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ABSTRACT OF THESIS 

AMPLIFICATION OF SUPERCRITICAL SURFACE WAVES IN STEEP OPEN 

CHANNELS NEAR LAS VEGAS, NEVADA 

 

Supercritical surface waves occur in steep open channels. The celerity and 

amplification of these waves can be calculated using the dynamic wave 

approximation of the Saint-Venant equation. The method developed by Tsai and 

Yen was used in this thesis.  Given the assumption of a small perturbation on a 

uniform base flow, the method shows that the amplification characteristics over a 

single wavelength depend on the Froude number and wavelength.  All flood 

waves amplify when Froude numbers are greater than 1.5 and attenuate when 

Froude numbers are less than 1.5.  

 

For practical applications, a new parameter is defined to compare the 

amplification of surface waves of varying wavelength over a fixed channel length.  

This factor represents the amplification of a given wave over a fixed channel 

length rather than over a single wavelength.  Analysis showed that short waves 

will amplify more than long waves over the same channel length, and that the 
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highest amplification occurs when the waves are short and the Froude number is 

3.44. 

 

A 5 km long flood drainage channel located in Las Vegas, Nevada, was selected 

for practical applications.  At this study site, waves with lengths between 10 m 

and 5 km were analyzed.  For the waves examined, dimensionless celerity was 

between 1.36 and 1.66, and the relative amplification factor was less than 0.55.  

The normalized-length amplification was shown to increase up to 0.5 as 

wavelength decreased, which equates to an amplitude increase of 66%.  Over a 

543 m length of channel, waves can grow from 0.5 m to 0.8 m at the maximum 

discharge of 100 m3/s.  Three practical ways to reduce wave amplification in the 

channel include: (1) increasing the roughness; (2) decreasing the slope; and (3) 

reducing the available development length. 

 

Noah Friesen 
Department of Civil and Environmental Engineering 
Colorado State University 
Fort Collins, CO 80523 
Summer 2007 
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Chapter 1: Introduction

 

Steep storm drainage channels such as those found in Las Vegas, Nevada will 

convey supercritical flow.  These channels are necessary for draining the Las 

Vegas Valley during intense storms.  Figure 1.1 is an example of the extreme 

flooding that can occur. 

 

Figure 1.1 - Runoff flowing through a drainage channel during the 1999 flood (from Las 
Vegas Sun) 
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It is obvious from this photograph that storm drainage is a major issue in Las 

Vegas.  Floodwaters can cause extensive damage if the drainage channels are 

not sufficient to hold the flood.  However, these channels are costly to build and 

thus it is desirable to keep the size and depth of the channels as small as 

possible within the constraint that the channels must be able to pass the design 

flood.  Minimizing the amount of freeboard that is added to the depth to allow for 

unforeseen circumstances is one good way to reduce the cost of channel 

construction.  To minimize this freeboard, the behavior of the water within the 

channel must be well understood.  Waves that form within the channel will 

increase the depth, requiring more freeboard.  Currently, waves in supercritical 

flow have not been studied extensively.  Because of this, design guidelines for 

the construction of steep channels are often overly conservative and lack a good 

theoretical basis.  The design of channels in the Las Vegas Valley is regulated by 

the Clark County Regional Flood Control District (CCRFCD).  The design manual 

currently in use (CCRFCD 1999) contains a simple method for computing the 

expected height of roll waves based on Froude number and width-depth ratio.  

This criterion is based on limited theoretical studies, and would benefit from 

increased study. 

 

There are four key objectives in this study, and they are: 
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1. The main objective of this thesis is to increase understanding of 

supercritical wave behavior.  An analytical method for the analysis of small 

perturbations was developed by Tsai and Yen (2004).  This method allows 

for the calculation of dimensionless celerity and attenuation for waves 

based on the wavelength and Froude number.  Tsai and Yen only applied 

their method to subcritical flow.  The method itself is applicable to all flow 

regimes, and so this thesis will extend the application to supercritical flow.  

The method as used by Tsai and Yen finds the attenuation over a single 

wavelength. 

 

2. Secondly, this thesis will examine the method developed by Tsai and Yen 

to see if there are any areas of potential improvement.  Ultimately, the 

goal with any engineering study is to apply the results to real world 

systems.  Particular focus will therefore be given to enhancements that 

enable a better or easier application to practical results.  Wave amplitude 

change over a fixed channel length rather than over a single wavelength 

would be useful to know, and a parameter will be defined to represent this 

amplitude change. 

 

3. Third, the method previously introduced will be applied to an existing flood 

drainage channel in Las Vegas.  Specifically, the channel known as F-1 
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channel in Las Vegas will be analyzed.  Waves will be theoretically 

imposed on flow within this channel and the propagation speed and 

amplification of those waves will be calculated and analyzed.  A wide 

variety of wavelengths and discharges will be studied to ensure that the 

results are as complete as possible given the limitations of the method. 

 

4. The final objective of this thesis is to use the results generated in the 

previous objective to suggest possible methods for reducing or eliminating 

wave amplification in the F-1 channel.  Different approaches will be 

examined and recommendations given. 

 

The remainder of this thesis will be organized in several different chapters.  The 

second chapter will look at previous studies that have been done in the area of 

supercritical wave formation and propagation. 
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Chapter 2: Literature Review 

2.1 Previous Studies 

The flow through steep channels during a storm event is inherently non-uniform 

and unsteady.  Due to small perturbations in both flow velocity and depth, waves 

can develop within the flow.  Although supercritical wave behavior has not been 

studied in great detail, there has been a variety of relevant work done over the 

years. 

 

The Saint-Venant equations express the ideas of conservation of mass and 

momentum in differential form.  The Saint-Venant equations do not have a known 

exact analytical solution.  Because of this, there has been much work done over 

the years to develop approximations and numerical solutions to these equations. 

 

Ponce and Simons (1977) published a seminal paper on wave dynamics in open 

channels.  They utilized the theory of linear stability to analyze the celerity and 

attenuation of small shallow water waves.  Relationships were developed that 

provided a first-order approximation that depended on the Froude number and 

the dimensionless wave number.  Ponce and Simons gave a mostly qualitative 

analysis on the propagation of waves over a large range of Froude numbers.  
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They also examined the applicability of different wave approximations.  They 

identified three main wave bands corresponding to different wave numbers.  

Small wave numbers fell into the kinematic wave band, with constant celerity and 

no attenuation or amplification.  Large wave numbers caused waves to behave 

as gravity waves, with a (different) constant celerity and again no attenuation.  In 

the middle they identified the dynamic wave band, where the full Saint-Venant 

equations were required to adequately describe the propagation mechanics. 

 

A number of studies since then have also looked at the applicability and 

usefulness of different approximations to the Saint-Venant equations.  Ferrick 

(1985) studied the different approximations of the Saint-Venant equations with 

the goal of providing quantitative criteria for the determination of when each wave 

approximation is appropriate.  The criteria developed were based on the balance 

between friction and inertia forces in the wave.  One important aspect of this 

analysis was that several case studies were used to verify and complete the 

criteria. 

 

Later, Ferrick and Goodman (1998) compared linear solutions of the dynamic 

wave and diffusion wave approximation to a non-linear diffusion wave.  All of the 

case studies used in this analysis were subcritical, with the highest Froude 

number being 0.96.  As in the previous study by Ferrick (1985), the instability 
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point was found to occur at a Froude number equal to 2.  The authors found that 

the linear and non-linear models have good agreement at low Froude numbers, 

but start to diverge as the Froude number increases towards the instability point.  

Ferrick (2005) again looked at comparisons between linear and non-linear 

waves.  In that study, it was stated that wave development distances for the 

monoclinal wave are short for steep and shallow flow.  The monoclinal wave that 

was examined was a rapid transition from a low steady flow to a higher steady 

flow. 

 

Moussa and Bocquillon (1996) also created a set of criteria for use in determining 

when each wave approximation is appropriate.  The parameters used in this 

study to define each approximation‟s applicable range were the Froude number 

and the period of the input hydrograph.  As with Ferrick (1985), the criteria 

focused on the balance between friction and inertia terms in the Saint-Venant 

equations.  Moussa and Bocquillon also went on to focus on the diffusive wave 

and examined different numerical solutions to that approximation.  The authors 

also stated that wave approximations will not typically be valid when the depth 

and velocity change rapidly. 

 

Mishra and Seth (1996) looked at the use of hysteresis to aid in the 

understanding of wave propagation in natural channels.  This study used the 
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hysteresis that is present in a rating curve during a flood event to quantify which 

wave approximations (such as the gravity wave or kinematic wave) are 

appropriate in different situations.  It was found that the degree of the hysteresis 

effect in the rating curve is a good indicator of the energy loss within the flood 

wave.  Relationships were also postulated between the hysteresis and the 

celerity, attenuation, and wave number of the studied waves.  Perumal, Shrestha, 

and Chaube (2004) also examined the hysteresis present in flood rating curves.  

The applicability of the Jones formula was examined for the conversion of stage 

to discharge. 

 

Chung and Kang (2006) developed another criterion to classify wave types in 

natural channels.  They decoupled the Saint-Venant equations using Laplacian 

frequency domains.  The wave classification system developed is based on 

normalized specific energy, and incorporates the system developed by Ferrick 

and colleagues.  This study also looked briefly at supercritical flow, from a 

numerical modeling standpoint. 

 

In addition to analytical studies looking at the viability of different wave 

approximations, other analytical and theoretical work has been done involving 

supercritical flow or waves.  Lyn and Altinakar (2002) produced an analytical 

solution of the coupled Saint-Venant and Exner equations.  They observed that in 
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a mobile-bed system, strict definitions of supercritical and subcritical flow are not 

valid.  In near-critical flow, bed waves and surface waves will interact strongly.   

 

Ponce, Taher-shamsi, and Shetty (2003) used the method of Ponce and Simons 

(1977) to look at the propagation of dam break waves.  The authors found that at 

a certain distance downstream of the dam, the attenuation of the wave will cause 

the peak discharge to be independent of the discharge through the dam break.  

Singh, Li, and Wang (1998) also looked at the attenuation of dam break waves.  

They used a second-order approximation of the Saint-Venant equations in that 

study.  Further investigation into the theory of dam break waves was done by 

Wu, Huang, and Zheng (1999).  They found that the wave properties will be 

defined solely by the ratio of initial upstream and downstream depths. 

 

Venutelli (2004) performed a direct integration of a particular case of the 

gradually-varied flow equation and applied it to steep channels.  Mizamura, 

Yamasaka, and Adachi (2003) performed analytical and experimental studies on 

flow through side outlets in steep channels.  Criteria were developed to aid in 

calculating discharge through these outlets.  Mizamura (2005) later refined the 

criteria.  Graber (2006) performed a theoretical analysis of supercritical 

expansions and unstable water surface formation. 
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Mizamura (1995) performed both analytical and experimental studies on flow 

over wavy beds and with wavy side walls.  Supercritical and subcritical flow were 

both looked at.  Analytical results were not in agreement with experiments for 

supercritical flow with wavy walls.  Molls and Zhao (2000) developed two 

numerical models to examine the waves generated in supercritical flow due to a 

wavy boundary.  They compared the numerical results to experimental results 

from Mizamura (1995) with mixed effectiveness. 

 

Menendez (1993) examined open channel waves from the perspective of looking 

at the form that a perturbation will have after a long time.  It was found that any 

perturbation in a space-limited channel will, after enough time has past, be in the 

form of a bell, a step, or a sinusoid.  This study considered only linear effects, but 

stated that linear solutions to the wave equations give good results due to the 

fact that large waves exhibit similar behavior, in a qualitative sense, as small 

waves.  Froude numbers up to 2 were examined using a formulation based on 

the Chezy equation of resistance to flow.  The use of this equation places the 

threshold for stability at 2, rather than 1.5 as is the case for the Manning equation 

for resistance, as will be shown later in the present study.  Unstable waves at 

Froude numbers above 2 were not examined in any detail. 
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Tsai and Yen (2001) performed a detailed analytical study on the propagation of 

waves in shallow open channel flow.  The downstream boundary condition in the 

channel was accounted for and its effects on wave propagation were examined.  

Laplace transforms were used as an alternative method of analyzing wave 

behavior.  However, this study was limited to strictly subcritical flow.  Tsai and 

Yen (2004) examined wave propagation in gradually-varied flow, such as an M1 

or S1 profile.  Steep channels were looked at, but the flow within these channels 

was limited to subcritcal, convectively decelerating flow in an S1 profile.  Tsai 

(2003) used the methods of Tsai and Yen to examine the applicability of different 

wave approximations to different situations.  Chung, Aldama, and Smith (1993) 

also looked at the effects of backwater on wave propagation.  The diffusive wave 

approximation was used, which limits the results to subcritical flow only. 

 

Onizuka and Odai (1998) used a method of approximating the Saint-Venant 

equations that allowed them to analytically inspect translatory waves in 

subcritical flow.  Later, the authors made a more detailed study of the 

approximation, which is called the Burgers equation model (Odai, Kubo, Onizuka 

& Osato 2006).  The results were still only valid for subcritical flow.  Ponce, Rao, 

and Mansury (1999) analytically examined the attenuation of small waves formed 

by the opening of canal gates.  A simple criterion was developed to aid canal 

operators with timing the opening of gates.   
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Recently, Ridolfi, Porporato, and Revelli (2006) derived the Green‟s function of 

the linear form of the Saint-Venant equations and used it to consider the behavior 

of waves in both subcritical and supercritical flow.  The authors found that waves 

propagating in open channels will be composed of three distinct sub-waves; one 

downstream front, one upstream front, and one exponential wave.  The Green‟s 

function derivation allowed the authors to examine the cause of the instability at a 

Froude number equal to 2.  The study states that when the Froude number is 

greater than or equal to 2, the body of a wave will have a celerity greater than the 

front of the wave.  This causes the wave damping that occurs at lower Froude 

numbers to disappear, and the wave amplifies.  If a sufficient amount of time is 

allowed for the wave to grow, a roll wave will form at which point the wave is 

breaking and can no longer amplify. 

 

A range of experimental studies have also been performed on supercritical flow.  

Chamani and Beirami (2002) looked into supercritical flow over drops.  Empirical 

relationships were created to predict the energy loss when supercritical flow goes 

over a drop.  In a similar vein, Lin, Huang, Suen, and Hsieh (2002) measured the 

velocity distribution of subcritical and supercritical flow over a drop. 
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Julien and Hartley (1986) studied the formation of roll waves in laminar sheet 

flow.  The conditions in this study were subcritical, with very shallow flow.  

Because the flow was laminar, this study revealed that the flow can become 

unstable and produce amplifying waves at a theoretical Froude number of 0.5.  

Roll waves were actually observed in subcritical sheet flow at Froude numbers as 

low as 0.74.  This study also examined the length that was necessary for the 

formation of these roll waves.  The relationship found for the formation length of 

roll waves involved the momentum correction factor as a key parameter. 

 

Einhellig and Pugh (2001) examined a physical model of a side weir designed for 

use in a steep channel.  Ghodsian (2003) also looked at discharge over side 

weirs in supercritical channels.  Equations were developed empirically for the 

calculation of discharge over these weirs. 

 

Supercritical flow can also occur in closed-conduit systems.  Supercritical flow 

through storm sewers has been the subject of numerous experiments by Hager 

and colleagues.  Oliveto, Biggiero and Hager (1997) experimentally studied 

supercritical flow in sewers with bottom outlets.  Design guidelines were 

presented.  Reinauer and Hager (1998) experimented on supercritical flow in a 

converging open channel.  Design guidelines were empirically created for these 

convergences.  Giudice, Gisonni, and Hager (2000) performed experiments in 
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bend manholes for supercritical flow.  Giudice and Hager (2001) later performed 

additional experiments on supercritical flow through manholes.  Gargano and 

Hager (2002) looked at supercritical sewer flow, and recommended revising 

design standards for this case based on their experimental results.  Finally, 

Martino, Gisonni, and Hager (2002) performed experiments on supercritical flow 

through sewers with the goal of examining sharp drop-offs and cross-section 

changes. 

 

One development that may aid the experimental study of wave dynamics was 

made by Miyamoto and Kanda (2002).  They presented a novel method of 

measuring both the elevation and velocity of rapidly varying water surfaces 

including supercritical waves. 

 

The third main area of research in recent years has been numerical modeling.  

There is an almost infinite array of model types available.  Different numerical 

schemes, grids and underlying equations make it possible to model almost any 

problem numerically. 

 

Hicks, Steffler, and Yasmin (1997) looked at the viability of 1-D models for dam-

break wave propagation.  Mixed results were obtained when including 

supercritical flow.  Unami, Kawachi, Babar, and Itagaki (1999) created a 2-D 
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numerical model to study supercritical flow down spillways.  Mingham and 

Causon (1998) created a numerical model to look at bore wave propagation.  

The model is applicable to both subcritical and supercritical flow.  These two 

researchers then teamed up with Ingram (Causon, Mingham, and Ingram 1999) 

and used a 2-D finite volume numerical model to study supercritical flow and 

wave heights and locations.  Kruger and Rutschmann (2001) expanded this 

study with the use of more detailed shallow water equations. 

 

Kruger and Rutschmann (2006) later created a very detailed numerical model for 

supercritical flow.  This model is based on the Navier-Stokes equations and 

addresses flow separation and wave breaking at high Froude numbers.  It was 

observed that wave heights will increase with Froude number. 

 

Schwanenberg and Harms (2004) created a numerical model for trans-critical 

flow.  They compared the model with actual dam-break measurements, with 

good results.  Ying, Khan, and Wang (2004) developed a numerical model based 

on the Saint-Venant equations that is applicable to supercritical and transcritical 

flow.  Valiani and Caleffi (2005) examined the applicability of numerical models to 

supercritical flow in sharp bends. 
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Zoppou and Roberts (2003) compared a wide variety of numerical models and 

looked at the accuracy of a modeled dam break, with and without supercritical 

flow. 

 

Burg, Huddleston, and Berger (2001) used optimization to solve for channel 

geometry given a desired water surface profile.  They applied this technique to 

supercritical flow in channel transitions. 

 

2.2 Theory 

One issue that needs to be accounted for in the design of steep open channels is 

the depth of flow within the channel.  For steady and uniform flow, this depth 

would simply be a function of the channel properties such as geometry and 

roughness, along with the flow rate.  However, steady uniform flow is not always 

present in real channels.  There are many reasons that this ideal situation may 

not occur.  The flow in a channel can be unsteady due to increases or decreases 

in the intensity of rainfall, as well as surges in flow caused by dam breaks, along 

with many other possibilities.   With this unsteady flow, the depth in the channel 

is also a function of time.  The unsteady flow fluctuations will cause the depth 

and velocity of the flow to vary in time rather than being constant.  Another 

possible reason that steady uniform flow may not be present is when the flow is 

gradually varied in space.  Gradually varied flow is when the parameters of the 
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flow change along the main direction of flow.  This type of flow can be either 

steady or unsteady.  Unsteady, gradually varied flow is the most general case, 

where the flow parameters can vary in both space and time. 

 

The Saint-Venant equations can be used to describe the general unsteady, 

gradually varied case.  These equations use the principles of both conservation 

of mass, and conservation of momentum.  As noted by Lai, Baltzer, and 

Schaffranek (2003) care must be taken to ensure that the final equations used 

are consistent with the initial conservation assumptions.  Using these equations, 

backwater profiles can be developed that give the depth and velocity of flow 

along the entire relevant reach and for the relevant stretch of time.  When the 

flow is varied in either space or time, waves can form in the channel.  The Saint-

Venant equations can also be used to describe these waves.  If the full Saint-

Venant equations are used to describe a wave with no terms left out, the 

resulting model is called the dynamic wave model.  By neglecting certain terms 

within the Saint-Venant equations other simplified wave models can be 

developed, such as the kinematic wave, diffusive wave and gravity wave (Julien 

2002).  Yen and Tsai (2001) made a case for referring to the diffusive wave 

approximation as the non-inertia wave.  These simplified models have the 

advantage of being easier to use, and can give good results when used in the 

proper situations. 
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One-dimensional unsteady supercritical flow in open channels is governed by the 

Saint-Venant equations (Graf 1998). These equations can be stated as follows 

(Tsai 2005): 

 0
x

u
y

x

y
u

t

y
 (2.1) 

 00SSg
x

y
g

x

u
u

t

u
f  (2.2) 

 Where: 

  y = flow depth 

  t = time 

  u = flow velocity 

  x = spatial distance along the channel 

  g = gravitational acceleration 

  Sf = friction slope of the flowing water 

  S0 = bed slope of the channel 

 

The first of these equations is a statement of the principle of conservation of 

mass.  The second equation is a version of the conservation of momentum 

principle.  Because these equations contain derivatives in both space and time, 

they are valid for the general case of unsteady, gradually-varied flow.  This 

statement of the Saint-Venant equations assumes that the channel is very wide 



 19 

compared to its depth, and so the flow depth is essentially equal to the hydraulic 

radius.  A visual depiction of the flow parameters contained in Equations (2.1) 

and (2.2) is shown below in Figure 2.1. 

 

Figure 2.1 - Flow parameters 

 

The friction slope term, Sf, in Equation (2.2) is representative of the rate of 

energy dissipation within the flowing water.  The friction slope is most often 

defined using semi-empirical resistance equations such as the Chezy equation or 

Manning‟s equation.  For this study, the Manning equation will be used.  The 

Manning equation is similar in form to the Chezy equation, but contains an 

additional term of y1/6.  This has the result that the resistance coefficient used in 

Manning‟s equation can be reasonably approximated as being constant with 

depth, while the Chezy coefficient is not constant with depth (Tsai and Yen 

2001).  The Manning equation can be written as: 
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 Where: 

  n = roughness coefficient for Manning‟s equation 

  υ = constant depending on the units used 

  R = hydraulic radius 

 

This shows that the friction slope will increase proportional to the square of the 

velocity, and will decrease when the depth is increased.  To be in the 

supercritical regime, flow will typically have a high velocity and small depth, 

which results in a high value for the friction slope.  Manning‟s equation is strictly 

valid only for steady uniform flow.  However, it is quite commonly used for 

unsteady and non-uniform flow conditions.  Also, when looking at unsteady flow, 

care must be taken to ensure proper use of the energy and momentum equations 

(Field, Lambert, & Williams 1998). 

 

The definition of supercritical flow can be stated as flow with a Froude number 

greater than one.  The Froude number can be found using: 

  
gy

u
Fr  (2.4) 

 Where: 

  Fr = Froude number 
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The Froude number is a ratio of the inertial forces to the gravitational forces in 

flowing water.  Along with the friction slope, the Froude number is one of the 

defining characteristics of a backwater profile.  Backwater profiles can be 

categorized into different groups based on the parameters of the channel and of 

the flow within that channel.  For a given flow rate, the bed slope in a channel 

can be defined as either “steep” or “mild” depending on the relative magnitudes 

of the normal depth and critical depths (Mays 2005).  The normal depth can be 

found using Equation  (2.3) and setting the friction slope equal to the bed 

slope.  This signifies a situation where the flow in the channel is controlled by the 

channel, and the flow is uniform.  The critical depth can be found by setting the 

Froude number equal to one, and solving for depth.  If the normal depth is higher 

than the critical depth, the channel is mild.  If the normal depth is below the 

critical depth, the channel is steep at that flow rate.  A steep channel corresponds 

to the uniform flow condition in that channel being supercritical.  Depending on 

where the actual flow depth lies, the flow in a steep channel can be further 

subdivided into three zones.  If the flow depth is greater than critical depth, the 

flow is subcritical and is within zone 1.  If the flow is less than critical depth, but 

still greater than normal depth, the flow is supercritical and within zone 2.  Zone 3 

is when the flow depth is less than normal depth, and is also supercritical.  Flow 
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that approaches critical depth is often unstable.  If the channel and flow 

parameters are constant, the flow will asymptotically approach normal depth. 

 

It should be stressed that the derivations in the rest of this chapter are based on 

the work of Tsai and Yen.  Because the results were published in a peer-

reviewed journal, the author has taken as a given that the derivation is correct 

both theoretically and mathematically.  Following the derivation of Tsai (2005), 

the Saint-Venant equations can be non-dimensionalized.  The dimensionless 

parameters used are as follows: 
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 Where: 

  x* = dimensionless distance along the channel 

  t* = dimensionless time 

u* = dimensionless flow velocity, expressed as a ratio to the normal 

flow velocity 

  y* = dimensionless ratio of the flow depth to the normal depth 
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  L0 = yn/S0 

  yn = normal flow depth calculated using a resistance equation 

  un = flow velocity associated with the normal flow depth 

 

The parameter L0 can be thought of as the longitudinal distance along the 

channel necessary for the bed to drop in elevation an amount equal to the normal 

depth.  Visually, this is shown in Figure 2.2. 

 

Figure 2.2 - Normalized length 

 

These four dimensionless parameters can be inserted into Equations (2.1) and 

(2.2). The depth and velocity will be equal to the normal depth and velocity when 

the friction slope is equal to the channel slope. 
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  Rn = hydraulic radius at normal flow conditions 

 

With this, the ratio between the friction slope and the bed slope can be 

expressed as 
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 Where: 

  α = a constant that will vary based on which resistance equation is  

   used. 

