
14,90 4851 90.530 0.03¢ Q025 000038 .21 0779 0.378 0.407% 6.130 3.114 0.073 Q.138
18,90 0.738 0447 0.034 0024 0.00000 1.089 O0.751 0.285% 0.072 5.80% 3.902 0.033 2170
15.90 0.825 0.243 0.02% 3,021 0Q.00017 0909 Q661 0170 0,282 7.103 S.408 0.007  0.238
20.90. ©C.M12 - 0.025 0.02¢ O0.00008 O.TYT 0635 0.08t 0.172 - - - .
22.90 1.000 . 0.025 0.018 0.00000 O,788 0558 4.000  0.000 - - - .
24.50 L.08T7 . 0.027 o0.017 .0.00007 0.044 0.527 .0.020 . . . - .
5.80 113 - 0.02% Q0015 200000 O9.7T917  C.487 4.000 - - - - .
26.90 1178 - 0.027 0.013 000000 0,837 0.427 0.000 - - - - -
27.30 1.21% - 0.026 9.012 000007 0.832 0.37 .01 - . . - .
28.40 1.240 . g.028 0.010 0.00002 OQ.A7a 0.32% B.01% . - - . -
-apis messured




RUN : UGBS - flow parameters

rs.. 0.00050 |Dw= 0290 m U = 0.398 nve. | Ugw 0.453 mvp |vem 0.024 rvs
Br= 7.50 n= -0.08 Ae = 463 10° |Fr = 0.23 D = 2.07
§=0229m |8.= 0.042 ™ 0=00Z7Tm |H «1.58. fa=-1.00

RUN : UGBS - Velocity distribution

yx 108 u yi8 yD yks {Uesu)/u. wUe ufu. |< _
(m)  Imis) (=) (-] (-) (-) (<) t-) x -0.0230
0.70 0.173 0.n31 0.024 0.304 B8.405 0.37% 5.043
1.30 0.207 0Q.057 0.045 0.565 7.427 0.448 8.020
1.80 0.241 0.079 0.082 0.78B3 6.427 0.522 7.020
2.30 0.270 0.100 0.080 1.000 5.80% 0.583 7.845
2.80 0.295 0.122 0.087 1.217 4.862 0.638 B.585
3.30 0.303 0.144 0,114 1,435 4.854 0.654 8.794
.80 0.316 0.1886 0.131 1.652 4.273 0.682 9.175
4.40 9.311 0.192 0.152 1.91] 3.824 0.718 9.624¢
4.9 0.340 0.274 0.170 2.110 3.570 0.735 9.877
5.40 0.340 0.236 0.187 2.348 3.565 0.735 9.883
5.90 0.351 0.258 0.204 2.583 3.255 0,758 10.193
7.40 0.370 0.323 0.256 a7 2.681 0.801 10.787
8.90 0.383 0.389 0.308 3.87Q 2.320 0.827 11.128
10.40 0.390 D.454 0.380 4.522 2.119 0.842 11.329
11.40 0.398 (.498 0.394 4,957 1.885 0.880 11.563
12.90 0.409 0.563 0.448 5.609 1.549 0.885 11.899
14.90 0.429 0.651 0.516 6§.478 0.982 0.927 12.465
16.90 0.443 0.738 0.588% 7.Ja8 0.573 0.957 12.874
18.90 0.480 0.82% 0.654 B.217 0.25% 0.974 13.093
20.90 0.458 0.913 0.723 9.087 Q.140 0,990 13.308
22.90 0.463 1.000 0.792 9.957 0.000 1.000 13,448
24.90 0.461 1.087 0.862 10.826 . 0.998B 13.415
26.90 D.a63 1,175 0,931 11,696 - 1.000 13.459
RUN : UGBS - Turbulence distribution
yx 102 y/& du/dy v ~upy Ulue  wextf [x102  vy/bu. s
(m) (-) (178) (mis) (m2/s2) {-} {m/s) (m) (-) (-)
0.70 0.031 8.329 0.054 0.00118 1,586 1.423 0.413 0.017 0.018
1.30 0.057 6.980 0.084 0.00131 1.857 1.880 Q.519 0.023 0.023
1.80 0.079 5.7869 0.062 0.00128 1.795 2.191 0.616 0.027 0.027
2.390 0.100 4,694 0.063 0.00129 1.83% 2.742 0.764 0.033 0.033
2.80 0.122 3.758 0.089 0.00144 1.703 3.831 1.010 0.047 0.044
3.30 0.144 2,959 0.058 0.00133 1.686 4.502 1.233 0.055 0.054
3.80 0.168 2.297 0.056 0.00114 1.641 4.973 1.471 0.081 0.064
4.40 0.182 1.685 0.053 0.00114 1.548 6.738 2.004 0.083 0.087
4,90 0,214 1,326 0.056 0.00130 1.635 9.796 2.718 0.120 0.119
5.40 0.236 1.105 0.056 0.00113 1.825 10.247 3.045 0.125 0.133
5.90 0.258 1.022 0.080 0.00111 1.746 10.821 3.254 Q.132 0.143
7.40 0.323 0.978 0.052 0.00062 1.517 6.354 2.549 0.078 0.111
8.90 0.389 0.928 0.050 0.00092 1.443 9.965 31277 0.122 0.143
10.40 0.454 0.873 0.049 0.00058 1.424 6.644 2.759 0.081 0.120
11,40 0.498 0.833 0.045 0.00069 1.305 4.301 3.157 0.101 0.138
12.90 0.563 0.789 0.043 0.00050 1.252 8.447 2.895 0.079 e.728
14,800 0.851 0.875 0.043 0.00050. 1.252 7.475 3.328 0.091 0,148
16.90 0.738 0.570 0.038 0.00040 1.101 7.006 3.508 0.086 0.153
18.90 0.825 9.458 0.036 0.00023 1.058 4.978 3.304 Q.061 Q.144
20.90 0.913 0332 0.032 0.00011 0.938 3.27a 3.142 0.040 0.137
22.90 1.000 0.198 0.028 0.00Q00Q Q.815 0.000 2.000 ga.000 Q.000
24.90 1,087 - 0.027 +0.00003 0.797 - - - -
' 26.9¢ 1.175 - 0.021 90.00000 0.683 - - - .
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RUN : UPA3 - Flow parnmeters

