<u>1D and 2D Numerical</u> <u>Models for River</u> <u>Routing</u>

Fritz Doster and Joseph Pugh CIVE 717 – River Mechanics – Spring 2022

Motivation for Use of Numerical Models

Design along river corridors includes analysis of complex problems such as *floodwave propagation*, *floodplain inundation, backwater effects*, and others.

Numerical models are built to analyze space & time solutions for the differential equations governing hydrodynamic processes.

Models can address one or more of the following principles with relatively limited user input:

- Conservation of Mass
- Conservation of Momentum
- Resistance to Flow
- Sediment Transport

Mathematical Foundations

Numerical river models solve approximations to the fundamental **conservation of mass and momentum equations** for incompressible flows. **Conservation of mass:**

$$\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z} = 0$$

For depth-integrated 2-D rivers, the above equation becomes:

$$\frac{\partial h}{\partial t} + \frac{\partial hV_x}{\partial x} + \frac{\partial hV_y}{\partial y} + i_b - i = 0$$

Mathematical Foundations

Conservation of Momentum:

The depth-integrated 2D momentum equation in the x-direction is given by:

$$\frac{\partial V_x}{\partial t} + \frac{V_x \partial V_x}{\partial x} + \frac{V_y \partial V_x}{\partial y} = g \overline{S_{0_x}} + g S_{0_x} - \frac{g \partial h}{\partial x} - \frac{\tau_{0_x}}{\rho h}$$

Here, the sum of forces acting upon the flow are shown on the RHS of the equation. These forces are gravity, bed elevation, pressure, and bed shear; respectively.

Mathematical Foundations

Resistance to Flow:

Due to the highly complex and heterogeneous nature of actual riverine systems, empirical equations for estimating the bed shear force in the momentum equation are often incorporated in to numerical models. One such equation is the Manning-Strickler relationship:

$$Q = \frac{1}{n} A R^{\frac{2}{3}} S_f^{\frac{1}{2}}$$

<u>Sediment transport</u>: In addition to computing hydrodynamic properties of the flow 1D and 2D numerical river models are also able to couple sediment mass transport equations, such as the well-known MPM equation:

$$q_{bv} = 8(\tau_* - \tau_{*c})^{1.5} [(G - 1)gd_s^3]^{0.5}$$

Implicit Assumptions

Common assumptions made for 1D and 2D numerical river models:

- flow is steady and incompressible.
- channel geometry is wide and rectangular.
- Acceleration in the z-direction is negligible.
- Pressure distribution in the vertical is hydrostatic.
- Boussinesq approximation ($\beta = 1$)

Simplified equations for 1-D numerical models:

<u>Continuity</u>: $\frac{\partial Q}{\partial x} + \frac{\partial A}{\partial t} = 0$ (neglects rainfall, lateral flow, and flow through channel boundary.)

<u>Momentum (Saint-Venant Eq.)</u>: $\frac{\partial v_x}{\partial t} + \frac{v_x \partial v_x}{\partial x} \approx gS_0 - \frac{1}{\rho} \frac{\partial p}{\partial x} + \frac{1}{\rho} \frac{\partial \tau_{zx}}{\partial z}$ (applicable to wide and rectangular channels, neglects lateral velocity).

Numerical Methods

The basic numerical methods for approximating the aforementioned differential equations are <u>finite differencing</u> (for raster-based data sets) and <u>finite-element analysis</u> (for vector-based data).

Both of these methods require **discretization** of the model domain in <u>space</u> and <u>time</u>. These considerations must be made carefully, in the interest of preserving the **numerical stability** of the model.

Example of computational domain for finitedifferencing technique.

Model Selection Based on Application

Three general types of numerical models

- 1 Dimensional (1D) Model
- 2 Dimensional (2D) Model
- 3 Dimensional (3D) Model

1D & 2D Models are the most common and computationally viable. They are the focus of this presentation.

<u>Flow Direction Analysis</u> <u>by Model Type</u>:

- 1D X direction flow
 - Assumes constant y & z
- 2D X & Y direction flow
 - Assumes constant z
- 3D X, Y, & Z direction flow

Model Selection Based on Application

2D models have an additional degree of freedom of movement, which adds greater complexity over 1D

• 2D models add additional boundary conditions which are the means of addressing the increased complexity

Modelers choose 1D vs. 2D based on

- Available Information
- Minimum complexity required to adequately answer the problem

Common Model Applications:

1D Model

- Steady Flow Water Surface Profile
- Unsteady Flow Simulations
- Movable-Boundary Sediment
 Transport Computations
- Water Quality Analysis

<u>2D Model</u>

- Meandering or Braided Systems
- Channel Migration
- Flow at Abrupt Bends
- Bridge Scour
- Floodplain Mapping

Model Selection Based on Application

The image below exhibits the difference in Geometry Input & Model Output for 1D, 2D, and 3D Models: (Note the increasing complexity)

Image: (Robinson, Zundel et. al, 2019)

Example 1D Model: HEC-RAS 1D

Critical Cr

Reach: Upper Read

1815

Example Inputs:

le Ed	# Options	Yorv Ist	des Joch <u>OS</u> T	ools Ewip	10114	S					00023310	
Joch	Rear 1	THE STATE	Com BOLING	Patrick British	Marin.	Eastern Lastern	85	20	Description :	- 1	Plot WS extents	for Profi
03			Local and a	there there	- and -	0.	-04.08	-	P			
net.												
010			~						1			
20				4								
10h				100				1				
				1			100	/				
ana Chiri				Reach 1			11	THINKING	ŕ.			
				/			10					
0104				1			10					
-					~	1	AS					
14				-	n,ik,e 1	0						
1						1						
ii l						1						
						1	and in					
ñæ							-	Reach	2			
UPD							>	1				
55								./				
Teb									-			
m									-			
dure												
•												_
-	-										1.17	05 0 13

A 1D Numerical Flow Model developed by the US Army Corps of Engineers.

