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Abstract: The nonuniformity of bed material affects the bed-material load calculations. A size gradation correction factor Kd is devel-
oped to account for the lognormal distribution of bed material. The use of Kd in conjunction with bed-material load equations originally
developed for single particle sizes improves the accuracy of transport calculations for sediment mixtures. This method is applicable to
laboratory flumes and natural rivers with median diameter d50 of bed material in the sand size ranges. The improvement on transport rate
by Kd factor is significant for data with standard deviation �g of bed material greater than 2, while the correction is negligible for data with
�g less than 1.5. Sediment in transport also follows a lognormal distribution with a median diameter d50t generally finer than the
corresponding d50. As the size gradation increases, d50t becomes much finer than the corresponding value of d50. The relationship between
d50t and d50 is defined as a function of �g and agrees well with field data. The previously recommended use of d35 as representative size
of the bed material is found not to be generally applicable.
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Introduction

Riverbeds are usually composed of nonuniform sediment mix-
tures and the corresponding particle size distribution of sediment
in transport is generally finer than the distribution of bed material
because of selective transport. This makes the prediction of sedi-
ment load for natural rivers more difficult than for uniform sedi-
ment in laboratory flumes. To consider the effect of nonunifor-
mity of bed material on sediment transport, various representative
bed material sizes have been used for the computation of sedi-
ment transport rates. The commonly used representative sizes in-
clude: (1) the median diameter of bed material, d50; (2) the diam-
eter of bed material, d35, for which 35% is finer as proposed by
Einstein (1944) and Ackers and White (1973); (3) the mean di-
ameter defined by Meyer-Peter and Müller (1948) as dm

=��Pbidi, where �Pbi is the fraction of bed material, by dry
weight, corresponding to the size fraction i, and di is the repre-
sentative diameter of bed material corresponding to the size frac-
tion i; (4) the mean fall velocity defined by Han (1973) as �m

= ���Pbi�i
m�1/m, where �i is the fall velocity of particle of size di,

and m is an exponent; and (5) the effective diameter defined by
Nordin (1989) as de=1/ ���Pbi /di�.

The use of a single fixed size, such as d50 or d35, may not be
adequate in representing the various size fractions present in sedi-
ment mixtures. As pointed out by White and Day (1982), grading
curves with different shapes will certainly have different effective
diameters. The effective sediment size is also expected to vary
with the transport rate or flow intensity. Therefore, in addition to
d50, a sediment nonuniformity factor expressed by d90/d30 was
used by Smart and Jaeggi (1983) to account for the effect of size
distribution, and the size gradation coefficient defined by G
=0.5�d84/d+d50/d16� was used by Shen and Rao (1991), where dp

is diameter for which p percent of bed material is finer. The
factors d90/d30, G, and others describing the gradation of mixtures
are all believed to be significant in the transport of sediment mix-
tures because they represent to some extent the shape and range
of particle sizes which are significantly present in the bed mate-
rial.

Instead of using a single fixed size or a single fixed size with
a size gradation parameter as the representative property of bed
material, van Rijn (1984), Hsu and Holly (1992), Molinas and Wu
(1998), and Wu (1999) suggested the use of variable representa-
tive sizes for the computation of sediment transport rates for sedi-
ment mixtures. The variable representative size is analogous to
the median size or other characteristic sizes of sediments in trans-
port. It is believed that the variable representative size is a better
representation of the sediment mixture than not only a fixed par-
ticle diameter such as d35 or d50 of bed material, but also the
simple combination of a fixed representative size and a size gra-
dation factor.

In the development of a suspended load transport equation,
van Rijn (1984) proposed an empirical equation to estimate the
representative diameter ds for suspended sediment load. The
equation was determined by trial and error to give the same value
for the suspended load as that computed with Einstein’s method.
This equation is expressed as

1Associate Professor, Dept. of Hydraulic Engineering, Tsinghua
Univ., Beijing 100084, China.

2Associate Professor, Dept. of Civil Engineering, Colorado State
Univ., Fort Collins, CO 80523.

3Professor, Dept. of Civil Engineering, Colorado State Univ., Fort
Collins, CO 80523.

Note. Discussion open until March 1, 2005. Separate discussions must
be submitted for individual papers. To extend the closing date by one
month, a written request must be filed with the ASCE Managing Editor.
The manuscript for this paper was submitted for review and possible
publication on March 18, 2003; approved on May 11, 2004. This paper is
part of the Journal of Hydraulic Engineering, Vol. 130, No. 10, October
1, 2004. ©ASCE, ISSN 0733-9429/2004/10-1002–1012/$18.00.

1002 / JOURNAL OF HYDRAULIC ENGINEERING © ASCE / OCTOBER 2004



ds

d50
= 1 + 0.011�G − 1��T − 25� �1�

where T=transport stage parameter defined by T= ���−�c� /�c; and
�� and �c=grain shear stress and critical shear stress, respectively.

