
 

 

 

US Army Corps of Engineers 

Nonstationarity Detection 

Tool User Guide 

 

  
 

User Guide  

 
 

 

 

 

 

 

 

 

 

 

 

 

U.S. Army Corps of Engineers 

Climate Preparedness and Resilience Community of Practice 

Washington, DC  

Version 1.1 

January 2016 



2 

 

Abstract: Stationarity, or the assumption that the statistical characteristics of hydrologic time series data 

are constant through time, enables the use of well-accepted statistical methods in water resources 

planning and design in which future conditions rely primarily on the observed record. However, recent 

scientific evidence shows that—in some places, and for some impacts relevant to the operations of the 

U.S. Army Corps of Engineers (USACE)—climate change and human modifications of the watersheds 

are undermining this fundamental assumption, resulting in nonstationarity. The purpose of this User 

Manual is to support the use of Version 1.1 of the USACE Nonstationarity Detection Tool, released in 

January 2016. The Nonstationarity Detection Tool enables the user to apply a series of statistical tests to 

assess the stationarity of annual instantaneous peak streamflow data series at any United States 

Geological Survey (USGS) streamflow gage site with more than 30 years of annual instantaneous peak 

streamflow records. The tool will aid practitioners in identifying continuous periods of statistically 

homogenous (stationary) annual instantaneous peak streamflow datasets that can be adopted for further 

hydrologic analysis. The tool also allows users to conduct monotonic trend analyses on the identified 

subsets of stationary flow records. The tool facilitates access to USGS annual instantaneous peak 

streamflow records; does not require the user to have either specialized software or a background in 

advanced statistical analysis; provides consistent, repeatable analytical results that support peer review 

processes; and allows for consistent updates over time. The User Manual includes a discussion of the 

technical concepts incorporated into the Nonstationarity Detection Tool, a description of the user 

interface, an explanation of how to apply the user interface to execute hydrologic analysis, and a series of 

examples highlighting how the tool is applied. This user guide does not cover all possible situations one 

may encounter using the tool. The first step in conducting nonstationarity detection is to carry out data 

preparation and exploratory data analysis, which are described in detail in Section 3. The Nonstationarity 

Detection Tool is not a substitute for professional engineering judgment.  
 

Preferred Citation: Friedman, D., J. Schechter, B. Baker, C. Mueller, G. Villarini, and K. D. White. 

(2016), US Army Corps of Engineers Nonstationarity Detection Tool User Guide. US Army Corps of 

Engineers: Washington, DC.  
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Introduction 

 

Stationarity, or the assumption that the statistical characteristics of hydrologic time series data are 

constant through time, enables the use of well-accepted statistical methods in water resources planning 

and design in which future conditions rely primarily on the observed record. Though hydrologic 

engineers have been aware that this assumption over-simplifies a complex process (e.g., Chow 

1964), it was an acceptable assumption for the planning and design of water resources projects 

where observed records were relatively short and detailed analytical or dynamic representations 

of physical processes were not available. However, recent scientific evidence shows that—in some 

places, and for some impacts relevant to the operations of the U.S. Army Corps of Engineers (USACE)—

climate change and human modifications of the watersheds are undermining this fundamental assumption, 

resulting in nonstationarity (Milly, et al., 2008). 

 

The Nonstationarity Detection Tool was developed to support USACE Engineer Technical Letter (ETL) 

1100-2-3, Guidance for Detection of Nonstationarities in Annual Maximum Discharges, to detect 

nonstationarities in annual instantaneous peak streamflow data series. Per ETL 1100-2-3, engineers will 

be required to assess the stationarity of observed streamflow records analyzed in support of hydrologic 

analysis carried out for USACE planning and engineering decision-making purposes (U.S. Army Corps of 

Engineers, Forthcoming). 

 

The Nonstationarity Detection Tool enables the user to apply a series of statistical tests to assess the 

stationarity of annual instantaneous peak streamflow data series at any United States Geological Survey 

(USGS) streamflow gage site with more than 30 years of annual instantaneous peak streamflow records. 

The tool will aid practitioners in identifying continuous periods of statistically homogenous (stationary) 

annual instantaneous peak streamflow datasets that can be adopted for further hydrologic analysis. The 

tool also allows users to conduct monotonic trend analyses on the identified subsets of stationary flow 

records. The tool facilitates access to USGS annual instantaneous peak streamflow records; does not 

require the user to have either specialized software or a background in advanced statistical analysis; 

provides consistent, repeatable analytical results that support peer review processes; and allows for 

consistent updates over time.  

 

The purpose of this User Manual is to support the use of Version 1.1 of the Nonstationarity Detection 

Tool, released in January 2016. The document includes a discussion of the technical concepts 

incorporated into the Nonstationarity Detection Tool, a description of the user interface, an explanation of 

how to apply the user interface to execute hydrologic analysis, and a series of examples highlighting how 

the tool is applied. This user guide does not cover all possible situations one may encounter using the 

tool. The first step in conducting nonstationarity detection is to carry out data preparation and exploratory 

data analysis, which are described in detail in Section 3. The Nonstationarity Detection Tool is not a 

substitute for professional engineering judgment. The Nonstationarity Detection Tool is available at:  

https://maps.crrel.usace.army.mil/apex/f?p=257  
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1 Technical Background 

1.1 Statistical Methods Used in the Nonstationarity Detection Tool 

The tool performs nonstationarity detection using the Open Source R statistical programming language (R 

Development Core Team 2011) and four freely available statistical test packages associated with it: cpm 

(Ross, 2015), bcp (Erdman & Emerson, 2007), ecp (James & Matteson, 2015), and trend (Pohlert, 2015). 

These packages contain the following sets of statistical methods that the tool uses to detect 

nonstationarities in annual instantaneous peak streamflow records: likelihood ratio testing, energy-based 

algorithms, Bayesian Monte-Carlo simulation, and Pettitt tests. Additionally, a custom package developed 

specifically for this tool executes the Lombard model to test for abrupt and smooth nonstationarities. 

1.1.1 Types of Statistical Methods for Nonstationarity Detection 

The statistical methods applied within the Nonstationarity Detection Tool are categorized by the type of 

nonstationarity detected and whether the nonstationarity is representative of a smooth or abrupt change in 

the statistical properties of the dataset under analysis.  

 

i. Type of Nonstationarity – Methods that only detect differences in the mean will not detect 

nonstationarities where the mean of the data stays consistent while the variance/standard 

deviation changes. Likewise, methods that only detect differences in variance/standard deviation 

will not detect nonstationarities where the mean of the data changes while the variance/standard 

deviation stays consistent. For this reason, the tool applies several methods that assess 

nonstationarities in time series datasets driven by changes in the mean, variance/standard 

deviation, and in the distributional properties of the dataset. 

a. Mean-based nonstationarity methods detect a nonstationarity where there has been a 

significant change in the average value of the data. The Lombard Wilcoxon, Pettitt, 

Mann-Whitney, and Bayesian methods are all mean-based. 

b. Variance-based nonstationarity methods detect a nonstationarity where there has been 

a significant change in the variance/standard deviation of the data. The Mood and 

Lombard Mood methods are variance-based statistical tests. 

c. Distribution-based nonstationarity methods detect a nonstationarity where there has 

been a significant change in the underlying distribution of the data, which can be caused 

by a change in the parameters of the same distribution (e.g. going from one normal 

distribution to another) or from one distribution type to another (e.g. going from a normal 

distribution to a beta distribution). The Cramer-Von-Mises, Kolmogorov-Smirnov, 

LePage, and Energy Divisive methods are distribution-based. 

ii. Smooth versus Abrupt Nonstationarities – The methods are also categorized by whether the 

nonstationarities they detect represent abrupt or smooth changes in the data. Here, a smooth 

transition refers to a gradual change in the mean, variance/standard deviation, and/or distribution 

of the annual instantaneous peak streamflows recorded at a USGS gage site. The only methods in 

the tool that can detect smooth changes in the statistical properties of the datasets under analysis 

are the smooth Lombard Wilcoxon and smooth Lombard Mood methods. The remaining methods 

(including the abrupt Lombard Wilcoxon and abrupt Lombard Mood methods) detect abrupt 

changes in the dataset. Abrupt changes occur at a single point in the record, and separate the 

period of record into two subsets of data that have one or more of the following: different means, 

different variances and standard deviations, or different distributions. A record can have multiple 

abrupt changes, separating it into several subsets of data. 
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1.1.2 Other Characteristics of Statistical Methods for Nonstationarity Detection 

In addition to the categorization of statistical methods described above, there are other defining 

characteristics associated with the statistical tests applied in the Nonstationarity Detection Tool. These 

traits should be taken into consideration when interpreting the results generated by the tool, especially 

when assessing why some methods detected a nonstationarity while other methods did not. The properties 

associated with each of the statistical tests packaged into the Nonstationarity Detection Tool are described 

in further detail in Table 1. 

 

i. Methods are either parametric or non-parametric. If the data used for detection is not normally 

distributed, which is often the case with annual instantaneous peak streamflow data, then 

parametric methods are not appropriate. Applying parametric methods to data that is not normally 

distributed can return inconsistent or incorrect results. The Anderson-Darling Test, which is 

incorporated into the Nonstationarity Detection Tool, is applied to assess whether or not a given 

dataset conforms to a normal distribution. The tool application will not apply statistical tests that 

rely on the assumption of normality, unless the results of the Anderson-Darling Test indicate that 

the selected annual instantaneous peak streamflow record conforms to a normal distribution. This 

test only applies to the Bayesian method, which relies on the assumption of normality. 

ii. Methods can detect either single or multiple nonstationarities. The Pettitt method and all of the 

Lombard methods are only able to detect the single most prominent nonstationarity in a time 

series. The rest of the methods are able to detect multiple nonstationarities within a single time 

series. 

iii. For the abrupt methods, results indicating a nonstationarity in the flow record may represent 

either the start year or the end year of a homogeneous record. Suppose a method detects only one 

nonstationarity, in 1942. For methods that detect the first year, that means that the period from the 

start of the record through 1941 is homogenous and the period from 1942 to the end of the record 

is also homogenous. That is, those methods detect the first year of the second homogenous 

subseries. For methods that detect the end year, the result “1942” means that the period from the 

start of the record through 1942 is homogenous and the period from 1943 to the end of the record 

in homogenous. That is, those methods detect the last year of first homogenous subseries. If a 

method detects the first year of the second homogenous subseries, then “Yes” appears in the 

“Detects First Year of Second Subseries” column of Table 1. For guidance on how to account for 

this difference across methods, refer to Section 3.3. 

iv. Certain statistical methods have strengths and weaknesses that may make them more appropriate 

to a given application than an alternate statistical test. Depending on the data used, these 

statistical weaknesses may render a method inappropriate. For example, the Cramer-von-Mises 

method is not as adept at detecting a change in the mean of a distribution of annual instantaneous 

peak streamflow records as it is in detecting changes in the extreme values (e.g. minimum, 

maximum) of a distribution of annual instantaneous peak streamflow records. 