 

With Manning‟s equation, α will have a value of 4/3, while if the Chezy or Darcy-

Weisbach resistance equations are used, α will have a value of unity.  If, as in the 

statement of the Saint-Venant equations used in this study, the channel is 

assumed to be wide relative to its depth, the hydraulic radius R will be equal to 

the depth y.  Noting that the ratios in Equation  (2.10) are the same as in 

Equations  (2.7) and  (2.8), Equation  (2.10) can be rewritten as  
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With these equations defined, the Saint-Venant equations can then be non-

dimensionalized.  The dimensionless ratios in Equations  (2.5) -  (2.8) can be 

rearranged to give 
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These equations can then be substituted into Equation (2.1).  
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The normal flow case will be constant with time as long as the geometry of the 

channel does not change.  Pulling all of the constant terms outside of the 

derivatives and canceling gives 
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This is in the same form as Equation (2.1) with all of the variables replaced with 

their dimensionless equivalents.  Similarly, Equation (2.2) can be rearranged 

noting that 
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Again, the constant terms can be taken out of the derivatives and terms can be 

cancelled.  Additionally, the entire equation can be divided by gS0 to give 
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The first term in Equation (2.20) is the same as Fn2, where Fn is the Froude 

number at normal conditions; nn gyuFn . 

 

The equation that describes the change in depth with space for a gradually-

varied flow profile is 
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As previously explained, the relative magnitudes of the terms in Equation (2.21) 

determine the type of water surface profile that will be present.  If the base flow in 
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a channel is defined as yb, a dimensionless base flow can be defined as yb
* in a 

similar manner as the earlier dimensionless parameters.  Once again the 

dimensionless parameters can be inserted into Equation (2.21) and terms 

cancelled.  The resulting equation is 

 
2

0

*

*

1

1

Fr

SS

dx

dy fb
 (2.22) 

 

Using the method of Tsai (2005) which is based on the work of Ponce and 

Simons (1977), a linear stability analysis can be done on the dimensionless 

Saint-Venant equations to find the celerity and attenuation/amplification factor of 

a wave.  This linear analysis assumes that the wave is of infinitesimal amplitude, 

although some studies (Menendez, 1993) have indicated that waves of 

reasonable dimensions will be quantitatively similar to infinitesimal waves.  A 

perturbation that is imposed mathematically on the steady base flow can be 

depicted as 

 
*** `yyy b  (2.23) 
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 Where: 

  y`* = depth perturbation 

  u`* = velocity perturbation 
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A visual depiction of this perturbation can be seen in Figure 2.3.  The vertical 

scale in Figure 2.3 is exaggerated to show detail. 

 

Figure 2.3 – Small wave perturbation on base flow 

 

The first term in Equations (2.23) and  (2.24) is a first order term, while the 

second term is assumed to be a lower order of magnitude than the first term.  

The perturbations can be expressed as a sinusoid using the relationship of Euler 

 
** ˆ` ieyy  (2.25) 

 
** ˆ` ieuu  (2.26) 

 Where: 

  ŷ = amplitude of the depth perturbation 

  û = amplitude of the velocity perturbation 

  i = the square root of -1 
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  θ* = a phase variable 

 

These definitions can be used with Equation (2.17) to give 
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Separating the derivatives and rearranging gives 

 