Hsu and Holly (1992) performed an interesting study on the
bedload transport for sediment mixtures. In their study, they pro-
posed a model for the computation of the mean size, dmt, of sedi-
ments in transport. Based on observation of sediment-mixture ex-
periments, Hsu and Holly (1992) postulated that the fraction of
each size class in transported material is proportional to the joint
probability of the relative mobility ��Pmoi� of each particle size
and the availability ��Pbi� of each size class on the bed surface.
From this concept, they expressed the size distribution of the
transported bedload sediments as

�Pci =
�Pmoi�Pbi

�
i=1

N

��Pmoi�Pbi�

�2�

where

�Pmoi =
1

��2�
�

�Vci/V�−1

�

exp�−
x2

2�
�dx = 0.5 − 0.5 erf� Vci

V
− 1

��2
	
�3�

where erf�z�=error function; V=cross-sectional average velocity;
Vci=incipient velocity for a particular size class i in a mixture;
�=standard deviation of V� /V distribution; and V�=absolute fluc-
tuations of velocity.

From the size distribution computed utilizing Eq. (2), the mean
size dmt can be determined. Hsu and Holly argued that if dmt is
visualized as the representative property of a uniform sediment,
the bedload discharge could be evaluated using any appropriate
bedload equations.

Molinas and Wu (1998) developed a size gradation compensa-
tion factor to incorporate the effect that the size distribution has
on the transport of sediment mixtures. The resulting equivalent
representative diameter, de, can be expressed as

de =
1.8d50

1 + 0.8�V*/�50�0.1��g − 1�2.2 �4�

where V*=shear velocity; �g=dimensionless standard deviation
of bed material, which is equal to �d84/d16; and �50=fall velocity
of sediment corresponding to particle size d50. This equivalent
representative diameter was proposed for existing sediment trans-
port formulas to produce more accurate prediction of transport
rats for nonuniform mixtures.

In the proceeding approaches, the ultimate goal in defining a
variable representative size is to improve the prediction of sedi-
ment transport rates for nonuniform mixtures. Unfortunately, the
representative size of Eq. (1) is developed based on the results
computed with Einstein’s method; and it is limited to suspended
load. The representative size based on Eq. (2) proposed by Hsu
and Holly is for bed load; and although representing a promising
approach it is not verified with measurements. The equivalent
diameter given by Eq. (4) was mainly developed to compensate
for sediment nonuniformity effects for existing transport formulas
in bed-material load computations, so it lacks generality.

In this paper, the effect of bed material nonuniformity on the
transport of sediment mixtures in sand-bed channels is studied. A

size gradation correction factor is derived based on the lognormal
distribution of bed material. The median diameter d50t of sediment
in transport and the variable representative size for the computa-
tion of bed-material load are discussed.

Lognormal Size Distribution of Bed Material

The particle size distribution of bed material is generally skewed
(Mahmood 1973a,b). Particle size distributions can often be con-
verted into symmetrical, nearly Gaussian (normal) distribution by
a logarithmic transformation. The corresponding particle size dis-
tribution in this case is called a lognormal particle size distribu-
tion.

Two examples of the lognormal particle size distribution are
presented in Fig. 1. The data shown in Fig. 1 were obtained in Rio
Grande near Bernalillo, New Mexico on June 1, 1953 and June
18, 1958, respectively (Nordin and Beverage 1965). The fre-
quency distributions displayed in Figs. 1(a and c) are obviously
skewed. However, when the particle diameters are plotted on a
logarithmic scale against the frequency of occurrence, bell-shaped
curves or lognormal curves as shown in Figs. 1(b and d) are
generated. Fig. 2 shows the normalized log-probability plot of a
large number of bed materials from Rio Grande. It can be seen
that the size distribution from 10th to 90th percentile is closely
approximated by lognormal distribution. This type of lognormal
bed material size distributions is often encountered in most allu-
vial rivers with sand sediments.

If two variables x and y are related such that y=ln�x�, where
0�x��, and if y follows a Gaussian distribution with mean �y

and standard deviation �y given by

Fy�y� =�
−�

y 1

�y
�2�

exp
−
1

2
�u − �y

�y
�2� du �5�

then, variable x is lognormally distributed as

Fx�x� =�
0

x 1

�yv�2�
exp
−

1

2
� ln�v� − �y

�y
�2�dv �6�

where u and v=dummy variables of integration.
The bed material size distributions shown in Figs. 1 and 2 can

be best described by the cumulative distribution function (CDF)
of lognormal distribution expressed by Eq. (5) or (6) given that x
is the particle size. The lognormal distribution is a skewed distri-
bution and the two parameters required to define this distribution
are �y and �y. In defining sediment mixtures, the median diam-
eter d50 and the geometric standard deviation �g of the bed ma-
terial are commonly reported. For this two-parameter lognormal
distribution, it can be shown that d50 and �g are related to �y and
�y as

�y = ln�d50� �7�

and

�y = ln��g� �8�

In other words for naturally occurring sediment mixtures, the log-
normal distribution is defined by d50 and �g.