Ses 00010 [D=ot1Sm |Ue04sdme |Use 0.576 e |v.m 0.034 e
Bre 0.75 Me 008 Res22 10 |Fre 048 wh = 5.2
18 m0115m |8-200t9m |08«001Am H =148 fa=-1.00
RUN : UPA3 - Velocity distribution
yx 10t u ye wD vk {Ue-u)lu. wle Wi o= J
) {m) (m/s) {-) {-) (=) {-) (-) {-) - !
. = <
0.2 0.243 0.022 0.022 0.521 $.834 0.422 7.187 ,(d:‘ Jf 799 A
0.45 0.284 0.039 0.039 0.938 6.628 0.493 0.393
0.65 0.328 0.057 0.087 1.154 7.331 0.589 9.691
0.85 0.341 0.074 0074 1.771 8.952 0.592 10.069
1.05 0.360 0.081 0.09% 2.1B8 0.373 0.028 10.648
1.25 ©.380 0.708 0.109 2.604 5.80% 0.659 11.217
1.5  0.399 0.135 0.138  3.229 3.218 0.683 11.803
1.75  0.409 0.152 0.152 23.846 4.950 0.708 12.0T%
2.05 0.419 0.17B 0178 4271 4.633 0.728 1Z.388
2.25 0.422 0.196 0.196 4,688 4.559 0.732 12.482
2.55 0.436 0.222 0222 5313 4.135 0.757 12.886
3.05 0.459 0.265 0285 B5.1%4 1.454 0.797 13.587
3.5 0.470 0.309 0309 7.398 3144 0.815 13.877
4.05 0.478 0.352 0.352 8.438 2.89 0.830 14,131
5.05 0,484 0,439 0,439 10.521 2.432 0.857 14.590
6.05 0.510 0.526 0.528 12.804 1.953 0.885 15.069
7.05 2.532 0.613 0617 14.888 1.308 0.923 15.715
8.05 0.537 0.700 0700 18.771 1.188 0.932 15.856
9.08 0.554 0.787 0.787 1B.834 0.644 0.962 16.278
10.05 0.584 0.874 0874 20.939 0.370 0.978 18.8%%
10.§6 0.570 0.917 0917 21979 0.175 0.990 15.846
11.50 0.5768 1.000 1.000 231958 0.000 1.000 17.021
RUN : UPA3 - Turbulence distributions
yx 102y dwdy v v Sy wue YU LG SBRey wx et (x 102 vesu. {a
{m) {-) {1/9) (mis) (m/s} ([m3/s?) (-] (=) (=) (-} (mZg) {m) [-) {-)
0.85 0.057 14.497 0.066 0.037 0.00111 1.937 1.093 0.970 0.458 0.766 0.230 0.020 0.020
1.05 0.081 £.279 0.083 0.034 0.00097 1.848 1.008 08431 0.452 1.188 0.37S 0.030 0.033
1,35 0.135 S$047 "0.063 0.034 0.00707 1865 0.998 0,938 0.504 2.128 0.649p 0.055 0.0%6
2,05 0.178 4249 0.083 0.032 0.00097 1,854 0.934 0847 0.489 2.283 0.733 0.089 0.084
©2.85 0.722 3.560 0.057 0.032 0,00091 1.684 0.951 0.705 0.497 2.588 ©0.850 0.088 0.074
205 0.265 2,950 0.058 0.032 0.0009& 1,710 0.934 0820 0513 3.182 1.03% 0.082 ©.090
3.55 - 0.309 2.449 0.081 0.029 0.00087 1,516 0.843 0.588 0.480 2.748 1.059 0.07% 0.092
405 0.352 2048 0.087 0.030 0.00082 1.522 0.884 0.715 0.531 4.000 1.388 0.103 0.122
. 5.08 0,439 1.537 0.647 0.0Z7 0.00087 1.388 0.787 0.581 0.528 4.320 1.8678 0.111  Q.148
5.05 0.528 1.423 0.048 0.026 0.00080 1,345 0.756 0.520 0.511 4.182 1.7i4 0.107 0.149
7.05 D.813 1,454 0.042 0.024 0.00051 1,247 0.704 O0.444 0.508 3.496 1.581 C.090 0.135
8.05 0.700 1.398 0,037 0.023 0.00039 1.094 0.866 0339 0.466 2.784 1.412 0.072 0.123
9.08 O0.787 1.247 0.033 0,020 0.00027 Q.978 0.584 0.232 0.408 2.131 1307 0.085 O.114
10.05 0.874 1.009 0.033 0.018 0.00022 0.965 0.533 0.197  0.172 2.167 1.468 0.036 0.127
30.55 0.917 0.866 0,030 0.017 0.00012 0.881 0.497 0.704 0,240 1.389 1.27¢ 0.038 Q.11

-G is measured



RUN : UPAS - Flow parameters

Sor= 00010 (DwOi1Sm Un 0.481 m's |Ugw 0.570 mir |u.s 0.033 ma
Bre 9.0 M= 0.18 Re = 2.21 10" {Fr w 0.45 pO = 522
=015 m Bom 0019 m 8=001m H =148 Ba=1.00

RUN : UPAS - Velocity distribution

3
Ke = 4.1%1x10

U, s calculaied (assumed 10 ba similar with the uw, profile ol run UPA2) as. [, L= [-O&d,

¥ 12 u y/s yO y'ks (Ue-uliu, uwUe wiu.
{m) (mis) (-} {-) () (-) (-} {-})

0.25 0.244 0.022 0.022 o.521 10.269 g.421 7.459

0.45 0.288 0.039 0.039 0.938 8.906 0.498 @.822

a.65 0.318 0.057 0.057 1.354 8.058 0.545 9.871

0.5 0.244 0.07T4 0.0T% 1.77% 7.198 Q.594 10.530

1.08 0,360 0.09" Q.00 2.188 8.7 a.622 11.027

1.25 0.370 0.109 0.109 2.604 8.397 0.639 11.2M

1.55 0.389 0.135 0.135 3.229 5.826 0.671 11.902

1.75 0.398 G.152 0.152 1.648 5.532 0.688 12.198

2.05 0.419 4.178 0178 4.271 4.908 0.721 12.820

2.25 0.420 0.196 0.198 4.688 4.869 0.725 12.83%

2,55 0.438 0.222 0.222 5.3 4,303 0.7597 13.423

3.08 0.450 0.265 0.265 6.354 3,955 0.777 13.7T73

3.55 0.461 0,309 0.309 7.396 3.616 0.796 14.112

4.05 0,478 0.352 0.352 8.438 3157 0.822 14.571

5.05 0.490 0.439 0.43% 10.521 2.731 0.846 14,997

8.05 0.511 0.5286 0.526 12.604 2.085 0.882 15.643

7.0 0.527 0.613 0.613 14.688 1.598 29.910 16.130

8.05 0.537 0.7T00 0.700 16.771 1.278 0.928 16.152

9.05 0.550 0.787 0.787 18.854 0.880 0.950 16.848

10.05 0.565 0.874 0.874 20.938 0.418 3.976 17.310

10.55 0.574 0.917 0.917 21.979 0.158 0.961 1T.570

11.50 0.579 1.000 1.000 23.958 0.000 1.000 1T7.728

RUN : UPAS - Turbulence distributions

yx 102 yib du/dy u -ll—'w, u'lu. vyt 104 Z x 102 w/Bu. &'l
{m) (=) (1/3) (mis) (m2is2) {-) {m2/s) {m) {-) {-)
0.65 0.057 13.344 0.076 0.00703 2.324 0.776 2.241 0.021 Q.021
1.05 0.091 7.830 0.070 0.00090 2.144 1.134 0378 0.030 0.033
1.55 0,135 5.004 0.063 0.00100 1.933 1.999 J.632 0.053 0.085
| 2.08 0.178 4.284 0.059 0.00090 1.821 2,100 0.702 0.056 Q.08
2.55 0.222 3.641 0.058 0.00085 1.778 2.329 0.800 0.062 0.070
3.08 0.285 3080 0Q.057 0.00087 1.738 2.839 0.960 D0.078 0.083
3.55 0.309 2.505 0.057 0.00083 1.732 2.415 0,965 0.064 0.084
4.05 0.352 2.190 0.052 0.00076 1.506 J.481 1.281 0,093 0.110
3.05 0.438 1.814 0,083 0.00082 1.6!7 3.840 1,542 0.102 0.134
© 8.05 0.526 1.353 0.045 0.00055 1.386 4,097 1.740 0.709 0.151%
7.0 Q0.613 1.406 0.045 0.00047 1.373 3.368 1.548 0.090 Q.115
805 0700 1.521 0,047 0.00036 1.256 2.380 1,251 0.083 0.109
~9.065 0.707 1.452 0,038 0.00025 1,000 1.697 1.070 0,045 0.004
190.05 0.874 1.221 0.033 0.00020 1.017 1.668 1.189 0.044 0.102
14.55 0.917 1.035 0.031 0.00071 0.952 1.070 1.017 0.028 o.088
ol ?