0
`

`
`

`

```

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

x

u

x

u
y

x

y

x

y
u

x

u
y

x

u
y

x

y
u

x

y
u

t

y

bb

b

b

bb

b

b

 (2.28) 

 

With the definition of u`* and y`* in Equations (2.25) and  (2.26), the 

derivatives of those terms can be found as 
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Thus the exponential terms will disappear from Equation (2.28) giving 
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Because the perturbations y`* and u`* are assumed to be of small magnitude, the 

product of two of these variables will be equivalent to a higher order term that 

can be neglected.  Canceling terms where possible and combining gives 
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The unit discharge for flow in a channel can be described as 

 uyq  (2.35) 

 Where: 

  q = the discharge per unit width in the channel 

 

Therefore the dimensionless unit discharge can be seen to be 

 
*** yuq  (2.36) 

 Where: 

  q* = the dimensionless unit discharge 

 

For steady flow conditions, the value of q* will be equal to unity.  This means that 
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Using this relationship, base flow parameters can be expressed as either depth 

or velocity.  Taking derivatives with respect to space gives 
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The final two terms in Equation (2.34) can then be stated as 
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These terms are then equal to zero, and the final equation for conservation of 

mass with an infinitesimal linear perturbation is 
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It is interesting to note that the depth of the perturbation is multiplied by a time 

derivative, but the velocity of the perturbation is not. 

 

Plugging Equations (2.25) and  (2.26) into Equation (2.20) gives 
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Utilizing Equations (2.29) - (2.32) as well as rearranging and canceling terms 

gives 
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A Taylor Series expansion of the term **
`yyb  around the value yb

* gives 
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The last term in this equation can be neglected because it is of a lower order of 

magnitude.  Using this in Equation (2.43) with further rearranging gives 
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This can once again be simplified using Equation (2.37) to 
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Because the terms of interest are the ones that are multiplied by the perturbation 

quantities u`* and y`*, the other terms can be neglected in this analysis, leaving 

the following as the perturbed version of the conservation of momentum equation 
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This along with Equation (2.41) gives a coefficient matrix multiplied by a column 

vector with u`* and y`* in it.  As stated by Tsai (2005) as well as Ponce and 

Simons (1977), the determinate of this matrix must be equal to zero for the 

solution to be non-trivial.  Taking the determinate equal to zero gives 
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At this point, several additional quantities can be defined.  The phase variable, θ*, 

has both a time and space derivative.  These are represented by 
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 Where: 

  β* = βr
* + βc

* = a complex propagation number 

  σ* = dimensionless wave number 

 

The dimensionless wave number is a way of quantifying the wave frequency in a 

dimensionless manner, and is defined as 
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 (2.51) 

 Where: 

  λ = the wavelength of the small perturbation 

 

The celerity of a wave is defined as its propagation speed and is given 

mathematically as 
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 Where: 

  c = wave celerity 

  T = wave period 
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A dimensionless celerity can be then defined as the ratio of celerity to normal 

flow velocity 
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c
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 (2.53) 

 Where: 

  c* = dimensionless celerity 

 

According to Ponce and Simons (1977), the real component of the complex 

propagation number β* can be expressed as 
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Combining this with the definition of the wave number in Equation  (2.51), the 

dimensionless celerity can be expressed as 
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Wave attenuation and amplification can be described by an exponential terms 

like so 
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Equation(2.56) can be rearranged such that 
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The product of the imaginary component of the propagation number and 

dimensionless time can be defined as the logarithmic attenuation factor, δ*. 

 

Again following Ponce and Simons (1977), this attenuation factor can be restated 

as 
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With the definitions of dimensionless celerity and attenuation factor, these two 

parameters can be solved for using Equation (2.48).  The complex propagation 

number β* can be found by solving Equation (2.48), realizing that it is a quadratic 

equation with a complex square root.  According to Tsai (2003), the complex 

propagation number for the full dynamic wave is 
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This then leads to the definition of the dimensionless celerity and attenuation 

factor as 
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The two equations can be used to find the celerity and attenuation factor of any 

small wave in gradually varied flow.  Tsai and Yen have used these equations to 

examine the propagation of waves in subcritical flow.  A sample of the results 

found by them is shown in Figure 2.4 (Tsai 2005).  These results will be 

expanded in the following chapters to include supercritical flow, as well as be 

applied to a specific drainage channel in Las Vegas, Nevada. 
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Figure 2.4 - Celerity and attenuation from Tsai (2005) 
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Chapter 3: Theoretical Results and Analysis 

 

The celerity and attenuation of waves was examined for a variety of flow 

conditions and situations.  The main zone of interest for this study is when the 

Froude number of the flow is between approximately 2 and 4, as these values 

are commonly found in Las Vegas storm drainage canals (Duan and Chen 2003).  

However, Froude numbers outside of this range will also be subject to a 

theoretical investigation based on Equations (2.61) and  (2.62).  The 

dimensionless celerity and attenuation factor will be calculated for a wide range 

of Froude numbers and the results examined.   

 

3.1 Celerity and attenuation factor versus wave number  

For a given Froude number, the wave number can be varied along a range.  

Ponce and Simons (1977) stated that the secondary wave will attenuate along 

the entire wave number spectrum for all Froude numbers.  Since the case of 

wave attenuation is not of chief interest in this study, only the primary wave will 

be investigated.  The base flow in the Las Vegas storm drainage canals can be 

assumed to be steady and uniform, with the wave perturbation imposed on it.  

Manning‟s equation is the most widely used equation for frictional resistance in 



 40 

open channels, and will be used in this study.  The method used to calculate both 

dimensionless celerity and amplification factor is detailed below. 

 

1) The first step is to select a Froude number.  In this calculation example, 

Fn = 2.66 will be used. 

 

2) Next, a wave number must be selected.  A wave number of 1 will be used 

for this computation. 

 

3) The value of alpha is determined by the resistance equation used.  

Manning‟s equation is being used in this study, and therefore α = 4/3. 

 

4) Because of the assumption of uniform base flow, yb* is equal to unity, due 

to the fact that the base flow depth is equal to normal depth.  Also, 

because the base flow is assumed constant with distance, the parameter 

0**
dxdyb . 

 

5) As stated above, the primary wave will be the focus of this study, and so j 

= 1. 

 

6) With these values, the dummy variables A, B, and θ can be found like so 
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7) With the three numbers found in step 6, the dimensionless celerity can be 

calculated using Equation (2.61) 

416.1

877.0472.01

07.1sin9.125141.01

2

11214.2
sin43.908.6

66.21

1
1

25.0

4
1

22

2

1*c

 

 

8) Then, using Equation  (2.62), the attenuation factor can be found 
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9) At this point, a new wave number can be chosen, and steps 6-8 can be 

repeated until a line for the chosen Froude number is found. 

 

10)  Once the line for the chosen Froude number is completed, a new Froude 

number can be chosen, and a line plotted for that. 

 

A plot of dimensionless celerity versus wave number is shown in Figure 3.1.  This 

is similar to a plot created by Ponce and Simons (1977) with the difference that 

Manning‟s equation was used here while Ponce and Simons used the Chezy 

equation. 
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Figure 3.1 - Dimensionless celerity vs. wave number 

 

It can be seen in Figure 3.1 that the dimensionless celerity of any wave will 

approach 1.667 or 5/3 when the wave number is small.  Using the definition of 

wave number in Equation  (2.51) it can be seen that the wave number is 

inversely proportional to the wavelength of the disturbance.  Therefore a small 

wave number indicates a perturbation of large wavelength.  Waves of this type 

will travel with a constant celerity irrespective of Froude number.  This conclusion 

confirms the common result found in Graf (1998) as well as many other sources.  

An increasing wave number corresponds to waves of decreasing length.  As the 

wave number increases, the dimensionless celerity of propagation for the wave 

will deviate from the constant value found for very long waves.  Wave traveling in 
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flow with high Froude numbers will deviate very quickly from this constant value.  

Figure 3.1 shows that waves with a Froude number of 10 will have dimensionless 

celerities different than 5/3 at wave numbers less than 0.01.  The smaller the 

Froude number, the shorter waves must get before the dimensionless celerity will 

deviate from 5/3.  Flow with a Froude number of 0.1 will not deviate until the 

wave number is greater than 1.0. 

 

Regardless of Froude number, all of the lines in Figure 3.1 have one trend in 

common.  After starting at a constant dimensionless celerity of 5/3 for low wave 

numbers, all of the Froude number lines will deviate from that value for a while 

and then become constant again for high wave numbers.  The Froude number 

controls the degree as well as the sharpness of this deviation.  A Froude number 

of 0.1 will deviate quite far from 5/3 at higher wave numbers, and will change 

from 5/3 to its upper constant value of 11 over a relatively short range of wave 

numbers.  This creates a very steep slope in the line for Fr = 0.1 in Figure 3.1.  

As the Froude number increases, the slope around the inflection point of each 

line will become milder.  Also, the constant dimensionless celerity that is 

achieved at high wave numbers (short wavelengths) will decrease as Froude 

number increases.  As the Froude number of the flow increases, the base 

velocity is increasing.  Because the dimensionless celerity is the ratio of celerity 

to base flow velocity, if the dimensionless celerity and base flow velocity are both 
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high, the dimensional celerity must be extremely high to overcome the influence 

of the high base flow velocity.  This would result in wave speeds that are 

unreasonably fast, and so as the base flow velocity increases, the maximum 

dimensionless wave celerity will decrease.  As the Froude number gets very 

high, the dimensionless celerity will approach unity, and waves will propagate at 

the same speed as the base flow. 

 

A Froude number of 1.5 is the threshold value for determining if the 

dimensionless celerity will increase or decrease as the wave number increases.  

Froude numbers below this threshold will increase, while flow with Froude 

numbers above 1.5 will have a decreasing dimensionless celerity.  Flow with a 

Froude number of exactly 1.5 will have a constant dimensionless celerity of 5/3 

regardless of wave number and hence wavelength.  This threshold of 1.5 is 

dependant on the assumptions made in the derivation above.  The threshold will 

change if different assumptions are made.  For example, if the Chezy or Darcy-

Weisbach equations are used instead of the Manning equation for frictional 

resistance, the threshold value will be a Froude number of 2.  Figure 3.1 

indicates that waves traveling in flow with high Froude numbers will have a 

celerity slower than that of a kinematic wave, while waves with a low Froude 

number will travel faster than a kinematic wave, at higher wave numbers. 
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The dimensionless attenuation factor can also be calculated for a variety of 

Froude numbers and wave numbers.  By plotting the same range of Froude 

numbers as are in Figure 3.1, Figure 3.2 and Figure 3.3 can be produced.  These 

plots have the same range of wave numbers as Figure 3.1.  Negative values for 

the dimensionless attenuation factor, δ*, indicate that the wave will attenuate as it 

propagates.  Positive values indicate that waves will amplify.  Once again, a 

Froude number of 1.5 is seen to be the threshold value.  Froude numbers below 

the threshold will have waves that attenuate for all wave numbers.  Above the 

threshold, all waves will amplify.  Waves that exist in flow with a Froude number 

of exactly 1.5 will travel downstream with no amplitude change.  It is still possible 

and likely that the shape of a wave will change even if the amplitude does not. 
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Figure 3.2 - Dimensionless attenuation factor versus wave number 
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Figure 3.3 - Close up of Figure 3.2 

 

Waves with very low Froude numbers will attenuate significantly.  Amplifying 

waves with high Froude numbers will have a much lower absolute δ* value than 

attenuating waves with low Froude numbers.  The minimum point along the Fn = 

0.1 line is about -15, while flow with a Froude number of 10 reaches a maximum 

of only about 0.87.  This shows that wave attenuation is a much more prevalent 

phenomenon and is of a significantly higher magnitude than amplification.   

However, wave amplification does still occur, and is large enough that it should 

be taken into account in design. 
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It can be seen in Figure 3.3 that the dimensionless attenuation factor for all 

waves will approach zero when the wave number is either very large or very 

small.  This means that waves that are quite long or quite short will have little 

amplitude change as they propagate.  By comparing Figure 3.1 and Figure 3.3, it 

would appear that the celerity and attenuation/amplification of waves are 

interrelated.  The absolute value of δ* is highest at wave numbers corresponding 

to changes in the dimensionless celerity.  When the dimensionless celerity is 

constant at high or low wave numbers, the attenuation factor will be small.  As 

noted in previous studies (Ponce and Simons 1977), the peak of the δ* curve will 

occur at the same wave number as the inflection point of the dimensionless 

celerity curve. 

 

As the Froude number increases, the wave number of the peak 

attenuation/amplification decreases.  This means that waves with high Froude 

numbers will amplify more when the waves are longer.  Short waves at high 

Froude numbers will have little or no amplification.  The wave number that 

corresponds to the peak attenuation/amplification (and thus also the inflection 

point of the dimensionless celerity curve) is shown in Figure 3.4 as a function of 

Froude number.  This graph is equivalent to tracing a line through the peaks of all 

the different Froude number curves in Figure 3.3.  This line will asymptotically 

approach zero as the Froude number increases.  On the other end of the 
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spectrum, as the Froude number decreases, the peak attenuation will 

asymptotically approach positive infinity.  There is not any evidence of a 

threshold at a Froude number of 1.5, or at any other value.  Interestingly, the 

peak attenuation for critical flow (Froude number equal to one) will occur at a 

wave number of 1.   
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Figure 3.4 - Location of peak attenuation factor 

 

3.2 Normalized length amplification factor 

It should be noted that δ* is a logarithmic decrement/increment.  This means that 

it is an indication of the amplitude adjustment that will occur as the wave travels 

over a length of one wavelength.  This is an important piece of information.  The 
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actual amount of amplification or attenuation that a wave will experience within a 

channel is not dependent solely on the dimensionless attenuation factor.  The 

wavelength of the disturbance also plays a role.  A wave with a large 

amplification factor that also has a very long wavelength may amplify less in an 

absolute sense than a wave with the same amplification factor but a shorter 

wavelength, as shown in Figure 3.5.  Thus the need for a new parameter is 

indicated.  A dimensionless parameter that is a measure of the amplitude 

difference over a certain length would be a useful addition to the methods of 

Ponce and Simons (1977), and Tsai (2005). 

 

Figure 3.5 - Amplification over one wavelength for different sized waves 

 

The definition of δ* is  
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* ln  (3.1) 

 Where: 

  y*
t = depth at time t 

  y*
t+τ = depth at time t + τ, where τ is one period 

 

The dimensionless depth at a time after one period has gone by, y*
t+τ, can be 

found using 

 tt yey ** *

 (3.2) 

 

It follows from this that the dimensionless depth after two periods will be 

 tt yey *
2

* *

 (3.3) 

 

Equations  (3.2) and  (3.3) can be combined to give 

 ttt yeyeey *2*
2

* ***

 (3.4) 

 

Or more generally 

 t
n

nt yey ** *

 (3.5) 

 Where: 

  n = number of periods that have passed since time t 
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Counting the number of periods that have passed during a fixed time is 

analogous to counting the number of wavelengths that occur within a fixed 

distance.  Thus Equation  (3.5) will be the same if n is thought to be the number 

of wavelengths over a certain distance.  The wave number σ* can be thought of 

as a measure of the number of wavelengths a wave will have within a certain 

channel distance.  In this case, the distance is 2πL0.  This distance is therefore a 

function of normal depth and bed slope.  It will vary when either of these 

parameters varies, but for the same discharge in the same channel, 2πL0 will be 

a constant regardless of wavelength.  This gives the expression 

 1
*

2
* **

yey  (3.6) 

 Where: 

  y*
1 = dimensionless depth at point 1 

  y*
2 = dimensionless depth at a point 2πL0 downstream of point 1 

 

If Equation  (3.6) is converted back into logarithmic form it can be expressed as 

 
1

*

2
*

** ln
y

y
 (3.7) 

 

The parameter σ*δ* is thus the measure of the total attenuation/amplification over 

a normalized length of 2πL0.  This parameter, σ*δ*, will be defined as δ`, the 

normalized length attenuation factor.  A plot of δ` is shown in Figure 3.6.  A close 

up of the supercritical region is shown in Figure 3.7.  This chart shows some 
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significant results.  Figure 3.7 shows that short waves will have more attenuation 

or amplification than long waves over the same length.  As is obvious from 

Equation  (2.51), very long waves will have very small wave numbers, and so 

the normalized length attenuation factor will necessarily be close to zero.  In 

Figure 3.3, the attenuation factor will increase for a time and then approach zero 

as the wave number gets large.  In Figure 3.7, the normalized length attenuation 

factor will increase or decrease and then reach a constant non-zero value at high 

wave numbers.  This indicates that the increasing wave numbers exactly balance 

out the decreasing attenuation factor. 
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Figure 3.6 - Normalized length attenuation factor for different Froude numbers 
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Figure 3.7 - Close-up of normalized length attenuation factor 

  

Also interesting to note in Figure 3.7 is that the curve with the highest 

amplification is the Fn = 2.66 line.  From Figure 3.3, it would appear that the 

maximum amplification increases with Froude number, but when the normalized 

length factor is used, higher Froude numbers do not necessarily mean higher 

amplification.  Short waves will have maximum normalized length amplification at 

moderate Froude numbers around 3. 

 

Figure 3.8 shows a plot of fixed-length attenuation factor as a function of the 

Froude number.  This plot was done for a variety of wave numbers.  As expected 

from Figure 3.7, the wave number with the highest amplification factor is the 
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largest wave number.  Wave numbers above 10 are essentially the same as the 

curve for 10.  This curve has a maximum amplification at Fn = 3.44.  The fixed-

length amplification factor at this point has a value of 0.53.   

σ*=0.05

σ*=0.1

σ*=0.5

σ*=1.0

σ*=10

σ*=2.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