By a simple transformation, the distribution expressed by Eq.
(5) can be written as a standard normal distribution N�0,1�. Thus
when z= �y−�y� /�y, dy=�ydz, the probability density function
becomes
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f�z� =
1

�2�
e−z2/2 �9�

and the CDF

Fz�z� =
1

�2�
�

−�

z

e−u2/2du �10�

The variable z is called the standard unit, which is normally
distributed with zero mean and unit standard deviation.

Effects of Nonuniformity of Bed Material

There are two types of methods commonly used to compute the
transport rates for nonuniform mixtures. The first type of method
is based on the computation of transport rates for each size frac-
tion present in the nonuniform mixture. After knowing the trans-
port rates corresponding to each size fraction, the total bed-
material transport rate is determined by summation of the
fractional transport rates. The classical Einstein method (Einstein
1950) is an excellent example in this category. This type of
method was generally found unsatisfactory in predictions of total
bed-material transport rate for sediment mixtures due to the com-
plexity of transport of sediment mixtures and the lack of knowl-
edge concerning the motion of individual size and its effect on
other sizes (Misri et al. 1984; Samaga et al. 1986b; Swamee and
Ojha 1991).

The second type of methods computes the total bed-material
transport rate based on a single representative size for graded
sediment mixtures. They usually can produce more reliable pre-
dictions and have been widely used in practice. The formula of
Engelund and Hansen (1967) developed based on the median bed
material size d50 is well known in this category. It can be ex-
pressed as

f� 	 = 0.1
2.5 �11�

where


 =
�

��s − ��d50
�12�

Fig. 1. Frequency histogram of bed-material size distribution for samples obtained in Rio Grande near Bernalillo, New Mexico: (a) and (b) Data
observed on June 1, 1953, d50=0.33 mm, �g=1.62; (c) and (d) data observed on June 18, 1958, d50=0.25 mm, �g=1.4

Fig. 2. Bed-material size distribution plotted on log-probability paper
for the 112 samples measured over 1952–1962 in Rio Grande at
Albuqerque and Bernalillo, New Mexico (d50=0.18–0.43 mm, �g

=1.36–2.78, actual sizes normalized to yield �g=1.8)
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	 =
qt

�s
��sg − 1�gd50

3
�13�

where f�=friction factor defined by Engelund and Hansen; 

=dimensionless shear parameter; 	=dimensionless sediment
transport function; �=shear stress along the bed; g
=gravitational acceleration; qt=total bed-material sediment dis-
charge by weight per unit width; sg=specific gravity given by
�s /�; and � and �s=specific weight of water and sediment, re-
spectively.

Conceptually the Engelund and Hansen method can be applied
to compute the fractional transport rates for nonuniform sediment
mixtures by replacing d50 with the average (or geometric mean)
diameter di of the corresponding size fraction. This concept as-
sumes that a channel bed can be considered as a hypothetical
mixture of sediment particles; the mixture can be formed into
class intervals by size, and a potential transport capacity can be
calculated for each class interval, whether or not particles are
physically present. Subsequently, particle availability can be
evaluated and expressed as �Pbi. Availability and potential trans-
port capacity can then be combined to give transport capacity as
follows:

Qs = �
i=1

N

Qsi = �
i=1

N

�PbiQspi or Qs =�
−�

�

Qspf�u�du �14�

where Qs=total bed-material transport rate; Qsi=fractional bed-
material transport rate; Qspi=potential bed-material transport rate
for size fraction i assuming uniform sediment of size di under
identical hydraulic conditions; i denotes the size fraction number
in a mixture; N=number of size fractions present in the sediment
mixture; and f�u�=density function of lognormal size distribution
expressed by Eq. (9). The concept expressed by Eq. (14) neglects
the sheltering-exposure effects in rivers with mixed sizes. Fortu-
nately, this phenomenon is not significant in sand-bed rivers since
the nonuniform sediment is commonly under full motion. Keep
this in mind, further justifications are needed if this concept is to
be extended to gravel-bed rivers.

According to the Engelund and Hansen equation, the sediment
transport rate is inversely proportional to particle diameter d, i.e.
Qs�d−1. If another form of the Englund and Hansen equation
f�	=0.3
2�
2+0.15 is considered, then we get f�	�
2 for
small 
 and f�	�
3 for large 
 (Chien and Wan 1999), resulting
in Qs�d−�0.5−1.5�. In addition, the methods by Bagnold (1966),
Velikanov (1954), and Dou (1974) show that Qs is inversely pro-
portional to �, while Zhang (1959) and Zhang and Xie (1993)
indicates Qs��−�0.5−1.5� and Molinas and Wu (2001) gives Qs

��−�1−1.5�, where � is the fall velocity of sediment. Considering
��d0.5−2 (��d2 for d�0.1 mm and ��d0.5 for d
1.0 mm), it is
more general to assume that

Qs � Cd−b �15�

where C=integrated coefficient; and b=exponent.
It is expected that differences exist between the total bed-

material transport rate Qs obtained from Eq. (14) and from equa-
tion like Eq. (11) based on d50. Lets denote Kd the ratio of Qs

obtained by these two different methods, i.e.