o)



RUN : UPB3 - Flow parameters

Ss = 0.0007S| Dud.101 m UsD. 465 mis [Ueell581 mve |uesl.037 s

Br= 7.50 N=0.03 Rew1 88 10" [Fr o 0.47 WO = 5.04
0101 m |&s0017 m |8=0012m [H »1.49 fo=-100 |

RUN : UPB3 - Velocity distribution

y= 108 o b ] D ks {Ue-uliu. wile wlu.

{m) {m/») {-) {-) (] {-) (=) {-) -
0.08 0.225 0.025 0.025 0.521 9147 D.401 8.114 ‘( -
0.45 0.270 0,045 0.045 0.938 7.924 0.481 T.237 = # : SOO )( 10
0.85 0.308 0.064 0.084 1.3%4 6.939 0.545  8.322

0.85 0,327 0.0B¢ 0.084 1.771 6.386 0.581  8.89%

1.05  0.351 0.104 0.104 2.188 5.708 0.626 9.553

1.25  0.363 0.124 0.124 2.604 5.397 0.648 95.884

1.5 0.390 0.'53 0.151 3.229 4.648 0.685 10.613

1.75  0.402 0.:73  0.173  3.64§ 4,338 a.718  10.925

2.05 0.416 0.203 0.200 4.2 1.981 8.741 11.310

2.25 0.420 0,223 0.223 4.688 3.842 0.T48 11420

.55 0.429 0.252 0.282 5.313 3,004 5.784 11.887

3.05 0.446 0.302 0.302 6.154 1.142 0.7TRd  12.119

3,55 0.453 0.15t 0.35%' T.196 .937 0.808 12.324

4.05 G.473 02,40 0.401 8.438 2.408 0.842 12.856

5.05 0.482 0,500 0.500 10,521 1.874 0.877 13.388

6.05 0.505 0.599 0.509 12.604 1.518 0.801 13,743

7.05 0.520 O0.698 0.698 14.688 1.113 0.927 14.148

8.05 0.519 0.797 0.797 16.771 0.611 0.960 14.650

9.08 0.553 0.896 O0.B96 18.854 o2 0.9868 15.051

10,1 C.561 1.000 1.000 21.042 0.060 1.000 15.281

RUN : UPB3 - Turbulence distributions

yx 102y duidy u' v -up, U V. Ut SRy vx 100 Lx 107 v, &
{m} (=) (1/a) (mis) (m/s) (mira¥) (-} (-) {-) {-] imi/a)  (m]) (-} i~}

0.85 0.084 15,7110 0.087 0.038 000120 1.813 1.041 0.890 0.472 . 0.796 0.229 0.0 0.023
1.05 0.104 9.048 0.086 0.038 0.00126 1.807 1020 0.93§ Q.207 1.397 0.393 0.038 0.039
1.5 0.153 S5.635 0.062 0.035 0. 00106 1.689 0.948 O.7T82 0.489 1.87§5 0.577 0.08y 0.087
2.05 0,203 4.511 0.060 0.033 0.0010¢4 1.840 0.901 c.768 0.520 2.301 0.714 0.082 B.071
2.55 0252 3.573 0.058 0.031 000092 1.586 0.8428 0.682 9.307 2.578 a.850 0.088 Q.08+
3.03 0302 2.822 0.058 0.032 0.00096 1.570 0.870 0.710 0.519 3.398 1.087 0.082 Q.109
3.55 0.351 2,288 0.052 0.030 0.00085 1.414 0.824 0.829 0.540 3.787 1.282 0.101 0.128
4.08 40.407 1,880 0.049 0.C30 0.00075 1.331 0.811 0.583 e.522 4.048 1.487 D.109 0.145
" 5.0%5 0,500 1.60% 0048 0.027 0.00067 1.241 0.733 0.4rn 0.%0% 7.685 1.4T9 0.0ve C.me=
8.05 Q0.599 1776 0.045 (0.025 O0.00060 1.233 0.687 0.442 2.5 - 400 1.37% 0.090 Q.18
7.05 0698 1.715 0.035 0.033 0.00035 0.963 0.628 0.284 D.438 2.078 1.101 0.058 0.109
8.05 0Q.797 1.502 0.034 0.027 0.00030 0.934 0.615 0.219 0.382 1.973 1.148 0.032 8.7113
9.05 0.898 1.138 0.032 0.022 0.000v7 O0.878 0.610 0.123 0.229 1.459 1.132 0.039 0.112




RUN : UPBS - Flow parameters

So= 000075 |0=0.101m Uwn 0480 mis [Ug = 0.562 m/a {u.a Q008 mva
Bre 7.85 M= 0.01 Re = 1.91 10" |Fr « 0.47 b0 = 584
E=0i0tm |§.s Q07T W fa00ttm |H =148 fa==1.00

RUN : UPBS - Velocity distribution

yx 108 u yis yD y/ka (Ue-u)/u. wile ufue
(m) (mis) (-) {-) {-) (-] {-) (-)
.25 0.2331 0.025 0.025 0.521 8.245 0.414 8.5471
0.45 0.278 0.045 0.045 0.938 7.966 0.495 7.820
0.65 0,210 0.064 0.08¢ 1,354 7.088 0.551 £.698
D0.85 0.339 0084 0.084 1.771 6.269 0.603 9.518
1.08 0.3§5 0.104 0.104 2.188 5.828 0.8631 9.958
1.25 0.374 0L.124 D124  2.6804 5.271 0.668 10.518
1.5 0.197 0.153 0.153 3.229 4.636 0.706 11.151
1.73 2.402 2.173 0.173 3.6848 4.482 9.718 11,204
2.05 0.422 0.203 0.203 427 3.945 0.750 11.841 -3
2.25 0.431 0.223 0.223 4.688 3.690 0.786 12.097
2.55 0.434 0.252 0.252 5.313 3.590 0.773  12.197 [?4.300)00
3.05 0.449 0,302 0.302 6.354 3.167 0.799 12.820
3.55 0.464 0.351 0.351 7.396 2.756 0.825 *3.031
4.05 0.472 0401 0.401 §.438 2.537 0.839 13.2%0
5.05 0.493 0.500 2.500 10.521 1.042 Q.877 13.845
8.05 0.510 0.590 0.588 12.504 1.471 0,907 14.315
7.05 0.526 0.698 0.698 14.688 1.026 0.935 14.760
8.05 0.543 0.797 A.79T 18.771 0.541 0.988 15.246
9.05 0.552 0.896 0.898 18.854 0.284 0.982 15.502
10..9 0.582 1.000 1.000 21.042 0,000 1.000 15.787
RUN : UPBS - Turbulence distribulions
yx102 y3  dudy V' Ay W w10t (a102 wodu, LB
{m) {-) (1/3) (m/s) (m¥s) (-} (mlis) (m) {-) (-)
0.85 0.064 15.086 0.060 0.00113 1.694 0,748 0.223 0.020 0.022
1.05 0,104 9918 0©.063 0.00119 1.76¢ 1.195 0.347 0.032 0.034
1.55 0.153 S.647 0.056 0.0009¢ 1.569 1.755 0.557 0.048 0.08§
2.056 0.203 3.808 0.055 0.00097 1.549 2,558 0.820 0.089  0.081
2.55 0.252 2174 0.055 000088 1.537 2.723 0.926 0.074 0.092
3.05 0.302 2.659 0.047 0.00090 1316 3.382 1.128 0.092 0.112
.55 0.351 2.262 0.046 0.00080 1.297 3.527 1.249 O0.096 0.124
4.05 0.401 1.080 0.042 000071 1,179 3603 1.349 0098 0,134
5.05 0.500 1.769 0.G41 000058 1.149 3.282 1.364 Q.080 0.135
6.05 2.599 1.739 0.035 0.00056 0.973 3.218 1.380 0.087 0.135
7.05 0698 1.805 0.032 0.00033 0.901 2.083 1.138 0.056 0.113
8.085 0.707 1.304 0,032 0.00028 O0.890 2.038 1,222 0.055 0.121
9.05 0.896 4.017 0.030 0.00016 O0.847 1.531 1,227 0.042 0.12%
CRAN

