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CIVE 717 – River Mechanics  



• Atmospheric Sciences 

• Oceanography 

• Mechanical Engineering 

• Thermodynamics 

• Aeronautical Engineering 

• Environmental Engineering 

• Geotechnical Engineering 

• Biology  

• Civil Engineering 

• River mechanics 

• Hydraulics 

• Structural Engineering 



• CFD is a numerical experiment 

 

• Some aspects of fluid flow, such as turbulence, can only be modeled with statistical 

results from physical experiments.   

 

• CFD can be more cost effective than physical modeling 

 

• CFD can be used to model physically impossible conditions, such as inviscid flow.   

 

• CFD is very valuable for modeling extreme conditions such as extremely high 

temperature or velocity which may be impossible to model physically.   

 

• Physical experiments must always be used to validate CFD codes 

 



• ANSYS 

• Commonly used in consulting and industry 

• Formerly called Fluent 

• Finite volume method 

 

• COMSOL Multiphysics 

• Compatible with MATLAB 

• Physics modeling software 

• Finite element method 

 

• Research Codes 

• MATLAB 

• FORTRAN 

• C 

• Etc. 

 



• Sediment transport in rivers 

• Sediment deposition in reservoirs 

• Waves driven by wind shear on reservoir 

• Detention time of chlorine in baffle tanks in water 

treatment facilities 

• Modeling pollution flumes from off-shore fish farms 

• Design of whitewater kayak parks 

 



•  Hydrodynamic model 

◦ Model Equations 

 Reynolds-averaged continuity equations 

 Reynolds-averaged Navier-Stokes equations 

◦ Boundary Conditions 

 Free surface (i.e. net fluxes of horizontal momentum is 0) 

 River bed (i.e. wall-function approach) 

 

 

 



 Reynolds-averaged Navier Stokes equations for incompressible, fully turbulent flow 
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Where U is the velocity averaged over time t,  

x is the spatial geometrical scale,  

ρ is the density, 

𝛿𝑖𝑗 is the Kronecker delta,  

and u is the velocity fluctuation over time during one time step 𝜕𝑡 

 

𝑢𝑖′𝑢𝑗′ is the turbulent stresses being modeled with the Boussinesq approximation 
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Where k is the turbulent kinetic energy term 



• Sediment transport model 

◦ Bed load transport 

 Sediment mass-balance equation 

◦ Suspended load transport 

 Convection-diffusion equation 

◦ Empirical Input 

 Near bed equilibrium concentration at a reference level 

 Equilibrium bed load transport 

 Non-equilibrium adaptation length 



• The governing equations are approximated over control 

volumes or a grid 

• 1-D Grid 

◦ Water surface elevation model in hydraulics  

     (standard step method) 

 

• 2-D Grid 

◦ Cartesian, structured, and unstructured 



• 3-D Grid 

◦ Three dimensional grids are very computationally expensive 

◦ Grid sizes are smaller in areas with high gradients to capture the 

range of motions and boost accuracy and efficiency 

• Unstructured grids (most common) 

• Coarse grid causes instabilities close to the boundary 

◦ Inflation 

◦ Changing shapes 

 

 

 



• Physical experiments must always be used to validate 

CFD codes 

 

 

 

 

 

• Good agreement between model results and experiment 

results indicates the CFD code is accurate and correct. 

 



• Errors of O(∆x) in discretization of equations 

 

• Errors caused by using averaged parameters (Reynolds averaged Navier-Stokes) 

 

• Numerical physics 

 



One dimensional (1D) flow models have been 

used for many years in hydraulic engineering.  

These 1D models remain useful, particularly for 

applications with long reaches, such as 50 km, 

or over a long time period, such as over a year. 

 

However, there are situations where 

multidimensional modeling is needed.  For 

example, modeling with 3D Navier-Stokes 

equations is necessary if flow around hydraulic 

structure is of interest.  With increasing 

computational resources, 2D models are used 

for river projects.  Examples of commercial or 

public-domain 2D codes are DHI, USACE, 

CCHE2D, TELEMAC, etc. 