Kd =
Qs by size frations for lognormal distribution

Qs based on d50

=

�
−�

�

Qspf�u�du

Qs50
�16�

Considering that Qsp�Cd−b and Qs50�Cd50
−b, Eq. (16) can be ex-

pressed as

Kd =�
−�

� � d

d50
�−b

f�u�du �17�

From the definition of z we have

z =
y − �y

�y
=

ln d − ln d50

ln �g
or

d

d50
= �g

z �18�

Thus

Kd =�
−�

�

�g
−ubf�u�du

=�
−�

�

�g
−ub 1

�2�
e−0.5u2

du

=�
−�

�

e−bu ln �g
1

�2�
e−0.5u2

du

=
1

�2�
�

−�

�

e−0.5u2−bu ln �g du

= e0.5�b ln �g�2 1
�2�

�
−�

�

e−0.5�u + b ln �g�2 du �19�

Finally, we get

Kd = e0.5�b ln �g�2 �20�

The earlier equation shows that Kd increase with the increase
in �g values, having a minimum value of 1 corresponding to
uniform distribution or �g=1. This means that a sediment trans-
port equation developed for uniform sediments based d50 usually
underpredicts the transport rate for nonuniform mixtures. As such,
Kd can be used as a correction factor to obtain the correct predic-
tion for nonuniform sediment mixtures in conjunction with a sedi-
ment transport equation, such as the Engelund and Hansen equa-
tion, originally developed for uniform sediment.

Characteristc Particle Sizes

The size distribution of sediment in transport is different from that
of bed material. Consequently, the median diameter of sediment
in transport is different from that of the bed material. Similar to
Eq. (16), the CDF of sediment in transport can be obtained by
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Ft�z� =

�
−�

z

Qsp f�u�du

�
−�

�

Qsp f�u�du

=

�Cd50
−b�e0.5�b ln �g�2 1

�2�
�

−�

z

e−0.5u2−bu ln �g du

�Cd50
−b�e0.5�b ln �g�2 1

�2�
�

−�

�

e−0.5u2−bu ln �g du

�21�

or

Ft�z� =
1

�2�
�

−�

z

e−0.5�u + b ln �g�2du �22�

Eq. (22) indicates that the sediment in transport also has a
lognormal distribution. The 50 percentile of the particle size dis-
tribution of transported sediment d50t corresponds to the value of
z in Eq. (22) that gives Ft�z�=0.5, i.e.

0.5 =
1

�2�
�

−�

z

e−0.5�u + b ln �g�2du �23�

Denoting �=z+b ln �g, then dz=d�, Eq. (23) becomes

0.5 =
1

�2�
�

−�

�

e−0.5v2
dv �24�

Eq. (24) is a standard normal distribution. It can hold only
when �=0 or z+b ln �g=0. Thus substituting z=−b ln �g into Eq.
(18) results in

d50t

d50
= �g

−b ln �g �25�

Eq. (25) describes the relationship between d50t and d50. There
exists a bed material size which matches d50t. In order to deter-
mine the bed material size corresponding to d50t, a bed material
size is set equal to d50t and the corresponding percentage is com-
puted.

According to Eq. (18), the pth percentile of the sediment size
distribution dp can be determined by

dp = d50�g
�p �26�

where �p=pth percentile of standard normal distribution

�N�0,1��.

For P�50%, the value of �p in Eq. (26) is negative which
results in a value of dp smaller than the corresponding value of
d50. For P
50%, the value of �p is positive which gives dp

greater than d50. Assuming dp=d50t and combining Eqs. (25) and
(26) yields

�g
�p = �g

−b ln��g� �27�

and

�p = − b ln��g� �28�

Using the value of �p given by Eq. (28) as the upper boundary
for the standard normal distribution, the percentage for which the
diameter of bed material corresponds to d50t for a given �g can be
determined by

P = 100
1

�2�
�

−�

�p

e−0.5u2
du �29�

Substituting Eq. (28) into Eq. (29) yields

P = 100
1

�2�
�

−�

−b ln��g�

e−0.5u2
du �30�

The relationship between P and �g given by Eq. (30) is shown
in Fig. 3. For uniform sediment, P=50% which means that the
median size, d50t, of sediment in transport is equal to the median
diameter d50 of bed material. As the value of �g increases the P
value decreases, resulting in a smaller bed material diameter that
equals to d50t.