-, is calculated (2ssumed (0 ba ‘amilar wih the U, profile of run UPB3) as, Gy L= {apy

vk



RUN : UPC3 - Flow parameters.

Se= 000025 |D=0.119m U= 0338 mie | Uc= 0.402 mis |u.= 0LOZ2 mis
Br= 2.50 n= 0.15 Re =181 10 |Fr = 0. WD = 5.04
$§=0119m |&= 0019 m 8=0013m |H =145 Ba=-1.00

RUN : UPC3 - Velocity diswribution

yx 102 u y/8 _ y/D wks (Ue-u)lu. wle uw/u.

(m) {mis) {-) (-] {-) {-) (-) {-)

0.25 ©167 3.021 0.021 0.521 10.739 0.415 7T.817

0.4 0.203 0.038 0.03d 0.938 9.079 0.505 @.277

. 0.85 0.2z 0.085 G.0C5 1.384 7.882 0.571 10.474

0.85 0.243 0.071 Q.07T1 1.771 7.273 0.604 11.084

1.05 0.256 0088 0.088 2.188 6.681 0.638 11.875

1.25 0.265 0.105 0.105 2.504 6.255 0.659 12.10%

1.§5 0.272 0.130 0.130 3.229 5.935 0.677 12.422

1.75 G.2B1 0.147 0.147 23.6546 §.539 0.698 12.818

2.05 ©.289 0.172 0.172 4.27% 5.178 0.718 13.178

225 0.295 0.189 0.:89 4.688 4,882 0.734 13.474 k _

255 0.302 0.214 0.214 5.313 4573 0.7s1 13.785) o= 4198 X /o

3.08 ©.310 0.256 0.256 6.354 4,207 0.771 14.149

3.55 0.319 0.298 0.298 7.396 3.804 0.793 14.552

428 0.332 0.340 Q.340 B.438 1.198 0.826 15.160

E05 0.343 0.424 0.424 10.521 2.714 0.852 15.642

6.05 0.361 0.508 0.508 12.604 1.892 0.897 16.464

7.05 0.389 0.582 0.592 14.688 1.511 0.91B 1&.B45

8.05 0.377 0.676 0Q.676 16.771 1.144 0.938 17.212

9.05 0.385 0.761 0.761 18.854 0.762 0.959 17.595

10.05 0.393 0.845 0.845 20.938 0.430 0.977 17.9286

11.05 0.398 0.92% 0.929 23.021 0.1863 0.991 18.193

11.90 0.402 1.000 1.000 24.792 0.000 1.000 18.356

RUN : UPC3 - Turbuience distribution

y x 102 Y& du/dy v v ‘;f;—i u'fu. vlu. -.u?i'u-’ -mu‘v' vrx 10* {x 102 vybu. &
{m) (-) (1/s) (mis) (mis) (mZsl) () {-) {-) () (m2rx) (m) (=) (-)
0.85 0.055 10.438 0.044 0.025 0.0C0047 2.011 1.151 0.988 0.428 0.453 0.208 0.017 0.018
1.05 0.088 S8.768 0.045 0.02¢ 0.00048 2.046 1.100 1,000 0.444 0.831 0.380 0.032 0.032
1.85 0.130 2.764 0.041 0.023 0.00048 1.870 1.032 0.953 0.493 1.653 0.773 0.083 0.085
-~ -: g.e7: 2.2:1 0.047 0.027 0.00040 1.854 0.975 0©0.833 0.461 1.706 0.854 0.085 0.072
.85 2.214 2.°77 0.040 0.020 (.00038 1.B16 0.925 0.790 0.471 1.740 0.894 0.087 0.075
3.05 0.256 2.019 0.038 0.020 0.00035 1.713 0.911 0725 0.464 1,722 0.923 0.088 0.078
3.55 ©.298 1.868 0038 0.020 0.00034 1.827 0.900 0.708 0.484 1.819 0.987 0.070 0.083
4,05 0.340 1,723 0.036 0.019 0.00032 1.634 C.8863 0.867 0.470 1.845 1.025 2.07Y 0.087
5.05 ©0.424 1.453 0.033 0.018 0.00030 1.500 0.819 0Q.815 0.501 2.031 1.182 0.078 0.089
.05 0.508 1.209 0.029 0.017 0.00025 1.312 0.780 0.52§ 0.512 2081 1.312 0.080 0.710
7.05 0.592 0.991 0.028 0.016 0.00020 1.335 0.708 0.420 0.444 2.030 1.431 0.078 0.120
.05 0.676 0.8t%1 0.026 0.015 0.00018 1.199 (0.668 0384 0.479 2270 1.673 0.087 0.141
9.05 O0.761 O0.679 0.024 0.014 0.00014 1.093 0.619 0282 0.416 1.980 1,712 0.076 0.144
10.05 0.845 0.596 0.022 O0.011 0.00007 0.995 0.499 0.148 0.299 1.193 1.415 0.046 0.119
11.05 0.929 0.561 0020 0.009 0.00004 0.309 0.413 0093 0.248 0.795 1.19¢ 0.031 0.100
-E;'-fis measured

=1



RUN : UPCS - Flow parameters

So= 000025 (D =0.119 m U= 039 mis (Ucs 0,404 mis [u.= 0.023 mse
8r= 9.00 M= 012 Re = 1.61 10° (Fr = 0.31 D = 5.04
5=0119m |§= 0019 nr 8=0013m |H =145 fa=-1.00