 

Governing Equations 

 

Most open channel flows are relatively shallow.  As a result of 

negligible vertical motions, the 3D Navier-Stokes equations 

are vertically averaged to obtain a set of depth-averaged 2D 

equations. 
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where x, y = horizontal Cartesian coordinates; t = time; h = 

water depth; U, V = depth-averaged velocity components in x 

and y directions, respectively; Txx, Txy, Tyy = depth-averaged 

stresses due to turbulence as well as dispersion; z=zb+h = 

water surface elevation; zb = bed elevation; ρ = water density; 

τbx, τby = bed shear stresses 

  

The bed stresses are obtained using the Manning resistance 

equation as 

(𝜏𝑏𝑥 , 𝜏𝑏𝑦) = 𝜌𝐶𝑓 𝑈2 + 𝑉2(𝑈, 𝑉) 

 where 𝐶𝑓 =
𝑔𝑛2

𝐻
1
3 
; n = Manning’s roughness coefficient; The 

depth-averaged stresses are calculated with the 

                     (continued on next slide) 



Boussinesq’s formulation as 𝑇𝑥𝑥 = 2(𝜗 + 𝜗𝑡)
𝜕𝑈

𝜕𝑥
, 

𝑇𝑦𝑦 = 2(𝜗 + 𝜗𝑡)
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ν = kinematic viscosity of water, and νt = eddy 

viscosity  

 

The eddy viscosity is calculated with a turbulent 

model.  Dr. Lai has used two models in his study, 

the depth-averaged parabolic model and the two-

equation k-ε model.  For the parabolic model, the 

eddy viscosity is calculated as 

𝜗𝑡 = 𝐶𝑡𝑈∗ℎ 

where Ct = the model constant with the range from 

0.3 to 1.0.  A default value of 0.7 is used in Dr. Lai’s 

study; 𝑈∗ = 𝐶𝑓
1 2 𝑈2 + 𝑉2 

  

 

For the two-equation k-ε model, the eddy viscosity is calculated 

as 𝜗𝑡 = 𝐶𝜇𝑘
2/휀 with the two additional equations as following. 
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Following Rodi’s recommendation, one has 
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Boundary Conditions 

 

Boundary conditions consist of four types: inlet, exit, solid wall, and symmetry. 

 

(1)Inlet: A total flow discharge, in the form of a constant or a time series hydrograph, is specified.  Velocity distribution along 
the inlet is calculated in a way that the total discharge is satisfied.  If a flow is subcritical at an inlet, however, the water 
surface elevation is not needed; instead a constant water surface slope normal to the inlet is assumed.  If a flow is 
supercritical at the inlet, however, the water surface elevation at the inlet is needed as another input.  If the k-ε model is used, 
the values of k and ε are also needed which, for most applications, have negligible impact on the flow pattern. 

 

(2)Exit: Water surface elevation is specified at a subcritical exit but it is not required if flow at the exit is supercritical.  Instead, 
it is assumed that the derivative of the water surface elevation normal to the exit is constant at the supercritical exit. 

 

(3)Solid wall: no-slip condition is applied and the wall functions are employed.  At a solid wall, 

(𝜏𝑏𝑥 , 𝜏𝑏𝑦) = 𝜌𝐶𝜇
1 4 𝑘𝑝

1 2 𝑘(𝑈, 𝑉) ln(𝐸𝑦𝑝
+)  where 𝑦𝑝

+ = 𝐶𝜇
1 4 𝑘𝑝

1 2 𝑦𝑝 𝜗  for the k-ε model and 𝑘𝑝=turbulent kinetic energy at a mesh 

cell that contains the wall boundary; and (𝜏𝑏𝑥 , 𝜏𝑏𝑦) = 𝜌𝑈∗𝑘(𝑈, 𝑉) ln(𝐸𝑦𝑝
+)  where 𝑦𝑝

+ = 𝑈∗𝑦𝑝 𝜗  for the depth-averaged 

parabolic model where 𝑘 = vonKarmanconstant, 0.41, 𝑦𝑝 = normal distance from the center of a cell to a wall, and E = 
constant, 9.758. 

 

(4)Symmetry: The normal velocity component is set to zero at a symmetry boundary. 