An appropriate variable representative diameter de may be
used for the computation of sediment transport rates for sediment
mixtures. The use of de is equivalent to the Kd factor to account
for the effect of size gradation, resulting in KdQs50=Qsde

. Consid-
ering that Qs50�Cd50

−b and Qsde
�Cde

−b, the variable representative
diameter now can be expressed as

de

d50
= e−0.5b�ln �g�2 �31�

It is mentioned earlier that Einstein (1944) and Ackers and
White (1973) suggested the use of d35 as the representative size in
sediment load computations for nonuniform mixtures. For this
special case, P=35% and �p=−0.385, which results in, according
to Eq. (26), the following relation

d35

d50
= �g

−0.385 �32�

Test of the Correction Factor

The exponent b may be determined based on measured data for
fractional transport rates for sediment mixtures since this paper
focuses on effects of sediment nonuniformity. For this purpose the
relative fractional transport rates/capacities of each data set in
selected laboratory experiments and natural rivers are plotted in
Fig. 4 to check the variation of transport capacities with sediment
sizes. The procedure to find the relative transport capacity for
each size is illustrated in Table 1. In this table the values of di,
�Pbi, Qsi are direct measurements, Qspi is computed by Qsi /�Pbi.

Fig. 3. Percentage of the diameter of bed-material that equals to
median diameter of sediment in transport �b=1.2�
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It can be seen from Fig. 4 that majority of the data sets show
a similar trend in which the relative transport capacity decreases
with the increase of particle size. A trend line may be drawn for
the data shown in the figure, i.e.

log
Qspi

Qsp50
= − 1.2 log

di

d50
or

Qspi

Qsp50
= � di

d50
�−1.2

�33�

This results in a value of b in Eq. (20) to be 1.2. It is expected
that b should vary with particle size and flow intensity, showing
nonlinear variation. However, for simplicity it is assumed to be a
constant value in this paper. Since the Engelund and Hansen
equation was developed based on relatively uniform sediments in
the sand range, the validity of Kd correction should be tested
using nonuniform sediments in sand range and with relatively
high �g values. It is expected that the sediment transport rate
would be underestimated by Engelund and Hansen’s original
equation. The use of Kd would then produce better predictions by
accounting for the effects of nonuniformity of bed material.

Even though a lot of laboratory and field sediment transport
data for sand sizes can be found in the literature, only a few have
relatively high �g values. After careful review, the laboratory data

Table 1. An Example to Illustrate the Computation of Relative Transport Rates for Measured Data

Representative
diameter of group I

Relative
diameter

Size fraction
of group i

Fractional
transport rate

Potential
transport capacity

Relative
transport capacity

di �mm� di /d50 �Pbi Qsi �kg/s /m� Qspi �kg/s /m� Qspi /Qsp50

0.037 0.181 0.044 1.679 38.250 37.150

0.052 0.259 0.050 1.083 21.530 20.910

0.067 0.332 0.041 0.542 13.310 12.930

0.088 0.433 0.094 0.650 6.898 6.700

0.124 0.610 0.129 0.347 2.698 2.620

0.175 0.863 0.154 0.206 1.335 1.297

0.248 1.223 0.167 0.089 0.532 0.517

0.351 1.732 0.123 0.043 0.352 0.342

0.496 2.447 0.102 0.026 0.256 0.248

0.701 3.458 0.062 0.020 0.314 0.305

0.986 4.870 0.034 0.012 0.348 0.338

Note: The data is extracted from Einstein and Chien’s Laboratory Data No. 22, d50=0.135 mm; Qspi=Qsi /�Pbi; and Qsp50=potential transport capacity
corresponding to d50.

Table 2. Summary of Laboratory and Field Data Used for Testing Kd Correction

Data source
Flow discharge

�m3/s�
Flow depth

�m�

Median
diameter
of bed

material
�mm�

Geometric
standard
deviation

of bed
material

Bed-material
concentration

Number
of data

sets

(a) Laboratory data

Einstein and Chien (1953) 0.043–0.066 0.18–0.21 0.10–0.37 1.41–2.95 2,115–57,970 22

Samaga et al. (1986a,b) 0.0056–0.015 0.056–0.10 0.21–0.40 1.58–2.46 3,392–10,260 33

(b) River data

Atchafalaya River (Toffaleti 1968) 382–14,190 6.10–14.75 0.091–0.31 1.50–1.93 0.6–567 72

Mississippi River at Tarbert 4,248–28,830 6.74–16.40 0.178–0.327 1.38–2.00 12–262 53

Landing (Toffaleti 1968)
Rio Grande River (Toffaleti 1968) 35.1–286.0 0.33–1.46 0.214–0.387 1.62–1.88 463–4,530 38

American Canal (Simon 1957) 1.22–29.4 0.80–2.59 0.096–0.715 2.01–3.85 44–448 12

Total of laboratory and river 0.0056–28,830 0.056–16.4 0.091–0.715 1.38–3.85 0.6–57,970 230