RUN : UPCS - Velocity distribution

yx 102 u y/8 y/D y/ks {Ue-u)/u. wUe u/u.
(m) (m/s) (-) (-) {(-) {-) (-} (=)
0.25 0.172 0.021 0.021 0.521 10.223 0.426 7.574
0.45 0.207 0.038 0.038 0.938 8.668 0.513 9.129
0.65 0.224 0.055 .0.055 1.354 7.927 0.555 9.871
0.85 0.237 A2.071 0.071 LI 7.376 0.386 10.421
1.05 0.251 0.088 0.088 2.188 6.743 0.8z1 11.054 -
1.25 0.265 0.105 0.105 2.604 6.148 0.655 11.851| 4 Qg X 10
1.55 0.271 0.130 0.130 3.229 5.860 0.671 11.838
1.75 0.281 0.147 0.147 3.646 5.432 0.595 12.365
2.05 0.292 0.172 0.172 4.271 £.921 0.728 12.377
2.25 0.299 0.189 0.189 4.688 4.623 0.740 13.175
2.55 0.306 0.214 0.214 5313 4308 0.758 13.489
3.05 0.316 Q.256 0.256 6.154 .80 0.782 13.912
3.55 0.320 0.268 0.298 7.396 3.682 0.793 14.115
405 0.332 0.340 0.340 B8.428 3.157 0.823 14.640
505 0.345 3424 0.424 10.521 2.502 0.854 15.206
6.05 0.358 0.508 0.508 12.604 2.023 0.886 15.774
7.05 0.367 0.592 0.592 14.688 1.616 0.909 16.181
8.05 0.374 0.676 0.676 16.771 1.339 0.925 16.458
9.05 0.387 0.761 0.761 18.854 0.741 0.958 17.056
10.05 0.397 0.845 0.845 20.938 0.293 0.984 17.504
11.06 0.399 0.929 0.929 23.021 0.223 0.987 17.574
11.80 a.404 1.000 1.000 24.792 0.000 1.000 17.797
RUN : UPCS - Turbulence distributions
y x 102 y/8 du/idy u' -E;;; u'la. wx 10t L{x10°  vysu. L
(m) () (1/8) (m/s) (m3Us?) (-) (ms) (m) (-) (-)
0.25 0.027 14.136 0.043 . 1.892 . - . .
0.65 0.055 9.350 0.045 0.000571 1.981 0.543 0.241 0.02~ 0.020
1.05 0.088 5.926 0.043 0.00052 1.893 0.86€9 0.383 0.032 0.032
1.55 0.130 3.526 0.042 0.00049 1.868 1.392 0628 0.052 0.053
2.08 0.172 2.859 0.038 0.00043 1.869 1.501 0.725 0.D58 0.061
2.55 0.214 2.417 0.039 0.00041 1.696 1.684 0.835 0.062 0.070
3.08 0.258 2.038 0.034 0.00037 1.496 1.832 0.948 a.068 0.080
3.55 0.298 1.719 0.032 0.00037 1.430 2.124 1.112 0.079 0.093
4.05 ©0.340 1.464 0.032 0.00034 1.411 2333 1282 0.086 0.106
5.05 0.424 1.137 0.031 0.00032 1.348 2.789 1.566 0.103 0.132
6.05 0.508 1.058 0.031 0.00027 1.351 2,555 1.554 2.095 0.131
7.08 0.582 1.088 0.028 0.00022 1.221 2.02B 1.379 Q.a75s 0.118
8.05 0.676 1.012 0.025 0.00020 1.086 1.955 1.390 0.072 0.117
9.08 6.7681 0.854 0.023 0.00015 1,031 1.824 1.348 2.060 Q.113
10.05 0.845 0.714 0.020 0.00008 0.895 1.070 1.224 a.040 0.103
- 11.05 0.929 0.470 0.019 0.00005 0.835 1.020 1.473 0038 0.124

-G, is cakculated (assumed 10 be similar with the -Uy, profile of rn UPC3) as,

iy
(9% b= «'n‘r"d,(i..‘,r)



RUN : UPD3 - Flow parameters

So= 000125 |0D=0087m U = 0.447 mvs |Ucs 0.550 ms | ues0.035 mvs
Br= 7.80 ne= 0.12 Reo = 1.56 10" |Fr = 0.48 WD = 690
E=x0087m |&=0016m |0 =001m H =158 'l.--l-DO

RUN : UPD3 - Velocity distribution

yx 107 u y/& yD yks (Ue~u)/u. wle uiu.
{m) (min} (-} [-) {-) {-) {=) {-)
0.25 0.213 0.029 -0.029 0.521 9.617 0.388  6.097
0.45 0.270 0.052 0.052 0.038 7.988 0.492 7.727
0.65 0303 0.075 0.075 1.354 7.086 0.550 B.643
0.85 0.329 0.098 0,088 1,771 6.328 0.597 9.389
1.0§ 0.342 0.121 0.121 2.188 5.948 0.621 9.766 =
1.25 0365 0.144 0.144 2.604 5.207 0.663 10.417 \
1.55  0.377 0.178 0.178 3.229 4949 0.685 10.765 k& T4 198 X0
1.76  0.381 0.201 0.201 3.546 4.544 0711 11,170 £
2.05 0.405 0.235 0.236 4.271 4152 0.738 11.562
2.25 0.408 0.259 0.259 4,588 4.054 0.742 11.680
2.55 0.419 0.293 0.293 5.313 3.754 0.781 11.960
3.05 0.440 0,351 0.351 6.354 3.144 0.800 12.570
3.5 0.451 0.408 0.408 7.396 2.832 0.820 12.883
4.05 0.487 0.486 0.488 .48 2.549 0.838 13.165
5.05 0.486 0.580 0,580 10.521 1.834 0.883 13.880
6.05 0.504 0.695 0.695 12.604  1.319 0.916 14.395
7.05 0.530 0.810 0.810 14.588  0.582 0.963 15.132
7.55 0.535 0.868 0.868 15.720  0.428 0.973 15.289
8.05 0.543 0,925 0.925 16.774 0.195 0.988 15.518'
8.70 0.550 1.000 .000 18.125  0.000 1.000 15.714

RUN : UPD3 - Turbulence distributions

yx102 Y&  duidy u' v U@ U vue Bpgy.t By vx10* Lx 102 wide. LB
{m) {-) (1/78] (m/s] (mis) (ms?) (-) (-) {-) {-) (m2/s) {m) (-) (=}
0.65 0.075 15.740 0.065 0.037 0.00173 1.851 1.071 0.890 0.449 0.693 0.210 0.023 0.024
1.05 0.121 8.814 0.086 0.035 000111 1889 1.009 0.910 (0.477 1.293 0.388 0.042 0.045
1.55 0.178 4.888 0.081 0.032 0.00095 1.7331 0,925 0.776 0.484 1.953 0.633 0.084 04073
2.05 0.238 4.098 0.05¢ 0.032 0.00084 1.676 0.903 0.785 Q.50§ 2.286 O0.747 0.075 0.088
2.55 0.293 3.456 0.054 0.030 0.00082 1.551 0.847 0.666 0.508 2382 0.827 0.078 0.095
3.05 D0.351 2.944 0.050 0.030 0.00070 1.430 0.857 (0.844 0.525 2.680 0.954 0.088 O0.110
- 4.55 0.408 2.580 0.049 0.028 0.00067 1.397 0.802 0.548 0.489 2.620 1.012 0.086 0.116
.08 0.466 2,305 0,048 0.027 0.00064 1.389 O0.780 0.520 0.437 2.764 1.095 0.097 0.126
5.05 0.580 2.183 0.041 0.026 0.00049 1,184 0.742 0.404 0.4850 2.265 1.019 0.074 Q.17
6.05 0.685 2Z.171 0.037 0,023 0.00035 1.048 0.659 0.283 0.411 1.598 0.858 0.052 0.099
7.05 0.810 1.889% 0.033 0.022 0.00026 0.929 0.643 0.216 0.362 1.400 0.561 0.048 0.099
7.55 0.888 1.648 0.036 0.022 0.000%8 1.026 0.633 0.748 0.228 1.100 O0.877 0.036 0.094