1.1.3 Statistical Significance 

The Nonstationarity Detection Tool is designed to identify statistically significant nonstationarities in 

annual instantaneous peak streamflow records. The method for determining statistical significance differs 

according to the nonstationarity detection method applied as described below. For details about how 

adjusting the sensitivity parameters for each of the methods affects the output, refer to Table 1 in Section 

1.1.5. The parameters can be adjusted using the Sensitivity Parameters on the Nonstationarity Detector 

and Method Explorer tabs in the tool described in Sections 2.1 and 2.3, respectively. 

 

i. For the Bayesian method (bcp), the tool ensures statistical significance in two ways. First, the 

tool does not return results if the data undergoing analysis are not normally distributed. Second, 

the tool does not return nonstationarities if the “posterior probability” that the entire series is 
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drawn from the same distribution is higher than the posterior probability that different segments 

of the series are drawn from different distributions. In general, Bayesian statistics generate a 

posterior probability of end results by combining a prior belief about end results (called a “prior”) 

with the data. The Bayesian method in the tool develops a prior based on the value in the 

“Bayesian sensitivity” parameter in the tool (Erdman & Emerson, 2007). The Bayesian sensitivity 

parameter represents the probability that a nonstationarity is detected in a section of the record 

given the historical and most recent trends in the record. Values for this parameter can range from 

0 to 1. A default level of 0.5 is recommended. A value of 0.5 implies neutrality, meaning it does 

not favor the presence or absence of a nonstationarity. Higher or lower values would represent 

favoring the absence (for lower values) or presence (for higher values) of nonstationarities. The 

user may choose an alternate sensitivity parameter based on professional judgment and 

experience. 

ii. For both the smooth and the abrupt Lombard methods, the tool performs an overall hypothesis 

test that the record chosen contains a nonstationarity. For the Lombard Wilcoxon methods, this 

test checks for a change in mean. The Lombard Mood method checks for a change in 

variance/standard deviation (Quessy, Favre, Said, & Champagne, 2011). If the hypothesis test 

returns a true result at the selected level of significance, the Lombard method will return the 

detected nonstationarity. The selected level of significance for the Lombard methods represents 

the probability of a Type I error, or the probability of accepting an alternative hypothesis when 

the null hypothesis is true. In this context, it is the probability of incorrectly asserting that the 

record contains nonstationarities when in fact it is stationary. The default value for the Lombard 

method sensitivity in the tool is 0.05, but the user can change this to 0.01 or 0.1. Because they 

represent accepted probabilities of Type I errors, these values are typically selected as the 

standard significance threshold within statistical literature. The user may determine an alternate 

sensitivity parameter using their best judgment. 

iii. The energy divisive method (ecp) iteratively detects a nonstationarity, segments the time series 

according to that non-stationarity, and then detects subsequent nonstationarities. To determine if a 

nonstationarity is detected at a given point, the method repeatedly performs a statistical test 

against all previously detected segments to determine if a reasonable level of statistical 

significance has been achieved. The process continues until it reaches a point that is not 

statistically significant (James & Matteson, 2015). Similar to other methods, the level of 

statistical significance is represented as the probability of a Type I error, or the probability of 

detecting a nonstationarity when none is present. To account for the repeated tests across all 

possible subsets of the period, a higher level of default sensitivity (0.5) has been chosen to ensure 

that the method regularly returns at least one nonstationarity. The user can—using professional 

judgment—adjust the level of statistical significance this method uses by adjusting the 

accompanying sensitivity parameter.   

iv. For the Pettitt test, the tool returns a single nonstationarity at the point in the dataset where the 

difference in the mean between the subsets of data prior to and after the nonstationarity has the 

greatest level of statistical significance (or smallest probability of a Type I error). The 

significance value must also be below the threshold set in the Pettitt sensitivity parameter. P-

values are probabilities of Type I errors, or the probability of accepting an alternative hypothesis 

when the null hypothesis is true. In this context, it is the probability of incorrectly asserting that 

there is a nonstationarity when in fact there is none. The default value for the Pettitt sensitivity in 

the tool is 0.05, but the user can change this to 0.01 or 0.1. Because they represent accepted 

probabilities of Type I errors, these values are typically selected as the standard significance 

threshold within statistical literature. The choice of a statistical significance level is determined 

by professional judgment. 

v. For the Change Point Model (CPM) methods, the algorithm runs the named statistical test (e.g., 

the Mood test) on the two segments of the time series created by partitioning the record at every 

possible point in the series to initially detect changes in the mean, variance/standard deviation, or 



10 

 

distribution. After changes are detected, the data is re-examined to determine when these detected 

changes first occurred in sequence. This process only returns statistically significant results given 

the sensitivity parameter selected by the user. This sensitivity parameter corresponds to the 

average number of data points until a Type I error occurs, or the probability of accepting an 

alternative hypothesis when the null hypothesis is true (Ross, 2015). The recommended default 

value is 1,000, as that represents the most neutral value in the set of possible values for the 

sensitivity parameter. However, the user can change this sensitivity parameter to be one of the 

following values: 370, 500, 600, 700, 800, 900, 1,000, 2,000, 3,000, 4,000, 5,000, 6,000, 7,000, 

8,000, 9,000 10,000, 20,000, 30,000, 40,000 or 50,000. The values for this sensitivity parameter 

are limited as they are related to a series of precomputed statistical distributions. The choice of an 

alternate sensitivity parameter may be guided by professional judgment. 

 

If the user has prior knowledge of a nonstationarity in the data (e.g., construction and operation of a dam 

with significant storage upstream from a stream gage), then that expected nonstationarity could be used as 

a guide for determining the associated level of significance applied by each of the statistical tests 

described above. The default levels of significance described above may not be able to detect the known 

nonstationarity. In this case, the user is advised to adjust the sensitivity parameters associated with each 

test using professional judgment and experience to ensure they are sensitive enough to detect this known 

nonstationarity. After adjustments to sensitivity parameters are made, any additional nonstationarities 

detected could be considered to be equally statistically significant. 

 

Because the abrupt results may represent either the start year or the end year of a homogeneous record, 

and because each statistical test might be producing slightly different results, the practitioner could 

combine results from different tests that fall within a five year period in order to segment the time series 

only once within that five year period. Similarly, when the smooth nonstationarity detection techniques 

identify a statistical transition period of five years or less, it can be considered indicative of a single 

nonstationarity. It is up to the user to select the start year within the transition period or amongst an array 

of nonstationarities that fall within a five year period. If more methods detected a nonstationarity in one 

year than in the other, then the year with the most concurrence amongst methods is preferred to segment 

the data. If multiple years have equal concurrence between the statistical methods applied (e.g., two 

methods detected nonstationarities in each of two consecutive years) then the more recent year could be 

used to segment the data. 

 

At some sites, the tool may identify multiple clusters of nonstationarity years and/or long periods of time 

over which the smooth nonstationarity detection techniques indicate statistical instability. Statistically 

significant results are not necessarily operationally significant. It is up to the user to carry out sensitivity 

analysis using the different nonstationarities identified in the record and/or the periods where the statistics 

associated with the dataset are unstable to help them decide what period of record is appropriate for 

subsequent hydrologic analysis.  

 

The Nonstationarity Detection Tool is not a substitute for engineering judgment. Engineers are advised to 

use their judgment to consider the resilience of the system when incorporating the range of results here in 

their adopted hydrologic study or design results. Comparison of results generated using a modified 

portion of the period of record to the results that would have been generated had traditional methods been 

applied (period of record analysis) is adviseable. If, for example, a flow-frequency analysis is carried out 

in support of mapping the 2% floodplain, and truncating the record produces flow-frequency results 

which reduce the 2% flood magnitude from the 2% flood magnitude generated by using the entire period 

of record, then the user could consider relying on traditional analysis techniques (using the entire period 

of record) at that site for the most resilient characterization of the floodplain. 
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1.1.4 Length and Continuity of Record 

The USGS annual instantaneous peak streamflow datasets available within the Nonstationarity Detection 

Tool have a minimum of 30 years of record and ideally contain no discontinuities in the peak streamflow 

record. If the period of record contains significant discontinuities, or if it has been truncated by the user to 

less than 30 years of data, then detected nonstationarities may be inaccurate. The tool automatically warns 

the user if there are gaps in the USGS annual instantaneous peak streamflow data record at a given gage 

site or when statistical tests for nonstationarities are being applied to less than 30 years of record.  

 

The statistical methods used in the Nonstationarity Detection Tool require a continuous record to detect 

changes in the statistical properties of the flow dataset. If missing data is detected, the tool will omit those 

years’ peak streamflows from the period of record and analyze the remaining data as if it was a single 

continuous sequence. For example, if a period of record is complete from 1902 to 2002, but the peak 

streamflow data for 1967 is missing, the tool will shift all observations after 1968 one year earlier to 

create a single continuous sequence for nonstationarity detection. These scenarios generate a dynamic 

warning message for the user, because shifting observations may create issues with any nonstationarity 

issues detected. 

 

In addition to the sensitivity parameters described above, the CPM methods have an additional “CPM 

Methods Burn-In Period” parameter. The default value for this parameter is 20. This means that any 

changes in the annual instantaneous peak streamflow data series cannot be detected during the 

initialization period by these methods until after the twentieth observation (or water year) in the time 

series. However, the resulting nonstationarities identified by this method may occur prior to this value. 

This default value represents a good balance between the desire to detect nonstationarities in the early 

section of the record and the fact that these statistical methods will perform best when given more time to 

incorporate the variability in the record. Users can adjust this value between 5 and 50 using the “CPM 

Methods Burn-In Period” slider on the Sensitivity Parameters section of the Nonstationarity Detector tab, 

which is described in Section 2.1. 

1.1.5 Matrix of Statistical Methods for Nonstationarity Detection 

Table 1 provides an overview of each of the statistical methods applied by the Nonstationarity Detection 

Tool. Please note that those methods that share names with established statistical tests are algorithms that 

apply the named statistical test repeatedly to detect nonstationarities. The algorithms include a check for 

whether the p-values from their respective tests demonstrate statistically significant results, as detailed in 

Section 1.1.3.
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Table 1: Statistical Methods Implemented in the Nonstationarity Detection Tool 

Statistical Test Parametric 
Type of 

Nonstationarity 

Single or Multiple 

Nonstationarities 

Detected Year Input Parameters 

Strengths/Weaknesses 

Last= Last year 

of previous, 

homogeneous 

subset 

First= First year 

of subsequent 

homogeneous 

subset 

Parameter Default Description 

The Change Point Model (CPM) 

Cramer-von-

Mises 
No Distributional/Abrupt Multiple Last 

Burn-In 

Period 
20 

Determines how many observations are used for 

the initialization period. If startup = 20, then 

changes that occur in the first twenty 

observations will not be used for changepoint 

detection. As this parameter is specifically 

related to the initialization period, the final 

changepoints detected by this method may occur 

prior the value supplied by the user. This is used 

because the statistical tests will have low power 

for small sample sizes. 