Fn

A
m

p
lit

u
d
e
 I
n
c
re

a
s
e
 o

v
e
r 

2
π

L
0
, 

δ
`

 

Figure 3.8 - Normalized length amplification versus Froude number 
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Chapter 4: Site Description

 

The City of Las Vegas, Nevada is situated in the southern tip of Nevada, within 

the Mojave Desert.  The City lies in a basin (the Las Vegas Valley) surrounded 

by mountain ranges such as the Spring Mountains on the west side of the Valley 

(see Figure 4.1).    The Valley drains surface runoff into the Las Vegas Wash, 

which drains to Lake Las Vegas and Lake Mead on the Colorado River.  The Las 

Vegas Wash conveys flow from several sources, including urban runoff, 

reclaimed water and storm water (LVWCC 2007).  During most of the year, the 

main source of water in the Wash is from water that has passed through the 

sewer and treatment system of the City and also Clark County.  However, there 

are occasional rainfall events that can significantly increase the discharge 

passing through the Wash.  Mid to late summer is considered the monsoon 

season, with afternoon thunderstorms not uncommon during this period.  The 

Las Vegas Valley is considered an arid region, with an average yearly 

precipitation of 4.5 inches. 
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Figure 4.1 - Aerial photo of the Las Vegas Valley (from Google™ Maps) 

 

The current City was incorporated in 1911, and has seen extensive population 

growth since then.  Hoover Dam was constructed on the Colorado River in the 

1930s, creating what is now Lake Mead.  The dam and associated reservoir 

created job opportunities in the area, as well as providing a vital source of 

consistent water.  The gaming industry is an important component of the City, 

with many large and expensive casinos and resorts having been built throughout 

the Valley.  There is also extensive tourism in Las Vegas, with millions of people 

Las Vegas Wash 

Lake Las Vegas 

Spring Mountains 

F1 Channel 
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visiting every year.  Currently, almost 2 million people live within the Las Vegas 

Valley. 

 

This large infusion of people into the Valley has caused widespread construction 

and development.  This development has created a large amount of impervious 

surface in the Valley, and greatly increased the peak runoff created by rainfall 

events.  The Las Vegas Valley has experienced severe flooding on a number of 

occasions, most recently in 1999 and 2003.  See Figure 1.1 for example of the 

1999 flooding.  This flooding causes hazards to the residents of the Valley, and 

can result in expensive property damage as well.  Because of the Valley‟s 

tendency toward short high-intensity storms and the rapid growth in the area, 

storm drainage development is important. 

 

A network of both closed-conduit and open channel storm drainage pathways 

has been constructed within the Valley.  This network is designed to help storm 

runoff pass through the City and County safely and exit into the Las Vegas 

Wash, and from there Lake Las Vegas and Lake Mead.  Because of the 

potentially large discharge amounts that the storm system is designed for, as well 

as the natural topography of the Valley, many of the open channels that exist 

throughout the Valley have steep slopes of up to 3.5% (Duan and Chen 2003).  

These channels are typically constructed out of reinforced concrete, with either a 
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rectangular or trapezoidal cross sectional geometry.  Average bottom width for 

these drainage channels is around 4 meters.  Design flow depths can range from 

1 to 3 meters. 

 

4.1 Site-Specific Results 

The channel that will be specifically investigated in this study is the F-1 channel.  

This channel is located on the west side of the Valley, as shown in Figure 4.2.  

Figure 4.3 shows a close up of the conjunction of the F-1 channel and F-2 

channel (circled area in Figure 4.2). 

 

Figure 4.2 - Overhead view of F-1 Channel (from Google™ Earth) 
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Figure 4.3 - F-1 and F-2 conjunction (from Google™ Earth) 

 

 The channel has properties typical of those found elsewhere in the City and 

County.  The cross-sectional geometry is rectangular, with a bottom width of 4 m.  

The channel slopes downward at 2.5%, and is approximately 5 km long.  The 

wall height in the channel is 3 m.  The material making up the lining of the 

channel is standard concrete, and so the value of Manning‟s n can be assumed 

to be constant in space at 0.014.  The F-1 channel is designed to pass a 

discharge corresponding to a 100 year storm.  This design discharge is 93.4 

m3/s.  See Figure 4.4 for a cross-sectional diagram of the F-1 channel.  There is 

a slight slope towards the center of the channel; this slope will be ignored in the 

analysis. 
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Figure 4.4 - F-1 Channel cross-section (from Duan and Chen, 2003) 

 

The flow in this channel can be modeled, and the wave characteristics can be 

calculated.  A calculation example to illustrate the procedure is shown below.   

 

1) A discharge is chosen for the calculation.  For this example, a discharge of 

60 m3/s was used. 

 

2) Using Manning‟s equation the normal depth of flow can be determined.  

An initial depth is guessed, and then the area and wetted perimeter are 

calculated using the cross-section geometry shown in Figure 4.4.  The 

initial guess for depth will be 2 m. 
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 Where: 

  a = cross-section area 

  W = channel width 

  P = wetted perimeter 

 

3) The hydraulic radius can be found using 
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a
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4) Next, Manning‟s equation is used to find the flow rate corresponding to the 

assumed depth. 
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5) Using an iterative procedure, the depth can be altered until the assumed 

depth results in a flow rate equal to the desired rate of 60 m3/s.  This 

depth is 1.48 m.  The area for this case is 5.92 m2 and the hydraulic radius 

is 0.85 m. 
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6) The normal velocity can be found using 
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Where: 

  an = normal flow area 

 

7) The Froude number is then calculated as 
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8) At this point, a wavelength must be chosen.  This example will use 500 m.  

From this, the dimensionless wave number can be found using 
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9) With a Froude number and wave number, the dimensionless celerity and 

attenuation factor can be found using the method outlined in Chapter 3. 
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The base flow will be assumed to be uniform in this study.  If the discharge is 

varied for a constant wavelength, a curve can be developed.  By doing this for an 

array of wavelengths, a family of curves can be developed.  A plot of these 

curves showing dimensionless celerity versus discharge is shown in Figure 4.5. 
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Figure 4.5 - Dimensionless celerity in F-1 channel 

 

This plot shows that dimensionless wave celerity does not vary greatly with 

discharge.  It can be found when examining the values used to create Figure 4.5 

that the Froude number does not vary significantly over the range of discharges 

used.  Depth and velocity will both increase with increasing discharge, and these 

increases will partially balance each other out, causing the Froude number to 
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remain close to constant.  The range of Froude numbers found for discharges 

ranging from 20 to 100 m3/s is 2.52 - 2.78, with an average of 2.66.  Thus the 

properties of waves in the F-1 channel will exhibit similar behavior to the Fn = 

2.66 lines in the theoretical results. 

 

The range of wavelengths used in Figure 4.5 was 10 m through 5,000 m.  Below 

this range, the celerity will approach a constant independent of wavelength, and 

because the channel is only 5,000 m long any waves longer than this would not 

be possible.  It can be observed that waves of short length tend to propagate 

slower than longer waves.  Also, waves around 100 m or less in length will have 

increasing dimensionless celerity with increasing discharge, while medium to 

long waves (500-5,000 m) will decrease dimensionless celerity with discharge.  

The dimensionless celerity ranges from about 1.35 to 1.67 for the wavelengths 

examined.  This range is not particularly large.  However, the actual propagation 

speed of a wave depends not only on dimensionless celerity, but also the base 

flow velocity in the channel.  Multiplying the results in Figure 4.5 by the base flow 

velocity gives Figure 4.6. 
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Figure 4.6 - Dimensional celerity in F-1 channel 

 

This plot shows that the actual wave speed will increase monotonically with 

discharge in this channel.  This is related to the fact that base flow velocity will 

increase with discharge.  The difference in celerity between different wavelengths 

is seen to be small.  The celerity ranges from approximately 10 to 12 m/s at a 

discharge of 20 m3/s.  The range expands slightly as the discharge increases, 

with the celerity spanning 16-19 m/s at 100 m3/s.  At the design discharge of 93.4 

m3/s an average length wave can travel at upwards of 16 m/s.  This is a high 

speed, and indicates that the concrete lining the channel needs to be resistant to 

degradation from the force of the water.  However, the waves will not be able to 

reach these speeds immediately.  It will take time for them to accelerate up to a 
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constant velocity.  An example of how to calculate the acceleration time and 

distance is shown below. 

 

1) The velocity at any time t is given by tau c  where in this case the 

acceleration ac is equivalent to gravitational acceleration multiplied by the 

bed slope of the channel. 

 

2) The highest velocity plotted in Figure 4.6 is 19.2 m/s.  The time needed to 

achieve this velocity is found using 
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3) This time can then be expressed as a distance down the channel using 

m

tgSx

752

78025.081.95.0

2

1

2

2

0

 

 

4) This result indicates that it will take a maximum of 752 meters for waves to 

reach terminal velocity in the F-1 channel.  As the channel is 5 km long, it 
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can be seen that the waves will reach terminal velocity well before the end 

of the channel. 

 

Figure 4.7 shows a plot of the dimensionless attenuation factor for F-1 channel.  

This graph does not have a clear and obvious trend such as that shown by 

dimensional celerity in Figure 4.6.  With a more detailed examination however, 

trends can still be found.  The attenuation factor is positive for all wavelengths, as 

would be expected considering the Froude number.  For very short and very long 

waves, the amplification will be small.  The maximum amplification occurs at 

medium wavelengths.  Shorter waves will have maximum amplification at a low 

discharge, while long waves increase in amplification as discharge increases.   
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Figure 4.7 - Attenuation per wavelength for F-1 channel 

 

As noted in the theoretical results, the dimensionless attenuation factor δ* is a 

logarithmic decrement function.  The value of δ* is an indicator of the amplitude 

change over one wavelength (or in other words, during one wave period).  This 

value is a good measure of the relative attenuation/amplification of waves of the 

same length with different Froude numbers.  However, the usefulness of the δ* 

parameter is limited when comparing waves with similar Froude numbers and 

differing lengths.  As seen in Figure 4.7, short waves will typically have very low 

values for δ*, while waves with medium lengths have larger values.  However, a 

wave with a length of 10 m will cycle through many more periods in a given 

length than a wave of 1000 m.  This is a good area for implementation of the 
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normalized length attenuation factor derived in the theoretical results as Equation 

(3.7) 

.  Figure 4.8 shows a plot of this normalized length factor as a function of 

discharge for different wavelengths.  Also shown in is the same plot with a 

different y-axis.  This axis shows the percent increase in wavelength that the 

waves will have over each fixed length.  From Equation (3.7), it can be seen that 

the increase from one point to a second point a length 2πL0 away is 
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Figure 4.8 - Normalized length amplification for F-1 channel 
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Figure 4.9 - Amplitude increase over a normalized length for F-1 channel 

 

Figure 4.8 shows that short waves will actually amplify more over the same 

distance than long waves.  The amplification for very long waves is close to zero.  

Short waves around 10 m long will have an amplification factor of about 0.5, or 

an increase in amplitude of 66%.  Medium length waves will have increasing 

normalized length amplification factors with increasing discharge.  The value for 

short waves will decrease slightly as discharge increases.  Figure 4.8 signifies 

that reducing the length of a wave is counter-productive towards the goal of 

reducing amplification. 
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It can readily be seen from the description of the parameter L0 in Figure 2.2 that 

this value will change as the normal depth or slope changes.  This means that 

the length used in the parameter δ` is only fixed when the flow rate is fixed.  For 

different flow rates, the distance will be different.  Various values of L0 are shown 

in Table 4.1 along with the value of 2πL0.   It can be seen that the length L0 will 

increase as the discharge increases.  This result is shown graphically in Figure 

4.10. 

Table 4.1 - Normalized lengths at various flow rates 

Q yn L0 2πL0 

m
3
/s m m m 

20 0.69 28 174 

30 0.91 36 228 

40 1.11 44 279 

50 1.30 52 326 

60 1.48 59 372 

70 1.66 66 416 

80 1.83 73 459 

90 1.99 80 501 

100 2.16 86 543 
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Figure 4.10 - Change in L0 with discharge 

 

 

With this in mind, the amplification over a truly fixed channel length can be found.  

A brief example of how to calculate this fixed length amplification is included 

below. 

 

1) The length used must be chosen.  This example will use 543 m, as this is 

the largest value of 2πL0 in Table 4.1. 

 

2) A wavelength must be chosen, in this case 100 m.  The number of waves 

within the overall length of 543 m is then 543/100 = 5.43. 

1 

20 m
3
/s 

100 m
3
/s 

28 m 

86 m 

0.69 m 

2.16 m 

0.025 
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3) By multiplying the original δ* value by this number, the amplification factor 

over 543 m can be found.  Note that this value is similar to δ` but will only 

be equal to it if 2πL0 is the same as 543 m. 

 

4) Assuming a discharge of 50 m3/s, the value of δ* will be 0.149.  This 

makes the 543 m amplification factor equal to 808.0149.043.5 . 

 

5) If an actual wave height is desired, an initial height must be chosen, in this 

case 0.5 m.  Then the final wave height after 543 m will be 

me 12.15.0808.0 . 

 

The amplification factor over 543 m was calculated for a variety of wavelengths, 

and the results are shown in Figure 4.11.  Waves longer than 543 m would not 

make sense in this plot, so the lines for λ = 1000 m and λ = 5000 m are shown 

with dotted lines.  As expected, short waves amplify the most.  An interesting 

result from this analysis is that waves will have a higher amplification factor at 

lower flow rates.  When looking at the normalized length amplification factor, δ`, 

the 10 m long waves had a higher amplification at lower discharge, but it is much 

more pronounced in this graph.   
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Figure 4.11 - Amplification over 543 m in F1 channel 

 

By assuming that waves start at an initial amplitude of 0.5 m, the final amplitude 

can be found as described above.  These results are shown in Figure 4.12.  The 

linear method used in this thesis does not have a built in limit to the size of 

waves.  However, it is obvious from physical reality and common sense that 

wave amplification will have an upper limit.  One physical parameter that will limit 

the growth of waves is the total water depth.  When the wave amplitude is equal 

to the depth of flow in the channel, the trough of the wave will be at the same 

elevation as the channel bed, and the wave will obviously not be able to grow 

past the bed.  It should be stressed that this is not necessarily the actual limit to 

amplification as wave breaking and other phenomena may lower the limit.  The 
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line where the amplitude is equal to the normal depth is shown in Figure 4.12.  

Above this line, amplitudes will not be physically realistic, and so are shown with 

a dashed line.  This graph shows that after only half a kilometer, a short wave 

can grow from 0.5 m to 1.2 m.  Even a relatively long wave of 500 m will almost 

double in height to 0.9 m. 
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Figure 4.12 - Actual amplitude of waves initially 0.5 m high over a channel length of 543 m. 

 

For a given flow rate, wave amplitude as a function of length can be calculated.  

Figure 4.13 shows wave heights for a discharge of 100 m3/s up to a channel 

distance of 543 m.  The lines show a slight upward curve, due to the fact that the 

growth is modeled as an exponential function.  It would also be possible to plot 
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the wave heights over the entire 5 km channel length, but because of the lack of 

an upper amplification limit, the amplitudes soon reach ridiculous magnitudes. 
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Figure 4.13 - Amplitude as a function of distance for waves with an initial height of 0.5 m 
and a discharge of 100 m

3
/s 

 

4.2 Applicability of Results 

The results presented in this study have a limited range of applicability.  There 

were a number of assumptions made during the derivation of the celerity and 

attenuation factor equations that must be satisfied to properly use those 

equations.  Also, the assumption was made that Manning‟s equation is a good 

representation of the flow dynamics for the underlying base flow.  Manning‟s 

equation is based on the assumption that friction between the bed and the fluid 
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will determine the flow properties at that location in the channel.  In certain 

situations, frictional resistance may not be the prime component of the overall 

flow resistance.  Steeply rising waves can “break” and collapse back on 

themselves.  This breaking action would create local energy loss that would not 

be factored into the equations used. 

 

Gradually-varied flow is a key assumption in the Saint-Venant equations, (2.1) 

and (2.2). Rapidly changing water surfaces cannot be described by these 

equations.  Very short waves with finite amplitude can be considered a type of 

rapidly-varied flow.  This leads to the idea that very short waves will not be 

adequately described by the equations used in this study.  As a rough line of 

demarcation, waves with amplitudes greater than one-tenth of their wavelength 

can be considered too short.  Thus, when referring to Figure 4.8 and other 

figures the λ = 10 m line should not be applied to a real system if the wave 

amplitudes are greater than 1 m. 

 

Another key assumption in the derivation of the celerity and attenuation factor 

equations used in this study is that the waves are infinitesimal linear 

perturbations.  This first-order approximation makes the use of analytical 

solutions possible.  However, this assumption also limits the results.  The celerity 

and attenuation factor developed are strictly only valid for infinitesimal waves.  
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However, it has been noted in past studies (Menendez 1993) that first-order 

approximations can give reasonable results for finite waves if the amplitudes are 

not too large.  This suggests a further limit to the results presented in this study.  

Using the above criteria of having the amplitude be one-tenth of the wavelength 

would allow 100 m high waves to be studied if the wavelength is 1000 m.  

However, these waves would not fit into the linear wave assumption and would 

therefore not be valid. 

 

It should also be noted that the use of the first-order approximation makes it 

difficult to determine exact wave heights that will be present in the channel.  The 

amplification of a wave can be found relative to its wavelength or over a fixed 

distance, but this amplification is always relative to the initial amplitude of the 

wave.  A wave that is assumed to start as 0.1 mm high will have a different 

calculated amplitude at the end of a reach than a wave that is assumed to start 

as 1.0 mm high. 

 

Another factor that must be taken into consideration is that the equations used 

will predict endless amplification as a wave travels downstream.  In reality, the 

wave amplification will be limited.  Eventually the wave will reach a point where 

the amplitude is too high to be sustained and the wave will no longer grow larger. 
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4.3 Design Applications 

As stated earlier, the construction of storm drainage channels has a high cost 

associated with it.  It is desirable to minimize this cost through the minimization of 