-ug, is- measured



RUN : UPDS - Flow parameters

&+ 19

Sow ODUI2S [D = 0087m |U = 0.443 mss {Uc = 0.545 mvs |u.a 0.037 mvs
Bru 7.00 = 0.07 Re = 1.54 10" |Fr = 0.48 bD = 69
5=0087m |(3.20016m |B=0011m |W =156 fa=-1.00

RUN : UPDS - Velocity distribution

y x 102 u /& y/D yiks (Ue-u)/u. wle  uiu.
{m) (mis) (-) (-) (-} (=) (-} (-}
0.25 0.206 0.029 0.029 0.521 9.104 0.379 5.547
0.45 0.255 0052 0.052 0.938 7.810 0.467 6.841
0.65 0.285 0.075 0075 1.354 8.958 0.525 7.693
0.85 0.317 0.098 0.098 1.771 6.140 0.581 8.510
1.05 0.334 0.121 0.121 2.188 5.673 0.613 B8.978
1.25 0.355 0.144 0.144 2.604 5.117 0.651' 9.534 -3
1.5 0.375 0.178 0.178 3.229 4.582 0.687 10.068 I% - 4.795 x 10
1.7% 0.386 0.201 0.201 3.646 4.278 0.708 10.373 - )
205 ©.402 0.236 0.236 4.271 3.847 0.737 10.803
2.25 0.407 0.259 0.259 4.688 3.699 0.747 10.951
2.55 ©.420 0.293 0.293 5.313 3.365 0.770 11.286
3.05 0.435 0.351 0.351 6.354 2.568 0.797 11.682
1.55 0.448 0.408 0.408 7.396 2.617 0.821 12.033
4.05 ©0.481 0.466 0.4686 8.438 2.265 0.845 12.386
5.0 0.488 0.580 0.580 10.521 1.547 0.894 13.104
.05 0.503 0.695 0.695 12.604 1.125 0.923 13.526
7.05 0.525 0.810 0.810 14.688 0.540 0.963 14.111
7.55 0.530 0.868 0.868 15.729 0.395 0.973 14.256
8.05 0.539 0.925 0.925 16.771 0.172 0.988 14,478
8.70 0.545 1.000 1.000 18.125 0.000 1.000 14.651
RUN : UPDS - Turbulence distributions
yx 102  y/8 du/dy u’ -u, ude wxt10' {x102  wvybu. Ls
(m) (=) (1/s) (mis) (m¥Us?) (-) (m¥s) (m) (-) {-)
0.45 0.052 19.534 0.061 . 1.628 " . . -
0.65 0.075 15771 0.063 0.00123 1.704 0.781 0.223 0.024 0.026
1.05 0.121 9.910 0.066 0.00126 1.768 1.270 0.358 0.039  0.041
1.55 ©0.178 S.706 0.060 0.00107 1.515 1.883 0.574 0.058 0.066
2.05 0.236 4.385 0.054 002106 1.458 2414 0.742 0.075 0.085
2.5 0.293 3.549 0.052 0.00092 1.390 2598 0.856 0.080 0.098
| 3.05 0.351 2937 0.049 000089 1.321 3.035 1.017 0.094 0.117
3.55 0.408 2.549 0.047 0.00076 1.261 2.972 1.080 0092 0.124
4.05 0.488 2.385 0,046 0.00072 1.241 3017 1.125 0.093 0.129
5.05 0.580 2.22¢ 0.039 0.00056 1.053 2.511 1.063 0.078 0.122
6.05 0.695 1.978 0.038 0.00039 1.020 1.982 1.001 0.061 0O.115
7.0§ 0.810 1.645 0.035 0,00030 0.928 1.816 1.051 0.056 0.121
7.5 0.868 1.447 0.036 0.00020 0.968 1.413 Q.988 0.0é4 0.114
— - — o B !n.l.)’
-Gy, is calculaied (assumed 10 be similar with the v, profile of run UPDJ) as. [y, L*l"-lr"ll:(i'u':j:
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Appendix F

ANALYSIS OF MUSTE’S
EXPERIMENTAL DATA

Muste (1995) did three runs of clear water experiments and three runs of sediment-
laden experiments in a smooth wide flume with 30 m long, 0.91 m wide and 0.45 deep.
He measured both fluid and sediment particles velocities in sediment-laden flows.
However, only the three clear water experiments are cited here. The experimental
conditions and measurement data are shown in Table F.1. The three velocity profile

analyses are attached after the table.
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Table F.1: Muste’s (1995)* measurements of velocity profiles

CWO01 CWO02 CWO03
h =13 cm h =128 cm h =12.7 cm
S =7.41E-4 S ="7.7T1E-4 S =28.11E-4
l’g/h ﬂl Zﬁg/h Ul l’g/h Hl
(m/s) (m/s) (m/s)
0.0923 0.5240 | 0.0933 0.5270 | 0.0945 0.5340
0.1154 0.5410 | 0.1167 0.5450 | 0.1181 0.5490
0.1385 0.5550 | 0.1400 0.5570 | 0.1417 0.5660
0.1615 0.5670 | 0.1634 0.5709 | 0.1654 0.5730
0.1846 0.5750 | 0.1867 0.5790 | 0.1890 0.5870
0.2077 0.5840 | 0.2100 0.5936 | 0.2126 0.5980
0.2308 0.5960 | 0.2334 0.5980 | 0.2362 0.6030
0.2538 0.6000 | 0.2567 0.6040 | 0.2598 0.6080
0.3000 0.6140 | 0.3034 0.6187 | 0.3071 0.6250
0.3462 0.6260 | 0.3501 0.6306 | 0.3543 0.6370
0.3923 0.6330 | 0.3967 0.6416 | 0.4016 0.6470
0.4462 0.6420 | 0.4512 0.6511 | 0.4567 0.6610
0.4923 0.6540 | 0.4979 0.6607 | 0.5039 0.6690
0.5615 0.6600 | 0.5679 0.6744 | 0.5748 0.6810
0.6308 0.6760 | 0.6379 0.6853 | 0.6457 0.6920
0.7000 0.6830 | 0.7079 0.6955 | 0.7165 0.7090
0.7692 0.6910 | 0.7779 0.7030 | 0.7874 0.7170
0.8385 0.6990 | 0.8246 0.7084 | 0.8346 0.7310
@ Data were obtained by private communication.
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Appendix G

ANALYSIS OF McQUIVEY’S
EXPERIMENTAL DATA

McQuivey (1971) collected a lot of experimental data. The data in a 20 centimeter-
wide flume with a rigid boundary are cited and analyzed here, see attached table and

figures.
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SUMMARY, DATA FROM RIVERS. CONVEYANCE CHANNELS, AND LABORATORY FLUMES B31