This method may be more likely to 

detect a nonstationarity related to the 

tails or extremes of a distribution 

rather than the center of a 

distribution. 

CPM 

Sensitivity 
1000 

Higher values will result in fewer 

nonstationarities. Must have one of the 

following values: 370, 500, 600, 700, 800, 900, 

1,000, 2,000, 3,000, 4,000, 5,000, 6,000, 7,000, 

8,000, 9,000 10,000, 20,000, 30,000, 40,000 or 

50,000. 

Kolmogorov-

Smirnov 
No Distributional/Abrupt Multiple Last see CPM Cramer-von-Mises 

This method may be more likely to 

detect a nonstationarity related to the 

center of a distribution rather than the 

tails or extremes of a distribution. 

Mann-

Whitney 
No Mean/Abrupt Multiple Last see CPM Cramer-von-Mises  
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Statistical Test Parametric 
Type of 

Nonstationarity 

Single or Multiple 

Nonstationarities 

Detected Year Input Parameters 

Strengths/Weaknesses 

Last= Last year 

of previous, 

homogeneous 

subset 

First= First year 

of subsequent 

homogeneous 

subset 

Parameter Default Description 

LePage No Distributional/Abrupt Multiple Last see CPM Cramer-von-Mises  

Mood No Variance / Abrupt Multiple Last see CPM Cramer-von-Mises  

The Lombard Model 

Lombard 

Wilcoxon 
No 

Mean/Abrupt  

Single Last 
Lombard 

Sensitivity 
0.05 

 

This determines the level of significance at 

which nonstationarities should be detected. It 

can also be interpreted as the maximum p-value 

associated with these nonstationarities. There 

are a limited number of available sensitivity 

values due to statistical constraints. 

 

This method does not work well with 

short time series, or with small 

changes in magnitude. 

Mean/Smooth 

Lombard 

Mood 
No 

Variance/Abrupt 

Single Last See Lombard Wilcoxon 

This method does not work well with 

short time series, or with small 

changes in magnitude. 
Variance/Smooth 

Other Methods 
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Statistical Test Parametric 
Type of 

Nonstationarity 

Single or Multiple 

Nonstationarities 

Detected Year Input Parameters 

Strengths/Weaknesses 

Last= Last year 

of previous, 

homogeneous 

subset 

First= First year 

of subsequent 

homogeneous 

subset 

Parameter Default Description 

Pettitt No Mean/Abrupt Single First 
Pettitt 

Sensitivity 
0.05 

This represents the probability that the 

nonstationarity detected is a false positive or the 

p-value associated with the Pettit test. 

 

Bayesian 

Changepoint 

(BCP) 

Yes Mean/Abrupt Multiple Last 
Bayesian 

Sensitivity  
0.5 

This represents the probability that a 

nonstationarity is detected in a section of the 

record. A value of 0.5 implies neutrality, 

meaning it does not favor the presence or 

absence of a nonstationarity. 

This method does not work well with 

short time series, or with small 

changes in magnitude. 

Energy-Based 

Divisive 

Method (ECP) 

No Distributional/Abrupt Multiple First 

Energy-

Based 

Sensitivity 

0.5 

This value represents a change threshold or the 

probability that the point in question is a 

nonstationarity. Larger values will yield less 

nonstationarities. 

This method can sometimes detect a 

series of nonstationarities located in 

close proximity to one another. These 

nonstationarities may not all be 

operationally significant so it is 

important to examine them carefully. 
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1.2 Statistical Methods Used for Trend Analysis 

The purpose of this section is to outline how the tool performs the detection of monotonic trends within 

the identified stationary subsets of the record. Detected nonstationarities are used to subdivide the period 

of record into stationary subsets, each of which are tested for the presence of monotonic trends. Note that 

the monotonic trend analysis tools is not appropriate for subsets of data with less than 10 years of record. 

The tool supports not only the detection of monotonic trends, but also indicates whether these trends are 

positive or negative. All of this analysis takes place within the Trend Analysis tab of the tool, which is 

described in Section 2.2, with additional detail in Section 3.4. The tool executes three statistical tests to 

identify and describe monotonic trends: the Mann-Kendall test, the Spearman test, and Sen’s slope 

estimator.  

 

Like all statistical methods, the Mann-Kendall test, Spearman’s test, and Sen’s slope are more powerful 

when applied to larger data sets. None of these methods are appropriate for time series that have fewer 

than ten years of data. This is because the methods may detect trends where there are none with fewer 

than ten data points. The significance values employed in applying these tests are a choice among 

standards in statistics. They are held static within the tool, in order to facilitate consistency in the 

application of these tests across the Corps. In addition to these methods, the tool reports a trend for 

“parametric statistical methods,” which is based on the slope of a simple linear regression line fit using 

the data. 

1.2.1 Mann-Kendall Test for Trend Detection 

The tool implements the Mann-Kendall test as a nonparametric measure of trend. The test calculates the 

Kendall Rank Correlation Coefficient, or Kendall’s tau, a value between -1 and 1, where values near -1 

suggest monotonically decreasing series of annual instantaneous peak annual streamflow and values close 

to 1 suggest monotonically increasing series of annual instantaneous peak annual streamflow. The test 

determines whether the Kendall Rank Correlation Coefficient is significantly different from 0, implying a 

trend. In the Nonstationarity Detection Tool, the test is implemented using the trend package in R 

(Pohlert, 2015), and the alternative hypothesis—that a trend is apparent—is accepted to be true at the 0.05 

significance level. 

1.2.2 Spearman’s Test for Trend Detection 

The tool implements the Spearman test as a second nonparametric measure of trend. Parallel to the Mann-

Kendall test, Spearman’s test calculates the Spearman Rank Correlation Coefficient, or Spearman’s rho, a 

value between -1 and 1. Values close to -1 suggest strong negative dependence between the two variables 

(in this case, between time and annual instantaneous peak annual streamflow) and values close to positive 

one suggest strong positive dependence between two variables. Like the Mann-Kendall test, this test is 

applied to determine whether the Spearman Rank Correlation Coefficient is significantly different from 0, 

implying a trend. In the Nonstationarity Detection Tool, the test is implemented using the trend package 

in R (Pohlert, 2015), and the alternative hypothesis—that a trend is apparent—is accepted to be true at the 

0.05 significance level. 

1.2.3 Sen’s Slope Estimator 

The tool uses Sen’s slope estimator to give the robust, parametric, best-fit line for the annual 

instantaneous peak streamflow record. Sen’s slope is an average of all the slopes between every two 

points in two-dimensional series. In the case of the Nonstationarity Detection Tool, the two dimensions 

are time and annual instantaneous peak annual streamflow. The tool implements this calculation with the 
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trend package in R (Pohlert, 2015). Values for Sen’s slope that are greater than zero correspond to an 

increasing, positive trend. Values less than zero indicate a negative trend. Under the Monotonic Trend 

Analysis panel, the Sen’s slope result is provided as an indication of whether or not a positive or negative 

trend was detected.  
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2 User Interface 

The Nonstationarity Detection Tool is composed of a landing page (Figure 1) and three tabs, each with its 

own functionality. The first step in conducting nonstationarity detection is to carry out data preparation 

and exploratory data analysis, described in detail in Section 3. 

 
Figure 1. Landing Page for the Nonstationarity Detection Tool 

 

i. Nonstationarity Detector – This is the tab where the practitioner applies the twelve statistical 

methods described in Section 1.1 to detect nonstationarities in annual instantaneous peak 

streamflow data from a selected USGS streamflow gage site. This tab allows the user to review 

the results of these tests for nonstationarities in annual instantaneous peak streamflow datasets, as 

described in Section 3.3.  

ii. Trend Analysis – This tab is where the practitioner performs statistical tests to detect monotonic 

trends, as described in Section 1.2. The process to apply these tests to both the entire annual 

instantaneous peak streamflow time series and to stationary subsets of data identified using the 

Nonstationarity Detector tab is described in Section 3.4. 

iii. Method Explorer – This tab allows the practitioner to select a single nonstationarity detection 

method, rather than viewing the results of all twelve statistical tests concurrently.   
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2.1 Nonstationarity Detector 

 
Figure 2. Nonstationarity Detector Tab 

 

The Nonstationarity Detector tab, shown above in Figure 2, displays the results of the methods described 

in Section 1.1. It has several filters that the practitioner can use to adjust the parameters associated with 

the methods, which are listed in Section 1.1.5. The components of the tab are discussed below. For 

guidance on how to interpret the results in this tab, refer to Section 3. 

 

1 
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1) Site Selection Dropdown Menus – Use the dropdown menus indicated by the “1” in Figure 2 to 

select the HUC-4 watershed and the site name of the USGS gage site to be analyzed. See Section 

3.2 for more information.  

2) Timeframe Selection – Adjust this slider, indicated by the “2” in Figure 2, to select the period of 

record to analyze. See Section 3.2 for details.  

3) Nonstationarities Detected using Maximum Annual Flow Graphic – As indicated by the “3” in 

Figure 2, the annual instantaneous peak streamflow data series for the site and timeframe selected 

is graphed along with vertical gray lines representing the abrupt nonstationarities detected in the 

record. Gradual or smooth nonstationarities detected are shaded in blue. Additional information 

related to the flow data series can be accessed by hovering over any of the flow series data points, 

as seen in Figure 3Error! Reference source not found..  

 

 
Figure 3. Hover-text of Annual Flow, Nonstationarities Detected using Maximum Annual Flow Graphic  

 

Underneath this graphic is a dialog box that will dynamically alert users when they have selected 

either a period of record containing discontinuities (or missing data) and/or one that is considered 

too short to accurately detect nonstationarities (less than 30 years of record). These messages 

(such as the one shown in Figure 4) let users know that when the record is too short, or when 

there are significant gaps in the flow dataset, there may be issues with the nonstationarities 

detected. 