 



Discretization 

 

The 2D depth-averaged may be written in tensor form as 

 

 

 

 

 

 

where V = velocity vector, T = second-order stress tensor, τb = bed shear stress 

vector 

 

As an illustration, consider a generic convection-diffusion equation that is 

representative of all governing equations 

 

 

 

where Φ = a dependent variable, a scalar or a component of a vector,  

Γ = diffusivity coefficient, S*
Φ = source/sing term 

  

Figure 1  Schematic illustrating a polygon 

cell P along with one of its neighboring 

polygon N (after Dr. Lai) 



Integration over an arbitrarily shaped polygon P shown in 

the Figure 1 leads to 

(ℎ𝑝
𝑛+1𝛷𝑝

𝑛+1 − ℎ𝑝
𝑛𝛷𝑝

𝑛)𝐴
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𝑎𝑙𝑙𝑠𝑖𝑑𝑒𝑠

+ 𝑆𝛷 

where Δt = time step, A = cell area, Vc = Vc·n = velocity 

component normal to the polygonal side (e.g. P1P2 in the 

figure 1) and is evaluated at the side center C, n = unit 

normal vector of a polygon side, s = polygon side 

distance vector, and SΦ = S*
ΦA, subscript C indicates a 

value evaluated at the center of a polygon side and 

superscripts n or n+1 denotes the time level. 

𝛻𝛷 ∙ 𝑛 𝑠 = 𝐷𝑛 𝛷𝑁 − 𝛷𝑃 +𝐷𝑐 𝛷𝑃2 − 𝛷𝑃1  

𝐷𝑛 =
𝑠

(𝑟1 + 𝑟2) ∙ 𝑛
 

𝐷𝑐 =
(𝑟1 + 𝑟2) ∙ 𝑠 |𝑠| 

(𝑟1 + 𝑟2) ∙ 𝑛
 

The implicit solver requires the solution of nonsymmetric sparse 

matrix linear equations.  In Dr. Lai’s study, the standard 

conjugate gradient solver with ILU preconditioning is used. 

 

 

 

 

 

 

 

 

Wetting and Drying Treatment 

 

Most natural rivers consist of main and side channels, bars, 

inlands, and floodplains and the bed may be wet or dry 

depending on flow stage.  The wetting-drying property is not 

known and is part of the solution.  A robust wetting-drying 

algorithm, therefore, is needed.  Such an algorithm offers the 

benefit that the same solution domain and mesh may be used 

for all flow discharges. A cell is wet if water depth is above 1.0 

mm. 

 



Sandy River Delta Simulation 

The SANDY River Delta dam is located near the 

confluence of the Sandy and Columbia rivers, east of 

Portland, Oregon (Figure 2).  As a result of its closure 

in 1938, flow has been redirected from the east 

distributary to the west (downstream) distributary.  

Although it was once the main distributary channel, the 

east distributary is currently only activated under high 

flow conditions.  New efforts to improve aquatic habitat 

conditions have considered the removal of the dam.  

This model was used to evaluate possible effects on 

the delta area if the dam is removed.  The bed 

elevation contours of the study area are displayed in 

the Figure 2. 

Figure 2  Study area of the Sandy and Columbia River confluence, 

along with the topography for the solution domain (after Dr. Lai) 



 

The solution domain was covered with a hybrid mesh with a total of 37,637 cells, A portion of the mesh around the 

delta is shown in the Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3  Portion of the mesh used to model the Sandy River and Columbia River Delta (after Dr. Lai) 

 



Flow resistance is a model input represented by the Manning’s coefficient n.  The solution domain was 
divided into a number of roughness zones based on the underlying bed properties, delineated using the 
available aerial photo and the bed gradation data.  In the figure 14, the zones 1, 2, and 3 represent the 
main channel of the Sandy River; zones 4 and 5 represent the main channel of Columbia River; Zone 6 
consists mostly of sand bars and less vegetated areas; and zone 7 represents islands and floodplains 
with heavy vegetation.  The calibrated Manning’s coefficients are tabulated in the Table 1.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4  Roughness zones used for the Sandy River Delta (after Dr. Lai) 

Table 1  Manning’s coefficient for Different Zones shown in the Figure 4 

Zone number    1      2       3     4                  5                  6                  
7 

Manning’s n 0.035   0.06    0.15            0.035           0.035           0.035            0.06 

 

 



The simulated water surface elevation on the Sandy River is compared with the field data in the first following figure. 

Figure 5   Comparison of field measured and model predicted water surface elevations for the October 12, 

2005 flow conditions along Sandy River (after Dr. Lai) 



The measured and predicted velocity magnitude 

comparisons at all measurement points are 

made for both the Sandy River and Columbia 

River.  The comparison of Sandy River is shown 

below.  The agreement between the model and 

measured data are reasonable. 

Figure 6 Comparison of field measured and model 

predicted depth-averaged velocity for the October 12, 

2005 flow conditions along the Sandy River (after Dr. Lai) 

Conclusion 

 

Dr. Lai’s numerical method is well suited 

to natural river flows with a combination 

of main channels, side channels, bars, 

floodplains, and in-stream structures. 