TABLE la. — 20-centimeter-wide flume, rigid boundary

s oo = T
Mamm flow parssscers | 0| T o e {1 v - Wemm flow parsssters o | T rE | Powt s |
and vartables | | (fpm) | (fpm) | ind varisbles | (fpm) | (fpm) | |
Secoth boundary, chemmel cemteriise. crlimdrical hot-film semsor f Shot roughness, chaonel contariine, crlindrical hot-film semsor
| I3 1533 |0.810 : 0629 |
1o 0.amm1t? 7, = 0.046 Eps o.r: 1.010 10.0589  f0.0854 |1.318 R —— U, » 0.0670 fps [-58 lj"‘g -l g o
& K 66D | J6T4 |Ll.1 . i = = = [
Ju @l bt = 0.0083 /EEL | Tl | e | o71a | L07S6 |1.552 4.0.682 T 0.011 ib/fed | o %6l L3t
= 0.054 cfa v = 0.970010% fri/sec | f;: -m ) 3‘:;: -0864 1_:: 3 = 0.062 cfx we L00wIG% fti/see | 138 | i385 lesa ,}':oli
.. I . o G955 od ) - . i
fer2’c R = #,300 i | Ls07 | o | Laie1 (2,002 raiss"c R = 9,400 iI§§ i (8 i 26k 3.1t
0= 0.098 T F = 0.508 x '3} i -1’—;‘1"5 I;-g:: 7= 0,102 fr Feo.52 075 | .360  _1S41 | .2752 '2.300
feootpm o/ff-1.5 04l | .55 | .1296 | .2294 |I.817 Te0.950 tps O/ - 1388 -08¢ | .300 | .162% | .16 Iz
[ - : | - 026 | 380 1097 ' .3811 3.122
| .937 |1.303 | .0582 | .039« | 314 |
e 170m18? 7, = 0.0648 fps 77 |1.e82 | [06S6 | .DAas |1.012 5= 5.07ud] v, = 0,111 fps ':;: g 'i?:‘; g:;';
¥e0.632 £t = 0.0106 1b/fe A Lt -g:?i st L ¥n 0,632 £t = 0,051 Lb/fed 862 (1.790 1237 | Loes
Qs 0.087 cfs v = 0.920<10% fx¥f3ec | "33 |y T310 | Lo9m7 | L0753 [1.513 q= 0.099 cfs ve 1,01:10% fe¥/zee | g1 1000 1T
s B R - 15,000 -390 (1.253 | 1110 | .088% |1.713 .38 °C R« 14,500 245 1.a2 1836
5 .208 [1.194 | .1200 | .1005 |1.852 , Epril ol
2= 0.101 £t F=o0.78 S139 |1.0%0 | .1320 ' 1211 (2.037 o= 0.099 ft F= 0.8 o83 |1.010 | :a30
Ta1.35 fpa offg #2110 7L | P60 |0 e 2020 Te 138 fp5 of/3 = 15,50 056 | 360 1741
7 : 1 2,57 : v
033 | a0 .3128 .
a -1 N | | |
§ 3.30m107 U, = 0.089 fp3 387 08T 3384 | §= 9.53.400 J, = 0.153 fps 755 la1s
¥a0.632 4t 1 «.0.019 Ib/Eed 715 -1027 a8 |1 = 0.832 ft = 0.056 Ib/fed 2 -S.‘f
" it 0% feifsee | 539 | . lis0 0851 . S 452 702
g=0.118¢ v w 0.909=10% f2i/3e Soa | 1286 3656 | 3= 0.128 cfs sw LOIIGY f2dfsec 301 1540
L T 20,500 .27 391 aTeo | 1, s 235 °F - 22 2290
" B0 191 |1 1832 1960 1 Fn A 15500 151 570
i- 0.034 fr F=l.id 104 | 1306 1196 | Fai.08 078 ilm
Tel38fp1 ord7 e 22,30 | .oss AN 1815113 flew 17,40 -ﬁ; san0

3 > centerline, =edge hot-film sensor
imooth boundary. chammel Ceat L 4 Shot roughness, chanmel cemterline, <edge "ot-film sensor

|1.005 | 2470 - 2370

§ = 087107 Y. v 0.0456 £p3 | “Saiil i30e V3t ¥ e Fe Ls0uE? Y, = 0.068 fps | .79 'L /12 2473
7. 0.682 £t ¢ = 0,0047 15/680 | gpg | 337 0 58T us20 | 4o 0632 fr e 2.012 1h/frd == Jexs. mald
sod | .3 | b | 3 ; i
d= 0.054 cix o= LLO1e10° fgi/sec fg; ! ’:: J?:: j_;,‘?,g = 1.06§ cfs o= 1.08%10% frifsec | .336  .302 1873
£e3.8 e R - 8.500 | e | 7o | oema 2e e e 2 - 10,500 |8 | 38 990
7. 0,097 £t F - 0.50 (054 | 381 ..0s0 107 1 g yis 5 i11e
R : 037 | 325 1100 20197 i1% £=-0:50 [itagy = 2 i
- . i | = " " . < ot
V= 0.88 fpa SHig = 1958 | Fwo0.980 fps o/iFw 13.85 | ‘sz Gie 1580
| | |
5o 1820101 7, v 0.0664 fpa | s L, a3 E::?t_s ;iﬂ; ;ﬁé | 5.60 0 i, = 0.1193 fps | 310 1.382 .J740 , .2370  .420
= 0.832 £z T = 0.011 1bffE" 551 (1,304 | 0702  .ga00 | 1,057 ¥= 0.632 fr T 0.057 lb/fe” '::i i;gf 7;:2 'j:fg ;13
Q= 0.085 cofs y = L.01=10% feifsme | .ju 1.322 g::a: g;xsg :;: g= 010§ cofs v 1,04x13% fri/sec .343 1 a58 1319  .0B00 1,108
733 °C R = 13,500 219 |1 0952 | .Jb;ﬂ 1 i34 r= a4 C R= 16,500 ::g ,i:;; 1;;3 J?lsg 1354
0= 0.099 fr Feo.78 ;:} |t -igfg Ef:;g 5-§:§ D= 0.105 fr F=0.84 109 (L.i83 | L1845 L1560 1.545
T iy . 437 . . = i ; .062 |1.030 2202 | (2140 1,348
Fel.38 fps  oydg = 20,50 033 | AS3L | L1s80 2308 Fe L8 fps /i 1500 985 | 377 | (1388  .160 2.002
son1d} ) 902 (2.158 0572 | .0270 | .32 _
5= 5,501 U, = 1.0904 fps 824 |2.123 828 | 0300 | _s94 5= 3. 84107 U, = 0.l644 fpa | 0800 554
Ve 0832 £ r = 0.021 1b/fe? :;-; I;g: | ;::g gm ;;g ¥e 0.832 fr T= 0,083 1b/fed i ;;;
q= 0,121 efs we 1010107 feifsec | "3 il:m' | “oee7 | oses |1 103 g= 3.134 cfs we L.04nl0% fri/sec | 355 ;z 990 |, L440 397
e 250 R = 19,000 ' .26 |1.781 [ (1033 | 0S80 | 1.1 .4 T R= 1 274 (1.376 | 1560 .08
— ) 180 [1.865 | .119§ | .0e80 | 1,322 = 2,400 (194 (1,338 | 1360 .88
o= 0,101 fr F» |08 i .100 [1.498 | 1522 0853 | 1.884 o= 0.101 fx F=1.10 113 11.506 | .1120 1.488
Fal. ofia = 1.0 082 |1.298 | .1787 .12 |Ll.377 = A L0865 |1.391 880 11,994
TR ffg - 1 032 [1.155 | .19z | 165 |z.192 Pl e drvyeiden 985 [1.350 | 3100 [2-147
| || |
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Appendix H

ANALYSIS OF GUY, SIMONS
AND RICHARDSON’S
EXPERIMENTAL DATA

Eight velocity profile measurements over plane beds by Guy, Simons and Richard-
son (1966) are cited. The flow conditions and measurement data are listed in Table

H.1. The analyses of velocity profile are attached after the table.
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Appendix 1

MEASUREMENT DATA IN THE
YELLOW RIVER AND THE
YANGTZE RIVER!