 

 
Figure 4. Dynamic Warning Activated on the Nonstationarity Detector Tab 
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Hovering over any of the vertical gray bars that indicate a nonstationarity in the annual 

instantaneous peak streamflow record displays a list of the statistical methods used by the tool to 

detect nonstationarities (see Figure 5). This hover-text indicates whether each of the listed 

methods detected the nonstationarity indicated by the grey bar, as well as the water year of the 

nonstationarity. Section 3.3 contains guidance for how to interpret the results displayed in this 

graphic. 

 

 

 
Figure 5. Hover-text of Abrupt Nonstationarity, on the Nonstationarities Detected using Maximum Annual Flow Graphic 

 

4) Heatmap Graphic – This graphic, indicated by the “4” in Figure 2, displays a tick mark for each 

nonstationarity detected by each method. The color of the mark corresponds to the type of 

nonstationarity each test is targeted to detect: mean, variance/standard deviation, or distribution 
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(discussed in Section 1.1.1). The transitions in the statistical properties of the datasets, indicated 

by the smooth Lombard detection techniques, are indicated by continuous blue fill. As shown in 

Figure 6, hovering over the tick marks displays the water year associated with the nonstationarity 

detected. Refer to Table 1 to determine whether the year shown is the first or last in a 

homogeneous data set as this varies by method. 

 

 
Figure 6. Hover-text for Tick Marks in the Heatmap Graphic 

 

5) Sensitivity Parameters – The sliders and controls indicated by the “5” in Figure 2 provide the 

user with the ability to change the sensitivity of each family of nonstationarity detection methods. 

These parameters are described in Sections 1.1.3 and 1.1.4, and appear in the matrix in 1.1.5. 

They are set to the suggested default parameters for each statistical method. These default 

parameters could be adjusted, using engineering judgment, if the user has reason to believe, based 

on a priori knowledge, that the statistical tests are not sensitive enough at the default values to 

detect known nonstationarities in the time series.  

6) Mean and Variance Between All Nonstationarities Detected Graphic – This graphic, indicated 

by the “6” in Figure 2, provides the mean, standard deviation, and variance for the subsets of data 

for each homogenous period of flow data (between each of the nonstationarities detected). Each 

of these measures is presented with their associated units of measurement and is color coded to 

match the associated type of nonstationarity in the Heatmap Graphic. Note that, although the units 

for mean and standard deviation are the same, the units associated with sample variance are 

squared. This information can be used to determine the relative changes in mean or 

variance/standard deviation associated with each of the nonstationarities detected, as described in 

Section 3.3.  

7) Page controls– The symbols indicated by the “7” in Figure 2, provide page controls for the tab. 

From the left, the first symbol allows the user to export the results, the second reverts to the 

original information shown on the tab, the third allows the user to make multiple updates without 

waiting for the screen to refresh each time, and the last is to refresh data for the view. The export 

options are to export the page as an image, a text file, a crosstab (Excel) file, or as a pdf.  If the 

screen refresh is paused (third button), it will be replaced with a different icon (the vertical line 

will rotate clockwise 90 degrees) as a reminder to push the button again to refresh the screen. 
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2.2 Trend Analysis 

 
Figure 7. Trend Analysis Tab 

 

The Trend Analysis tab displays the results from the statistical methods for trend analysis, described in 

Section 1.2. The page control (#7 on Figure 2) are the same for this tab. The other components in this tab, 

shown in Figure 7, are described below. For guidance on how to use the tab to detect monotonic trends, 

refer to Section 3.4. 

 

1) Site Selection Dropdown Menus – These dropdown menus, indicated by the “1” in Figure 7, 

allow the user to select the HUC-4 watershed and the specific USGS gage within that watershed 

on which to perform the analysis. 

2) Timeframe Selection Slider – To select the period of record to analyze, adjust the slider 

indicated by the “2” in Figure 7 (detailed instructions are found in Section 3.2). 

3) Trend in Maximum Annual Flow Graphic – This graph, indicated by the “3” in Figure 7, 

displays the annual instantaneous peak streamflow time series for the USGS site and timeframe 

selected. 
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Underneath this graphic is a dialog box that will dynamically alert users when they have selected 

a period of record containing discontinuities (or missing data) and/or one that is considered too 

short to accurately detect monotonic trends in the time series (less than 10 years of record). These 

messages (such as the one shown in Figure 8) let users know that there may be issues with the 

trends detected in the selected timeframe. 

 

 
Figure 8. Dynamic Warning Activated on the Trend Analysis Tab 

 

4) Monotonic Trend Analysis Panel – This panel (indicated by the “4” in Figure 7 and magnified 

in Figure 9) provides the following statistical information about the detection of monotonic trends 

in the portion of the annual instantaneous peak streamflow record displayed on the tab: 

a. Tests for Statistically Significant Monotonic Trends: 

i. Segment Trend Result Mann-Kendall – A Mann-Kendall test for the presence 

of a monotonic trend is performed on the series in view, and the result is 

displayed using a significance level of 0.05. For details regarding the Mann-

Kendall test, refer to Section 1.2.1. 

ii. Segment Trend Result-Spearman – A rank order Spearman test for the 

presence of a monotonic trend is performed on the series in view, and the result is 

displayed using a significance level of 0.05. For details regarding Spearman’s 

test, refer to Section 1.2.2. 

b. Assessment of Trend Type (Negative vs. Positive Trend) 

i. Segment Parametric Trend Line Direction – This represents whether the trend 

displayed is positive or negative. The trend is positive when the annual 

instantaneous peak streamflow increases as time moves forward. The trend is 

negative when the annual instantaneous peak streamflow decreases as time 
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moves forward. This assessment is based on the slope of a simple linear 

regression line fit using the data. 

ii. Segment Robust Parametric Trend Line Direction – This assessment is 

interpreted the same way as the Segment Parametric Trend Line Direction, 

discussed above, but it uses Sen’s Slope estimator—the average of all slopes of 

the lines that can be drawn between every pair of points in the dataset. For details 

regarding Sen’s Slope, refer to Section 1.2.3. 

 

 
Figure 9. Monotonic Trend Analysis Panel of the Trend Analysis Tab 

 

2.3 Method Explorer 

 

The Method Explorer tab allows a user to select any of the twelve nonstationarity detection methods listed 

in Section 1.1.5 to view independently of the other statistical tests. This tab can be used to examine the 

effects of adjustments to the sensitivity parameters associated with one test and the impacts of these 

adjustments on the results. The page control (#7 on Figure 2) are the same for this tab. The other 

components of the Method Explorer tab are described below.  

 

1) Method Selection Dropdown Menu – Select one of the twelve statistical methods used for 

detecting nonstationarities using the dropdown menu indicated by the “1” in Figure 10. 

2) Timeframe Selection Slider – Adjust the slider indicated by the “2” in Figure 10 to select the 

portion of the period of record to analyze. Refer to Section 3.2 for more information. 

3) Nonstationarities Detected using [Method Name] at [Site Name] Graphic – This graphic, 

indicated by the “3” in Figure 10, shows the annual instantaneous peak streamflow record for the 

site and time selected. If the method selected in the Method Selector detected any 

nonstationarities, then those are also indicated in the graphic. As shown in Figure 10, abrupt 

nonstationarities are indicated by vertical, gray lines. Nonstationarities detected by smooth 

detection methods are shaded in blue, as seen in Figure 11. As seen in Figure 12, additional 

information related to the streamflow record or detected nonstationarities can be accessed by 

hovering over any of the flow data points and clicking on the Go to USGS gage details link. 

 

Underneath this graphic is a dialog box that will dynamically alert users when they have selected 

a period of record containing discontinuities (or missing data) and/or one that is considered too 

short to accurately detect nonstationarities (less than 30 years). These messages—such as the one 

shown in Figure 13—let users know that there may be issues with the nonstationarities detected 

in the selected period of record.  

 

4) Mean and Variance Between Nonstationarities Detected with [Method Name] Graphic – This 

graphic, indicated by the “4” in Figure 10, provides the mean, standard deviation, and variance 

for the subsets of data for each homogenous period of flow data (between each of the 

nonstationarities detected by the method selected in the Method Selection menu). This 
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information can be used to determine the relative changes in mean, standard deviation, or 

variance associated with each of the nonstationarities detected. As with the Nonstationarity 

Detector Tab, please note that the segment graph only displays the associated changes in these 

measures for abrupt nonstationarities. 

 

5) Sensitivity Parameters – The sensitivity parameters associated with the chosen nonstationarity 

detection method are provided in the portion of the tab indicated by the “5” in Figure 10. The 

practitioner can view the effect of adjusting these parameters on the nonstationarities detected by 

this method by sliding the indicators on the scales to the right or left.  

 

6)  

 

 
Figure 10. Method Explorer Tab 
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Figure 11. Nonstationarities Detected using Smooth Lombard Wilcoxon at Red River of the North at Grand Forks, ND 

Graphic: Smooth Transition  

 
Figure 12. Nonstationarities Detected using Pettitt at Red River of the North at Grand Forks, ND Graphic: Hover-text 

 

 
Figure 13. Dynamic Warning Activated on the Method Explorer Tab 
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3 Detecting and Interpreting Nonstationarities 

3.1 Data Preparation and Exploratory Analysis 

The first step in conducting Nonstationarity detection is to carry out data preparation and exploratory data 

analysis. During this step, the practitioner identifies whether there is a priori knowledge of a 

nonstationarity in the streamflow record and assesses the availability/quality of the annual instantaneous 

peak streamflow data under consideration for analysis. Listed below are sources of information and 

relevant tools available to the practitioner to complete this step. 

 

i. The USGS provides information that can be used for data preparation and exploratory data 

analysis. This data is presented as part of the metadata associated with each USGS streamflow 

gage recording site. The Nonstationarity Detector tab contains a direct link to the USGS webpage 

for the selected streamflow gage site. As shown in Figure 14, this link can be accessed by 

hovering over the blue annual instantaneous peak streamflow data displayed in the 

Nonstationarities Detected using Maximum Annual Flow graphic, and then clicking on the Go to 

USGS gage details link displayed in the hover-text that appears.  

 
 

Figure 14. Link to the USGS Gage Details Webpage 
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The USGS Water-Year Summary report is another source of metadata available for each station 

of interest. An example of this report is displayed in Figure 15, below.  

 

 
Figure 15. Gage Description on USGS Website – Water Year Summary 2015 

 

  

Information about gage 

period of record 

Gage description and 

previous gage locations 

Data quality remarks 

Comments related to 

upstream regulation 
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The USGS also provides information related to data quality and regulation for each individual 

water year for each site, which can be accessed by viewing the USGS Peak Streamflow page for a 

site. Along with the annual instantaneous peak streamflow magnitudes, the USGS provides “Peak 

Streamflow Qualification Codes;” these are displayed in Figure 16.  