Fig. 4. Variation of fractional transport capacity with relative particle
size
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by Einstein and Chien (1953) and (Samaga et al. 1986a,b) and the
river data from Atchafalaya River (Toffaleti 1968), Mississippi
River at Tarbert Landing (Toffaleti 1968), Rio Grande River (Tof-
faleti 1968), American Canal (Simons 1957) were selected, see
Table 2. The �g values of laboratory data by Einstein and Chien
and Samaga et al. are in the range of 1.4–3.0 and 1.6–2.5, re-
spectively, with most data points bigger than 2.0; the d50 values
are in the range of 0.10–0.37 and 0.21–0.40 mm, respectively.
The �g values of river data from Atchafalaya River, Mississippi
River, Rio Grande River, American Canal are in the range of
1.5–1.9, 1.4–2.0, 1.6–1.9, and 2.0–3.9, respectively; the d50 val-
ues are in the range of 0.178–0.327, 0.214–0.387, and
0.096–0.715 mm, respectively.

The values of Kd calculated from Eq. (20) are 1.08,1.41,1.83,
and 2.38 for �g value of 1.5,2 ,2.5 and 3, respectively. From this
result, it is easy to conclude that the correction on transport rate
by Kd factor is negligible for data with �g value less than 1.5,
while the improvement is significant for data with �g value
greater than 2.0.

The comparisons of results obtained by using the Kd factor
with the measurements are given in Table 3 for laboratory and
Table 4 for field data. In these tables, three statistical parameters
are used to indicate the goodness-of-fit between the computed and
measured results. These three statistical parameters are:
1. The discrepancy ratio

Rj = Ctcj/Ctmj �34�

where Ctc and Ctm are the computed and measured bed-
material concentrations, respectively; and j is the data set
number.

2. The geometric standard deviation

AGD = ��
j=1

J

RRj�1/J

, RRj = �Ctcj/Ctmj for Ctcj � Ctmj

Ctmj/Ctcj for Ctcj � Ctmj

�35�

where J is the total number of data sets.
3. The root mean square

RMS = 
�
j=1

J

�Ctcj − Ctmj�2� J�1/2

�36�

From Table 3 it can be seen that the average geometric devia-
tion and the root mean square between computed and measured
bed-material concentrations were reduced from 2.34 and 16,580
to 1.66 and 12,810, respectively, for the Einstein and Chien data,
and from 1.52 and 2,403 to 1.14 and 1,108, respectively, for the
Samaga et al. data. The improvement in discrepancy ratio hap-
pened in all ranges. Taking the range of 0.5–2.0 as an example,
the improvement was from 50.5 to 72.7% for the Einstein and
Chien data, and from 90.9 to 100.0% for the Samaga et al. data.

Similar improvement was observed in river data as indicated
in Table 4. The average geometric deviation and the root mean
square were reduced from 2.03 and 568 to 1.78 and 492, respec-
tively, for all river data. The improvement in discrepancy ratio in
the range of 0.5–2.0 was from 56.0 to 67.4% for all river data.

Figs. 5 and 6 are the graphical comparisons of the results.
Significant improvements for laboratory data by using Kd correc-
tion were demonstrated in Fig. 5. Improvements in predictions for
river data can also be observed in Fig. 6. The improvement for the
data from the American Canal was higher than for data from other
rivers. The relatively small improvements by Kd factor for the
Atchafalaya River and Mississippi River were partially resulted

Table 3. Summary of Comparison between Computed and Measured Bed-Material Concentrations for Laboratory Data

Method Data source

Data in range of discrepancy ratio Ri �%� Average
geometric
deviation

Root
mean
square

Number
of data

sets0.75–1.25 0.5–1.5 0.25–1.75 0.5–2.0

Engelund and Hansen equation based on D50 Einstein & Chien 13.6 50.0 81.8 50.0 2.34 16,580 22

Smaga et al. 27.3 90.9 100.0 90.9 1.52 2,403 33

All laboratory data 21.8 74.6 92.7 74.6 1.80 10,650 55

Engelund and Hansen equation corrected by Kd Einstein & Chien 45.5 68.2 86.4 72.7 1.66 12,810 22

Samaga et al. 84.9 100.0 100.0 100.0 1.14 1,108 33

All laboratory data 69.1 87.3 94.6 89.1 1.33 8,149 55

Table 4. Summary of Comparison between Computed and Measured Bed-Material Concentrations for River Data

Method Data source

Data in range of discrepancy ratio Ri �%� Average
geometric
deviation

Root mean
square
(ppm)

Number
of data

sets0.75–1.25 0.5–1.5 0.25–1.75 0.5–2.0

Engelund and Hansen equation based on D50 Atchafalaya River 9.7 36.1 79.2 40.3 2.46 112 72

Mississippi River 17.0 64.2 94.3 66.0 1.83 68 53

Rio Grande River 44.7 73.9 100.0 76.3 1.53 120 38

American Canal 16.7 41.7 66.7 41.7 2.50 172 12

All river data 20.0 53.1 87.4 56.0 2.03 568 175

Engelund and Hansen equation corrected by Kd Atchafalaya River 18.1 48.6 83.3 51.4 2.17 102 72

Mississippi River 43.4 77.4 94.3 79.2 1.57 59 53

Rio Grande River 31.6 79.0 97.4 86.8 1.44 104 38

American Canal 16.7 50.0 75.0 50.0 1.89 150 12

All river data 28.6 64.0 89.1 67.4 1.78 492 175
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from the small �g values in these two large rivers. Further im-
provement for these two large rivers may need to consider other
flow parameters, which is beyond the scope of this paper.