Measurements of velocity and concentration profiles
at Hua-Yuan-Kou Hydrologic Station, the Yellow
River, China

Time: 7/27/83 Time: 8/15/83
h=33m h=24m
S=37x10"" S=72x10"4
3 W C 3 Uy C
(m/s) (kg/m?) (m/s) _(kg/m?)

0.97 233 10.40 0.97 2.33 11.80
0.80 2.00 12.00 0.80 2.00 12.30
0.60 1.60 16.30 0.60 1.60 12.80
0.40 1.36 20.20 0.40 1.36 13.30
0.30 1.14 22.00 0.30 1.14 13.50
0.20 0.98 23.80 0.20 0.98 15.30
0.10 0.82 27.10 0.10 0.82 18.80
0.03 0.65 30.00 0.03 0.65 39.30

'Provided by Prof. Yu-jia Hui, Tsinghua University, Beijing, China
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Time: 8/15/83

h=25m
S=72x10"*
£ Uy C

(m/s) (kg/m?)

Time: 8/15/83

0.96 3.09 11.40
0.80 2.96 10.40
0.60 2.70 13.50
0.40 241 14.30
0.30 2.25 17.40
0.20 2.01 18.90
0.10 1.74 24.00
0.04 1.53 29.00

h=25m
S=72x10""
£ Uy C

(m/s) (kg/m?)

Time: 8/15/83

096 3.11 8.14
0.80 2.96 12.20
0.60 2.74 14.00
0.40 2.46 16.00
0.30 2.31 17.10
0.20 2.10 19.80
0.10 1.86 20.30
0.04 1.64 24.90

h=23m
S=72x10"*
§ Uy C

(m/s) (kg/m?)

Time: 8/14/83

096 3.34 7.15
0.80 3.18 7.63
0.60 3.03 11.20
0.40 2.84 15.60
0.30  2.65 18.40
0.20 248 19.00
0.10 2.29 23.40
0.04 1.97 22.60

h=24m
S=78x10"*
§ [ C

(m/s) (kg/m?)

Time: 8/14/83

096 3.34 7.50
0.80 3.18 11.20
0.60 2.93 11.60
0.40 2.70 15.10
0.30 2.53 15.80
0.20 2.39 16.50
0.10 2.15 18.40
0.04 1.99 24.80

h=23m
S=77x10"*
¢ W C

(m/s) (kg/m?)

Time: 8/15/83

0.96 3.38 7.62
0.80 3.11 10.20
0.60 3.02 10.90
0.40 2.62 14.60
0.30 248 16.30
0.20 2.27 18.00
0.10 2.01 20.80
0.04 1.81 27.20

h=25m
S=8.0x10"*
¢ W C

(m/s) (kg/m?)

096 3.38 3.95
0.80 3.11 8.38
0.60 3.02 10.50
0.40 2.62 12.40
0.30 248 14.00
0.20 2.27 15.90
0.10 2.01 14.60
0.04 1.81 19.70
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Measurements of velocity and concentration profiles
at Feng-Jie Hydrologic Station, the Yangtze River,
China

Time: 8/25/76 Time: 9/02/76

(m/s) (kg/m?)

h=287m h=371m
S=1x10"* S=75x10"°
3 W, C ¢ Uy C
(m/s) (kg/m?) (m/s) (kg/m?)
0.9983 2.87 1.74 0.9987 2.74 1.31
0.8000 2.81 1.84 0.8000  2.70 1.45
0.4000 2.57 2.03 0.4000 2.41 1.65
0.2000 2.21 2.19 0.2000 2.28 1.67
0.1000 1.96 2.35 0.1000 1.88 1.63
0.0174 1.43 2.97 0.0135 1.65 2.34
0.0035 1.10 4.18 0.0027 1.33 4.01
Time: 9/03/76 Time: 7/19
h=342m h=422m
S =83x10"° S=58x10"°
£ o C 3 Uy C
(m/s) (kg/m?) (m/s) (kg/m?)
0.9985 2.64 1.60 0.9988 2.82 1.41
0.8000 2.61 1.66 0.8000 2.82 1.70
0.4000 2.28 1.74 0.4000 2.46 1.83
0.2000 2.10 1.72 0.2000 2.22 1.93
0.1000 1.87 1.82 0.1000 2.03 2.26
0.0146  1.56 1.93 0.0118 1.63 2.26
0.0029 1.31 4.71 0.0024 1.41 4.93
Time: 8/21/81 Time: 5/21/81
h=444m h=154m
S =51x107° S =1.16 x 10~*
3 W, C ¢ Uy C

(m/s) (kg/m?)

0.9989 291 2.94
0.8000 2.83 3.58
0.4000  2.59 3.97
0.2000 2.35 4.16
0.0023 1.71 4.15

0.9989  2.77 0.75
0.8000  2.72 0.88
0.4000  2.45 0.98
0.2000  2.16 1.31
0.0023  1.59 1.59
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Time: 8/27/76

h=33.6m
S=76x10"°
3 Uy C

(m/s) (kg/m?)

Time: 7/21/76

0.9985  2.90 2.52
0.8000  2.88 2.53
0.4000  2.58 2.85
0.2000 2.29 3.16
0.1000  2.02 3.24
0.0149 1.79 4.64
0.0030  1.53 8.86

h=459m
S=5x10""°
3 Uy C

(m/s) (kg/m?)

Time: 8/19/81

0.9989 2.94 1.57
0.8000  2.85 2.03
0.4000  2.58 2.18
0.2000 2.34 2.19
0.1000  2.08 2.77
0.0109 1.89 3.00
0.0022  1.57 3.87

h =323 m
S=75x10"°
13 Uy C

(m/s) (kg/m?)

Time: 8/21/81

0.9985 2.85 1.29
0.8000  2.79 1.37
0.4000 2.51 1.67
0.2000  2.30 1.77
0.0031 1.62 1.89

h=44.4m
S=51x10""
§ Uy C

(m/s) (kg/m’)

Time: 8/21/81

0.9988  2.91 2.94
0.8000  2.83 3.58
0.4000  2.59 3.97
0.2000  2.35 4.16
0.0024 1.71 4.15

h=444m
S =51x10"°
§ Uy C
(m/s) (kg/m?)

0.9989 291

0.8000 2.83

0.4000 2.59

0.2000 2.35

0.0023 1.71
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