 

 
Figure 16. Peak Streamflow Qualification Codes – USGS website 

 

Note that in addition to using the information presented by the USGS related to data quality and 

regulatory history at a USGS site, the user is advised to seek out other resources to fully 

understand the hydrologic properties of the watershed under study. This includes contacting local 
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water resources experts who might have additional insight into the hydrologic properties of 

drainage basin upstream of the site under investigation and into the quality of the data collected at 

the site for any given year in the period of record.  

ii. The “waterData” package for the R programming language by Ryberg and Vecchia (2012) and 

the USACE Hydrologic Engineering Center’s HEC-DSSVue (available at: 

http://www.hec.usace.army.mil/software/hec-dssvue/downloads.aspx) both contain useful toolsets 

that can be applied to handle and examine USGS data. Becoming familiar with these applications 

would be beneficial and would support the data preparation and exploratory data analyses steps. 

iii. Annual peak streamflow data series can be visually inspected within the Nonstationarities 

Detected using Maximum Annual Flow graphic of the Nonstationarity Detector tab (see Figure 2).  

3.2 Select a USGS Site and Timeframe for Nonstationarity Detection 

In order to use the Nonstationarity Detection Tool tab to analyze a site, the user must first select the 

correct HUC-4 watershed and site name from the Site Selection dropdown menus on the right side of the 

tab (shown below in Figure 17; see Figure 2 to locate these menus in the context of the entire tab). 

 

 
Figure 17. Nonstationarity Detector USGS Site Selection 

 

Note that the watershed and site name can be selected by manually searching through the list or by typing 

a partial name of the HUC-4 watershed or site. The tool will display a filtered list of options matching the 

input name, shown in Figure 18 below. 

 

 
Figure 18. Site Selection Filtered Results 

 

Please note that if the site in question has less than 30 years of annual instantaneous peak streamflow 

data, the tool will not allow the user to select it for analysis. A sample set of less than 30 years has too 

few data points to produce meaningful results using the statistical tests selected to detect nonstationarities 

in annual instantaneous peak streamflow datasets. The annual instantaneous peak streamflow data 
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displayed in the graphic should be consistent with the annual instantaneous peak streamflow data series 

available on the USGS website.  

 

After selecting a site, the practitioner evaluate whether the site’s record is continuous. If there is a gap in 

the annual instantaneous peak streamflow time series (the blue line) shown in the Nonstationarities 

Detected using Maximum Annual Flow graphic, then the record does not have information for the 

intervening years. An example of this is shown in Figure 19. 

 

 
Figure 19. A Discontinuity in the Record, shown in the Nonstationarities Detected using Maximum Annual Flow Graphic  

 

When a significant discontinuity exists in the flow series, the Timeframe Selection slider can be used to 

truncate the record so that only the most recent, continuous portion of the period of record, based on the 

water year, is displayed. There are two ways to use the Timeframe Selection slider, which is located 

below the Site Selection dropdown menus, on the right side of each tab. (See Figure 20; to locate the 

slider in the context of the tab, see Figure 2.) They are discussed below. 

 

i. The user can drag the sliders to the appropriate start and end dates, as seen in Figure 20. 

 

 
Figure 20. Dragging Sliders on the Timeframe Selection 

 

ii. The user can click on the start or end year, displayed above the slider, and then type the 

appropriate year into the textbox that appears, as displayed in Figure 21Error! Reference source 

not found.. 

 

 
Figure 21. Typing Year of Reference before using Slider 
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iii. To show all timeframe values, click on the filter icon above the end year, as shown in Figure 22. 

 

 
Figure 22. Click on the Filter Icon to Show All Timeframe Selection Values 

 

As shown in Figure 23, once the sliders have been adjusted, the Nonstationarities Detected using 

Maximum Annual Flow graphic will refresh to display the selected period of record. 

 

 
Figure 23. Nonstationarities Detected using Maximum Annual Flow Graphic, with Timeframe Truncated to Remove 

Discontinuity in the Flow Record 

 

3.3 Nonstationarity Detection 

The Nonstationarity Detector Tab will automatically apply all of the methods described in Section 1.1.1 

and outlined in Table 1 to the selected annual instantaneous peak streamflow time series, and the tool will 

display all statistically significant results on the Nonstationarities Detected using Maximum Annual Flow 

graphic and the associated Heatmap (see Figure 2). For examples of how to apply these criteria when 

making decisions about whether or not to segment data based on nonstationarities detected by the 

methods in the tool, refer to Chapter 4. 

3.3.1 Identifying Nonstationarities for Segmentation of the Data Using the Web 

Application 

It is up to the user to determine which, if any, of the statistically significant nonstationarities identified by 

the Nonstationarity Detection Tool may be used to segment the data for hydrologic analysis. The user 

often seeks to find a balance between identifying both a homogenous flow record and one that is long 

enough to be representative of the natural variation in maximum flow magnitudes at the site. It is 

advisable to assess the relative “strength” of any nonstationarities detected to identify “strong” 

nonstationarities for use in further analyses.  

 

A “strong” nonstationarity is one for which there is a consensus among multiple nonstationarity detection 

methods, robustness in detection of changes in statistical properties, and relatively large change in the 
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magnitude of a dataset’s statistical properties. Output from the Nonstationarity Detection Tool offers 

insight into the following three key criteria related to each identified nonstationarity, which can be used to 

help the user select a homogenous dataset that can be used for hydrologic analysis. 

 

i. A nonstationarity that is detected can be considered strong if it is detected by two or more 

detection methods of the same type (e.g. mean or variance/standard deviation or distribution). 

This represents consensus that a statistically significant nonstationarity occurs at a given point in 

a flow record. If consensus cannot be found for a given year or short period of time, then it is 

reasonable to discount it.  

 

To analyze whether there is consensus among the methods, assess the Heatmap graphic to 

determine if multiple tests targeted at identifying nonstationarities using the same statistical 

property are identifying a nonstationarity in a given year or short period of time. An example of 

consensus is displayed in Figure 24. Both the LePage and Energy Divisive methods are indicating 

statistically significant changes in the overall distributional properties of the dataset in the mid-

nineteen sixties. This represents consensus in terms of detecting a change in the overall 

distributional properties of the dataset. Similarly, in the mid-sixties, the Lombard Wilcoxon and 

Pettitt tests are identifying statistically significant changes in the mean of the dataset. This 

represents consensus in terms of detecting a change in the mean of the dataset.  

 

ii. A statistically significant nonstationarity can be considered robust when tests targeting changes 

in two or more different statistical properties (mean, variance/standard deviation and/or overall 

distribution) are indicating a statistically significant nonstationarity (for example, the 

distributional CPM LePage tests, as well as the Lombard Mood and the CPM-Mood tests for 

changes in variance/standard deviation are identifying a nonstationarity). While a robust 

nonstationarity is not necessarily stronger, it represents a multifaceted change in the record. This 

can be taken into consideration when deciding which portion of the period of record to use in 

order to perform hydrological analysis. 

 

To determine whether the nonstationarity is robust, examine the column associated with the year 

of the nonstationarity in the Heatmap graphic for multi-colored tick marks indicating that tests 

targeting changes in different statistical properties are identifying nonstationarities. As shown in 

Figure 24, in addition to demonstrating consensus, the nonstationarity identified in the mid-

nineteen sixties can be considered robust because statistical tests targeting both changes in the 

mean and the overall distributional properties of the dataset are identifying statistically significant 

nonstationarities.  

 

iii. An identified nonstationarity is also associated with a given magnitude of change in the mean or 

standard deviation/variance in the annual instantaneous peak streamflow datasets prior to and 

after the identified nonstationarity. Nonstationarities that are produced by greater changes in the 

statistical properties of the datasets before and after the identified nonstationarities may be 

important to take into consideration when performing subsequent hydrological analysis. 

 

The user is advised to review the Mean and Variance Between All Nonstationarities Detected 

graphic on the Nonstationarity Detector tab to view changes in the statistical properties of the 

subsets of flow record associated with each identified statistically significant nonstationarity (see 

Figure 25).  
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Figure 24. Robust Nonstationarity in the Nonstationarity Detector Heatmap Graphic 

 

 
Figure 25. Mean and Variance Between All Nonstationarities Detected Graphic Displaying Magnitudes of Changes 

 

3.3.2 Hydrologic Applications and Identifying Nonstationarities 

The detection of multiple nonstationarities within a short span is partly due to differences between how 

each method detects and identifies nonstationarity years. Some methods detect the last year of a 

homogenous period, while others identify the first year of a subsequent homogenous period (Table 1). 

Where the various abrupt statistical methods detect statistically significant nonstationarities within five 

years of one another, or if the smooth Lombard method detects a transition period over which the 

statistical properties of the dataset are changing that is less than 5 years long, the user is encouraged to 

“combine” those to be representative of a single nonstationarity in the flow record. To select which year 

to use as the representative nonstationarity year for the last year of a homogeneous period, consider the 

following criteria: 

 

 If more methods detected a nonstationarity in one year than in the other, then the year with more 

concurrence is best suited to segment the data.  

 

 If multiple years have equal concurrence among the methods (e.g., two methods detected 

nonstationarities in each of two consecutive years) then the more recent year is a more 

appropriate choice to segment the data. 
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When there are multiple, unique, strong nonstationarities detected throughout the period of record, and/or 

a long period of smooth statistical change detected (via the Lombard Smooth methods), it is 

recommended that the user carry out sensitivity analyses using all potential periods of record, including 

the period over which the Lombard model might be detecting a smooth change and the entire period of 

record of available data including any valid historical data. Note that even if a single, strong, statistically 

significant nonstationarity is identified, a sensitivity analysis could still be carried out using the entire 

period of record including any valid historical data.  

 

It is important to consider that a shorter flow record is less representative of the natural variability that 

exists within hydrometeorological data series. This adds uncertainty to the analysis, and ought to be 

characterized alongside the presentation of results. For flow-frequency analyses, this can be accomplished 

by displaying confidence limits. The user is balancing the need to identify a homogenous flow record 

with the need to identify one that is long enough to be representative of the natural variation in maximum 

flow magnitudes at the site.  

 

As part of the analysis, the user is advised to assess the sensitivity of the results to altering the period of 

record used for analyses, and whether the observed trend is expected to persist into the future. The 

following sensitivity tests are recommended if nonstationarities are detected: 

 

 Conduct a sensitivity analysis using the period of record following all statistically significant, 

“strong” nonstationarities identified within an annual instantaneous peak streamflow dataset. 

 

 If the smooth Lombard model identifies a long (greater than 5 years) period where the statistical 

properties of the dataset are in flux, which also transects the portion of the period of record 

following other abrupt, “strong” nonstationarities, an additional sensitivity analysis could be 

conducted including the portion of the period of record identified as in flux by the smooth 

Lombard model. For example, if the period of record is 1902-2014 and the smooth Lombard 

model identifies the period 1938-1970 as being in flux, a sensitivity analysis could be conducted 

using the period of record from 1938-2014.  