Sediment Transport Equations 

The sediment is assumed to be non-cohesive and non-uniform and is divided into a number of sediment size classes.  One 

has non-equilibrium sediment transport equation for each size class k below. 
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where h = water depth, Ck = depth-averaged 

volume sediment concentration for kth sediment 

size, ωsk = settling velocity of kth sediment size 

class, β = non-equilibrium adaptation coefficient 

(by default, 1,0 if net erosion and 0.25 if net 

deposition), C*
k = fractional sediment transport 

capacity for the kth size class, qsk = volumetric 

sediment transport rate per unit width; pk = 

volumetric fraction of the kth sediment size class 

in the bed; ρ, ρs = water and sediment density, 

respectively; g = gravitational acceleration; τb = 

bed shear stress; θc = critical Shield’s parameter, 

0.04 used in Dr. Lai’s project; dk = diameter of 

sediment size class k; d50 = median diameter of 

sediment mixture in bed; α = exposure factor to 

account for reduction in critical shear stress for 

larger particles and increase in critical shear 

stress for smaller particles, 0.65 used in Dr. Lai’s 

project; pb = bed material porosity; δa = thickness 

of the active layer; pak = active layer volumetric 

fraction of sediment size class k  



The erosion and deposition pattern may be simulated with accuracy and presented for the 2-year flood existing 

condition scenario below. 

Figure 7  Predicted erosion and deposition pattern 24 hours after a 2-year Sandy River flood (after Dr. Lai) 



Bed changes in a section of the 

Danube river for before and after 

the flood of 2002 
 

Purpose: To investigate the 

possibility of modeling the bed-

changes in a natural river using a 

3-D numerical model for 

prediction of effects of floods or 

alterations of the physical 

characteristics of the river 

Measured water depths before (b) and after (c) the flood. Measured (d) 
and computed (e) elevation changes. (a) identifies special regions 
further discussed in the paper 



Model type: Full 3D CFD model  

 

Equations:  

Navier Stokes Equations using the k-

epsilon turbulence closure 

 

Nonuniform sediment rating curve from 

Wu et al. (2000) 

 

Width-to-depth ratio: 60 

 

Depth-to-grain size ratio: 200 

 

Mean grain size, dm = 26 mm 
 
 

Groynes and vegetated areas (green) 

Median grain size, d50 at the end of the computation 



Calculated bed changes, reference calculations 
with Strickler bed roughness: 

(a) ks=0.12 m 

(b) ks=0.2 m  

(c) ks=0.075 m 

(d) ks=2d50 

(e) ks=4d50 

 

Parameter Sensitivity Analysis: 

• Varying grid resolution 

• Varying time step 

• Varying sediment transport 

parameters 

 

Conclusions:  

“CFD model performed well when 

compared with field measurements. 

Model was able to represent 

morphodynamic process, such as 

deposition processes of a bar and 

related erosion processes at the 

scour on the opposite side” 



 Environmental concerns led to increase run-of-river intakes for 

hydroelectric projects, replacing conventional deep reservoir intakes. 

 Run-of-river intakes have higher approach flow velocities and 

turbulence, leading to increased sediment inflow at intake. 

 Purpose:  
◦ Utilize CFD to evaluate potential construction cost savings by reducing excavation 

downstream from the powerhouse and spillway and potential impact on flow hydraulics. 

◦ Analyze different intake layouts to minimize head losses and provide more uniform 

velocity distribution at the intake 

◦ Assess potential of sediment into intake 

 



Powerhouse intake layout design 

 Flow conditions are highly non-uniform 

 Large eddy in the approach channel contributed 
to head losses 

 Spur dyke caused uneven flow distribution 

 Optimized layout:  
◦ Flow of intake moved farther upstream, curved guiding walls, 

spur dyke removed, lowered invert elevation along the right 
size of the approach channel entrance 

 



Hydraulics of sediment training wall 

 Usually a training wall is parallel to 
approach flow direction to increase 
flushing efficiency. But in this case 
the the approach flow is almost 
parallel to the dam, attacking the 
training wall at at acute angle 

 CFD showed that the training wall 
caused very turbulent flow 
conditions with increased local 
velocities 

 As a result, no training wall was 
included in the design 

 



 With the advance of computing technology, numerical 
simulations using CFD is proven to be useful tool in hydraulic 
engineering 

 

 CFD is viable, and more cost-effective complement, if-not-
alternative to physical modeling 
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