- Version 1.0 was released in July 1995
- Version $\overline{6.2}$ was released May 2022 \bullet
- Capabilities:
 - 1D Steady Flow Calculation
 - 1D Unsteady Flow Calculation
 - Sediment Transport / Mobile Bed Computation
 - Water Temperature / Water Quality Modeling

_ = ×

Legend

EG 50 yr

WS 50 yr Crit 50 yr OWS 50 yr

Plot Initial Conditions Reload Data

35000

40000

25000

Example Outputs:

Images: (HEC-RAS User's Manual, 2022)

Example 1D Model: FLUVIAL 12

Example Inputs:

APPENDIX C. SAMPLE INPUT LISTINGS

τ1	1	UPPER SAN	N DIEGO RI	VER NEA	AR CHANNE	L ROAD				
τ2		FOR SCOUL	R PREDICTI	ON AT (HANNEL R	OAD AFFE	CTED BY	SAND MIN	IING	
τ3		100-YEAR	FLOOD, PE	CAK Q =	32000 CF	S				
G1	5.1	190.20	720	3	0.5		0.04	19.98	189.00	12.0
G2	11	40								
G2	1250	0	1800	2	3200	8.5	10880	14	32000	19.8
G2	32000	20.1	22400	26	9600	34	7540	38	3200	50
G2	1400	50.1	4760	54	14000	60	9800	66	2800	70
G2	1250	70.1	3040	73	3800	75	2800	80	1250	90
G2	1250	90.1	3040	93	3800	95	2800	100	1250	120
G2	1250	120.1	3040	123	3800	125	2800	130	1250	140
G2	1400	140.1	4760	144	14000	150	9800	156	2800	170
G2	1250	170.1	3040	173	3800	175	2800	180	1250	190
G3	0.005									
GS	0.2	0.2	0.75	0.2	1.50	0.2	2.80	0.2	6.5	0.2

Example Outputs:

1D Erodible Boundary Numerical Flow Model, which couples flow and sediment transport information to model process-response behaviors in alluvial channels

- Developed by Howard Chang in June 1998
- Capabilities:
 - Erodible Boundary allows changes in channel width, while mobile bed models do not
 - Channel bed scour & fill
 - Channel width variation
 - Impact of channel curvature
 - Channel response to large changes (including gravel mining, channelization, hydraulic structures & others)
 - General scour at bridge crossings

Images: (Chang, 1998)

Example 2D Model: HEC-RAS 2D

Example Inputs:

Example Outputs:

This is an addition to the US Army Corps of Engineers' HEC-RAS program with 2D flow modeling capabilities.

- Version 5.0 was the first with 2D flow capabilities, released in March 2016
- Version 6.2 was released May 2022
- Capabilities:
 - 2D or Combined 1D/2D Steady & Unsteady Flow Modeling
 - Shallow Water Equations or Diffusive Wave Equations in 2D
 - Hydraulic Structures Analysis within 2D Flow Areas
 - Detailed Flood Mapping & Flood Animations
 - Implicit Finite Volume Solution Algorithm (for greater numerical stability & larger time steps.

Example 2D Model: CCHE 2D

Example Inputs:

Example Outputs:

Developed by the National Center for Computational Hydroscience and Engineering at the University of Mississippi.

- Supported by funding from the USDA since 1989.
- Began as simple 1D model, have since added numerous computational for modeling sediment transport, coastal processes, floodplain interactions, and water quality analysis.
- Capabilities:
 - Free-surface flows
 - Sediment transport
 - Morphological processes
 - Pollutant transport and water quality
 - Mesh generation

<u>Conclusions</u>

- With increasing availability of computational power and rapid model development, numerical river models are increasingly powerful tools for analyzing hydraulic systems.
- However, a lack of knowledge of the underlying assumptions implicit in numerical models can lead to gross misuse in the pursuit of impressive "CFD" (colorful fluid dynamics)!
- Although numerical modeling for river systems has become widespread, trustworthy field data is still required to validate and calibrate our models.

<u>References</u>

- Julien, P. Y. (2018). *River Mechanics*. Cambridge University Press.
- Robinson, Zundel, et. al (October, 2019). Two Dimensional Hydraulic Modeling for Highways in the River Environment: Reference Document. Federal Highway Administration
- *HEC-RAS 2D User's Manual*. Version 6.0, May 2022. US Army Corps of Engineers.
- *HEC-RAS User's Manual*. Version 6.2, May 2022. US Army Corps of Engineers.
- Chang, Howard H. (1998). FLUVIAL-12 Mathematical Model for Erodible Channels: User Manual.
- "Program Summary for Fluvial-12." Advanced Engineering Software. <http://advancedengineeringsoftware.com/wp/fluvial/>, accessed May 4, 2022.
- Zhang, Y., & Jia, Y. (2002). *CCHE2D Mesh Generator and User's Manual* (*v* 2.00). Technical Report NCCHETR-2002-5, National Center for Computational