 

 The case where the smooth Lombard method is indicating that the statistical properties associated 

with long portions of a dataset are gradually changing will be addressed in greater detail in future 

updates to the tool.  

 

 A sensitivity analysis could be conducted to assess the differences between the results generated 

using a truncated record for analysis versus applying traditional methods that incorporate all 

available flow data (period of record analysis). 

 

Engineers use their judgment and experience to consider the resiliency of the system when incorporating 

the range of results produced by conducting the sensitivity analysis described above in their adopted 

hydrologic design or study results.  

3.4 Monotonic Trend Analysis 

If nonstationarities are detected, the Mann-Kendall test and the Spearman test is then be applied to check 

for the presence of monotonic trends in the identified subsets of statistically homogenous flow datasets 

under consideration for analysis. Monotonic trend analysis are not appropriate for a homogenous subset 

of data containing less than ten years. If no statistically significant nonstationarities are identified within 

an annual instantaneous peak streamflow dataset, then the entire period of record could be assessed for 

monotonic trends. 
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The Timeframe Selection slider on the right side of the Trend Analysis tab is used to select the timeframe 

associated with each subset of homogenous streamflow data identified by the Nonstationarity Detection 

Tool. If no statistically significant nonstationarities were identified, then the entire period of record may 

be used. Note that the nonstationarities identified in the proceeding section can be assumed to be 

representative of the end year of a homogenous subset, so the start year of each subsequent homogenous 

subset would be the water year following an adopted nonstationarity. For example, if the continuous 

period of record is 1902-2014, and a single nonstationarity is detected in water year 1942, then the final 

homogenous subset of data would be defined as 1943-2014. As shown in Figure 26, the results from the 

Mann-Kendall and Spearman tests, and an indication of whether the monotonic trends detected are 

increasing or decreasing, will be displayed below the flow series.   

 

 
Figure 26. Trend Analysis for Period between Nonstationarities detected in 1943 and 2013 

 

At a minimum, this process is repeated for all segments of the time series being considered for hydrologic 

analyses. For example, if the full time series extends from 1921–1982, and the practitioner finds 

nonstationarities in 1932 and 1970, then the periods from 1933–1982, and 1971–1982 are candidates to be 

examined for monotonic trends. If the practitioner used the Lombard smooth tests to identify a long 

period over which the statistical properties of the dataset appear to be in flux, it is appropriate to assess 

that portion of the period of record  for monotonic trends. If, in the example described above, the 

Lombard smooth test identifies the period from 1937-1967 as being in flux, than an additional test for 

monotonic trends could be conducted between 1937 and 1982. To gain additional insight into the dataset 

being analyzed the user could also examine the portions of the period of record prior to identified 

changepoints (1921-1932 and 1921-1970 in the example above), as long as the periods of record are of 

sufficient length.  
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The assessment of monotonic trends will provide the user with further insight into the trends observed 

within the statistical properties of the flow data. The test results do not support attribution of the trend; 

engineering judgment is required the determine whether the trend is likely to persist in the future. If a 

monotonic trend is detected, this implies that the time series still may not meet the assumption of 

stationarity. This finding would be documented and the users continue to apply engineering judgment 

when carrying out hydrologic analysis. The case where monotonic trends are still detected after 

statistically identified nonstationarities have been accounted for will be addressed in greater detail in 

future versions of the tool.  
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4 Examples 

4.1 Simple Analysis (with a priori knowledge) 

USGS ID 08089000 Brazos River near Palo Pinto, Texas  

 

This example demonstrates how to use the Nonstationarity Detection Tool to detect nonstationarities in an 

annual instantaneous peak streamflow record where there is a priori knowledge that a nonstationarity may 

exist in the record. The flow data used in this example was collected at the USGS gage site located on the 

Brazos River near Palo Pinto, Texas (USGS ID 08089000). Annual peak streamflows recorded on the 

Brazos River near Palo Pinto are known to be impacted by upstream regulation. 

4.1.1 Exploratory Analysis 

Figure 27 shows the annual instantaneous peak streamflow time series obtained from the USGS website. 

A visual examination of this time series suggests that there have been changes in the annual instantaneous 

peak streamflow record over the past 90 years. In particular, the values prior to the 1940s are on average 

higher than later years. Examination of the metadata associated with this record (available at: 

http://wdr.water.usgs.gov/wy2013/pdfs/08089000.2013.pdf) indicates that the construction of the Possum 

King Lake project was completed around 1941. This is also supported by the application of the USGS 

Peak Streamflow Qualification Code “6” (“Discharge affected by Regulation or Diversion”) to 

instantaneous peak streamflow data starting in 1941.  Based on this information, a priori knowledge exists 

that an abrupt change occurred in the early nineteen forties due to construction of the Morris Sheppard 

Dam, which impounds Possum King Lake. Therefore, the next step in the analysis is to formally test 

whether a nonstationarity exists in the annual instantaneous peak streamflow record observed at Palo 

Pinto in the early forties.  

 

 
Figure 27. Annual peak streamflow time series for the Brazos River near Palo Pinto in Texas (USGS ID 08089000) 
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4.1.2 Select a USGS Site and Timeframe for Nonstationarity Detection 

On the Nonstationarity Detector tab, the user selects a HUC-4 watershed and a site—for this example, 

“1206-Middle Brazos” and “BRAZOS RV NR PALO PINTO, TX”—from the Site Selection dropdown 

menus located to the right of the Nonstationarities Detected using Maximum Annual Flow graphic (Figure 

28). Because the annual instantaneous peak streamflow record at this gage site is continuous, the 

timeframe does not need to be adjusted before carrying out analysis. 

 

 
Figure 28. Nonstationarity Detector Tab for the Brazos River near Palo Pinto in Texas (USGS ID 08089000) 
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Nonstationarity Detection 

As shown in Figure 28, the twelve nonstationarity detection methods contained in the tool collectively 

detected nonstationarities in two different years. To determine the types of changes detected by these 

methods, the user can hover over the vertical bars in the top graph to reveal the year and the statistical 

methods that detected the change (see Figure 29). 

 

 
Figure 29. Detailed Results for the Nonstationarity Detected in 1942 for the Brazos River near Palo Pinto in Texas (USGS 

ID 08089000) 

 

These results are also presented in the Heatmap. The color scheme associated with the tick marks shows 

that the detection methods are identifying nonstationarities driven by changes in the overall statistical 

distribution of the data and in the mean. An evaluation of the strength of the nonstationarities follows: 

 

1. Consensus: The relative strength of a detected nonstationarity can be determined by looking at the 

level of consensus between different methods targeted at detecting the same type of nonstationarities 

(variance/standard deviation, mean, or overall distribution) in a flow data series. The statistically 

significant nonstationarity detected in 1943 has consensus among three methods that detect a change 

in distribution and between two methods that detect a change in mean.  

 

Due to the way the Pettit statistical test is performed (Table 1), the nonstationarity detected by the 

Pettit method in 1943 is appropriate for1942. However, where the various abrupt statistical methods 

detect statistically significant nonstationarities within five years of one another, the user is 
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encouraged to “combine” those to be representative of a single nonstationarity in the flow record. 

Consequently, the changepoint detected by the Pettitt test is considered indicative of the same 

nonstationarity being detected in 1943 by the other methods. The nonstationarity detected in 1959 

lacks consensus because it was only detected by a single method. 

 

2. Robustness: The Heatmap graphic in Figure 28 shows that multiple nonstationarity detection 

methods detected nonstationarities in the mean and the overall distributional properties of the dataset 

in the early nineteen forties. Consequently, the nonstationarity detected in the early forties can be 

considered representative of “robust” changes in the statistical properties of the flow dataset under 

analysis.  

 

3. Magnitude: Using the segmented Mean and Variance Between All Nonstationarities Detected 

graphic displayed at the bottom of the Nonstationarity Detector tab (shown in Figure 30), users can 

examine the differences in the mean and variance/standard deviation associated with the average of 

subsets of annual instantaneous peak streamflow data prior to and after detected nonstationarities. As 

could be expected due to the construction of a dam designed to mitigate flood flows, the 

nonstationarities detected by the statistical tests targeted at detecting changes in the mean correspond 

to relatively large changes in the mean annual instantaneous peak streamflow between each of the 

nonstationarities identified. Between 1942 and 1944, the mean annual instantaneous peak streamflow 

decreases from approximately 42,000 cfs to 19,000 cfs. 

 

 
Figure 30. Mean and Variance Between All Nonstationarities Detected Graphic for the Brazos River near Palo Pinto in 

Texas (USGS ID 08089000) 

 

In this example, the default sensitivity values facilitated the detection of the known nonstationarity in 

1943. Consequently, the default sensitivity parameters were adopted for analysis. If the web tool had 

failed to detect the known nonstationarity in the period of record using the default sensitivity parameters, 

the user could take steps to incrementally adjust the sensitivity of the tests until the known nonstationarity 

is detected. Any other nonstationarities detected after these sensitivity parameters are adjusted are 

considered equally significant. If the user feels it is necessary to adjust the default parameters to identify a 

known nonstationarity based on prior knowledge, this would be documented and the sensitivity 

parameters applied recorded.  

 

Where there is a prior knowledge of a specific water management feature becoming operational, the user 

considers both local knowledge of when the homogenous operating period at the structure commenced 

and the nonstationarity that the detection tool is identifying when selecting a homogenous period of 

record for analysis.  Deference is given to the known homogenous operating period when several 

consecutive years are indicated by the tool. For example if two of the nonstationarity detection methods 

are indicating 1941 as a nonstationarity year, one nonstationarity detection method is detecting 1942 as a 

nonstationarity year, and the district engineer indicates that the reservoir was not filled until after the 
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spring of 1942, the adopted period of record for hydrologic analysis would be 1943-2014, because this 

reflects homogenous operation of the reservoir. 

4.1.3 Monotonic Trend Analysis 

The next portion of the analysis consists of assessing the subsets of homogenous data for monotonic 

trends. Because one statistically significant nonstationarity—with consensus among different methods—

was detected (1943), the user divides the data into two statistically stationary (homogenous) segments or 

periods of record based on the single nonstationarity identified:  

 

 1924-1942 (Before Morris Sheppard Dam) 

 1943-2014 (After Morris Sheppard Dam) 

To assess monotonic trends within the record, the user can navigate to the “Trend Analysis” tab, shown in 

Figure 31, where the tool performs multiple statistical tests to detect the presence of monotonic trends 

within the annual instantaneous peak streamflow data series. Adjusting the timeframe to look for trends 

within each of the two stationary subsets of the period of record, as described in Section 3.2, yields the 

results shown in Figure 32: 

 

 
Figure 31. Trend Analysis Page for the Brazos River near Palo Pinto in Texas (USGS ID 08089000) 
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a. 1924-1942 (Before Morris Sheppard Dam)  

 
 

b. 1943-2014 (After Morris Sheppard Dam) 

 
Figure 32. Monotonic trend analysis results for a) 1924-1942 and b) 1943-2014. 