freeboard.  Additionally, danger to property and life increases when water flows 

out above the walls of a channel.  Thus reducing the amplification of supercritical 

waves is a sought-after result. 

 

There are several ways to accomplish this reduction.  As noted earlier, waves will 

attenuate if the Froude number is less than 1.5.  Therefore if the flow in the 

channel was slowed down far enough, the flow would be at a level where waves 

do not amplify.  A second option is to increase the wavelength of the disturbance.  

As revealed in Figure 4.8, short waves will have a higher amplification over a 

fixed length than long waves.  A third option for reducing wave amplification is to 

reduce the length over which waves can amplify uninterrupted.  The following 

section will explore these options and give recommendations for the design of F-

1 channel and other similar storm drainage channels in Las Vegas. 

 

The first remediation option for F-1 channel is to reduce the Froude number 

below 1.5.  The Froude number is a function of both the flow velocity and 

hydraulic radius.  Decreasing velocity, increasing hydraulic radius or a 

combination of these two will reduce the Froude number.  According to 
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Manning‟s equation, velocity is dependant on channel roughness, hydraulic 

radius, and slope.  This indicates that increasing the hydraulic radius is not an 

effective way to reduce Froude number.  Increasing the hydraulic radius will 

decrease Froude number, but will increase velocity, which will then act to 

increase the Froude number again.  The better option is to reduce the velocity.  

This can be done either by increasing channel roughness or decreasing slope.  

The roughness of flat concrete is about 0.014.  At the design discharge of 93.4 

m3/s, a Froude number of 1.5 requires a Manning‟s n value of 0.023, ceteris 

paribus.  This is a quite reasonable value to achieve.  Using Limerinos‟ equation 

for grain roughness, a grain diameter to reach this roughness value can be 

estimated.  According to HEC (2002), Limerinos‟ equation is a good predictor of 

roughness values when surface roughness is the only major component, as is 

true in the case of F-1 channel.  Limerinos‟ equation is 

 

sd

R

R
n

log0.216.1

0926.0 6
1

 (4.2) 

 Where: 

  ds = representative grain size, in feet 

  R = hydraulic radius, in feet 

 

Carefully converting between English and SI units using Equation  (4.2) shows 

that the necessary grain size for F-1 channel to have a roughness of 0.023 is 
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15.3 mm.  This corresponds to coarse gravel in typical classification systems 

(Julien 1995).  Therefore, one good remediation option would be to embed 

particles of this size or larger in the concrete that the drainage channels are 

made of.  A similar option would be to form the concrete into a knobbed surface 

rather than embed gravel particles.  This would be a relatively simple and cheap 

solution.  However, increasing the roughness to this level would increase the 

normal depth in the channel to 3.01 m from 2.05 m with the current roughness.  

The F-1 channel as currently constructed is only 3 m deep. 

 

The next option is to decrease the bed slope in the channel.  To attain a Froude 

number of 1.5, a slope of 0.01, or 1.0% is required.  This is a significant reduction 

from the existing slope of 2.5%.  The most feasible method of reducing the slope 

to this level is to alter the longitudinal profile of the channel into a stair-step 

configuration.  This would reduce the slope in most areas, while drastically 

increasing the slope over very small reaches.  This method would have the 

added benefit of breaking the flow up into smaller units that would be 

hydraulically disconnected from each other.  This would prevent extended 

lengths of flow where waves could develop and grow.  Normal depth at this slope 

is 2.92 m.  Figure 4.14 shows an example of a sharp drop-off that could be used 

as part of a stair-step system.  Ohtsu, Yasuda and Takahashi (2004) analyzed 
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flow in steep stepped channels and provided design guidelines for this type of 

channel. 

 

Figure 4.14 - Steep drop in a storm drainage channel (from AMAFCA) 

  

To avoid the need to build the channel deeper, the first two given options could 

be ignored in place of a third option.  This option would be to place periodic 

baffles within the channel.  These baffles would break up the flow and stop wave 

amplification.  The spacing of the baffles would need to be set so that waves 

would not amplify over the desired height in between two baffles.  The channel 

would then be able to be the same depth as it currently is, except in the vicinity of 
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the baffles.  The baffles would create a backwater effect locally, increasing the 

depth. 

 

Another potential route of remediation would be to increase the length of a wave.  

This would be difficult to do, and even more difficult to guarantee that no short 

waves would ever form in the channel.  This method is not recommended. 

 

A final option is to not alter the channel at all.  The graphs presented in the 

results section of this report can be used to predict the maximum height of a 

wave given a certain propagation distance along the channel.  As long as 

sufficient freeboard is constructed to contain this amplified wave, there should 

not be a problem.  Preexisting channel features such as bends and junctions can 

be utilized as methods to break up wave development periodically.  If this course 

is chosen, further investigation should be done into the effects of bends and flow 

confluences on wave parameters. 

 

In summary, the potential alternatives for reduction of wave amplification in F-1 

Channel are 

 Increase the roughness of the bed to 0.023 by embedding coarse gravel 

into the concrete surface. 

 Reduce the slope of the channel to 1%. 
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 Construct baffles to break up the development length of the waves. 

 Construct sufficient freeboard to contain the waves. 
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Chapter 5: Conclusions

 

This thesis examined and analyzed wave propagation in order to satisfy the four 

key objectives listed in Chapter 1.  The results for each of these objectives are as 

follows: 

 

1. The theoretical behavior of waves propagating along a supercritical base 

flow was examined.  The linear stability method of Ponce and Simons 

(1977) and Tsai (2005) was used along with Manning‟s equation for 

resistance to flow.  The celerity and relative attenuation factor were 

calculated for a wide variety of base flows and waves.  The results were 

comparable to previous studies done using different assumptions (such as 

the Chezy resistance formula instead of Manning‟s).  Emphasis was 

placed on the supercritical regime when analyzing the results.  As shown 

in previous studies, a Froude number of 1.5 is the threshold for small 

linear waves when using Manning‟s Equation.  Flow with lower Froude 

numbers will have a celerity above that of a kinematic wave, and will 

attenuate for all wave numbers.  Froude numbers higher than 1.5 will 
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amplify as they propagate, and will travel slower than a corresponding 

kinematic wave.   

 

2. During the theoretical analysis, areas of potential improvement to past 

studies were looked for.  One significant area that was identified was in 

the definition of the attenuation factor used in the linear stability analysis.  

The standard attenuation factor used first by Ponce and Simons (1977) 

and later by several other investigators represents the amplitude change 

of a wave over one wavelength.  This makes it difficult to compare the 

attenuation or amplification characteristics of waves of differing lengths.  A 

new parameter was defined that signifies the amplitude change over a 

fixed length, irrespective of wavelength.  The fixed length that was chosen 

was 2πL0, the downstream distance required for a drop in bed elevation 

equal to the normal flow depth times 2π, because this choice gave a 

simple relationship for the new fixed-length attenuation factor using 

previously defined parameters.  This factor was defined as the relative 

attenuation factor multiplied by the dimensionless wave number.  New 

results were found for this new parameter, and compared to previous 

studies.  It was discovered that short waves will amplify more than long 

waves over a set distance, and that increasing Froude number will not 
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always increase amplification.  The maximum amplification was found to 

occur at Froude numbers equal to 3.44 for very short waves. 

 

3. The theoretical ideas explored in the first part of the study were applied to 

a storm drainage channel in Las Vegas, Nevada.  This channel is known 

as the F-1 channel and is located in the western part of the Valley.  The 

flow through F-1 channel will be supercritical at most discharges.  For flow 

rates between 20 and 100 m3/s, the Froude number will be around 2.66.  

Thus, waves that form within the F-1 channel will amplify as they 

propagate downstream.  The celerity and relative amplification of a small 

wave imposed on the base flow within the channel were found at a range 

of discharges and wavelengths.  It was found that the celerity of a wave 

will vary between 10 and 19 m/s, depending on the flow rate and 

wavelength.  The relative amplification factor will range from zero to about 

0.5.  The new parameter for normalized length amplification will also have 

a maximum near 0.5 (corresponding to an amplitude increase of ~65%), 

but will decrease significantly with increasing wavelength.  Because the 

normalized length will vary with discharge, the amplification factor over a 

fixed length was also found.  This factor can be as high as 1.6 for short 

waves.  By assuming an initial wave height of 0.5 m, the height after 543 
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m at the maximum discharge will be up to 0.8 m.  At lower discharges, this 

amplitude will be higher; up to 1.2 m for short waves. 

 

4. Options for revising the design guidelines for supercritical channels were 

presented.  Several different methods of reducing wave amplification were 

examined, and recommendations were made.  The results from this 

investigation indicated that waves will attenuate as long as the Froude 

number is less than 1.5.  Reducing the slope through a stair-step profile to 

1.0% would reduce the Froude number sufficiently that amplification would 

not be a worry.  Alternately, increasing the Manning‟s roughness value to 

n = 0.023 would also lower the Froude number adequately.  This 

roughness would require a grain size of 15.3 mm according to Limerinos‟ 

equation.  Both of these options would increase the flow depth beyond 

what the current channel can contain.  Installing periodic baffles was 

recommended as a way to break up the growth of waves.  By reducing the 

available development length for waves, the amplitude amplification could 

be limited to a safe value. 
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Appendix A – Data used in graphs

 

Table A1 – Dimensionless celerity vs. wave number (Figure 3.1) 

Fn= 0.1 0.3 0.5 0.7 1.0 1.5 2.0 2.66 4.0 10 

σ
*
 c

*
 

0.01 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.66 1.58 

0.01 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.66 1.57 

0.01 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.66 1.55 

0.01 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.66 1.54 

0.02 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.66 1.52 

0.02 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.66 1.51 

0.02 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.66 1.66 1.49 

0.02 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.66 1.65 1.47 

0.02 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.66 1.65 1.45 

0.03 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.66 1.64 1.43 

0.03 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.66 1.64 1.42 

0.03 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.66 1.63 1.40 

0.04 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.66 1.63 1.38 

0.04 1.67 1.67 1.67 1.67 1.67 1.67 1.66 1.66 1.62 1.36 

0.05 1.67 1.67 1.67 1.67 1.67 1.67 1.66 1.66 1.61 1.35 

0.05 1.67 1.67 1.67 1.67 1.67 1.67 1.66 1.65 1.60 1.33 

0.06 1.67 1.67 1.67 1.67 1.67 1.67 1.66 1.65 1.59 1.32 

0.07 1.67 1.67 1.67 1.67 1.67 1.67 1.66 1.65 1.58 1.30 

0.08 1.67 1.67 1.67 1.67 1.67 1.67 1.66 1.64 1.56 1.29 

0.09 1.67 1.67 1.67 1.67 1.67 1.67 1.66 1.64 1.55 1.27 

0.10 1.67 1.67 1.67 1.67 1.67 1.67 1.66 1.63 1.54 1.26 

0.11 1.67 1.67 1.67 1.67 1.67 1.67 1.66 1.62 1.52 1.25 

0.12 1.67 1.67 1.67 1.67 1.67 1.67 1.65 1.61 1.50 1.24 

0.14 1.67 1.67 1.67 1.67 1.67 1.67 1.65 1.60 1.49 1.23 

0.15 1.67 1.67 1.67 1.67 1.67 1.67 1.65 1.59 1.47 1.21 

0.17 1.67 1.67 1.67 1.67 1.67 1.67 1.64 1.58 1.46 1.20 

0.19 1.67 1.67 1.67 1.67 1.67 1.67 1.64 1.57 1.44 1.20 

0.22 1.67 1.67 1.67 1.67 1.68 1.67 1.63 1.56 1.43 1.19 

0.25 1.67 1.67 1.67 1.67 1.68 1.67 1.63 1.55 1.41 1.18 

0.28 1.67 1.67 1.67 1.68 1.68 1.67 1.62 1.54 1.40 1.17 

0.31 1.67 1.67 1.67 1.68 1.68 1.67 1.61 1.52 1.38 1.16 

0.35 1.67 1.67 1.68 1.68 1.69 1.67 1.60 1.51 1.37 1.16 

0.39 1.67 1.67 1.68 1.69 1.69 1.67 1.60 1.50 1.36 1.15 

0.44 1.67 1.67 1.68 1.69 1.70 1.67 1.59 1.48 1.34 1.14 

0.49 1.67 1.67 1.69 1.70 1.71 1.67 1.58 1.47 1.33 1.14 
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0.55 1.67 1.68 1.69 1.71 1.72 1.67 1.57 1.46 1.32 1.13 

0.62 1.67 1.68 1.70 1.72 1.73 1.67 1.56 1.45 1.31 1.13 

0.69 1.67 1.68 1.70 1.73 1.75 1.67 1.55 1.44 1.31 1.13 

0.78 1.67 1.68 1.72 1.75 1.77 1.67 1.55 1.43 1.30 1.12 

0.87 1.67 1.69 1.73 1.78 1.79 1.67 1.54 1.42 1.29 1.12 

0.98 1.67 1.70 1.75 1.81 1.81 1.67 1.53 1.42 1.28 1.12 

1.10 1.67 1.70 1.77 1.85 1.84 1.67 1.53 1.41 1.28 1.11 

1.23 1.67 1.71 1.81 1.90 1.86 1.67 1.52 1.40 1.27 1.11 

1.38 1.67 1.73 1.85 1.96 1.88 1.67 1.52 1.40 1.27 1.11 

1.55 1.67 1.75 1.92 2.02 1.90 1.67 1.52 1.40 1.27 1.11 

1.74 1.68 1.77 2.01 2.09 1.92 1.67 1.51 1.39 1.26 1.11 

1.95 1.68 1.81 2.13 2.15 1.93 1.67 1.51 1.39 1.26 1.11 

2.19 1.68 1.86 2.26 2.20 1.95 1.67 1.51 1.39 1.26 1.10 

2.45 1.69 1.94 2.40 2.24 1.96 1.67 1.51 1.38 1.26 1.10 

2.75 1.69 2.07 2.52 2.28 1.96 1.67 1.51 1.38 1.26 1.10 

3.09 1.70 2.29 2.62 2.31 1.97 1.67 1.50 1.38 1.25 1.10 

3.47 1.71 2.61 2.70 2.33 1.98 1.67 1.50 1.38 1.25 1.10 

3.89 1.72 2.97 2.76 2.35 1.98 1.67 1.50 1.38 1.25 1.10 

4.37 1.74 3.28 2.81 2.37 1.99 1.67 1.50 1.38 1.25 1.10 

4.90 1.76 3.52 2.85 2.38 1.99 1.67 1.50 1.38 1.25 1.10 

5.50 1.80 3.70 2.88 2.39 1.99 1.67 1.50 1.38 1.25 1.10 

6.17 1.84 3.84 2.91 2.40 1.99 1.67 1.50 1.38 1.25 1.10 

6.92 1.92 3.94 2.93 2.40 1.99 1.67 1.50 1.38 1.25 1.10 

7.76 2.05 4.03 2.94 2.41 2.00 1.67 1.50 1.38 1.25 1.10 

8.71 2.32 4.09 2.95 2.41 2.00 1.67 1.50 1.38 1.25 1.10 

9.77 3.20 4.14 2.96 2.42 2.00 1.67 1.50 1.38 1.25 1.10 

10.96 5.33 4.18 2.97 2.42 2.00 1.67 1.50 1.38 1.25 1.10 

12.30 6.90 4.21 2.98 2.42 2.00 1.67 1.50 1.38 1.25 1.10 

13.80 7.93 4.24 2.98 2.42 2.00 1.67 1.50 1.38 1.25 1.10 

15.49 8.66 4.26 2.99 2.42 2.00 1.67 1.50 1.38 1.25 1.10 

17.38 9.19 4.27 2.99 2.42 2.00 1.67 1.50 1.38 1.25 1.10 

19.50 9.59 4.29 2.99 2.43 2.00 1.67 1.50 1.38 1.25 1.10 

21.88 9.90 4.30 2.99 2.43 2.00 1.67 1.50 1.38 1.25 1.10 

24.55 10.14 4.30 2.99 2.43 2.00 1.67 1.50 1.38 1.25 1.10 

27.54 10.32 4.31 3.00 2.43 2.00 1.67 1.50 1.38 1.25 1.10 

30.90 10.46 4.31 3.00 2.43 2.00 1.67 1.50 1.38 1.25 1.10 

34.67 10.58 4.32 3.00 2.43 2.00 1.67 1.50 1.38 1.25 1.10 

38.90 10.67 4.32 3.00 2.43 2.00 1.67 1.50 1.38 1.25 1.10 

43.65 10.74 4.32 3.00 2.43 2.00 1.67 1.50 1.38 1.25 1.10 

48.98 10.79 4.33 3.00 2.43 2.00 1.67 1.50 1.38 1.25 1.10 

54.95 10.83 4.33 3.00 2.43 2.00 1.67 1.50 1.38 1.25 1.10 

61.66 10.87 4.33 3.00 2.43 2.00 1.67 1.50 1.38 1.25 1.10 

69.18 10.90 4.33 3.00 2.43 2.00 1.67 1.50 1.38 1.25 1.10 

77.62 10.92 4.33 3.00 2.43 2.00 1.67 1.50 1.38 1.25 1.10 

87.10 10.93 4.33 3.00 2.43 2.00 1.67 1.50 1.38 1.25 1.10 

97.72 10.95 4.33 3.00 2.43 2.00 1.67 1.50 1.38 1.25 1.10 

109.65 10.96 4.33 3.00 2.43 2.00 1.67 1.50 1.38 1.25 1.10 

123.03 10.97 4.33 3.00 2.43 2.00 1.67 1.50 1.38 1.25 1.10 
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138.04 10.97 4.33 3.00 2.43 2.00 1.67 1.50 1.38 1.25 1.10 

154.88 10.98 4.33 3.00 2.43 2.00 1.67 1.50 1.38 1.25 1.10 

173.78 10.98 4.33 3.00 2.43 2.00 1.67 1.50 1.38 1.25 1.10 

194.98 10.99 4.33 3.00 2.43 2.00 1.67 1.50 1.38 1.25 1.10 

218.78 10.99 4.33 3.00 2.43 2.00 1.67 1.50 1.38 1.25 1.10 

245.47 10.99 4.33 3.00 2.43 2.00 1.67 1.50 1.38 1.25 1.10 

275.42 10.99 4.33 3.00 2.43 2.00 1.67 1.50 1.38 1.25 1.10 

309.03 10.99 4.33 3.00 2.43 2.00 1.67 1.50 1.38 1.25 1.10 

346.74 11.00 4.33 3.00 2.43 2.00 1.67 1.50 1.38 1.25 1.10 

389.05 11.00 4.33 3.00 2.43 2.00 1.67 1.50 1.38 1.25 1.10 

436.52 11.00 4.33 3.00 2.43 2.00 1.67 1.50 1.38 1.25 1.10 

489.78 11.00 4.33 3.00 2.43 2.00 1.67 1.50 1.38 1.25 1.10 

549.54 11.00 4.33 3.00 2.43 2.00 1.67 1.50 1.38 1.25 1.10 

616.60 11.00 4.33 3.00 2.43 2.00 1.67 1.50 1.38 1.25 1.10 

691.83 11.00 4.33 3.00 2.43 2.00 1.67 1.50 1.38 1.25 1.10 

776.25 11.00 4.33 3.00 2.43 2.00 1.67 1.50 1.38 1.25 1.10 

870.96 11.00 4.33 3.00 2.43 2.00 1.67 1.50 1.38 1.25 1.10 

977.24 11.00 4.33 3.00 2.43 2.00 1.67 1.50 1.38 1.25 1.10 

 
 
Table A2 – Attenuation factor vs. wave number (Figure 3.2) 

Fn= 0.1 0.3 0.5 0.7 1.0 1.5 2.0 2.66 4.0 10 

σ
*
 δ

*
 

0.01 -0.02 -0.02 -0.02 -0.01 -0.01 0.00 0.01 0.04 0.11 0.60 

0.01 -0.02 -0.02 -0.02 -0.02 -0.01 0.00 0.02 0.04 0.12 0.63 

0.01 -0.02 -0.02 -0.02 -0.02 -0.01 0.00 0.02 0.05 0.14 0.67 

0.01 -0.03 -0.02 -0.02 -0.02 -0.01 0.00 0.02 0.06 0.16 0.70 

0.02 -0.03 -0.03 -0.03 -0.02 -0.02 0.00 0.02 0.06 0.17 0.74 

0.02 -0.03 -0.03 -0.03 -0.03 -0.02 0.00 0.03 0.07 0.19 0.77 

0.02 -0.04 -0.04 -0.03 -0.03 -0.02 0.00 0.03 0.08 0.22 0.79 

0.02 -0.04 -0.04 -0.04 -0.03 -0.02 0.00 0.03 0.09 0.24 0.82 

0.02 -0.05 -0.04 -0.04 -0.04 -0.03 0.00 0.04 0.10 0.26 0.84 

0.03 -0.05 -0.05 -0.05 -0.04 -0.03 0.00 0.04 0.11 0.29 0.85 

0.03 -0.06 -0.06 -0.05 -0.05 -0.03 0.00 0.04 0.12 0.32 0.86 

0.03 -0.07 -0.06 -0.06 -0.05 -0.04 0.00 0.05 0.14 0.35 0.87 

0.04 -0.07 -0.07 -0.07 -0.06 -0.04 0.00 0.06 0.15 0.39 0.87 

0.04 -0.08 -0.08 -0.07 -0.06 -0.05 0.00 0.06 0.17 0.42 0.87 

0.05 -0.09 -0.09 -0.08 -0.07 -0.05 0.00 0.07 0.19 0.45 0.87 

0.05 -0.10 -0.10 -0.09 -0.08 -0.06 0.00 0.08 0.21 0.49 0.86 

0.06 -0.12 -0.11 -0.10 -0.09 -0.06 0.00 0.09 0.23 0.52 0.86 

0.07 -0.13 -0.13 -0.12 -0.10 -0.07 0.00 0.10 0.25 0.55 0.84 

0.08 -0.15 -0.14 -0.13 -0.11 -0.08 0.00 0.11 0.28 0.59 0.83 

0.09 -0.16 -0.16 -0.15 -0.13 -0.09 0.00 0.12 0.30 0.61 0.81 

0.10 -0.18 -0.18 -0.16 -0.14 -0.10 0.00 0.13 0.33 0.64 0.79 

0.11 -0.21 -0.20 -0.18 -0.16 -0.11 0.00 0.15 0.36 0.66 0.77 

0.12 -0.23 -0.22 -0.21 -0.18 -0.13 0.00 0.16 0.38 0.68 0.75 

0.14 -0.26 -0.25 -0.23 -0.20 -0.14 0.00 0.18 0.41 0.70 0.73 
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0.15 -0.29 -0.28 -0.26 -0.23 -0.16 0.00 0.20 0.43 0.71 0.70 

0.17 -0.33 -0.31 -0.29 -0.26 -0.18 0.00 0.21 0.46 0.71 0.68 

0.19 -0.37 -0.35 -0.33 -0.29 -0.20 0.00 0.23 0.48 0.71 0.65 

0.22 -0.41 -0.40 -0.37 -0.32 -0.22 0.00 0.24 0.49 0.71 0.62 

0.25 -0.46 -0.44 -0.41 -0.36 -0.25 0.00 0.26 0.51 0.71 0.60 

0.28 -0.52 -0.50 -0.46 -0.40 -0.28 0.00 0.27 0.52 0.70 0.57 

0.31 -0.58 -0.56 -0.52 -0.45 -0.31 0.00 0.29 0.52 0.68 0.54 

0.35 -0.65 -0.63 -0.58 -0.51 -0.34 0.00 0.30 0.52 0.67 0.51 

0.39 -0.73 -0.70 -0.65 -0.57 -0.38 0.00 0.30 0.52 0.65 0.48 

0.44 -0.82 -0.79 -0.73 -0.63 -0.42 0.00 0.31 0.51 0.63 0.46 

0.49 -0.92 -0.89 -0.82 -0.71 -0.46 0.00 0.31 0.50 0.60 0.43 

0.55 -1.03 -0.99 -0.92 -0.79 -0.50 0.00 0.31 0.49 0.57 0.40 

0.62 -1.16 -1.12 -1.03 -0.87 -0.54 0.00 0.30 0.47 0.54 0.37 

0.69 -1.30 -1.25 -1.15 -0.97 -0.58 0.00 0.29 0.45 0.51 0.35 

0.78 -1.46 -1.40 -1.28 -1.07 -0.61 0.00 0.28 0.43 0.48 0.32 

0.87 -1.63 -1.58 -1.43 -1.17 -0.63 0.00 0.27 0.41 0.45 0.30 

0.98 -1.83 -1.77 -1.60 -1.27 -0.63 0.00 0.26 0.38 0.42 0.27 

1.10 -2.06 -1.98 -1.77 -1.35 -0.63 0.00 0.24 0.36 0.39 0.25 

1.23 -2.31 -2.23 -1.96 -1.41 -0.61 0.00 0.23 0.33 0.36 0.23 

1.38 -2.59 -2.49 -2.15 -1.44 -0.59 0.00 0.21 0.31 0.33 0.21 

1.55 -2.91 -2.80 -2.32 -1.42 -0.55 0.00 0.19 0.28 0.30 0.19 

1.74 -3.27 -3.13 -2.44 -1.37 -0.52 0.00 0.18 0.26 0.27 0.17 

1.95 -3.67 -3.49 -2.47 -1.28 -0.48 0.00 0.16 0.23 0.25 0.16 

2.19 -4.11 -3.88 -2.40 -1.18 -0.44 0.00 0.15 0.21 0.22 0.14 

2.45 -4.62 -4.28 -2.23 -1.08 -0.40 0.00 0.13 0.19 0.20 0.13 

2.75 -5.18 -4.62 -2.03 -0.98 -0.36 0.00 0.12 0.17 0.18 0.11 

3.09 -5.82 -4.76 -1.83 -0.88 -0.32 0.00 0.11 0.16 0.16 0.10 

3.47 -6.54 -4.52 -1.63 -0.79 -0.29 0.00 0.10 0.14 0.15 0.09 

3.89 -7.34 -4.00 -1.45 -0.71 -0.26 0.00 0.09 0.13 0.13 0.08 

4.37 -8.25 -3.45 -1.29 -0.64 -0.23 0.00 0.08 0.11 0.12 0.07 

4.90 -9.26 -2.98 -1.15 -0.57 -0.21 0.00 0.07 0.10 0.11 0.07 

5.50 -10.40 -2.59 -1.02 -0.51 -0.19 0.00 0.06 0.09 0.09 0.06 

6.17 -11.65 -2.26 -0.91 -0.45 -0.17 0.00 0.06 0.08 0.08 0.05 

6.92 -13.02 -1.98 -0.81 -0.40 -0.15 0.00 0.05 0.07 0.08 0.05 

7.76 -14.39 -1.74 -0.72 -0.36 -0.13 0.00 0.04 0.06 0.07 0.04 

8.71 -15.40 -1.54 -0.64 -0.32 -0.12 0.00 0.04 0.06 0.06 0.04 

9.77 -14.00 -1.36 -0.57 -0.29 -0.11 0.00 0.04 0.05 0.05 0.03 

10.96 -9.09 -1.20 -0.51 -0.26 -0.10 0.00 0.03 0.05 0.05 0.03 

12.30 -6.57 -1.07 -0.45 -0.23 -0.08 0.00 0.03 0.04 0.04 0.03 

13.80 -5.19 -0.95 -0.41 -0.20 -0.08 0.00 0.03 0.04 0.04 0.02 

15.49 -4.28 -0.84 -0.36 -0.18 -0.07 0.00 0.02 0.03 0.03 0.02 

17.38 -3.61 -0.75 -0.32 -0.16 -0.06 0.00 0.02 0.03 0.03 0.02 

19.50 -3.10 -0.67 -0.29 -0.14 -0.05 0.00 0.02 0.03 0.03 0.02 

21.88 -2.68 -0.59 -0.26 -0.13 -0.05 0.00 0.02 0.02 0.02 0.01 

24.55 -2.34 -0.53 -0.23 -0.11 -0.04 0.00 0.01 0.02 0.02 0.01 

27.54 -2.05 -0.47 -0.20 -0.10 -0.04 0.00 0.01 0.02 0.02 0.01 

30.90 -1.81 -0.42 -0.18 -0.09 -0.03 0.00 0.01 0.02 0.02 0.01 

34.67 -1.59 -0.37 -0.16 -0.08 -0.03 0.00 0.01 0.01 0.02 0.01 