Fig. 7 shows the variations of the relative median diameter
defined by d50t /d50 with the geometric standard deviation �g of
bed material. A total of 335 data values is shown in Fig. 7, in-
cluding the flume data of Einstein (1978), Einstein and Chien
(1953), and Guy et al. (1966), and the field data from the Niobrara
River near Cody, Nebraska (Colby and Hembree 1955), and the
Middle Loup River data at Dunning, Nebraska (Hubbell and
Matejka 1959). This database is limited to sand sizes with median
diameter in the range of 0.104–1.039 mm, to geometric standard
deviations in the range of 1.245–2.968, to flow discharges in the
range of 0.019–16.06 m3/s, to velocities in the range of
0.22–1.90 m/s, to depths in the range of 0.058–0.576 m, and to
slopes in the range of 0.00023–0.0193. Table 1 presents a sum-
mary of this database.

In Fig. 7, size distribution data including the unmeasured load
near the bed surface evaluated by the use of indirect methods are

Fig. 5. Comparison between computed and measured bed-material
concentration for the Engelund and Hansen Equation applied to labo-
ratory data: (a) based on d50 and (b) corrected by using Kd factor

Fig. 6. Comparison between computed and measured bed-material
concentration for the Engelund and Hansen Equation applied to river
data: (a) based on d50 and (b) corrected by using Kd factor

Fig. 7. Relationship between relative diameter, d50t /d50 and geomet-
ric standard deviation, �g
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not included. For the laboratory data, the size distributions of
transported sediments were measured directly. The transported
sediment size distribution data for the Niobrara River near Cody,
Nebraska are obtained from measured values of suspended bed-
material concentrations at a contracted section and are based on
depth integrated samples. The size distribution of sediments in
transport reported for the Middle Loup River at Dunning, Ne-
braska are measured values of suspended bed-material concentra-
tions with a turbulence flume and are also based on depth inte-
grated samples.

From Fig. 7 it can be seen that the value of d50t is finer than the
corresponding value of d50, and that as �g increases the value of
d50t /d50 decreases. The reason is that the finer sizes in sediment
mixtures are more readily transported by flow, which is com-
monly referred to as the selective transport of grains by flow or
hydraulic sorting. It is a significant phenomenon in the transport
process of nonuniform sediments.

The equation line given by Eq. (25) is plotted in Fig. 7 along
with the measured data. It is seen that the measurements follow
the equation line closely.

Fig. 8 is a plot showing the variation of relative diameters of
d35/d50, de /d50 and d50t /d50 with �g. It is seen that the relative
diameter of d35/d50 equals that of d50t /d50 at �g=1.38 and de /d50

equals that of d50t /d50 at �g=1.9. The d35 and d50t both have
values smaller than d50, so the use of d35 or d50t can give higher
transport rate than based on d50. However, the use of d35 or d50t as
representative size is valid only for data with �g values around
1.4 and 1.9, respectively.

The proposed size gradation correction factor Kd can be ap-
plied in practice for bed-material load computation in case of
nonuniform sediments. The procedure is illustrated using the data
measured at Tarbert Landing, Mississippi River on April 16, 1965
[Q=24,468 m3/s, W=1,103 m, h=014.42 m, S=0.0000365, T
=15.0°C, d35=0.167 mm, d50=0.199 mm, �g=1.648, Ct

=136 ppm, and d50t=0.107 mm (from suspended load)]. The de-
tailed procedure for applying the proposed method is as follows.

Step 1. First calculate the transport rate with d50 of the bed
only. From the data given earlier, the bed-material concentration
calculated by using the Engelund and Hansen equation is Ctc

=100.7 ppm.
Step 2. Then calculate Kd and correct the calculations. Accord-

ing to Eq. (20) we have Kd=e0.5�1.2 ln 1.648�2=1.20. Applying the Kd

factor gives the corrected bed-material concentration Ctc=1.20
�100.7=120.5 ppm.

Step 3. Calculate the d35 , de, and d50t.
These three characteristic sizes can be calculated from Eqs.