 

The results indicate that, if the dataset is separated into statistically homogenous subsets of flow data prior 

to and after the construction of the Morris Dam, there is not an overall, statistically significant, monotonic 

trend in the annual instantaneous peak streamflow record for Brazos River.  

4.1.4 Application to Hydrologic Analysis 

The results of the assemblage of nonstationarity detection methods applied using the Nonstationarity 

Detection Tool strongly supports the notion that the distributions in the two sub-series (pre- and post-

dam) are different. Although the construction of the dam was completed in 1941, the Nonstationarity 

Detection Tool identifies a nonstationarity in the statistical properties of the dataset in 1943. This is likely 

because although the dam was constructed in 1941, it likely took a few years for the reservoir to fill and 

for “normal” operation to commence. For this reason, engineering judgment and a knowledge of reservoir 

operation/history is important when conducting hydrologic analysis. For the purpose of this example, it 

will be assumed that normal reservoir operation was initiated in 1943.  

 

A priori knowledge of the existence of abrupt changes allows for testing differences in the distribution 

generating the records before and after the year of the known nonstationarity. In the preceding example, 

USGS metadata provided information about the construction of a dam in 1941. Engineering practice 

generally considers that because the flow record is impacted by regulation, design flood estimation for the 

present might not be appropriate using the entire period of record. There are two ways to address this 

issue: the pre-1943 period can be excluded from analysis; or, preferably, the pre-1943 period can be 

adjusted to be reflective of current basin conditions using a reservoir model. A monotonic trend analysis 

was applied to assess both the non-regulated portion of the period of record at this site and the current, 

regulated condition at this site. As expected, the monotonic trend analysis returned no significant trends 

within the homogenous subset of data prior to and post the construction of the water management 

structure. Thus, the 1924–1942 and the 1943-2013 subsets of the period of record can be considered 

stationary. Further analyses rely on current USACE guidance: Engineer Manual (EM) 1110-2-1417, 

Flood-Runoff Analysis (1994) and EM 1110-2-1413, Hydrologic Analysis of Interior Areas (1987). 

Engineering judgment can consider the resiliency of the system when incorporating the range of results 

produced by conducting the sensitivity analysis described above in the adopted hydrologic design or 

study results..   
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4.2 Complex Analysis (without a priori knowledge)  

USGS ID 05082500 Red River of the North at Grand Forks, North Dakota 

4.2.1 Problem Statement 

Consider the case in which there is no a priori knowledge of the existence of an abrupt change in the 

annual instantaneous peak streamflow data series. This more complex example is based on the annual 

instantaneous peak streamflow for the Red River of the North at Grand Forks, North Dakota (USGS ID 

05082500). Figure 33 shows the annual instantaneous peak streamflow time series obtained from the 

USGS. There is a substantial amount of drainage area between Grand Forks, North Dakota and any 

upstream water control structures. Consequently, there is no prior knowledge indicating that there is a 

nonstationarity within the streamflow record at Grand Forks.  

 

 
Figure 33. Annual peak streamflow time series for the Red River of the North at Grand Forks, ND (USGS ID 05082500) 

 

The Nonstationarity Detection Tool was applied to check for nonstationarities within the streamflow 

record at Grand Forks, North Dakota. 

 

4.2.2 Select a USGS Site and Timeframe for Nonstationarity Detection 

As before, select the HUC-4 watershed—“0902-Red” and site name—“RED RIVER OF THE NORTH 

AT GRAND FORKS, ND” —from the Site Selection dropdown menus. In this case, the timeframe does 

not need to be adjusted because the gage contains a continuous dataset for the entire period of record (see 

Figure 34). 
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Figure 34. Nonstationarity Detector Tab for the Red River of the North at Grand Forks, ND (USGS ID 05082500) 

4.2.3 Nonstationarity Detection 

As can be seen in the Nonstationarities Detected using Maximum Annual Flow graphic in Figure 34, the 

detection tool identified several nonstationarities, both abrupt (grey vertical lines) and smooth (blue 

shading), within the annual instantaneous peak streamflow record at Grand Forks.  
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As with the first example, hovering over the vertical bars in the Nonstationarities Detected using 

Maximum Annual Flow graphic indicates the exact year when an abrupt nonstationarity was detected, 

along with a list of the statistical tests that detected the change in the statistical properties of the flow 

record. This information is also presented using the color coded tick marks in the Heatmap, with one tick 

mark—color coded by the type of nonstationarity detected—for each year in which an abrupt change was 

detected.  

 

As seen in Figure 34, the Smooth Lombard Wilcoxon method also detects smooth changes in the mean of 

the annual instantaneous peak streamflow extending from 1936-2008 and the Smooth Lombard Mood 

method detects a smooth transition in sample variance/standard deviation of the annual instantaneous 

peak streamflow extending from 1993-1995. The output of the Smooth Lombard tests indicate that the 

statistics associated with the flow record at Grand Forks are in flux over these periods of time. Because 

the smooth Lombard Mood result indicates a transitional period of five years or less, it can be compared 

directly to the abrupt nonstationarities indicated by the other techniques. It is analogous to an abrupt 

nonstationarity in 1995. The longer duration transitional period (1936-2008) identified by the Smooth 

Lombard Wilcoxon method must be considered independently. 

 

Because the clusters of nonstationarities detected between 1964-1965 and 1991-1995 fall within five year 

periods, these clusters can be analyzed as two statistically significant nonstationarities. An evaluation of 

the strength of the nonstationarities follows: 

 

1. Consensus:  

 

a. 1964-1965: There is consensus between the LePage, Kolmogorov-Smirnov, and Energy 

Divisive methods which indicate changes in the distributional properties of flow datasets.  

 

b. 1993-1995: There is consensus between the abrupt Lombard Wilcoxon and Mann-

Whitney methods, which detect changes in the mean associated with flow datasets.  

 

2. Robustness: As can be seen in the Heatmap in Figure 34, both of these nonstationarities can be 

considered robust. The nonstationarity detected between 1993 and 1995 is indicated by statistical tests 

that target changes in mean, variance/standard deviation, and overall distribution. The 

nonstationarities detected between 1964-1965 are indicated by statistical tests that target changes in 

mean and the overall statistical distribution of the datasets being assessed. 

 

3. Magnitude: Using the Mean and Variance Between All Nonstationarities Detected graphic, located 

at the bottom of the Nonstationarity Detector tab (Figure 34), the nonstationarities detected in the 

1960s correspond to changes of about 8,000 cfs in the mean of the annual instantaneous peak 

streamflow. The nonstationarity detected in 1990s corresponds to a change of 21,000 cfs in the mean, 

13,000 cfs in the standard deviation, and 560,000,000 cfs2 in the variance of the annual instantaneous 

peak streamflow. 

 

Because the nonstationarities detected between 1964-1965 and 1991-1995 demonstrate consensus, can be 

considered robust, and represent appreciable changes in the mean and variance/standard deviation 

associated with each subset of data the engineer can conclude that there are two, strong statistically 

significant nonstationarities within the dataset. 

 

Within the period 1964-1965 the majority of nonstationarities are detected in 1964. Consequently, 1964 

can be adopted as the representative nonstationarity year for this period. Within the period 1993-1995, the 

majority of nonstationarities are detected in 1994. Note that if, for example, two methods were detecting 

nonstationarities in 1993 and two methods were detecting nonstationarities in 1995 the user would adopt 
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1995 as the end of the homogenous period because it is the more recent year. The selected nonstationarity 

years are assumed to be the end year of each homogenous subset identified.  

 

The tool detected an extended, gradual change in the variance/standard deviation between 1936 and 

2008. This provides additional context for future analyses and alerts users that the stationarity assumption 

may not necessarily hold throughout this entire period.  

 

It is recommended that the default sensitivity values be adopted for analysis. Consequently, for this 

example application, default sensitivity parameters were applied. If the user chooses to alter the 

sensitivity parameters associated with the statistical tests executed by the web application, the new 

parameters could be recorded, and a description of how sensitivity parameters were modified could be 

included in report documentation. 

4.2.4 Monotonic Trend Analysis 

The next portion of the analysis consists of assessing the subsets of data for monotonic trends. Given 

these results, a user would divide the data into five segments or periods of record based on the three 

nonstationarities identified:  

 

 1882-1964 

 1965-2014 

 1882-1994 

 1995-2014 

 1936-2014 

 

To assess monotonic trends within these subsets of the flow record, the user can navigate to the Trend 

Analysis tab, where the tool performs multiple statistical tests to detect the presence of monotonic trends 

in the annual instantaneous peak streamflow record, as seen in Figure 35. 

 

Adjusting the timeframe to look for trends within each of the five subsets of the period of record yields 

the results shown in Figure 35. 

 

The results indicate that there were no statistically significant trends in annual instantaneous peak 

streamflow in any of the first four subsets of data (1882-1964, 1965-2014, 1882-1994, and 1995-2014). 

As expected, there was a statistically significant, positive monotonic trend detected in the portion of 

period of record following the onset of the smooth transition detected by the Lombard Wilcoxon test 

(1936-2014). 
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Figure 35. Trend Analysis Tab for the Red River of the North at Grand Forks, ND (USGS ID 05082500) 
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a. 1882-1964 

 
 

b. 1965-2014 

 
 

c. 1882-1994 

 
 

d. 1995-2014 

 
 

e. 1936-2014 

 
 
Figure 36. Trend Analysis Tab for the Red River of the North at Grand Forks, ND (USGS ID 05082500): a) 1882-1964, b) 

1965-2014, c) 1882-1994, d) 1995-2014, and e) 1936-2014. 
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4.2.5 Application to Hydrologic Analysis 

Because there are multiple “strong” statistically significant nonstationarities identified within the annual 

instantaneous peak streamflow record observed at Grand Forks, North Dakota, design flood estimation for 

the present might not be appropriate using the entire period of record. If one were to use the entire period 

of record, recurrence intervals would inaccurately reflect the risk of occurrence associated with a given 

flood magnitude. To carry out hydrologic analysis, the flow record could be truncated to the portion of the 

period of record following a “strong” and statistically significant nonstationarity.  