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38.90 -1.41 -0.33 -0.14 -0.07 -0.03 0.00 0.01 0.01 0.01 0.01 

43.65 -1.25 -0.30 -0.13 -0.06 -0.02 0.00 0.01 0.01 0.01 0.01 

48.98 -1.11 -0.26 -0.11 -0.06 -0.02 0.00 0.01 0.01 0.01 0.01 

54.95 -0.98 -0.23 -0.10 -0.05 -0.02 0.00 0.01 0.01 0.01 0.01 

61.66 -0.87 -0.21 -0.09 -0.05 -0.02 0.00 0.01 0.01 0.01 0.01 

69.18 -0.78 -0.19 -0.08 -0.04 -0.02 0.00 0.01 0.01 0.01 0.00 

77.62 -0.69 -0.17 -0.07 -0.04 -0.01 0.00 0.00 0.01 0.01 0.00 

87.10 -0.62 -0.15 -0.06 -0.03 -0.01 0.00 0.00 0.01 0.01 0.00 

97.72 -0.55 -0.13 -0.06 -0.03 -0.01 0.00 0.00 0.01 0.01 0.00 

109.65 -0.49 -0.12 -0.05 -0.03 -0.01 0.00 0.00 0.00 0.00 0.00 

123.03 -0.43 -0.10 -0.05 -0.02 -0.01 0.00 0.00 0.00 0.00 0.00 

138.04 -0.39 -0.09 -0.04 -0.02 -0.01 0.00 0.00 0.00 0.00 0.00 

154.88 -0.34 -0.08 -0.04 -0.02 -0.01 0.00 0.00 0.00 0.00 0.00 

173.78 -0.31 -0.07 -0.03 -0.02 -0.01 0.00 0.00 0.00 0.00 0.00 

194.98 -0.27 -0.07 -0.03 -0.01 -0.01 0.00 0.00 0.00 0.00 0.00 

218.78 -0.24 -0.06 -0.03 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 

245.47 -0.22 -0.05 -0.02 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 

275.42 -0.19 -0.05 -0.02 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 

309.03 -0.17 -0.04 -0.02 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 

346.74 -0.15 -0.04 -0.02 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 

389.05 -0.14 -0.03 -0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 

436.52 -0.12 -0.03 -0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 

489.78 -0.11 -0.03 -0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 

549.54 -0.10 -0.02 -0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 

616.60 -0.09 -0.02 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

691.83 -0.08 -0.02 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

776.25 -0.07 -0.02 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

870.96 -0.06 -0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

977.24 -0.05 -0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 
 
Table A3 – Normalized length amplification factor vs. wave number (Figure 3.6) 

Fn= 0.1 0.3 0.5 0.7 1.0 1.5 2.0 2.66 4.0 10 

σ
*
 δ` 

0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 

0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 

0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 

0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 

0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 

0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 

0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.03 
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0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.04 

0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.04 

0.05 -0.01 -0.01 -0.01 0.00 0.00 0.00 0.00 0.01 0.03 0.05 

0.06 -0.01 -0.01 -0.01 -0.01 0.00 0.00 0.01 0.01 0.03 0.05 

0.07 -0.01 -0.01 -0.01 -0.01 -0.01 0.00 0.01 0.02 0.04 0.06 

0.08 -0.01 -0.01 -0.01 -0.01 -0.01 0.00 0.01 0.02 0.05 0.06 

0.09 -0.01 -0.01 -0.01 -0.01 -0.01 0.00 0.01 0.03 0.05 0.07 

0.10 -0.02 -0.02 -0.02 -0.01 -0.01 0.00 0.01 0.03 0.06 0.08 

0.11 -0.02 -0.02 -0.02 -0.02 -0.01 0.00 0.02 0.04 0.07 0.08 

0.12 -0.03 -0.03 -0.03 -0.02 -0.02 0.00 0.02 0.05 0.08 0.09 

0.14 -0.04 -0.03 -0.03 -0.03 -0.02 0.00 0.02 0.06 0.10 0.10 

0.15 -0.05 -0.04 -0.04 -0.04 -0.02 0.00 0.03 0.07 0.11 0.11 

0.17 -0.06 -0.05 -0.05 -0.04 -0.03 0.00 0.04 0.08 0.12 0.12 

0.19 -0.07 -0.07 -0.06 -0.06 -0.04 0.00 0.04 0.09 0.14 0.13 

0.22 -0.09 -0.09 -0.08 -0.07 -0.05 0.00 0.05 0.11 0.16 0.14 

0.25 -0.11 -0.11 -0.10 -0.09 -0.06 0.00 0.06 0.12 0.17 0.15 

0.28 -0.14 -0.14 -0.13 -0.11 -0.08 0.00 0.08 0.14 0.19 0.16 

0.31 -0.18 -0.17 -0.16 -0.14 -0.10 0.00 0.09 0.16 0.21 0.17 

0.35 -0.23 -0.22 -0.20 -0.18 -0.12 0.00 0.10 0.18 0.23 0.18 

0.39 -0.28 -0.27 -0.25 -0.22 -0.15 0.00 0.12 0.20 0.25 0.19 

0.44 -0.36 -0.34 -0.32 -0.28 -0.18 0.00 0.13 0.22 0.27 0.20 

0.49 -0.45 -0.43 -0.40 -0.35 -0.23 0.00 0.15 0.25 0.29 0.21 

0.55 -0.57 -0.55 -0.50 -0.43 -0.28 0.00 0.17 0.27 0.32 0.22 

0.62 -0.71 -0.69 -0.63 -0.54 -0.33 0.00 0.19 0.29 0.34 0.23 

0.69 -0.90 -0.87 -0.79 -0.67 -0.40 0.00 0.20 0.31 0.36 0.24 

0.78 -1.13 -1.09 -1.00 -0.83 -0.47 0.00 0.22 0.34 0.38 0.25 

0.87 -1.42 -1.37 -1.25 -1.02 -0.54 0.00 0.24 0.36 0.39 0.26 

0.98 -1.79 -1.73 -1.56 -1.24 -0.62 0.00 0.25 0.38 0.41 0.27 

1.10 -2.26 -2.18 -1.95 -1.48 -0.69 0.00 0.27 0.39 0.43 0.28 

1.23 -2.84 -2.74 -2.41 -1.74 -0.76 0.00 0.28 0.41 0.44 0.28 

1.38 -3.58 -3.44 -2.97 -1.99 -0.81 0.00 0.29 0.42 0.45 0.29 

1.55 -4.51 -4.33 -3.59 -2.20 -0.86 0.00 0.30 0.44 0.47 0.30 

1.74 -5.67 -5.44 -4.24 -2.38 -0.90 0.00 0.31 0.45 0.48 0.30 

1.95 -7.15 -6.81 -4.82 -2.50 -0.93 0.00 0.32 0.46 0.48 0.30 

2.19 -9.00 -8.50 -5.24 -2.59 -0.95 0.00 0.32 0.46 0.49 0.31 

2.45 -11.34 -10.50 -5.48 -2.65 -0.97 0.00 0.33 0.47 0.50 0.31 

2.75 -14.28 -12.72 -5.60 -2.70 -0.99 0.00 0.33 0.48 0.50 0.31 

3.09 -17.99 -14.71 -5.64 -2.73 -1.00 0.00 0.33 0.48 0.51 0.32 

3.47 -22.67 -15.67 -5.66 -2.75 -1.01 0.00 0.34 0.48 0.51 0.32 

3.89 -28.57 -15.55 -5.66 -2.76 -1.02 0.00 0.34 0.49 0.51 0.32 

4.37 -36.00 -15.07 -5.65 -2.78 -1.02 0.00 0.34 0.49 0.51 0.32 

4.90 -45.36 -14.60 -5.64 -2.79 -1.03 0.00 0.34 0.49 0.52 0.32 

5.50 -57.13 -14.22 -5.63 -2.79 -1.03 0.00 0.34 0.49 0.52 0.32 

6.17 -71.86 -13.92 -5.62 -2.80 -1.04 0.00 0.35 0.49 0.52 0.32 

6.92 -90.05 -13.69 -5.62 -2.80 -1.04 0.00 0.35 0.50 0.52 0.32 

7.76 -111.73 -13.52 -5.61 -2.80 -1.04 0.00 0.35 0.50 0.52 0.32 

8.71 -134.09 -13.38 -5.61 -2.81 -1.04 0.00 0.35 0.50 0.52 0.32 

9.77 -136.77 -13.28 -5.60 -2.81 -1.04 0.00 0.35 0.50 0.52 0.32 
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10.96 -99.66 -13.19 -5.60 -2.81 -1.04 0.00 0.35 0.50 0.52 0.32 

12.30 -80.80 -13.13 -5.60 -2.81 -1.04 0.00 0.35 0.50 0.52 0.32 

13.80 -71.62 -13.08 -5.59 -2.81 -1.04 0.00 0.35 0.50 0.52 0.32 

15.49 -66.26 -13.04 -5.59 -2.81 -1.05 0.00 0.35 0.50 0.52 0.32 

17.38 -62.79 -13.01 -5.59 -2.81 -1.05 0.00 0.35 0.50 0.52 0.32 

19.50 -60.41 -12.98 -5.59 -2.81 -1.05 0.00 0.35 0.50 0.52 0.32 

21.88 -58.71 -12.96 -5.59 -2.81 -1.05 0.00 0.35 0.50 0.52 0.32 

24.55 -57.46 -12.95 -5.59 -2.81 -1.05 0.00 0.35 0.50 0.52 0.32 

27.54 -56.52 -12.94 -5.59 -2.82 -1.05 0.00 0.35 0.50 0.52 0.32 

30.90 -55.81 -12.93 -5.59 -2.82 -1.05 0.00 0.35 0.50 0.52 0.32 

34.67 -55.27 -12.92 -5.59 -2.82 -1.05 0.00 0.35 0.50 0.52 0.32 

38.90 -54.85 -12.91 -5.59 -2.82 -1.05 0.00 0.35 0.50 0.52 0.32 

43.65 -54.52 -12.91 -5.59 -2.82 -1.05 0.00 0.35 0.50 0.52 0.32 

48.98 -54.26 -12.90 -5.59 -2.82 -1.05 0.00 0.35 0.50 0.52 0.32 

54.95 -54.06 -12.90 -5.59 -2.82 -1.05 0.00 0.35 0.50 0.52 0.32 

61.66 -53.91 -12.90 -5.59 -2.82 -1.05 0.00 0.35 0.50 0.52 0.32 

69.18 -53.78 -12.90 -5.59 -2.82 -1.05 0.00 0.35 0.50 0.52 0.32 

77.62 -53.68 -12.89 -5.59 -2.82 -1.05 0.00 0.35 0.50 0.52 0.32 

87.10 -53.61 -12.89 -5.59 -2.82 -1.05 0.00 0.35 0.50 0.52 0.32 

97.72 -53.55 -12.89 -5.59 -2.82 -1.05 0.00 0.35 0.50 0.52 0.32 

109.65 -53.50 -12.89 -5.59 -2.82 -1.05 0.00 0.35 0.50 0.52 0.32 

123.03 -53.46 -12.89 -5.59 -2.82 -1.05 0.00 0.35 0.50 0.52 0.32 

138.04 -53.43 -12.89 -5.59 -2.82 -1.05 0.00 0.35 0.50 0.52 0.32 

154.88 -53.40 -12.89 -5.59 -2.82 -1.05 0.00 0.35 0.50 0.52 0.32 

173.78 -53.39 -12.89 -5.59 -2.82 -1.05 0.00 0.35 0.50 0.52 0.32 

194.98 -53.37 -12.89 -5.59 -2.82 -1.05 0.00 0.35 0.50 0.52 0.32 

218.78 -53.36 -12.89 -5.59 -2.82 -1.05 0.00 0.35 0.50 0.52 0.32 

245.47 -53.35 -12.89 -5.59 -2.82 -1.05 0.00 0.35 0.50 0.52 0.32 

275.42 -53.34 -12.89 -5.59 -2.82 -1.05 0.00 0.35 0.50 0.52 0.32 

309.03 -53.34 -12.89 -5.59 -2.82 -1.05 0.00 0.35 0.50 0.52 0.32 

346.74 -53.33 -12.89 -5.59 -2.82 -1.05 0.00 0.35 0.50 0.52 0.32 

389.05 -53.33 -12.89 -5.59 -2.82 -1.05 0.00 0.35 0.50 0.52 0.32 

436.52 -53.32 -12.89 -5.59 -2.82 -1.05 0.00 0.35 0.50 0.52 0.32 

489.78 -53.32 -12.89 -5.59 -2.82 -1.05 0.00 0.35 0.50 0.52 0.32 

549.54 -53.32 -12.89 -5.59 -2.82 -1.05 0.00 0.35 0.50 0.52 0.32 

616.60 -53.32 -12.89 -5.59 -2.82 -1.05 0.00 0.35 0.50 0.52 0.32 

691.83 -53.32 -12.89 -5.59 -2.82 -1.05 0.00 0.35 0.50 0.52 0.32 

776.25 -53.32 -12.89 -5.59 -2.82 -1.05 0.00 0.35 0.50 0.52 0.32 

870.96 -53.31 -12.89 -5.59 -2.82 -1.05 0.00 0.35 0.50 0.52 0.32 

977.24 -53.31 -12.89 -5.59 -2.82 -1.05 0.00 0.35 0.50 0.52 0.32 

 
 
Table A4 – Normalized length amplification factor vs. Froude number (Figure 3.8) 

σ
*
= 0.01 0.05 0.1 0.5 1.0 2.0 10 100 1000 10000 

Fn δ` 

1.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1.54 0.00 0.00 0.00 0.02 0.03 0.04 0.04 0.04 0.04 0.04 
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1.59 0.00 0.00 0.00 0.03 0.06 0.08 0.09 0.09 0.09 0.09 

1.64 0.00 0.00 0.00 0.05 0.10 0.12 0.13 0.14 0.14 0.14 

1.69 0.00 0.00 0.00 0.07 0.12 0.16 0.17 0.18 0.18 0.18 

1.74 0.00 0.00 0.01 0.09 0.15 0.19 0.21 0.21 0.21 0.21 

1.79 0.00 0.00 0.01 0.10 0.17 0.22 0.24 0.24 0.24 0.24 

1.84 0.00 0.00 0.01 0.11 0.20 0.25 0.27 0.27 0.27 0.27 

1.89 0.00 0.00 0.01 0.13 0.22 0.27 0.30 0.30 0.30 0.30 

1.94 0.00 0.00 0.01 0.14 0.23 0.29 0.32 0.32 0.32 0.32 

1.99 0.00 0.00 0.01 0.15 0.25 0.31 0.34 0.34 0.34 0.34 

2.04 0.00 0.00 0.01 0.16 0.27 0.33 0.36 0.36 0.36 0.36 

2.09 0.00 0.00 0.02 0.17 0.28 0.35 0.38 0.38 0.38 0.38 

2.14 0.00 0.00 0.02 0.18 0.29 0.36 0.40 0.40 0.40 0.40 

2.19 0.00 0.01 0.02 0.19 0.31 0.38 0.41 0.41 0.41 0.41 

2.24 0.00 0.01 0.02 0.20 0.32 0.39 0.43 0.43 0.43 0.43 

2.29 0.00 0.01 0.02 0.21 0.33 0.40 0.44 0.44 0.44 0.44 

2.34 0.00 0.01 0.02 0.21 0.34 0.41 0.45 0.45 0.45 0.45 

2.39 0.00 0.01 0.03 0.22 0.34 0.42 0.46 0.46 0.46 0.46 

2.44 0.00 0.01 0.03 0.23 0.35 0.43 0.47 0.47 0.47 0.47 

2.49 0.00 0.01 0.03 0.23 0.36 0.44 0.48 0.48 0.48 0.48 

2.54 0.00 0.01 0.03 0.24 0.37 0.44 0.48 0.48 0.48 0.48 

2.59 0.00 0.01 0.03 0.24 0.37 0.45 0.49 0.49 0.49 0.49 

2.64 0.00 0.01 0.03 0.25 0.38 0.46 0.49 0.50 0.50 0.50 

2.69 0.00 0.01 0.03 0.25 0.38 0.46 0.50 0.50 0.50 0.50 

2.74 0.00 0.01 0.04 0.26 0.39 0.47 0.50 0.51 0.51 0.51 

2.79 0.00 0.01 0.04 0.26 0.39 0.47 0.51 0.51 0.51 0.51 

2.84 0.00 0.01 0.04 0.27 0.39 0.47 0.51 0.51 0.51 0.51 

2.89 0.00 0.01 0.04 0.27 0.40 0.48 0.52 0.52 0.52 0.52 

2.94 0.00 0.01 0.04 0.27 0.40 0.48 0.52 0.52 0.52 0.52 

2.99 0.00 0.01 0.04 0.27 0.40 0.48 0.52 0.52 0.52 0.52 

3.04 0.00 0.01 0.04 0.28 0.40 0.48 0.52 0.53 0.53 0.53 

3.09 0.00 0.01 0.05 0.28 0.41 0.49 0.53 0.53 0.53 0.53 

3.14 0.00 0.01 0.05 0.28 0.41 0.49 0.53 0.53 0.53 0.53 

3.19 0.00 0.01 0.05 0.28 0.41 0.49 0.53 0.53 0.53 0.53 

3.24 0.00 0.02 0.05 0.29 0.41 0.49 0.53 0.53 0.53 0.53 

3.29 0.00 0.02 0.05 0.29 0.41 0.49 0.53 0.53 0.53 0.53 

3.34 0.00 0.02 0.05 0.29 0.41 0.49 0.53 0.53 0.53 0.53 

3.39 0.00 0.02 0.05 0.29 0.41 0.49 0.53 0.53 0.53 0.53 

3.44 0.00 0.02 0.05 0.29 0.42 0.49 0.53 0.53 0.53 0.53 

3.49 0.00 0.02 0.05 0.29 0.42 0.49 0.53 0.53 0.53 0.53 

3.54 0.00 0.02 0.06 0.29 0.42 0.49 0.53 0.53 0.53 0.53 

3.59 0.00 0.02 0.06 0.29 0.42 0.49 0.53 0.53 0.53 0.53 

3.64 0.00 0.02 0.06 0.29 0.42 0.49 0.53 0.53 0.53 0.53 

3.69 0.00 0.02 0.06 0.30 0.42 0.49 0.53 0.53 0.53 0.53 

3.74 0.00 0.02 0.06 0.30 0.42 0.49 0.53 0.53 0.53 0.53 

3.79 0.00 0.02 0.06 0.30 0.42 0.49 0.53 0.53 0.53 0.53 

3.84 0.00 0.02 0.06 0.30 0.42 0.49 0.53 0.53 0.53 0.53 

3.89 0.00 0.02 0.06 0.30 0.42 0.49 0.52 0.53 0.53 0.53 

3.94 0.00 0.02 0.06 0.30 0.41 0.49 0.52 0.53 0.53 0.53 
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3.99 0.00 0.02 0.06 0.30 0.41 0.49 0.52 0.52 0.52 0.52 

4.04 0.00 0.02 0.07 0.30 0.41 0.48 0.52 0.52 0.52 0.52 

4.09 0.00 0.02 0.07 0.30 0.41 0.48 0.52 0.52 0.52 0.52 

4.14 0.00 0.02 0.07 0.30 0.41 0.48 0.52 0.52 0.52 0.52 

4.19 0.00 0.02 0.07 0.30 0.41 0.48 0.52 0.52 0.52 0.52 

4.24 0.00 0.03 0.07 0.30 0.41 0.48 0.51 0.52 0.52 0.52 

4.29 0.00 0.03 0.07 0.30 0.41 0.48 0.51 0.51 0.51 0.51 

4.34 0.00 0.03 0.07 0.30 0.41 0.48 0.51 0.51 0.51 0.51 

4.39 0.00 0.03 0.07 0.30 0.41 0.48 0.51 0.51 0.51 0.51 

4.44 0.00 0.03 0.07 0.30 0.41 0.47 0.51 0.51 0.51 0.51 

4.49 0.00 0.03 0.07 0.30 0.41 0.47 0.51 0.51 0.51 0.51 

4.54 0.00 0.03 0.07 0.30 0.40 0.47 0.50 0.51 0.51 0.51 

4.59 0.00 0.03 0.07 0.30 0.40 0.47 0.50 0.50 0.50 0.50 

4.64 0.00 0.03 0.07 0.30 0.40 0.47 0.50 0.50 0.50 0.50 

4.69 0.00 0.03 0.07 0.29 0.40 0.47 0.50 0.50 0.50 0.50 

4.74 0.00 0.03 0.07 0.29 0.40 0.46 0.50 0.50 0.50 0.50 

4.79 0.00 0.03 0.07 0.29 0.40 0.46 0.50 0.50 0.50 0.50 

4.84 0.00 0.03 0.07 0.29 0.40 0.46 0.49 0.49 0.49 0.49 

4.89 0.00 0.03 0.08 0.29 0.40 0.46 0.49 0.49 0.49 0.49 

4.94 0.00 0.03 0.08 0.29 0.39 0.46 0.49 0.49 0.49 0.49 

4.99 0.00 0.03 0.08 0.29 0.39 0.46 0.49 0.49 0.49 0.49 

5.04 0.00 0.03 0.08 0.29 0.39 0.45 0.49 0.49 0.49 0.49 

5.09 0.00 0.03 0.08 0.29 0.39 0.45 0.48 0.49 0.49 0.49 

5.14 0.00 0.03 0.08 0.29 0.39 0.45 0.48 0.48 0.48 0.48 

5.19 0.00 0.03 0.08 0.29 0.39 0.45 0.48 0.48 0.48 0.48 

5.24 0.00 0.03 0.08 0.29 0.39 0.45 0.48 0.48 0.48 0.48 

5.29 0.00 0.03 0.08 0.29 0.39 0.45 0.48 0.48 0.48 0.48 

5.34 0.00 0.03 0.08 0.29 0.38 0.44 0.47 0.48 0.48 0.48 

5.39 0.00 0.03 0.08 0.29 0.38 0.44 0.47 0.47 0.47 0.47 

5.44 0.00 0.03 0.08 0.29 0.38 0.44 0.47 0.47 0.47 0.47 

5.49 0.00 0.03 0.08 0.28 0.38 0.44 0.47 0.47 0.47 0.47 

5.54 0.00 0.03 0.08 0.28 0.38 0.44 0.47 0.47 0.47 0.47 

5.59 0.00 0.03 0.08 0.28 0.38 0.43 0.46 0.47 0.47 0.47 

5.64 0.00 0.04 0.08 0.28 0.38 0.43 0.46 0.46 0.46 0.46 

5.69 0.00 0.04 0.08 0.28 0.37 0.43 0.46 0.46 0.46 0.46 

5.74 0.00 0.04 0.08 0.28 0.37 0.43 0.46 0.46 0.46 0.46 

5.79 0.00 0.04 0.08 0.28 0.37 0.43 0.46 0.46 0.46 0.46 

5.84 0.00 0.04 0.08 0.28 0.37 0.43 0.45 0.46 0.46 0.46 

5.89 0.00 0.04 0.08 0.28 0.37 0.42 0.45 0.45 0.45 0.45 

5.94 0.00 0.04 0.08 0.28 0.37 0.42 0.45 0.45 0.45 0.45 

5.99 0.00 0.04 0.08 0.28 0.37 0.42 0.45 0.45 0.45 0.45 

6.04 0.00 0.04 0.08 0.28 0.36 0.42 0.45 0.45 0.45 0.45 

6.09 0.00 0.04 0.08 0.27 0.36 0.42 0.44 0.45 0.45 0.45 

6.14 0.00 0.04 0.08 0.27 0.36 0.41 0.44 0.44 0.44 0.44 

6.19 0.00 0.04 0.08 0.27 0.36 0.41 0.44 0.44 0.44 0.44 

6.24 0.00 0.04 0.08 0.27 0.36 0.41 0.44 0.44 0.44 0.44 

6.29 0.00 0.04 0.08 0.27 0.36 0.41 0.44 0.44 0.44 0.44 

6.34 0.00 0.04 0.08 0.27 0.36 0.41 0.43 0.44 0.44 0.44 
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6.39 0.00 0.04 0.08 0.27 0.35 0.41 0.43 0.43 0.43 0.43 

6.44 0.00 0.04 0.08 0.27 0.35 0.40 0.43 0.43 0.43 0.43 

6.49 0.00 0.04 0.08 0.27 0.35 0.40 0.43 0.43 0.43 0.43 

6.54 0.00 0.04 0.08 0.27 0.35 0.40 0.43 0.43 0.43 0.43 

6.59 0.00 0.04 0.08 0.27 0.35 0.40 0.42 0.43 0.43 0.43 

6.64 0.00 0.04 0.08 0.27 0.35 0.40 0.42 0.42 0.42 0.42 

6.69 0.00 0.04 0.08 0.26 0.35 0.40 0.42 0.42 0.42 0.42 

6.74 0.00 0.04 0.08 0.26 0.34 0.39 0.42 0.42 0.42 0.42 

6.79 0.00 0.04 0.08 0.26 0.34 0.39 0.42 0.42 0.42 0.42 

6.84 0.00 0.04 0.08 0.26 0.34 0.39 0.42 0.42 0.42 0.42 

6.89 0.00 0.04 0.08 0.26 0.34 0.39 0.41 0.42 0.42 0.42 

6.94 0.00 0.04 0.08 0.26 0.34 0.39 0.41 0.41 0.41 0.41 

6.99 0.00 0.04 0.08 0.26 0.34 0.39 0.41 0.41 0.41 0.41 

7.04 0.00 0.04 0.08 0.26 0.34 0.38 0.41 0.41 0.41 0.41 

7.09 0.00 0.04 0.08 0.26 0.34 0.38 0.41 0.41 0.41 0.41 

7.14 0.00 0.04 0.08 0.26 0.33 0.38 0.41 0.41 0.41 0.41 

7.19 0.00 0.04 0.08 0.26 0.33 0.38 0.40 0.40 0.40 0.40 

7.24 0.00 0.04 0.08 0.25 0.33 0.38 0.40 0.40 0.40 0.40 

7.29 0.00 0.04 0.08 0.25 0.33 0.38 0.40 0.40 0.40 0.40 

7.34 0.00 0.04 0.08 0.25 0.33 0.37 0.40 0.40 0.40 0.40 

7.39 0.00 0.04 0.08 0.25 0.33 0.37 0.40 0.40 0.40 0.40 

7.44 0.00 0.04 0.08 0.25 0.33 0.37 0.40 0.40 0.40 0.40 

7.49 0.00 0.04 0.08 0.25 0.33 0.37 0.39 0.39 0.39 0.39 

7.54 0.00 0.04 0.08 0.25 0.32 0.37 0.39 0.39 0.39 0.39 

7.59 0.00 0.04 0.08 0.25 0.32 0.37 0.39 0.39 0.39 0.39 

7.64 0.00 0.04 0.08 0.25 0.32 0.37 0.39 0.39 0.39 0.39 

7.69 0.00 0.04 0.08 0.25 0.32 0.36 0.39 0.39 0.39 0.39 

7.74 0.00 0.04 0.08 0.25 0.32 0.36 0.39 0.39 0.39 0.39 

7.79 0.00 0.04 0.08 0.25 0.32 0.36 0.38 0.38 0.38 0.38 

7.84 0.00 0.04 0.08 0.24 0.32 0.36 0.38 0.38 0.38 0.38 

7.89 0.00 0.04 0.08 0.24 0.32 0.36 0.38 0.38 0.38 0.38 

7.94 0.00 0.04 0.08 0.24 0.31 0.36 0.38 0.38 0.38 0.38 

7.99 0.00 0.04 0.08 0.24 0.31 0.36 0.38 0.38 0.38 0.38 

8.04 0.00 0.04 0.08 0.24 0.31 0.35 0.38 0.38 0.38 0.38 

8.09 0.00 0.04 0.08 0.24 0.31 0.35 0.37 0.38 0.38 0.38 

8.14 0.00 0.04 0.08 0.24 0.31 0.35 0.37 0.37 0.37 0.37 

8.19 0.00 0.04 0.08 0.24 0.31 0.35 0.37 0.37 0.37 0.37 

8.24 0.00 0.04 0.08 0.24 0.31 0.35 0.37 0.37 0.37 0.37 

8.29 0.00 0.04 0.08 0.24 0.31 0.35 0.37 0.37 0.37 0.37 

8.34 0.00 0.04 0.08 0.24 0.30 0.35 0.37 0.37 0.37 0.37 

8.39 0.00 0.04 0.08 0.24 0.30 0.34 0.37 0.37 0.37 0.37 

8.44 0.00 0.04 0.08 0.23 0.30 0.34 0.36 0.36 0.36 0.36 

8.49 0.00 0.04 0.08 0.23 0.30 0.34 0.36 0.36 0.36 0.36 

8.54 0.00 0.04 0.08 0.23 0.30 0.34 0.36 0.36 0.36 0.36 

8.59 0.00 0.04 0.08 0.23 0.30 0.34 0.36 0.36 0.36 0.36 

8.64 0.00 0.04 0.08 0.23 0.30 0.34 0.36 0.36 0.36 0.36 

8.69 0.01 0.04 0.08 0.23 0.30 0.34 0.36 0.36 0.36 0.36 

8.74 0.01 0.04 0.08 0.23 0.30 0.33 0.36 0.36 0.36 0.36 
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8.79 0.01 0.04 0.08 0.23 0.29 0.33 0.35 0.35 0.35 0.35 

8.84 0.01 0.04 0.08 0.23 0.29 0.33 0.35 0.35 0.35 0.35 

8.89 0.01 0.04 0.08 0.23 0.29 0.33 0.35 0.35 0.35 0.35 

8.94 0.01 0.04 0.08 0.23 0.29 0.33 0.35 0.35 0.35 0.35 

8.99 0.01 0.04 0.08 0.23 0.29 0.33 0.35 0.35 0.35 0.35 

9.04 0.01 0.04 0.08 0.23 0.29 0.33 0.35 0.35 0.35 0.35 

9.09 0.01 0.04 0.08 0.22 0.29 0.33 0.35 0.35 0.35 0.35 

9.14 0.01 0.04 0.08 0.22 0.29 0.32 0.34 0.35 0.35 0.35 

9.19 0.01 0.04 0.08 0.22 0.29 0.32 0.34 0.34 0.34 0.34 

9.24 0.01 0.04 0.08 0.22 0.28 0.32 0.34 0.34 0.34 0.34 

9.29 0.01 0.04 0.08 0.22 0.28 0.32 0.34 0.34 0.34 0.34 

9.34 0.01 0.04 0.08 0.22 0.28 0.32 0.34 0.34 0.34 0.34 

9.39 0.01 0.04 0.08 0.22 0.28 0.32 0.34 0.34 0.34 0.34 

9.44 0.01 0.04 0.08 0.22 0.28 0.32 0.34 0.34 0.34 0.34 

9.49 0.01 0.04 0.08 0.22 0.28 0.32 0.34 0.34 0.34 0.34 

9.54 0.01 0.04 0.08 0.22 0.28 0.32 0.33 0.33 0.33 0.33 

9.59 0.01 0.04 0.08 0.22 0.28 0.31 0.33 0.33 0.33 0.33 

9.64 0.01 0.04 0.08 0.22 0.28 0.31 0.33 0.33 0.33 0.33 

9.69 0.01 0.04 0.08 0.22 0.28 0.31 0.33 0.33 0.33 0.33 

9.74 0.01 0.04 0.08 0.22 0.27 0.31 0.33 0.33 0.33 0.33 

9.79 0.01 0.04 0.08 0.21 0.27 0.31 0.33 0.33 0.33 0.33 

9.84 0.01 0.04 0.08 0.21 0.27 0.31 0.33 0.33 0.33 0.33 

9.89 0.01 0.04 0.08 0.21 0.27 0.31 0.33 0.33 0.33 0.33 

9.94 0.01 0.04 0.08 0.21 0.27 0.31 0.32 0.33 0.33 0.33 

9.99 0.01 0.04 0.08 0.21 0.27 0.31 0.32 0.32 0.32 0.32 

 
 
Table A5 – Dimensionless celerity vs. discharge (Figure 4.5) 

λ= (m) 1 10 100 500 1000 5000 10000 

Q0 
(cms) c

*
 

20 1.359 1.360 1.376 1.494 1.572 1.659 1.665 

21 1.360 1.360 1.375 1.490 1.569 1.659 1.665 

22 1.360 1.360 1.374 1.486 1.566 1.659 1.665 

23 1.360 1.360 1.374 1.483 1.562 1.658 1.664 

24 1.360 1.360 1.373 1.480 1.559 1.658 1.664 

25 1.360 1.360 1.373 1.478 1.557 1.657 1.664 

26 1.360 1.361 1.372 1.475 1.554 1.657 1.664 

27 1.361 1.361 1.372 1.472 1.551 1.656 1.664 

28 1.361 1.361 1.372 1.470 1.549 1.656 1.664 

29 1.361 1.361 1.372 1.468 1.546 1.655 1.664 

30 1.362 1.362 1.372 1.466 1.544 1.655 1.664 

31 1.362 1.362 1.372 1.464 1.542 1.654 1.663 

32 1.362 1.363 1.372 1.462 1.539 1.654 1.663 

33 1.363 1.363 1.372 1.460 1.537 1.654 1.663 

34 1.363 1.363 1.372 1.458 1.535 1.653 1.663 
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35 1.364 1.364 1.372 1.457 1.533 1.653 1.663 

36 1.364 1.364 1.372 1.455 1.532 1.652 1.663 

37 1.364 1.365 1.372 1.454 1.530 1.652 1.663 

38 1.365 1.365 1.372 1.453 1.528 1.651 1.663 

39 1.365 1.365 1.372 1.451 1.526 1.651 1.662 

40 1.366 1.366 1.373 1.450 1.525 1.651 1.662 

41 1.366 1.366 1.373 1.449 1.523 1.650 1.662 

42 1.367 1.367 1.373 1.448 1.522 1.650 1.662 

43 1.367 1.367 1.373 1.447 1.520 1.649 1.662 

44 1.368 1.368 1.374 1.446 1.519 1.649 1.662 

45 1.368 1.368 1.374 1.445 1.517 1.648 1.662 

46 1.369 1.369 1.374 1.444 1.516 1.648 1.662 

47 1.369 1.369 1.375 1.443 1.515 1.648 1.661 

48 1.370 1.370 1.375 1.442 1.514 1.647 1.661 

49 1.370 1.370 1.375 1.442 1.512 1.647 1.661 

50 1.371 1.371 1.376 1.441 1.511 1.647 1.661 

51 1.371 1.371 1.376 1.440 1.510 1.646 1.661 

52 1.372 1.372 1.376 1.440 1.509 1.646 1.661 

53 1.372 1.372 1.377 1.439 1.508 1.645 1.661 

54 1.373 1.373 1.377 1.438 1.507 1.645 1.661 

55 1.373 1.373 1.378 1.438 1.506 1.645 1.661 

56 1.374 1.374 1.378 1.437 1.505 1.644 1.660 

57 1.374 1.374 1.378 1.437 1.504 1.644 1.660 

58 1.375 1.375 1.379 1.436 1.503 1.644 1.660 

59 1.375 1.375 1.379 1.436 1.503 1.643 1.660 

60 1.376 1.376 1.380 1.436 1.502 1.643 1.660 

61 1.376 1.376 1.380 1.435 1.501 1.643 1.660 

62 1.377 1.377 1.381 1.435 1.500 1.642 1.660 

63 1.377 1.377 1.381 1.434 1.499 1.642 1.660 

64 1.378 1.378 1.382 1.434 1.499 1.642 1.660 

65 1.378 1.379 1.382 1.434 1.498 1.641 1.659 

66 1.379 1.379 1.382 1.434 1.497 1.641 1.659 

67 1.380 1.380 1.383 1.433 1.497 1.641 1.659 

68 1.380 1.380 1.383 1.433 1.496 1.640 1.659 

69 1.381 1.381 1.384 1.433 1.495 1.640 1.659 

70 1.381 1.381 1.384 1.433 1.495 1.640 1.659 

71 1.382 1.382 1.385 1.432 1.494 1.639 1.659 

72 1.382 1.382 1.385 1.432 1.494 1.639 1.659 

73 1.383 1.383 1.386 1.432 1.493 1.639 1.659 

74 1.383 1.383 1.386 1.432 1.493 1.638 1.659 

75 1.384 1.384 1.387 1.432 1.492 1.638 1.658 

76 1.384 1.384 1.387 1.432 1.492 1.638 1.658 

77 1.385 1.385 1.388 1.432 1.491 1.637 1.658 

78 1.385 1.386 1.388 1.432 1.491 1.637 1.658 
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79 1.386 1.386 1.389 1.432 1.490 1.637 1.658 

80 1.387 1.387 1.389 1.431 1.490 1.637 1.658 

81 1.387 1.387 1.390 1.431 1.489 1.636 1.658 

82 1.388 1.388 1.390 1.431 1.489 1.636 1.658 

83 1.388 1.388 1.391 1.431 1.489 1.636 1.658 

84 1.389 1.389 1.391 1.431 1.488 1.636 1.658 

85 1.389 1.389 1.392 1.431 1.488 1.635 1.657 

86 1.390 1.390 1.392 1.431 1.487 1.635 1.657 

87 1.390 1.390 1.393 1.431 1.487 1.635 1.657 

88 1.391 1.391 1.393 1.431 1.487 1.635 1.657 

89 1.391 1.391 1.394 1.432 1.487 1.634 1.657 

90 1.392 1.392 1.394 1.432 1.486 1.634 1.657 

91 1.393 1.393 1.395 1.432 1.486 1.634 1.657 

92 1.393 1.393 1.395 1.432 1.486 1.634 1.657 

93 1.394 1.394 1.396 1.432 1.485 1.633 1.657 

94 1.394 1.394 1.396 1.432 1.485 1.633 1.657 

95 1.395 1.395 1.397 1.432 1.485 1.633 1.657 

96 1.395 1.395 1.397 1.432 1.485 1.633 1.657 

97 1.396 1.396 1.398 1.432 1.484 1.632 1.656 

98 1.396 1.396 1.398 1.432 1.484 1.632 1.656 

99 1.397 1.397 1.399 1.432 1.484 1.632 1.656 