(32), (31), and (25), respectively, and giving d35=0.164 mm, de

=0.171 mm, and d50t=0.147 mm.
Step 4. Compare the computed results with field measure-

ments.
It is obvious that the corrected bed-material concentration

120.5 ppm, comparing with the value of 100.7 ppm calculated by
the Engelund and Hansen equation, is more close to the measured
value of 136 ppm. As expected, the variable representative diam-
eter of bed material de=0.171 mm is finer than the measured
d50=0.199 mm of bed material. The calculated value of d50t

=0.147 mm is much coarser than measurement, which may be
explained by the fact that d50t=0.107 mm is obtained from only
measured suspended load and the measured value of d50t for total
bed-material load is not available.

Summary and Conclusions

The effects of nonuniformity of bed material on the transport of
sediment mixtures are studied extensively. From the analysis, the
following conclusions can be reached.
1. Sediment transport equations based on d50 for uniform sedi-

ments usually underestimate the transport rates for nonuni-
form sediment mixtures. The size gradation correction factor
Kd expressed by Eq. (20) is a function of the geometric stan-
dard deviation of bed material. It is theoretically derived
from the fractional transport concept based on a lognormal
particle size distribution of the bed material. The use of Kd in
conjunction with a sediment transport equation based on a
single representative size for uniform sediments can produce
more accurate predictions for nonuniform sediment mixtures.
The improvement on transport rate by Kd is significant for
data with �g greater than 2.0, while the correction is negli-
gible for data with �g less than 1.5. Considering that the
method was tested using both laboratory and field data in the
range of 0.091–0.715 mm for d50, the proposed correction
factor is expected to be applicable to only sand-bed channels.

2. Similar to the bed material size distribution, the sediments in
transport follow a lognormal size distribution. The median
diameter of sediment in transport is generally finer than the
median diameter of bed material, due to the selective trans-
port of grains by flow. The relative median size of sediment
in transport, d50t /d50, decreases as size gradation increases,
and the relationship between them can be represented by Eq.
(25).

3. A variable representative diameter de expressed by Eq. (31)
is theoretically derived for bed materials with a lognormal
distribution. The representative diameter de decreases as �g

increases, resulting in a higher transport rate for nonuniform
sediment mixtures. The use of d35 as a representative size of
bed material suggested by Einstein (1944) and Ackers and
White (1973) is not a generally valid value.
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Notation

The following symbols are used in this paper:
AGD � average geometric deviation between computed and

measured bed-material concentrations;
b � exponent;
C � coefficient;

Ctc ,Ctm� computed and measured bed-material concentrations,
respectively;

d � particle size of bed material;
de � 1/ ���Pbi /di�, effective diameter defined by Nordin;
de � equivalent representative diameter defined by

Molinas and Wu;
de � variable representative diameter of bed material;
di � representative diameter of bed material

corresponding to the size fraction i;
dm � mean diameter of bed material;
dmt � mean size of sediment in transport;
dp � pth percentile of the bed material size distribution;
ds � representative diameter of bed material defined by

van Rijn;
d50t � median diameter of sediment in transport;

f� � friction factor defined by Engelund and Hansen;
G � size gradation coefficient of bed material;
g � gravitational acceleration;
h � flow depth;
J � total number of data sets;

Kd � size gradation correction factor;
m � exponent;
N � total number of size fractions present in a sediment

mixture;
P � percentage for which the diameter of bed material

is corresponding to d50t for a given �g;
Qs � total bed-material transport rate;

Qsde
� total bed-material transport rate obtained based on

de;
Qsp � potential bed-material transport rate;

Qs50 � total bed-material transport rate obtained based on
d50;

qt � total bed-material sediment discharge by weight per
unit width;

Rj � discrepancy ratio between computed and measured
bed-material concentration;

RMS � root mean square;
S � slope;
sg � specific gravity;
T � transport stage parameter temperature;
u � dummy variable;
V � average flow velocity;

Vci � the incipient velocity for a particular size class i in
a mixture;

V* � shear velocity;
V� � the absolute fluctuations of velocity;
v � dummy variable;

W � width;
x � general variable;
y � general variable;

�Pbi � fraction of bed material, by dry weight,
corresponding to the size fraction i;

�Pci � fraction of transported bedload sediments, by dry
weight, corresponding to the size fraction i;

�Pmoi � relative mobility of bed material corresponding to
size fraction i;

�s ,� � specific weight of sediment and water, respectively;
� � general variable;

 � dimensionless shear parameter;

�y � mean value of Gaussian distribution;
�p � pth percentile of standard normal distribution;
� � the standard deviation of V� /V distribution;

�g � standard deviation of bed material size;
�y � standard deviation of Gaussian distribution;

� � shear stress along the bed;
�� � grain shear stress;
�c � critical shear stress;
	 � dimensionless sediment transport function;
� � fall velocity corresponding to particle size d;
�i � fall velocity corresponding to particle size di;

�m � ���Pbi�i
m�1/m=defined by Han; and

�50 � fall velocity of sediment corresponding particle size
d50.

Subscripts

i � size fraction number in a data set;
j � data set number; and
t � transport material.
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