 

As in the previous example, a shorter flow record is less representative of the natural variability that exists 

within hydrometeorological data series. This adds uncertainty to the analysis, which can be characterized 

alongside the presentation of results (e.g., by confidence limits). Periods of record adopted for hydrologic 

analysis generally have a minimum record length of 30 years. Consequently, the period of record after the 

1994 nonstationarity (1995-2014) may not be acceptable for use. The user could seek to find a balance 

between identifying both a homogenous flow record and one that is long enough to be representative of 

the natural variation in maximum flow magnitudes at the site.  

 

When there are multiple nonstationarities detected with consensus, and/or a long period of smooth 

statistical change (via Lombard) detected, it is recommended that the user carry out sensitivity analyses 

using all potential periods of record, including the period over which the Lombard model might be 

detecting a smooth change and the entire period of record of available data. Note that even if a single, 

strong, statistically significant nonstationarity is identified, a sensitivity analysis using the entire period of 

record is advisable. As part of the analysis, the user could assess the sensitivity of the results to altering 

the period of record used for analyses and whether the observed trend is expected to persist into the 

future. 

 

For the Red River of the North at Grand Forks, ND, the following sensitivity tests could be carried out in 

support of nonstationarities detected in the unregulated record: 

 

1. A sensitivity analysis using the period of record following the “strong,” statistically significant 

nonstationarity identified within the annual instantaneous peak streamflow record for which there is 

greater than 30 year of subsequent observations using the period of record from 1965-2014.  

 

2. Because the smooth Lombard Wilcoxon model identifies a long (greater than 5 years) period where 

the statistical properties of the dataset are in flux, and because this transitional period transects the 

portion of the period of record following the other abrupt, “strong” nonstationarities, an additional 

sensitivity analysis could be conducted using the period of record from 1936 to 2014. This contains 

the portion of the period of record identified as in flux by the smooth Lombard model. The case 

where the smooth Lombard method is indicating that the statistical properties associated with long 

portions of a dataset are gradually changing will be addressed in greater detail in future versions of 

the tool.  

 

3. A sensitivity analysis could be conducted to assess the differences between the results generated 

using the truncated records described above (1965-2014, and 1936-2014) for analysis versus applying 

traditional methods that incorporate all available flow data (1882-2014 and any historical flood 

events). 

 

There are no statistically significant, monotonic trends detected before or after the two nonstationarities 

identified in 1964 and 1994. The results of the monotonic trend analysis supports the hypothesis that these 

nonstationarities are appropriate for use in segmenting the dataset into homogenous subsets of data. The 

only caveat to the conclusion that the 1995-2014 or 1965-2014 record is stationary is the detection of the 
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Lombard Wilcoxon Smooth nonstationarity detected between 1936 and 2014. The results of the Smooth 

Lombard Wilcoxon test point to a degree of statistical instability throughout the portion of the period of 

record between 1936 and 2008.  

 

When a monotonic trend is detected in the dataset adopted for analysis, or when a long, transition period 

is detected by one of the smooth nonstationarity detection methods within the adopted period of record, 

the time series may still not meet the assumption of stationarity. If so, these findings are documented, and 

the user applies engineering judgment when carrying out hydrologic analysis in accordance with current 

USACE guidance: Engineer Manual (EM) 1110-2-1417, Flood-Runoff Analysis (1994) and EM 1110-2-

1413, Hydrologic Analysis of Interior Areas (1987). Engineering judgment can consider the resiliency of 

the system when incorporating the range of results produced by conducting the sensitivity analysis 

described above in the adopted hydrologic design or study results. 

 

Given the potential instability in this record, efforts to qualitatively evaluate what might be driving the 

nonstationarities detected in the flow record are advisable The guidance presented in USACE Engineering 

and Construction Bulletin 2014-10, Guidance for Incorporating Climate Change Impacts to Inland 

Hydrology in Civil Works Studies, Designs, and Projects, could be applied to qualitatively assess 

projected climate trends in the region. Temporal variation in land use practices could be studied using 

historic land use datasets and aerial imagery. Hydraulic structure inventories could be consulted to assess 

when both major and minor hydraulic structures were installed throughout the study area.  
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4.3 No Statistically Significant Nonstationarity Detected 

USGS ID 05388250: Upper Iowa River near Dorchester, Iowa 

4.3.1 Problem Statement 

This example assesses the stationarity assumption as it applies to the annual instantaneous peak 

streamflow dataset recorded along the Upper Iowa River near Dorchester, Iowa (USGS ID 05388250). 

Figure 37 shows the annual instantaneous peak streamflow time series obtained from the USGS for gage 

05388250. There is no prior knowledge indicating that there might be a nonstationarity within the 

streamflow record at Dorchester, Iowa.  

 

 

 
Figure 37. Annual peak streamflow time series for the Upper Iowa River near Dorchester, Iowa (USGS ID 05388250) 

 

4.3.2 Select a USGS Site and Timeframe for Nonstationarity Detection 

Using the Site Selection dropdown menus, located on the right side of Nonstationarity Detector tab, the 

user selects the 0706 Upper Mississippi-Maquoketa-Plum from the “HUC-4 Label” menu and the site of 

interest—“UPPER IOWA RIVER NEAR DORCHESTER, IA”—from the “Site Name” dropdown. In 

Figure 38, the annual instantaneous peak streamflow time series in the Nonstationarities Detected using 

Maximum Annual Flow graphic shows missing data between 1941 and 1976. 
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Figure 38. Nonstationarity Detector Tab for the Upper Iowa River near Dorchester, Iowa (USGS ID 05388250) – Without 

Timeframe Adjustment 

 

Using the Timeframe Selection slider on the right side of the Nonstationarity Detector tab, the user must 

limit the timeframe selected for analysis to the period with continuous flow data: 1976-2014. Note that 

changing the timeframe will impact the nonstationarities detected by the tool.  
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4.3.3 Nonstationarity Detection 

Now that the timeframe and site have been selected, the results of the detection analysis can be assessed. 

As shown in Figure 39, no nonstationarities were detected by the tool for the continuous period of record 

beginning in 1976. For this example, the default sensitivity parameters were applied. If the user chooses 

to alter the sensitivity parameters associated with the statistical tests executed by the Nonstationarity 

Detection Tool, the new parameters would be recorded, and a description of how sensitivity parameters 

were modified is also included.  

 

 
Figure 39. Nonstationarity Detector Tab for the Upper Iowa River near Dorchester, Iowa (USGS ID 05388250) – With 

Timeframe Adjustment 

 

4.3.4 Monotonic Trend Analysis 
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The next portion of the analysis consists of assessing the subsets of homogenous data for monotonic 

trends. In this case, because no nonstationarities were identified for analysis, there is no need to segment 

the record. The entire period of record is assessed for monotonic trends. As can be seen in Figure 40, 

there is no statistical evidence of a monotonic trend in the annual instantaneous peak streamflow recorded 

on the Iowa River near Dorchester, IA.  

 

 
Figure 40. Trend Analysis Tab for the Upper Iowa River near Dorchester, Iowa (USGS ID 05388250)  

 

4.3.5 Application to Hydrologic Analysis 

At streamflow gage sites where no nonstationarities are detected, inland hydrologic analysis will continue 

to be evaluated in the manner described in current USACE guidance: Engineer Manual (EM) 1110-2-

1417, Flood-Runoff Analysis (1994) and EM 1110-2-1413, Hydrologic Analysis of Interior Areas (1987).  
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Appendix 1: Glossary of Statistics Terms 

Bayesian – In contrast to “Frequentist” statistics, Bayesian statistics interprets probability as a quantity 

assigned to a state of belief. In the Bayesian view, a probability can be assigned to a hypothesis, which is 

known as the prior. 

Monotonic Trend – A variable increases or decreases consistently over time. This does not imply a 

linear trend. 

Parametric – From a branch of statistics that assumes the sample data comes from a population that 

follows a probability distribution based on a fixed set of parameters. 

Posterior Probability – This is unique to Bayesian statistics. It is the outcome of a Bayesian model. A 

Bayesian assigns a prior probability to a hypothesis, then uses the data to inform the model, before 

outputting the new state of belief around an event. 
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Stationarity – The assumption that the statistical characteristics of hydrologic time series data are 

constant through time. 

Type I Error – The probability of accepting an alternative hypothesis when the null hypothesis is true. 

Appendix 2: Version Changelog 

Version 1.1 changes resulting from review comments of version 1.0 

 The tool uses instantaneous streamflow data incorporating those gages for which metadata is 

available in the database (OBSERVED_TSS). This means that some gages will be unavailable to 

users initially (e.g. 08246500 Conejos River nr Mogote, CO). 

 Missing data points in a period of record are no longer connected by a line. This will help users 

better determine where the continuous period of record starts and ends. See Upper Iowa River 

near Dorchester, IA in HUC 706 for an example. 

 There is now a dynamic warning box below the tool that alerts users when they have selected a 

period of record less than ideal for the type of analysis they are conducting (30 years for 

nonstationarity detection, 10 years for trend detection) and/or when they have selected a 

discontinuous period of record. These warning messages appear directly below the graphic and 

emphasize that the user could adjust the period of record to avoid potential issues. 

 There is now a static dialog below the main graphics on each of the three tabs that describes the 

data being shown and reminds the user to use both a long and continuous period of record if 

possible. 

 The sensitivity issues with the abrupt Lombard methods have been resolved. Using the gages and 

comments provided by the independent reviewers, we were able to determine a revised level of 

sensitivity for these methods. We are holding the sensitivity parameter for these methods constant 

to obtain user feedback on the new level of sensitivity before determining an appropriate range of 

values. 

 Some users commented that the CPM Methods were detecting changepoints prior to the startup 

period that they had supplied. After looking into this issue, we determined that there was a 

miscommunication about the way in which the CPM Methods function. To address this, we have 

since updated the language in the user guide and changed the name of the parameter in the tool to 

avoid confusion. These methods perform two scans of the data. The first scan is to determine if 

there are any changes in the mean/variance/distribution occur and this is the scan that takes this 

value into account. A second scan of the data is then made to determine when these changes in 

the mean/variance/distribution occurred and these are the resulting changepoints displayed. This 

second scan can sometimes determine that the time at which a change occurred is prior to when it 

was initially detected in the first scan. For more details and a very helpful graphic, Section 4.2 on 

Page 13 in this document explains this as well (http://gordonjross.co.uk/cpm.pdf). 

 The reviewer’s version of the tool appeared to crash when the Energy Divisive Method sensitivity 

was set to 1; this has been resolved. 

 The reviewer’s version of the tool appeared to calculate the Kolmogorov-Smirnov method 

incorrectly for a specific HUC; this has been resolved. 

 A landing page has been added to the tool. It uses language from the user guide and explains the 

layout/functionality of each tab. It also provides contact information for the team. 

 

http://gordonjross.co.uk/cpm.pdf