100 1.397 1.397 1.399 1.433 1.484 1.632 1.656 

 
 
Table A6 – Celerity vs. discharge (Figure 4.6) 

λ= (m) 1 10 100 500 1000 5000 10000 

Q0 
(cms) c (m/s) 

20 9.843 9.845 9.961 10.814 11.383 12.015 12.054 

21 10.004 10.005 10.116 10.963 11.543 12.207 12.249 

22 10.159 10.160 10.267 11.106 11.697 12.392 12.437 

23 10.309 10.310 10.413 11.245 11.844 12.569 12.618 

24 10.454 10.455 10.554 11.378 11.986 12.741 12.792 

25 10.594 10.595 10.691 11.508 12.123 12.907 12.961 

26 10.731 10.732 10.824 11.633 12.256 13.067 13.125 

27 10.863 10.864 10.953 11.754 12.383 13.222 13.283 

28 10.992 10.993 11.079 11.872 12.507 13.372 13.437 

29 11.117 11.118 11.202 11.987 12.627 13.518 13.586 

30 11.240 11.241 11.322 12.098 12.743 13.659 13.731 

31 11.359 11.360 11.438 12.207 12.856 13.797 13.872 

32 11.475 11.476 11.552 12.313 12.966 13.930 14.009 

33 11.588 11.589 11.663 12.416 13.073 14.060 14.142 

34 11.699 11.700 11.772 12.517 13.176 14.187 14.272 

35 11.807 11.808 11.878 12.615 13.278 14.310 14.399 

36 11.913 11.914 11.982 12.711 13.376 14.431 14.523 

37 12.017 12.018 12.084 12.805 13.473 14.548 14.643 
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38 12.119 12.119 12.184 12.897 13.567 14.662 14.761 

39 12.218 12.219 12.282 12.987 13.659 14.774 14.877 

40 12.316 12.316 12.377 13.076 13.749 14.883 14.989 

41 12.411 12.412 12.471 13.162 13.837 14.990 15.099 

42 12.505 12.505 12.564 13.247 13.923 15.094 15.207 

43 12.597 12.597 12.654 13.330 14.007 15.196 15.313 

44 12.687 12.688 12.743 13.412 14.089 15.296 15.416 

45 12.776 12.777 12.831 13.493 14.170 15.394 15.517 

46 12.863 12.864 12.917 13.571 14.249 15.489 15.616 

47 12.949 12.949 13.001 13.649 14.327 15.583 15.714 

48 13.033 13.034 13.084 13.725 14.404 15.675 15.809 

49 13.116 13.116 13.166 13.800 14.478 15.765 15.903 

50 13.197 13.198 13.247 13.874 14.552 15.854 15.994 

51 13.278 13.278 13.326 13.946 14.624 15.941 16.084 

52 13.357 13.357 13.404 14.018 14.695 16.026 16.173 

53 13.434 13.435 13.480 14.088 14.765 16.109 16.260 

54 13.511 13.511 13.556 14.157 14.834 16.191 16.345 

55 13.586 13.587 13.631 14.226 14.901 16.272 16.429 

56 13.661 13.661 13.704 14.293 14.968 16.351 16.512 

57 13.734 13.734 13.777 14.359 15.033 16.429 16.593 

58 13.806 13.807 13.848 14.425 15.098 16.506 16.673 

59 13.877 13.878 13.918 14.489 15.161 16.581 16.751 

60 13.948 13.948 13.988 14.553 15.224 16.655 16.828 

61 14.017 14.017 14.056 14.616 15.285 16.728 16.904 

62 14.085 14.086 14.124 14.678 15.346 16.799 16.979 

63 14.153 14.153 14.191 14.739 15.406 16.870 17.053 

64 14.219 14.220 14.257 14.799 15.465 16.939 17.125 

65 14.285 14.285 14.322 14.859 15.523 17.007 17.197 

66 14.350 14.350 14.386 14.918 15.580 17.075 17.267 

67 14.414 14.414 14.450 14.976 15.637 17.141 17.336 

68 14.477 14.478 14.512 15.033 15.693 17.206 17.405 

69 14.540 14.540 14.574 15.090 15.748 17.270 17.472 

70 14.602 14.602 14.636 15.146 15.803 17.334 17.538 

71 14.663 14.663 14.696 15.202 15.856 17.396 17.604 

72 14.723 14.724 14.756 15.257 15.910 17.458 17.668 

73 14.783 14.783 14.815 15.311 15.962 17.519 17.732 

74 14.842 14.842 14.874 15.364 16.014 17.578 17.795 

75 14.900 14.901 14.932 15.418 16.065 17.637 17.856 

76 14.958 14.958 14.989 15.470 16.116 17.696 17.918 

77 15.015 15.016 15.045 15.522 16.166 17.753 17.978 

78 15.072 15.072 15.101 15.573 16.215 17.810 18.037 

79 15.128 15.128 15.157 15.624 16.264 17.866 18.096 

80 15.183 15.183 15.212 15.675 16.312 17.921 18.154 

81 15.238 15.238 15.266 15.725 16.360 17.975 18.211 

82 15.292 15.292 15.320 15.774 16.408 18.029 18.268 
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83 15.345 15.346 15.373 15.823 16.454 18.082 18.324 

84 15.398 15.399 15.426 15.871 16.501 18.135 18.379 

85 15.451 15.451 15.478 15.919 16.547 18.187 18.433 

86 15.503 15.503 15.529 15.967 16.592 18.238 18.487 

87 15.554 15.555 15.580 16.014 16.637 18.288 18.540 

88 15.605 15.606 15.631 16.060 16.681 18.338 18.593 

89 15.656 15.656 15.681 16.106 16.725 18.388 18.645 

90 15.706 15.706 15.731 16.152 16.769 18.436 18.696 

91 15.755 15.756 15.780 16.198 16.812 18.485 18.747 

92 15.805 15.805 15.829 16.242 16.855 18.532 18.797 

93 15.853 15.853 15.877 16.287 16.897 18.579 18.846 

94 15.901 15.902 15.925 16.331 16.939 18.626 18.895 

95 15.949 15.949 15.973 16.375 16.980 18.672 18.944 

96 15.997 15.997 16.020 16.418 17.021 18.717 18.992 

97 16.043 16.044 16.066 16.461 17.062 18.762 19.039 

98 16.090 16.090 16.113 16.504 17.103 18.807 19.086 

99 16.136 16.136 16.158 16.546 17.143 18.851 19.132 

100 16.182 16.182 16.204 16.588 17.182 18.895 19.178 

 
 
Table A7 – Attenuation factor vs. discharge (Figure 4.7) 

λ= (m) 1 10 100 500 1000 5000 10000 

Q0 
(cms) δ

*
 

20 0.003 0.029 0.263 0.550 0.491 0.155 0.079 

21 0.003 0.028 0.256 0.549 0.497 0.159 0.082 

22 0.003 0.028 0.250 0.547 0.502 0.164 0.084 

23 0.003 0.027 0.244 0.546 0.506 0.168 0.087 

24 0.003 0.026 0.238 0.544 0.510 0.173 0.089 

25 0.003 0.025 0.232 0.542 0.514 0.177 0.091 

26 0.002 0.025 0.227 0.540 0.517 0.181 0.093 

27 0.002 0.024 0.222 0.537 0.520 0.185 0.096 

28 0.002 0.023 0.217 0.535 0.522 0.188 0.098 

29 0.002 0.023 0.213 0.532 0.525 0.192 0.100 

30 0.002 0.022 0.208 0.530 0.526 0.196 0.102 

31 0.002 0.022 0.204 0.527 0.528 0.199 0.104 

32 0.002 0.021 0.200 0.524 0.530 0.203 0.106 

33 0.002 0.021 0.196 0.521 0.531 0.206 0.108 

34 0.002 0.020 0.193 0.518 0.532 0.209 0.109 

35 0.002 0.020 0.189 0.516 0.533 0.212 0.111 

36 0.002 0.020 0.186 0.513 0.534 0.215 0.113 

37 0.002 0.019 0.182 0.510 0.534 0.218 0.115 

38 0.002 0.019 0.179 0.507 0.535 0.221 0.116 

39 0.002 0.018 0.176 0.503 0.535 0.224 0.118 

40 0.002 0.018 0.173 0.500 0.535 0.227 0.120 
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41 0.002 0.018 0.171 0.497 0.535 0.229 0.121 

42 0.002 0.018 0.168 0.494 0.535 0.232 0.123 

43 0.002 0.017 0.165 0.491 0.535 0.234 0.124 

44 0.002 0.017 0.163 0.488 0.535 0.237 0.126 

45 0.002 0.017 0.160 0.485 0.534 0.239 0.127 

46 0.002 0.016 0.158 0.482 0.534 0.242 0.129 

47 0.002 0.016 0.155 0.479 0.534 0.244 0.130 

48 0.002 0.016 0.153 0.476 0.533 0.246 0.131 

49 0.002 0.016 0.151 0.473 0.532 0.248 0.133 

50 0.002 0.015 0.149 0.470 0.532 0.250 0.134 

51 0.002 0.015 0.147 0.467 0.531 0.253 0.135 

52 0.001 0.015 0.145 0.464 0.530 0.255 0.137 

53 0.001 0.015 0.143 0.461 0.530 0.256 0.138 

54 0.001 0.015 0.141 0.458 0.529 0.258 0.139 

55 0.001 0.014 0.139 0.455 0.528 0.260 0.140 

56 0.001 0.014 0.137 0.453 0.527 0.262 0.141 

57 0.001 0.014 0.136 0.450 0.526 0.264 0.143 

58 0.001 0.014 0.134 0.447 0.525 0.266 0.144 

59 0.001 0.014 0.132 0.444 0.524 0.267 0.145 

60 0.001 0.013 0.131 0.441 0.523 0.269 0.146 

61 0.001 0.013 0.129 0.438 0.521 0.271 0.147 

62 0.001 0.013 0.128 0.436 0.520 0.272 0.148 

63 0.001 0.013 0.126 0.433 0.519 0.274 0.149 

64 0.001 0.013 0.125 0.430 0.518 0.275 0.150 

65 0.001 0.013 0.123 0.427 0.517 0.277 0.151 

66 0.001 0.012 0.122 0.425 0.515 0.278 0.152 

67 0.001 0.012 0.120 0.422 0.514 0.279 0.153 

68 0.001 0.012 0.119 0.419 0.513 0.281 0.154 

69 0.001 0.012 0.118 0.417 0.511 0.282 0.155 

70 0.001 0.012 0.116 0.414 0.510 0.283 0.156 

71 0.001 0.012 0.115 0.412 0.509 0.285 0.157 

72 0.001 0.012 0.114 0.409 0.507 0.286 0.157 

73 0.001 0.012 0.113 0.407 0.506 0.287 0.158 

74 0.001 0.011 0.112 0.404 0.505 0.288 0.159 

75 0.001 0.011 0.110 0.402 0.503 0.289 0.160 

76 0.001 0.011 0.109 0.399 0.502 0.291 0.161 

77 0.001 0.011 0.108 0.397 0.500 0.292 0.162 

78 0.001 0.011 0.107 0.394 0.499 0.293 0.162 

79 0.001 0.011 0.106 0.392 0.497 0.294 0.163 

80 0.001 0.011 0.105 0.389 0.496 0.295 0.164 

81 0.001 0.011 0.104 0.387 0.495 0.296 0.165 

82 0.001 0.010 0.103 0.385 0.493 0.297 0.165 

83 0.001 0.010 0.102 0.382 0.492 0.298 0.166 

84 0.001 0.010 0.101 0.380 0.490 0.299 0.167 

85 0.001 0.010 0.100 0.378 0.489 0.299 0.167 
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86 0.001 0.010 0.099 0.375 0.487 0.300 0.168 

87 0.001 0.010 0.098 0.373 0.486 0.301 0.169 

88 0.001 0.010 0.097 0.371 0.484 0.302 0.169 

89 0.001 0.010 0.096 0.369 0.483 0.303 0.170 

90 0.001 0.010 0.095 0.367 0.481 0.304 0.171 

91 0.001 0.010 0.095 0.364 0.480 0.304 0.171 

92 0.001 0.010 0.094 0.362 0.478 0.305 0.172 

93 0.001 0.009 0.093 0.360 0.477 0.306 0.172 

94 0.001 0.009 0.092 0.358 0.475 0.307 0.173 

95 0.001 0.009 0.091 0.356 0.473 0.307 0.174 

96 0.001 0.009 0.091 0.354 0.472 0.308 0.174 

97 0.001 0.009 0.090 0.352 0.470 0.308 0.175 

98 0.001 0.009 0.089 0.350 0.469 0.309 0.175 

99 0.001 0.009 0.088 0.348 0.467 0.310 0.176 

100 0.001 0.009 0.088 0.346 0.466 0.310 0.176 

 
 
Table A8 – Normalized amplification factor vs. discharge (Figure 4.8) 

λ= (m) 1 10 100 500 1000 5000 10000 

Q0 (cms) δ`       

20 0.510 0.510 0.457 0.191 0.085 0.005 0.001 

21 0.510 0.510 0.460 0.197 0.089 0.006 0.001 

22 0.510 0.510 0.462 0.203 0.093 0.006 0.002 

23 0.510 0.510 0.465 0.208 0.097 0.006 0.002 

24 0.510 0.510 0.467 0.213 0.100 0.007 0.002 

25 0.510 0.509 0.469 0.219 0.104 0.007 0.002 

26 0.510 0.509 0.470 0.224 0.107 0.007 0.002 

27 0.510 0.509 0.472 0.228 0.110 0.008 0.002 

28 0.509 0.509 0.473 0.233 0.114 0.008 0.002 

29 0.509 0.509 0.475 0.238 0.117 0.009 0.002 

30 0.509 0.509 0.476 0.242 0.120 0.009 0.002 

31 0.509 0.508 0.477 0.246 0.123 0.009 0.002 

32 0.509 0.508 0.478 0.250 0.126 0.010 0.003 

33 0.508 0.508 0.479 0.254 0.129 0.010 0.003 

34 0.508 0.508 0.480 0.258 0.132 0.010 0.003 

35 0.508 0.507 0.480 0.262 0.135 0.011 0.003 

36 0.507 0.507 0.481 0.265 0.138 0.011 0.003 

37 0.507 0.507 0.482 0.269 0.141 0.012 0.003 

38 0.507 0.507 0.482 0.272 0.144 0.012 0.003 

39 0.507 0.506 0.483 0.276 0.146 0.012 0.003 

40 0.506 0.506 0.483 0.279 0.149 0.013 0.003 

41 0.506 0.506 0.484 0.282 0.152 0.013 0.003 

42 0.506 0.505 0.484 0.285 0.154 0.013 0.004 

43 0.505 0.505 0.484 0.288 0.157 0.014 0.004 
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44 0.505 0.505 0.485 0.291 0.159 0.014 0.004 

45 0.505 0.504 0.485 0.294 0.162 0.014 0.004 

46 0.504 0.504 0.485 0.297 0.164 0.015 0.004 

47 0.504 0.504 0.485 0.299 0.167 0.015 0.004 

48 0.504 0.503 0.486 0.302 0.169 0.016 0.004 

49 0.503 0.503 0.486 0.304 0.171 0.016 0.004 

50 0.503 0.503 0.486 0.307 0.174 0.016 0.004 

51 0.503 0.502 0.486 0.309 0.176 0.017 0.004 

52 0.502 0.502 0.486 0.311 0.178 0.017 0.005 

53 0.502 0.502 0.486 0.314 0.180 0.017 0.005 

54 0.502 0.501 0.486 0.316 0.182 0.018 0.005 

55 0.501 0.501 0.486 0.318 0.184 0.018 0.005 

56 0.501 0.501 0.486 0.320 0.186 0.019 0.005 

57 0.500 0.500 0.486 0.322 0.188 0.019 0.005 

58 0.500 0.500 0.486 0.324 0.190 0.019 0.005 

59 0.500 0.499 0.486 0.326 0.192 0.020 0.005 

60 0.499 0.499 0.486 0.328 0.194 0.020 0.005 

61 0.499 0.499 0.486 0.330 0.196 0.020 0.006 

62 0.498 0.498 0.486 0.332 0.198 0.021 0.006 

63 0.498 0.498 0.485 0.334 0.200 0.021 0.006 

64 0.498 0.497 0.485 0.335 0.202 0.021 0.006 

65 0.497 0.497 0.485 0.337 0.204 0.022 0.006 

66 0.497 0.497 0.485 0.339 0.205 0.022 0.006 

67 0.496 0.496 0.485 0.340 0.207 0.023 0.006 

68 0.496 0.496 0.485 0.342 0.209 0.023 0.006 

69 0.495 0.495 0.485 0.343 0.211 0.023 0.006 

70 0.495 0.495 0.484 0.345 0.212 0.024 0.006 

71 0.495 0.495 0.484 0.346 0.214 0.024 0.007 

72 0.494 0.494 0.484 0.347 0.215 0.024 0.007 

73 0.494 0.494 0.484 0.349 0.217 0.025 0.007 

74 0.493 0.493 0.483 0.350 0.219 0.025 0.007 

75 0.493 0.493 0.483 0.351 0.220 0.025 0.007 

76 0.492 0.492 0.483 0.353 0.222 0.026 0.007 

77 0.492 0.492 0.483 0.354 0.223 0.026 0.007 

78 0.492 0.491 0.482 0.355 0.225 0.026 0.007 

79 0.491 0.491 0.482 0.356 0.226 0.027 0.007 

80 0.491 0.491 0.482 0.357 0.228 0.027 0.008 

81 0.490 0.490 0.482 0.359 0.229 0.027 0.008 

82 0.490 0.490 0.481 0.360 0.231 0.028 0.008 

83 0.489 0.489 0.481 0.361 0.232 0.028 0.008 

84 0.489 0.489 0.481 0.362 0.233 0.028 0.008 

85 0.488 0.488 0.480 0.363 0.235 0.029 0.008 

86 0.488 0.488 0.480 0.364 0.236 0.029 0.008 

87 0.487 0.487 0.480 0.365 0.237 0.029 0.008 

88 0.487 0.487 0.479 0.366 0.239 0.030 0.008 

89 0.486 0.486 0.479 0.367 0.240 0.030 0.008 

90 0.486 0.486 0.479 0.367 0.241 0.030 0.009 
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91 0.486 0.485 0.478 0.368 0.242 0.031 0.009 

92 0.485 0.485 0.478 0.369 0.244 0.031 0.009 

93 0.485 0.484 0.477 0.370 0.245 0.031 0.009 

94 0.484 0.484 0.477 0.371 0.246 0.032 0.009 

95 0.484 0.484 0.477 0.371 0.247 0.032 0.009 

96 0.483 0.483 0.476 0.372 0.248 0.032 0.009 

97 0.483 0.483 0.476 0.373 0.249 0.033 0.009 

98 0.482 0.482 0.476 0.374 0.251 0.033 0.009 

99 0.482 0.482 0.475 0.374 0.252 0.033 0.009 

100 0.481 0.481 0.475 0.375 0.253 0.034 0.010 

 
 
Table A9 – Amplitude increase in percent vs. discharge (Figure 4.9) 

λ= (m) 1 10 100 500 1000 5000 10000 

Q0 (cms) % Increase over 2πL0     

20 66.6% 66.5% 58.0% 21.0% 8.9% 0.54% 0.14% 

21 66.6% 66.5% 58.4% 21.7% 9.3% 0.57% 0.15% 

22 66.6% 66.5% 58.8% 22.4% 9.7% 0.61% 0.16% 

23 66.6% 66.5% 59.2% 23.1% 10.1% 0.64% 0.17% 

24 66.5% 66.5% 59.5% 23.8% 10.5% 0.68% 0.17% 

25 66.5% 66.4% 59.8% 24.4% 10.9% 0.72% 0.18% 

26 66.5% 66.4% 60.1% 25.1% 11.3% 0.75% 0.19% 

27 66.5% 66.4% 60.3% 25.7% 11.7% 0.79% 0.20% 

28 66.4% 66.4% 60.5% 26.2% 12.0% 0.82% 0.21% 

29 66.4% 66.3% 60.7% 26.8% 12.4% 0.86% 0.22% 

30 66.4% 66.3% 60.9% 27.4% 12.8% 0.90% 0.23% 

31 66.3% 66.3% 61.1% 27.9% 13.1% 0.94% 0.24% 

32 66.3% 66.2% 61.3% 28.4% 13.5% 0.97% 0.25% 

33 66.2% 66.2% 61.4% 29.0% 13.8% 1.01% 0.26% 

34 66.2% 66.1% 61.5% 29.4% 14.2% 1.05% 0.27% 

35 66.2% 66.1% 61.7% 29.9% 14.5% 1.08% 0.28% 

36 66.1% 66.1% 61.8% 30.4% 14.8% 1.12% 0.29% 

37 66.1% 66.0% 61.9% 30.9% 15.1% 1.16% 0.30% 

38 66.0% 66.0% 62.0% 31.3% 15.5% 1.20% 0.31% 

39 66.0% 65.9% 62.1% 31.7% 15.8% 1.23% 0.32% 

40 65.9% 65.9% 62.1% 32.2% 16.1% 1.27% 0.33% 

41 65.9% 65.8% 62.2% 32.6% 16.4% 1.31% 0.34% 

42 65.8% 65.8% 62.3% 33.0% 16.7% 1.35% 0.35% 

43 65.8% 65.7% 62.3% 33.4% 17.0% 1.38% 0.37% 

44 65.7% 65.7% 62.4% 33.8% 17.3% 1.42% 0.38% 

45 65.7% 65.6% 62.4% 34.2% 17.6% 1.46% 0.39% 

46 65.6% 65.6% 62.4% 34.5% 17.9% 1.50% 0.40% 

47 65.5% 65.5% 62.5% 34.9% 18.1% 1.54% 0.41% 

48 65.5% 65.4% 62.5% 35.2% 18.4% 1.57% 0.42% 
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49 65.4% 65.4% 62.5% 35.6% 18.7% 1.61% 0.43% 

50 65.4% 65.3% 62.5% 35.9% 18.9% 1.65% 0.44% 

51 65.3% 65.3% 62.6% 36.2% 19.2% 1.69% 0.45% 

52 65.2% 65.2% 62.6% 36.5% 19.5% 1.72% 0.46% 

53 65.2% 65.2% 62.6% 36.9% 19.7% 1.76% 0.47% 

54 65.1% 65.1% 62.6% 37.2% 20.0% 1.80% 0.48% 

55 65.1% 65.0% 62.6% 37.5% 20.2% 1.83% 0.49% 

56 65.0% 65.0% 62.6% 37.7% 20.5% 1.87% 0.50% 

57 64.9% 64.9% 62.6% 38.0% 20.7% 1.91% 0.51% 

58 64.9% 64.8% 62.6% 38.3% 21.0% 1.95% 0.52% 

59 64.8% 64.8% 62.6% 38.6% 21.2% 1.98% 0.53% 

60 64.7% 64.7% 62.6% 38.8% 21.4% 2.02% 0.54% 

61 64.7% 64.7% 62.5% 39.1% 21.7% 2.06% 0.55% 

62 64.6% 64.6% 62.5% 39.3% 21.9% 2.09% 0.57% 

63 64.5% 64.5% 62.5% 39.6% 22.1% 2.13% 0.58% 

64 64.5% 64.5% 62.5% 39.8% 22.4% 2.17% 0.59% 

65 64.4% 64.4% 62.5% 40.1% 22.6% 2.20% 0.60% 

66 64.3% 64.3% 62.4% 40.3% 22.8% 2.24% 0.61% 

67 64.3% 64.2% 62.4% 40.5% 23.0% 2.28% 0.62% 

68 64.2% 64.2% 62.4% 40.7% 23.2% 2.31% 0.63% 

69 64.1% 64.1% 62.3% 40.9% 23.4% 2.35% 0.64% 

70 64.1% 64.0% 62.3% 41.1% 23.6% 2.39% 0.65% 

71 64.0% 64.0% 62.3% 41.4% 23.8% 2.42% 0.66% 

72 63.9% 63.9% 62.2% 41.5% 24.0% 2.46% 0.67% 

73 63.8% 63.8% 62.2% 41.7% 24.2% 2.49% 0.68% 

74 63.8% 63.8% 62.2% 41.9% 24.4% 2.53% 0.69% 

75 63.7% 63.7% 62.1% 42.1% 24.6% 2.57% 0.70% 

76 63.6% 63.6% 62.1% 42.3% 24.8% 2.60% 0.71% 

77 63.6% 63.5% 62.0% 42.5% 25.0% 2.64% 0.72% 

78 63.5% 63.5% 62.0% 42.6% 25.2% 2.67% 0.73% 

79 63.4% 63.4% 61.9% 42.8% 25.4% 2.71% 0.74% 

80 63.3% 63.3% 61.9% 43.0% 25.6% 2.74% 0.76% 

81 63.3% 63.2% 61.9% 43.1% 25.8% 2.78% 0.77% 

82 63.2% 63.2% 61.8% 43.3% 25.9% 2.81% 0.78% 

83 63.1% 63.1% 61.8% 43.4% 26.1% 2.85% 0.79% 

84 63.0% 63.0% 61.7% 43.6% 26.3% 2.88% 0.80% 

85 63.0% 62.9% 61.6% 43.7% 26.4% 2.92% 0.81% 

86 62.9% 62.9% 61.6% 43.9% 26.6% 2.95% 0.82% 

87 62.8% 62.8% 61.5% 44.0% 26.8% 2.99% 0.83% 

88 62.7% 62.7% 61.5% 44.1% 26.9% 3.02% 0.84% 

89 62.7% 62.6% 61.4% 44.3% 27.1% 3.06% 0.85% 

90 62.6% 62.6% 61.4% 44.4% 27.3% 3.09% 0.86% 

91 62.5% 62.5% 61.3% 44.5% 27.4% 3.12% 0.87% 

92 62.4% 62.4% 61.3% 44.6% 27.6% 3.16% 0.88% 

93 62.3% 62.3% 61.2% 44.8% 27.7% 3.19% 0.89% 

94 62.3% 62.3% 61.1% 44.9% 27.9% 3.23% 0.90% 

95 62.2% 62.2% 61.1% 45.0% 28.0% 3.26% 0.91% 



 116 

96 62.1% 62.1% 61.0% 45.1% 28.2% 3.29% 0.92% 

97 62.0% 62.0% 61.0% 45.2% 28.3% 3.33% 0.93% 

98 61.9% 61.9% 60.9% 45.3% 28.5% 3.36% 0.94% 

99 61.9% 61.9% 60.8% 45.4% 28.6% 3.39% 0.95% 

100 61.8% 61.8% 60.8% 45.5% 28.8% 3.43% 0.96% 

 
 
Table A10 – Amplification over 543 m vs. discharge (Figure 4.11) 

λ= (m) 1 10 100 500 1000 5000 10000 

Q0 (cms) % Increase over 543m     

20 393.7% 392.7% 318.0% 81.6% 30.6% 1.69% 0.43% 

21 368.9% 368.1% 302.6% 81.4% 31.0% 1.74% 0.44% 

22 347.1% 346.3% 288.5% 81.2% 31.3% 1.80% 0.46% 

23 327.6% 327.0% 275.7% 80.9% 31.6% 1.84% 0.47% 

24 310.3% 309.7% 263.9% 80.5% 31.9% 1.89% 0.48% 

25 294.6% 294.1% 253.1% 80.1% 32.2% 1.94% 0.50% 

26 280.5% 280.1% 243.2% 79.7% 32.4% 1.98% 0.51% 

27 267.7% 267.3% 233.9% 79.3% 32.6% 2.03% 0.52% 

28 256.0% 255.6% 225.4% 78.8% 32.8% 2.07% 0.53% 

29 245.3% 244.9% 217.4% 78.3% 33.0% 2.11% 0.54% 

30 235.4% 235.1% 210.0% 77.8% 33.1% 2.15% 0.55% 

31 226.3% 226.1% 203.0% 77.2% 33.2% 2.19% 0.56% 

32 217.9% 217.7% 196.5% 76.7% 33.3% 2.22% 0.58% 

33 210.1% 209.9% 190.4% 76.2% 33.4% 2.26% 0.59% 

34 202.9% 202.7% 184.7% 75.6% 33.5% 2.30% 0.60% 

35 196.1% 195.9% 179.3% 75.0% 33.6% 2.33% 0.61% 

36 189.8% 189.6% 174.2% 74.5% 33.6% 2.37% 0.62% 

37 183.9% 183.7% 169.3% 73.9% 33.7% 2.40% 0.62% 

38 178.3% 178.2% 164.8% 73.3% 33.7% 2.43% 0.63% 

39 173.1% 172.9% 160.5% 72.8% 33.7% 2.46% 0.64% 

40 168.2% 168.0% 156.4% 72.2% 33.7% 2.49% 0.65% 

41 163.5% 163.4% 152.4% 71.6% 33.7% 2.52% 0.66% 

42 159.1% 159.0% 148.7% 71.1% 33.7% 2.55% 0.67% 

43 154.9% 154.8% 145.2% 70.5% 33.7% 2.58% 0.68% 

44 151.0% 150.9% 141.8% 69.9% 33.7% 2.61% 0.69% 

45 147.2% 147.1% 138.6% 69.4% 33.7% 2.63% 0.69% 

46 143.7% 143.6% 135.5% 68.8% 33.6% 2.66% 0.70% 

47 140.3% 140.2% 132.6% 68.3% 33.6% 2.68% 0.71% 

48 137.0% 136.9% 129.8% 67.7% 33.6% 2.71% 0.72% 

49 133.9% 133.8% 127.0% 67.2% 33.5% 2.73% 0.72% 

50 131.0% 130.9% 124.4% 66.6% 33.5% 2.76% 0.73% 

51 128.1% 128.1% 122.0% 66.1% 33.4% 2.78% 0.74% 

52 125.4% 125.4% 119.6% 65.5% 33.4% 2.80% 0.74% 
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53 122.8% 122.8% 117.3% 65.0% 33.3% 2.82% 0.75% 

54 120.3% 120.3% 115.0% 64.5% 33.2% 2.85% 0.76% 

55 117.9% 117.9% 112.9% 64.0% 33.2% 2.87% 0.76% 

56 115.6% 115.6% 110.8% 63.5% 33.1% 2.89% 0.77% 

57 113.4% 113.4% 108.8% 63.0% 33.0% 2.91% 0.78% 

58 111.3% 111.3% 106.9% 62.5% 33.0% 2.93% 0.78% 

59 109.3% 109.2% 105.1% 62.0% 32.9% 2.95% 0.79% 

60 107.3% 107.2% 103.3% 61.5% 32.8% 2.96% 0.80% 

61 105.4% 105.3% 101.5% 61.0% 32.7% 2.98% 0.80% 

62 103.5% 103.5% 99.9% 60.5% 32.6% 3.00% 0.81% 

63 101.8% 101.7% 98.2% 60.0% 32.6% 3.02% 0.81% 

64 100.0% 100.0% 96.7% 59.5% 32.5% 3.03% 0.82% 

65 98.4% 98.3% 95.1% 59.1% 32.4% 3.05% 0.82% 

66 96.8% 96.7% 93.7% 58.6% 32.3% 3.07% 0.83% 

67 95.2% 95.2% 92.2% 58.1% 32.2% 3.08% 0.83% 

68 93.7% 93.7% 90.8% 57.7% 32.1% 3.10% 0.84% 

69 92.2% 92.2% 89.5% 57.2% 32.0% 3.11% 0.84% 

70 90.8% 90.8% 88.2% 56.8% 31.9% 3.13% 0.85% 

71 89.4% 89.4% 86.9% 56.4% 31.8% 3.14% 0.85% 

72 88.1% 88.1% 85.6% 55.9% 31.7% 3.15% 0.86% 

73 86.8% 86.8% 84.4% 55.5% 31.6% 3.17% 0.86% 

74 85.5% 85.5% 83.3% 55.1% 31.5% 3.18% 0.87% 

75 84.3% 84.3% 82.1% 54.7% 31.4% 3.19% 0.87% 

76 83.1% 83.1% 81.0% 54.2% 31.3% 3.21% 0.88% 

77 82.0% 81.9% 79.9% 53.8% 31.2% 3.22% 0.88% 

78 80.8% 80.8% 78.9% 53.4% 31.1% 3.23% 0.89% 

79 79.7% 79.7% 77.8% 53.0% 31.0% 3.24% 0.89% 

80 78.7% 78.7% 76.8% 52.6% 30.9% 3.25% 0.89% 

81 77.6% 77.6% 75.8% 52.2% 30.8% 3.26% 0.90% 

82 76.6% 76.6% 74.9% 51.9% 30.7% 3.27% 0.90% 

83 75.6% 75.6% 73.9% 51.5% 30.6% 3.29% 0.91% 

84 74.6% 74.6% 73.0% 51.1% 30.5% 3.30% 0.91% 

85 73.7% 73.7% 72.1% 50.7% 30.4% 3.31% 0.91% 

86 72.8% 72.8% 71.3% 50.3% 30.3% 3.32% 0.92% 

87 71.9% 71.9% 70.4% 50.0% 30.2% 3.32% 0.92% 

88 71.0% 71.0% 69.6% 49.6% 30.1% 3.33% 0.92% 

89 70.1% 70.1% 68.7% 49.2% 30.0% 3.34% 0.93% 

90 69.3% 69.3% 67.9% 48.9% 29.9% 3.35% 0.93% 

91 68.5% 68.5% 67.2% 48.5% 29.7% 3.36% 0.93% 

92 67.7% 67.7% 66.4% 48.2% 29.6% 3.37% 0.94% 

93 66.9% 66.9% 65.7% 47.8% 29.5% 3.38% 0.94% 

94 66.1% 66.1% 64.9% 47.5% 29.4% 3.38% 0.94% 

95 65.4% 65.4% 64.2% 47.2% 29.3% 3.39% 0.95% 

96 64.6% 64.6% 63.5% 46.8% 29.2% 3.40% 0.95% 

97 63.9% 63.9% 62.8% 46.5% 29.1% 3.41% 0.95% 

98 63.2% 63.2% 62.1% 46.2% 29.0% 3.41% 0.96% 

99 62.5% 62.5% 61.5% 45.9% 28.9% 3.42% 0.96% 

100 61.8% 61.8% 60.8% 45.5% 28.8% 3.43% 0.96% 
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Table A11 – Amplitude of an initially 0.5 m wave over 543 m vs. discharge 

(Figure 4.12) 

λ= (m) 1 10 100 500 1000 5000 10000 

Q0 (cms) Amplitude after 543 m, starting at 0.5 m (m) 

20 2.469 2.464 2.090 0.908 0.653 0.508 0.502 

21 2.345 2.340 2.013 0.907 0.655 0.509 0.502 

22 2.235 2.232 1.943 0.906 0.657 0.509 0.502 

23 2.138 2.135 1.879 0.904 0.658 0.509 0.502 

24 2.051 2.049 1.820 0.903 0.660 0.509 0.502 

25 1.973 1.971 1.766 0.901 0.661 0.510 0.502 

26 1.903 1.900 1.716 0.899 0.662 0.510 0.503 

27 1.838 1.836 1.670 0.896 0.663 0.510 0.503 

28 1.780 1.778 1.627 0.894 0.664 0.510 0.503 

29 1.726 1.725 1.587 0.891 0.665 0.511 0.503 

30 1.677 1.676 1.550 0.889 0.665 0.511 0.503 

31 1.632 1.630 1.515 0.886 0.666 0.511 0.503 

32 1.590 1.588 1.483 0.884 0.667 0.511 0.503 

33 1.551 1.550 1.452 0.881 0.667 0.511 0.503 

34 1.514 1.513 1.423 0.878 0.667 0.511 0.503 

35 1.481 1.480 1.396 0.875 0.668 0.512 0.503 

36 1.449 1.448 1.371 0.872 0.668 0.512 0.503 

37 1.419 1.419 1.347 0.870 0.668 0.512 0.503 

38 1.392 1.391 1.324 0.867 0.668 0.512 0.503 

39 1.365 1.365 1.302 0.864 0.669 0.512 0.503 

40 1.341 1.340 1.282 0.861 0.669 0.512 0.503 

41 1.317 1.317 1.262 0.858 0.669 0.513 0.503 

42 1.295 1.295 1.244 0.855 0.669 0.513 0.503 

43 1.275 1.274 1.226 0.852 0.669 0.513 0.503 

44 1.255 1.254 1.209 0.850 0.668 0.513 0.503 

45 1.236 1.236 1.193 0.847 0.668 0.513 0.503 

46 1.218 1.218 1.178 0.844 0.668 0.513 0.504 

47 1.201 1.201 1.163 0.841 0.668 0.513 0.504 

48 1.185 1.185 1.149 0.839 0.668 0.514 0.504 

49 1.170 1.169 1.135 0.836 0.668 0.514 0.504 

50 1.155 1.154 1.122 0.833 0.667 0.514 0.504 

51 1.141 1.140 1.110 0.830 0.667 0.514 0.504 

52 1.127 1.127 1.098 0.828 0.667 0.514 0.504 

53 1.114 1.114 1.086 0.825 0.667 0.514 0.504 

54 1.102 1.101 1.075 0.822 0.666 0.514 0.504 

55 1.090 1.089 1.064 0.820 0.666 0.514 0.504 
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56 1.078 1.078 1.054 0.817 0.666 0.514 0.504 

57 1.067 1.067 1.044 0.815 0.665 0.515 0.504 

58 1.057 1.056 1.035 0.812 0.665 0.515 0.504 

59 1.046 1.046 1.025 0.810 0.664 0.515 0.504 

60 1.036 1.036 1.016 0.807 0.664 0.515 0.504 

61 1.027 1.027 1.008 0.805 0.664 0.515 0.504 

62 1.018 1.017 0.999 0.802 0.663 0.515 0.504 

63 1.009 1.009 0.991 0.800 0.663 0.515 0.504 

64 1.000 1.000 0.983 0.798 0.662 0.515 0.504 

65 0.992 0.992 0.976 0.795 0.662 0.515 0.504 

66 0.984 0.984 0.968 0.793 0.661 0.515 0.504 

67 0.976 0.976 0.961 0.791 0.661 0.515 0.504 

68 0.969 0.968 0.954 0.788 0.661 0.515 0.504 

69 0.961 0.961 0.947 0.786 0.660 0.516 0.504 

70 0.954 0.954 0.941 0.784 0.660 0.516 0.504 

71 0.947 0.947 0.934 0.782 0.659 0.516 0.504 

72 0.941 0.940 0.928 0.780 0.659 0.516 0.504 

73 0.934 0.934 0.922 0.778 0.658 0.516 0.504 

74 0.928 0.928 0.916 0.775 0.658 0.516 0.504 

75 0.922 0.921 0.911 0.773 0.657 0.516 0.504 

76 0.916 0.916 0.905 0.771 0.657 0.516 0.504 

77 0.910 0.910 0.900 0.769 0.656 0.516 0.504 

78 0.904 0.904 0.894 0.767 0.656 0.516 0.504 

79 0.899 0.899 0.889 0.765 0.655 0.516 0.504 

80 0.893 0.893 0.884 0.763 0.655 0.516 0.504 

81 0.888 0.888 0.879 0.761 0.654 0.516 0.504 

82 0.883 0.883 0.874 0.759 0.654 0.516 0.505 

83 0.878 0.878 0.870 0.757 0.653 0.516 0.505 

84 0.873 0.873 0.865 0.755 0.652 0.516 0.505 

85 0.869 0.868 0.861 0.754 0.652 0.517 0.505 

86 0.864 0.864 0.856 0.752 0.651 0.517 0.505 

87 0.859 0.859 0.852 0.750 0.651 0.517 0.505 

88 0.855 0.855 0.848 0.748 0.650 0.517 0.505 

89 0.851 0.851 0.844 0.746 0.650 0.517 0.505 

90 0.847 0.846 0.840 0.744 0.649 0.517 0.505 

91 0.842 0.842 0.836 0.743 0.649 0.517 0.505 

92 0.838 0.838 0.832 0.741 0.648 0.517 0.505 

93 0.834 0.834 0.828 0.739 0.648 0.517 0.505 

94 0.831 0.831 0.825 0.738 0.647 0.517 0.505 

95 0.827 0.827 0.821 0.736 0.647 0.517 0.505 

96 0.823 0.823 0.818 0.734 0.646 0.517 0.505 

97 0.820 0.820 0.814 0.733 0.646 0.517 0.505 

98 0.816 0.816 0.811 0.731 0.645 0.517 0.505 

99 0.813 0.813 0.807 0.729 0.644 0.517 0.505 

100 0.809 0.809 0.804 0.728 0.644 0.517 0.505 
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Table A12 – Wave amplitude vs. distance (Figure 4.13) 
λ= (m) 10 100 500 1000 5000 

Length (m)  Amplitude of an intially 0.5 m wave 

0 0.500 0.500 0.500 0.500 0.500 

10 0.504 0.504 0.503 0.502 0.500 

11 0.505 0.505 0.504 0.503 0.500 

12 0.505 0.505 0.504 0.503 0.500 

13 0.506 0.506 0.505 0.503 0.500 

14 0.506 0.506 0.505 0.503 0.500 

15 0.507 0.507 0.505 0.504 0.500 

16 0.507 0.507 0.506 0.504 0.500 

17 0.508 0.507 0.506 0.504 0.501 

18 0.508 0.508 0.506 0.504 0.501 

19 0.508 0.508 0.507 0.504 0.501 

20 0.509 0.509 0.507 0.505 0.501 

21 0.509 0.509 0.507 0.505 0.501 

22 0.510 0.510 0.508 0.505 0.501 

23 0.510 0.510 0.508 0.505 0.501 

24 0.511 0.511 0.508 0.506 0.501 

25 0.511 0.511 0.509 0.506 0.501 

26 0.512 0.512 0.509 0.506 0.501 

27 0.512 0.512 0.509 0.506 0.501 

28 0.513 0.512 0.510 0.507 0.501 

29 0.513 0.513 0.510 0.507 0.501 

30 0.513 0.513 0.510 0.507 0.501 

31 0.514 0.514 0.511 0.507 0.501 

32 0.514 0.514 0.511 0.508 0.501 

33 0.515 0.515 0.512 0.508 0.501 

34 0.515 0.515 0.512 0.508 0.501 

35 0.516 0.516 0.512 0.508 0.501 

36 0.516 0.516 0.513 0.508 0.501 

37 0.517 0.516 0.513 0.509 0.501 

38 0.517 0.517 0.513 0.509 0.501 

39 0.518 0.517 0.514 0.509 0.501 

40 0.518 0.518 0.514 0.509 0.501 

41 0.519 0.518 0.514 0.510 0.501 

42 0.519 0.519 0.515 0.510 0.501 

43 0.519 0.519 0.515 0.510 0.501 

44 0.520 0.520 0.515 0.510 0.501 

45 0.520 0.520 0.516 0.511 0.501 

46 0.521 0.521 0.516 0.511 0.501 

47 0.521 0.521 0.517 0.511 0.501 
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48 0.522 0.521 0.517 0.511 0.501 

49 0.522 0.522 0.517 0.512 0.502 

50 0.523 0.522 0.518 0.512 0.502 

51 0.523 0.523 0.518 0.512 0.502 

52 0.524 0.523 0.518 0.512 0.502 

53 0.524 0.524 0.519 0.512 0.502 

54 0.525 0.524 0.519 0.513 0.502 

55 0.525 0.525 0.519 0.513 0.502 

56 0.525 0.525 0.520 0.513 0.502 

57 0.526 0.526 0.520 0.513 0.502 

58 0.526 0.526 0.520 0.514 0.502 

59 0.527 0.526 0.521 0.514 0.502 

60 0.527 0.527 0.521 0.514 0.502 

61 0.528 0.527 0.522 0.514 0.502 

62 0.528 0.528 0.522 0.515 0.502 

63 0.529 0.528 0.522 0.515 0.502 

64 0.529 0.529 0.523 0.515 0.502 

65 0.530 0.529 0.523 0.515 0.502 

66 0.530 0.530 0.523 0.516 0.502 

67 0.531 0.530 0.524 0.516 0.502 

68 0.531 0.531 0.524 0.516 0.502 

69 0.532 0.531 0.524 0.516 0.502 

70 0.532 0.532 0.525 0.517 0.502 

71 0.532 0.532 0.525 0.517 0.502 

72 0.533 0.533 0.526 0.517 0.502 

73 0.533 0.533 0.526 0.517 0.502 

74 0.534 0.533 0.526 0.518 0.502 

75 0.534 0.534 0.527 0.518 0.502 

76 0.535 0.534 0.527 0.518 0.502 

77 0.535 0.535 0.527 0.518 0.502 

78 0.536 0.535 0.528 0.519 0.502 

79 0.536 0.536 0.528 0.519 0.502 

80 0.537 0.536 0.528 0.519 0.502 

81 0.537 0.537 0.529 0.519 0.503 

82 0.538 0.537 0.529 0.519 0.503 

83 0.538 0.538 0.530 0.520 0.503 

84 0.539 0.538 0.530 0.520 0.503 

85 0.539 0.539 0.530 0.520 0.503 

86 0.540 0.539 0.531 0.520 0.503 

87 0.540 0.540 0.531 0.521 0.503 

88 0.541 0.540 0.531 0.521 0.503 

89 0.541 0.540 0.532 0.521 0.503 

90 0.542 0.541 0.532 0.521 0.503 

91 0.542 0.541 0.532 0.522 0.503 

92 0.542 0.542 0.533 0.522 0.503 

93 0.543 0.542 0.533 0.522 0.503 

94 0.543 0.543 0.534 0.522 0.503 

95 0.544 0.543 0.534 0.523 0.503 
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96 0.544 0.544 0.534 0.523 0.503 

97 0.545 0.544 0.535 0.523 0.503 

98 0.545 0.545 0.535 0.523 0.503 

99 0.546 0.545 0.535 0.524 0.503 

100 0.546 0.546 0.536 0.524 0.503 

101 0.547 0.546 0.536 0.524 0.503 

102 0.547 0.547 0.537 0.524 0.503 

103 0.548 0.547 0.537 0.525 0.503 

104 0.548 0.548 0.537 0.525 0.503 

105 0.549 0.548 0.538 0.525 0.503 

106 0.549 0.549 0.538 0.525 0.503 

107 0.550 0.549 0.538 0.526 0.503 

108 0.550 0.550 0.539 0.526 0.503 

109 0.551 0.550 0.539 0.526 0.503 

110 0.551 0.551 0.539 0.526 0.503 

111 0.552 0.551 0.540 0.527 0.503 

112 0.552 0.551 0.540 0.527 0.503 

113 0.553 0.552 0.541 0.527 0.504 

114 0.553 0.552 0.541 0.527 0.504 

115 0.554 0.553 0.541 0.528 0.504 

116 0.554 0.553 0.542 0.528 0.504 

117 0.555 0.554 0.542 0.528 0.504 

118 0.555 0.554 0.542 0.528 0.504 

119 0.556 0.555 0.543 0.528 0.504 

120 0.556 0.555 0.543 0.529 0.504 

121 0.557 0.556 0.544 0.529 0.504 

122 0.557 0.556 0.544 0.529 0.504 

123 0.558 0.557 0.544 0.529 0.504 

124 0.558 0.557 0.545 0.530 0.504 

125 0.559 0.558 0.545 0.530 0.504 

126 0.559 0.558 0.545 0.530 0.504 

127 0.560 0.559 0.546 0.530 0.504 

128 0.560 0.559 0.546 0.531 0.504 

129 0.561 0.560 0.547 0.531 0.504 

130 0.561 0.560 0.547 0.531 0.504 

131 0.562 0.561 0.547 0.531 0.504 

132 0.562 0.561 0.548 0.532 0.504 

133 0.563 0.562 0.548 0.532 0.504 

134 0.563 0.562 0.549 0.532 0.504 

135 0.564 0.563 0.549 0.532 0.504 

136 0.564 0.563 0.549 0.533 0.504 

137 0.565 0.564 0.550 0.533 0.504 

138 0.565 0.564 0.550 0.533 0.504 

139 0.566 0.565 0.550 0.533 0.504 

140 0.566 0.565 0.551 0.534 0.504 

141 0.567 0.566 0.551 0.534 0.504 

142 0.567 0.566 0.552 0.534 0.504 

143 0.568 0.567 0.552 0.534 0.504 

144 0.568 0.567 0.552 0.535 0.504 
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145 0.569 0.568 0.553 0.535 0.505 

146 0.569 0.568 0.553 0.535 0.505 

147 0.570 0.569 0.553 0.535 0.505 

148 0.570 0.569 0.554 0.536 0.505 

149 0.571 0.570 0.554 0.536 0.505 

150 0.571 0.570 0.555 0.536 0.505 

151 0.572 0.571 0.555 0.536 0.505 

152 0.572 0.571 0.555 0.537 0.505 

153 0.573 0.572 0.556 0.537 0.505 

154 0.573 0.572 0.556 0.537 0.505 

155 0.574 0.573 0.557 0.537 0.505 

156 0.574 0.573 0.557 0.538 0.505 

157 0.575 0.574 0.557 0.538 0.505 

158 0.575 0.574 0.558 0.538 0.505 

159 0.576 0.575 0.558 0.538 0.505 

160 0.576 0.575 0.558 0.539 0.505 

161 0.577 0.576 0.559 0.539 0.505 

162 0.577 0.576 0.559 0.539 0.505 

163 0.578 0.577 0.560 0.539 0.505 

164 0.578 0.577 0.560 0.540 0.505 

165 0.579 0.578 0.560 0.540 0.505 

166 0.579 0.578 0.561 0.540 0.505 

167 0.580 0.579 0.561 0.540 0.505 

168 0.580 0.579 0.562 0.541 0.505 

169 0.581 0.580 0.562 0.541 0.505 

170 0.581 0.580 0.562 0.541 0.505 

171 0.582 0.581 0.563 0.541 0.505 

172 0.582 0.581 0.563 0.542 0.505 

173 0.583 0.582 0.564 0.542 0.505 

174 0.583 0.582 0.564 0.542 0.505 

175 0.584 0.583 0.564 0.542 0.505 

176 0.584 0.583 0.565 0.543 0.505 

177 0.585 0.584 0.565 0.543 0.506 

178 0.585 0.584 0.565 0.543 0.506 

179 0.586 0.585 0.566 0.543 0.506 

180 0.587 0.585 0.566 0.544 0.506 

181 0.587 0.586 0.567 0.544 0.506 

182 0.588 0.586 0.567 0.544 0.506 

183 0.588 0.587 0.567 0.544 0.506 

184 0.589 0.587 0.568 0.545 0.506 

185 0.589 0.588 0.568 0.545 0.506 

186 0.590 0.588 0.569 0.545 0.506 

187 0.590 0.589 0.569 0.546 0.506 

188 0.591 0.589 0.569 0.546 0.506 

189 0.591 0.590 0.570 0.546 0.506 

190 0.592 0.590 0.570 0.546 0.506 

191 0.592 0.591 0.571 0.547 0.506 

192 0.593 0.591 0.571 0.547 0.506 

193 0.593 0.592 0.571 0.547 0.506 
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194 0.594 0.593 0.572 0.547 0.506 

195 0.594 0.593 0.572 0.548 0.506 

196 0.595 0.594 0.573 0.548 0.506 

197 0.595 0.594 0.573 0.548 0.506 

198 0.596 0.595 0.573 0.548 0.506 

199 0.596 0.595 0.574 0.549 0.506 

200 0.597 0.596 0.574 0.549 0.506 

201 0.598 0.596 0.575 0.549 0.506 

202 0.598 0.597 0.575 0.549 0.506 

203 0.599 0.597 0.575 0.550 0.506 

204 0.599 0.598 0.576 0.550 0.506 

205 0.600 0.598 0.576 0.550 0.506 

206 0.600 0.599 0.577 0.550 0.506 

207 0.601 0.599 0.577 0.551 0.506 

208 0.601 0.600 0.577 0.551 0.506 

209 0.602 0.600 0.578 0.551 0.507 

210 0.602 0.601 0.578 0.551 0.507 

211 0.603 0.601 0.578 0.552 0.507 

212 0.603 0.602 0.579 0.552 0.507 

213 0.604 0.602 0.579 0.552 0.507 

214 0.604 0.603 0.580 0.552 0.507 

215 0.605 0.603 0.580 0.553 0.507 

216 0.606 0.604 0.580 0.553 0.507 

217 0.606 0.605 0.581 0.553 0.507 

218 0.607 0.605 0.581 0.553 0.507 

219 0.607 0.606 0.582 0.554 0.507 

220 0.608 0.606 0.582 0.554 0.507 

221 0.608 0.607 0.583 0.554 0.507 

222 0.609 0.607 0.583 0.554 0.507 

223 0.609 0.608 0.583 0.555 0.507 

224 0.610 0.608 0.584 0.555 0.507 

225 0.610 0.609 0.584 0.555 0.507 

226 0.611 0.609 0.585 0.556 0.507 

227 0.611 0.610 0.585 0.556 0.507 

228 0.612 0.610 0.585 0.556 0.507 

229 0.613 0.611 0.586 0.556 0.507 

230 0.613 0.611 0.586 0.557 0.507 

231 0.614 0.612 0.587 0.557 0.507 

232 0.614 0.613 0.587 0.557 0.507 

233 0.615 0.613 0.587 0.557 0.507 

234 0.615 0.614 0.588 0.558 0.507 

235 0.616 0.614 0.588 0.558 0.507 

236 0.616 0.615 0.589 0.558 0.507 

237 0.617 0.615 0.589 0.558 0.507 

238 0.617 0.616 0.589 0.559 0.507 

239 0.618 0.616 0.590 0.559 0.507 

240 0.619 0.617 0.590 0.559 0.508 

241 0.619 0.617 0.591 0.559 0.508 

242 0.620 0.618 0.591 0.560 0.508 
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243 0.620 0.618 0.591 0.560 0.508 

244 0.621 0.619 0.592 0.560 0.508 

245 0.621 0.620 0.592 0.560 0.508 

246 0.622 0.620 0.593 0.561 0.508 

247 0.622 0.621 0.593 0.561 0.508 

248 0.623 0.621 0.593 0.561 0.508 

249 0.624 0.622 0.594 0.561 0.508 

250 0.624 0.622 0.594 0.562 0.508 

251 0.625 0.623 0.595 0.562 0.508 

252 0.625 0.623 0.595 0.562 0.508 

253 0.626 0.624 0.596 0.563 0.508 

254 0.626 0.624 0.596 0.563 0.508 

255 0.627 0.625 0.596 0.563 0.508 

256 0.627 0.626 0.597 0.563 0.508 

257 0.628 0.626 0.597 0.564 0.508 

258 0.629 0.627 0.598 0.564 0.508 

259 0.629 0.627 0.598 0.564 0.508 

260 0.630 0.628 0.598 0.564 0.508 

261 0.630 0.628 0.599 0.565 0.508 

262 0.631 0.629 0.599 0.565 0.508 

263 0.631 0.629 0.600 0.565 0.508 

264 0.632 0.630 0.600 0.565 0.508 

265 0.632 0.630 0.600 0.566 0.508 

266 0.633 0.631 0.601 0.566 0.508 

267 0.634 0.632 0.601 0.566 0.508 

268 0.634 0.632 0.602 0.566 0.508 

269 0.635 0.633 0.602 0.567 0.508 

270 0.635 0.633 0.603 0.567 0.508 

271 0.636 0.634 0.603 0.567 0.508 

272 0.636 0.634 0.603 0.568 0.509 

273 0.637 0.635 0.604 0.568 0.509 

274 0.637 0.635 0.604 0.568 0.509 

275 0.638 0.636 0.605 0.568 0.509 

276 0.639 0.637 0.605 0.569 0.509 

277 0.639 0.637 0.605 0.569 0.509 

278 0.640 0.638 0.606 0.569 0.509 

279 0.640 0.638 0.606 0.569 0.509 

280 0.641 0.639 0.607 0.570 0.509 

281 0.641 0.639 0.607 0.570 0.509 

282 0.642 0.640 0.608 0.570 0.509 

283 0.643 0.640 0.608 0.570 0.509 

284 0.643 0.641 0.608 0.571 0.509 

285 0.644 0.642 0.609 0.571 0.509 

286 0.644 0.642 0.609 0.571 0.509 

287 0.645 0.643 0.610 0.572 0.509 

288 0.645 0.643 0.610 0.572 0.509 

289 0.646 0.644 0.611 0.572 0.509 

290 0.647 0.644 0.611 0.572 0.509 

291 0.647 0.645 0.611 0.573 0.509 
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292 0.648 0.646 0.612 0.573 0.509 

293 0.648 0.646 0.612 0.573 0.509 

294 0.649 0.647 0.613 0.573 0.509 

295 0.649 0.647 0.613 0.574 0.509 

296 0.650 0.648 0.613 0.574 0.509 

297 0.651 0.648 0.614 0.574 0.509 

298 0.651 0.649 0.614 0.574 0.509 

299 0.652 0.650 0.615 0.575 0.509 

300 0.652 0.650 0.615 0.575 0.509 

301 0.653 0.651 0.616 0.575 0.509 

302 0.654 0.651 0.616 0.576 0.509 

303 0.654 0.652 0.616 0.576 0.509 

304 0.655 0.652 0.617 0.576 0.510 

305 0.655 0.653 0.617 0.576 0.510 

306 0.656 0.654 0.618 0.577 0.510 

307 0.656 0.654 0.618 0.577 0.510 

308 0.657 0.655 0.619 0.577 0.510 

309 0.658 0.655 0.619 0.577 0.510 

310 0.658 0.656 0.619 0.578 0.510 

311 0.659 0.656 0.620 0.578 0.510 

312 0.659 0.657 0.620 0.578 0.510 

313 0.660 0.658 0.621 0.578 0.510 

314 0.660 0.658 0.621 0.579 0.510 

315 0.661 0.659 0.622 0.579 0.510 

316 0.662 0.659 0.622 0.579 0.510 

317 0.662 0.660 0.622 0.580 0.510 

318 0.663 0.660 0.623 0.580 0.510 

319 0.663 0.661 0.623 0.580 0.510 

320 0.664 0.662 0.624 0.580 0.510 

321 0.665 0.662 0.624 0.581 0.510 

322 0.665 0.663 0.625 0.581 0.510 

323 0.666 0.663 0.625 0.581 0.510 

324 0.666 0.664 0.625 0.581 0.510 

325 0.667 0.664 0.626 0.582 0.510 

326 0.668 0.665 0.626 0.582 0.510 

327 0.668 0.666 0.627 0.582 0.510 

328 0.669 0.666 0.627 0.583 0.510 

329 0.669 0.667 0.628 0.583 0.510 

330 0.670 0.667 0.628 0.583 0.510 

331 0.671 0.668 0.629 0.583 0.510 

332 0.671 0.669 0.629 0.584 0.510 

333 0.672 0.669 0.629 0.584 0.510 

334 0.672 0.670 0.630 0.584 0.510 

335 0.673 0.670 0.630 0.584 0.511 

336 0.674 0.671 0.631 0.585 0.511 

337 0.674 0.671 0.631 0.585 0.511 

338 0.675 0.672 0.632 0.585 0.511 

339 0.675 0.673 0.632 0.586 0.511 

340 0.676 0.673 0.632 0.586 0.511 
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341 0.676 0.674 0.633 0.586 0.511 

342 0.677 0.674 0.633 0.586 0.511 

343 0.678 0.675 0.634 0.587 0.511 

344 0.678 0.676 0.634 0.587 0.511 

345 0.679 0.676 0.635 0.587 0.511 

346 0.680 0.677 0.635 0.587 0.511 

347 0.680 0.677 0.636 0.588 0.511 

348 0.681 0.678 0.636 0.588 0.511 

349 0.681 0.679 0.636 0.588 0.511 

350 0.682 0.679 0.637 0.589 0.511 

351 0.683 0.680 0.637 0.589 0.511 

352 0.683 0.680 0.638 0.589 0.511 

353 0.684 0.681 0.638 0.589 0.511 

354 0.684 0.682 0.639 0.590 0.511 

355 0.685 0.682 0.639 0.590 0.511 

356 0.686 0.683 0.639 0.590 0.511 

357 0.686 0.683 0.640 0.590 0.511 

358 0.687 0.684 0.640 0.591 0.511 

359 0.687 0.685 0.641 0.591 0.511 

360 0.688 0.685 0.641 0.591 0.511 

361 0.689 0.686 0.642 0.592 0.511 

362 0.689 0.686 0.642 0.592 0.511 

363 0.690 0.687 0.643 0.592 0.511 

364 0.690 0.688 0.643 0.592 0.511 

365 0.691 0.688 0.643 0.593 0.511 

366 0.692 0.689 0.644 0.593 0.511 

367 0.692 0.689 0.644 0.593 0.512 

368 0.693 0.690 0.645 0.593 0.512 

369 0.694 0.691 0.645 0.594 0.512 

370 0.694 0.691 0.646 0.594 0.512 

371 0.695 0.692 0.646 0.594 0.512 

372 0.695 0.692 0.647 0.595 0.512 

373 0.696 0.693 0.647 0.595 0.512 

374 0.697 0.694 0.647 0.595 0.512 

375 0.697 0.694 0.648 0.595 0.512 

376 0.698 0.695 0.648 0.596 0.512 

377 0.698 0.695 0.649 0.596 0.512 

378 0.699 0.696 0.649 0.596 0.512 

379 0.700 0.697 0.650 0.597 0.512 

380 0.700 0.697 0.650 0.597 0.512 

381 0.701 0.698 0.651 0.597 0.512 

382 0.702 0.698 0.651 0.597 0.512 

383 0.702 0.699 0.652 0.598 0.512 

384 0.703 0.700 0.652 0.598 0.512 

385 0.703 0.700 0.652 0.598 0.512 

386 0.704 0.701 0.653 0.598 0.512 

387 0.705 0.702 0.653 0.599 0.512 

388 0.705 0.702 0.654 0.599 0.512 

389 0.706 0.703 0.654 0.599 0.512 
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390 0.707 0.703 0.655 0.600 0.512 

391 0.707 0.704 0.655 0.600 0.512 

392 0.708 0.705 0.656 0.600 0.512 

393 0.708 0.705 0.656 0.600 0.512 

394 0.709 0.706 0.656 0.601 0.512 

395 0.710 0.706 0.657 0.601 0.512 

396 0.710 0.707 0.657 0.601 0.512 

397 0.711 0.708 0.658 0.602 0.512 

398 0.712 0.708 0.658 0.602 0.513 

399 0.712 0.709 0.659 0.602 0.513 

400 0.713 0.710 0.659 0.602 0.513 

401 0.713 0.710 0.660 0.603 0.513 

402 0.714 0.711 0.660 0.603 0.513 

403 0.715 0.711 0.661 0.603 0.513 

404 0.715 0.712 0.661 0.604 0.513 

405 0.716 0.713 0.661 0.604 0.513 

406 0.717 0.713 0.662 0.604 0.513 

407 0.717 0.714 0.662 0.604 0.513 

408 0.718 0.715 0.663 0.605 0.513 

409 0.719 0.715 0.663 0.605 0.513 

410 0.719 0.716 0.664 0.605 0.513 

411 0.720 0.716 0.664 0.605 0.513 

412 0.720 0.717 0.665 0.606 0.513 

413 0.721 0.718 0.665 0.606 0.513 

414 0.722 0.718 0.666 0.606 0.513 

415 0.722 0.719 0.666 0.607 0.513 

416 0.723 0.720 0.667 0.607 0.513 

417 0.724 0.720 0.667 0.607 0.513 

418 0.724 0.721 0.667 0.607 0.513 

419 0.725 0.721 0.668 0.608 0.513 

420 0.726 0.722 0.668 0.608 0.513 

421 0.726 0.723 0.669 0.608 0.513 

422 0.727 0.723 0.669 0.609 0.513 

423 0.728 0.724 0.670 0.609 0.513 

424 0.728 0.725 0.670 0.609 0.513 

425 0.729 0.725 0.671 0.609 0.513 

426 0.729 0.726 0.671 0.610 0.513 

427 0.730 0.727 0.672 0.610 0.513 

428 0.731 0.727 0.672 0.610 0.513 

429 0.731 0.728 0.673 0.611 0.513 

430 0.732 0.728 0.673 0.611 0.514 

431 0.733 0.729 0.673 0.611 0.514 

432 0.733 0.730 0.674 0.611 0.514 

433 0.734 0.730 0.674 0.612 0.514 

434 0.735 0.731 0.675 0.612 0.514 

435 0.735 0.732 0.675 0.612 0.514 

436 0.736 0.732 0.676 0.613 0.514 

437 0.737 0.733 0.676 0.613 0.514 

438 0.737 0.734 0.677 0.613 0.514 
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439 0.738 0.734 0.677 0.613 0.514 

440 0.739 0.735 0.678 0.614 0.514 

441 0.739 0.735 0.678 0.614 0.514 

442 0.740 0.736 0.679 0.614 0.514 

443 0.741 0.737 0.679 0.615 0.514 

444 0.741 0.737 0.680 0.615 0.514 

445 0.742 0.738 0.680 0.615 0.514 

446 0.742 0.739 0.681 0.615 0.514 

447 0.743 0.739 0.681 0.616 0.514 

448 0.744 0.740 0.681 0.616 0.514 

449 0.744 0.741 0.682 0.616 0.514 

450 0.745 0.741 0.682 0.617 0.514 

451 0.746 0.742 0.683 0.617 0.514 

452 0.746 0.743 0.683 0.617 0.514 

453 0.747 0.743 0.684 0.617 0.514 

454 0.748 0.744 0.684 0.618 0.514 

455 0.748 0.745 0.685 0.618 0.514 

456 0.749 0.745 0.685 0.618 0.514 

457 0.750 0.746 0.686 0.619 0.514 

458 0.750 0.746 0.686 0.619 0.514 

459 0.751 0.747 0.687 0.619 0.514 

460 0.752 0.748 0.687 0.619 0.514 

461 0.752 0.748 0.688 0.620 0.515 

462 0.753 0.749 0.688 0.620 0.515 

463 0.754 0.750 0.689 0.620 0.515 

464 0.754 0.750 0.689 0.621 0.515 

465 0.755 0.751 0.690 0.621 0.515 

466 0.756 0.752 0.690 0.621 0.515 

467 0.756 0.752 0.690 0.622 0.515 

468 0.757 0.753 0.691 0.622 0.515 

469 0.758 0.754 0.691 0.622 0.515 

470 0.758 0.754 0.692 0.622 0.515 

471 0.759 0.755 0.692 0.623 0.515 

472 0.760 0.756 0.693 0.623 0.515 

473 0.760 0.756 0.693 0.623 0.515 

474 0.761 0.757 0.694 0.624 0.515 

475 0.762 0.758 0.694 0.624 0.515 

476 0.763 0.758 0.695 0.624 0.515 

477 0.763 0.759 0.695 0.624 0.515 

478 0.764 0.760 0.696 0.625 0.515 

479 0.765 0.760 0.696 0.625 0.515 

480 0.765 0.761 0.697 0.625 0.515 

481 0.766 0.762 0.697 0.626 0.515 

482 0.767 0.762 0.698 0.626 0.515 

483 0.767 0.763 0.698 0.626 0.515 

484 0.768 0.764 0.699 0.626 0.515 

485 0.769 0.764 0.699 0.627 0.515 

486 0.769 0.765 0.700 0.627 0.515 

487 0.770 0.766 0.700 0.627 0.515 
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488 0.771 0.766 0.701 0.628 0.515 

489 0.771 0.767 0.701 0.628 0.515 

490 0.772 0.768 0.702 0.628 0.515 

491 0.773 0.768 0.702 0.628 0.515 

492 0.773 0.769 0.702 0.629 0.516 

493 0.774 0.770 0.703 0.629 0.516 

494 0.775 0.770 0.703 0.629 0.516 

495 0.775 0.771 0.704 0.630 0.516 

496 0.776 0.772 0.704 0.630 0.516 

497 0.777 0.772 0.705 0.630 0.516 

498 0.778 0.773 0.705 0.631 0.516 

499 0.778 0.774 0.706 0.631 0.516 

500 0.779 0.774 0.706 0.631 0.516 

501 0.780 0.775 0.707 0.631 0.516 

502 0.780 0.776 0.707 0.632 0.516 

503 0.781 0.776 0.708 0.632 0.516 

504 0.782 0.777 0.708 0.632 0.516 

505 0.782 0.778 0.709 0.633 0.516 

506 0.783 0.779 0.709 0.633 0.516 

507 0.784 0.779 0.710 0.633 0.516 

508 0.784 0.780 0.710 0.633 0.516 

509 0.785 0.781 0.711 0.634 0.516 

510 0.786 0.781 0.711 0.634 0.516 

511 0.787 0.782 0.712 0.634 0.516 

512 0.787 0.783 0.712 0.635 0.516 

513 0.788 0.783 0.713 0.635 0.516 

514 0.789 0.784 0.713 0.635 0.516 

515 0.789 0.785 0.714 0.636 0.516 

516 0.790 0.785 0.714 0.636 0.516 

517 0.791 0.786 0.715 0.636 0.516 

518 0.791 0.787 0.715 0.636 0.516 

519 0.792 0.787 0.716 0.637 0.516 

520 0.793 0.788 0.716 0.637 0.516 

521 0.794 0.789 0.717 0.637 0.516 

522 0.794 0.789 0.717 0.638 0.516 

523 0.795 0.790 0.718 0.638 0.516 

524 0.796 0.791 0.718 0.638 0.517 

525 0.796 0.792 0.719 0.639 0.517 

526 0.797 0.792 0.719 0.639 0.517 

527 0.798 0.793 0.720 0.639 0.517 

528 0.798 0.794 0.720 0.639 0.517 

529 0.799 0.794 0.721 0.640 0.517 

530 0.800 0.795 0.721 0.640 0.517 

531 0.801 0.796 0.722 0.640 0.517 

532 0.801 0.796 0.722 0.641 0.517 

533 0.802 0.797 0.723 0.641 0.517 

534 0.803 0.798 0.723 0.641 0.517 

535 0.803 0.799 0.724 0.642 0.517 

536 0.804 0.799 0.724 0.642 0.517 
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537 0.805 0.800 0.725 0.642 0.517 

538 0.806 0.801 0.725 0.642 0.517 

539 0.806 0.801 0.726 0.643 0.517 

540 0.807 0.802 0.726 0.643 0.517 

541 0.808 0.803 0.727 0.643 0.517 

542 0.808 0.803 0.727 0.644 0.517 

543 0.809 0.804 0.728 0.644 0.517 
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