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 CN  11  Unsteady Flow in Open Channels  

This Chapter probes deeper into the one-dimensional (1-D) analysis of floodwave 

propagation. We derive the governing equation for floodwave propagation in 

Section 11.1, and seek solutions to the advection-dispersion equation in Section 

11.2. The topic of unsteady flow is also covered in Liggett and Cunge (1975), 

Abbott and Basco (1989), Fennema and Chaudhry (1990), Singh (1997), Sturm 

(2001), Ponce (2014), Battjes and Labeur (2017), and Palu and Julien (2020). 

11.1. Floodwave Propagation Equation  

Three relationships describe unsteady flow in open channels: (1) conservation of 

mass in Section 11.1.1; (2) flow resistance in Section 11.1.2; and (3) momentum 

in Section 11.1.3. They combine into a diffusion equation in Section 11.1.4. 

11.1.1. Continuity for Unsteady Flow 

The principle of conservation of mass 

indicates that the mass of water remains 

constant. In Figure 11.1, we identify the top 

widthW , wetted perimeter P , and the flow 

discharge Q is the product of mean flow 

velocity V  and cross section area A . We can 

add complexity with rainfall intensity ri , 

infiltration bi through the wetted perimeter and 

lateral inflow lq , (flow discharge per unit 

width).       Figure 11.1. Continuity for open channels 

The total volume of water in the control volume is Adx . Over a reach length dx , the 

discharge Q enters the control volume and the discharge leaving the control volume 

is 
dQ

Q dx
dx

+ . When including rain and lateral inflow while losing water through 

infiltration, the total volumetric fluxes equal the internal volumetric change  

( )
l r b

Q Adx
Q q dx i Wdx i Pdx Q dx

x t

  
+ + − − + = 

  
 .  

We divide by dx and reduce to 

 r l b

A
i W q i P

t x

Q
+ = + −


 
.  

 



 2 

Of course, when rainfall precipitation, infiltration and lateral flow are negligible, we 

obtain the main relationship describing continuity, or conservation of mass in rivers  
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       (11.1) 

For rectangular channels of constant width W , it reduces further to    
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  (11.1a) 

11.1.2. Flow Resistance 

Resistance to flow in open channels is described by Manning’s equation  
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In SI, 1m = and k is the conveyance coefficient. For wide-rectangular channels, 

we can simply write the discharge per unit width as a power function of flow depth 
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The advantage of this formulation for wide-rectangular channels is that   and 

remain constant while k  varies with flow depth, hence 
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and with constant values of W ,  and 
fS , we obtain  

1

f

k k
h

h hS

W  
 −

= =


  

And because k is only a function of h , we can combine with Eq. (11.1a) to get  
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      (11.2a) 

We can examine the time derivative of 
2 2/fS Q k= when both Q and k vary with 

time. We have the derivative of a ratio like
2
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, which gives 
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   (11.2b)  

which is combined with Eq. (11.2a) to give 
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The conveyance relationship only includes advection terms in 
Q

t




and 

Q
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which corresponds to pure wave translation without deformation.   
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11.1.3. Momentum  

We learned from Eq. (10.1) that 
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     (11.3)  

where 
21 Fr= − , and the Froude number Fr remains essentially constant at 

different flow depths. Taking the time derivative gives 
2
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     (11.3a) 

We are now ready to derive the unsteady flow equation for open channels. 

11.1.4. Flood Routing in Open Channels  

Equations (11.1 to 11.3) describe unsteady flow in wide-rectangular channels.  
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The last equation (11.3) is also called the diffusive wave approximation, for a reason 

we are about to discover.  The strategy adopted to solve these differential equations 

is to eliminate h from Eqs. (11.1a) and (11.3). This is done through differentiating 

Eq. (11.1) in space x  and differentiating Eq. (11.3) in time t . Thus, combining Eqs. 

(11.1a) and (11.3a) and comparing with Eq. (11.2c) gives  
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The attentive reader will notice here that the diffusion term 
2 2/Q x  stems from 

the momentum equation via Eq. (11.3a). Algebraic simplifications yield 
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This basic relationship describes unsteady flow propagation in a wide-rectangular 

channel. This advection-diffusion (or advection-dispersion) equation is 
2
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where c V= is the flood celerity, and
2 f

Q
K

WS


= is the flood diffusion coefficient.  

We learn that the celerity of the flood wave in open channels is faster than the flow 

velocity because c V= and 5 / 3 = in wide-rectangular channels from 

Manning’s equation. The second important characteristic of the flood wave 
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propagation equation is that the diffusion coefficient describes the attenuation of 

the flood wave as shown in Figure 11.2. 

  
Figure 11.2. Floodwave propagation in wide open channels 

The value of K  increases when the discharge Q increases and the slope decreases. 

The flood waves of large flat rivers attenuate greatly in comparison with smaller 

floods in steep mountain channels, as discussed in Julien (2018).  The term 
21 Fr= −  in parameter K also indicates that flood wave attenuation increases 

when rivers have a low Froude number. 
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11.2. Floodwave Propagation Calculation  

 

We explore an analytical solution for floodwave propagation in Section 11.2.1 

followed with a numerical solution in Section 11.2.2. Useful references include 

Woolhiser (1975), Liggett and Cunge (1975), Chapra (1997), Woo et al. (2015), 

Chanson (2004) and Chaudhry (2008). 

11.2.1. Analytical Solution for Flood Wave Propagation 

The propagation of floodwaves in open channels can be analyzed by solving the 

advection-dispersion Eq. (11.5), where c in m/s is the flood wave celerity and K in 

m2/s is the dispersion coefficient.  For a constant pulse of water at a discharge oQ

over a durationT , the discharge ( , )Q x t is calculated at a distance x downstream 

from the source as a function of time t in a river given the mean flow celerity c as 
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  (11.6) 

where ( ) 1 ( )erfc x erf x= − is the complementary error function from the error 

function
2

0

2
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−=  . Figure 11.3 plots the normal distribution, the error 

function and the complementary error function. Error functions are calculated 

with any mathematical package (e.g. the functions erf.precise and erfc.precise in 

Xcel). Example 11.1 analytically calculates the propagation of a flow pulse.  

 
Figure 11.3. Normal, error and complementary error functions 
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Example 1.1: Analytical Solution for a Flow Pulse 

A calculation example for the propagation of a flow pulse lasting T = 6 hours at an initial 

discharge 
0Q = 1,000 m3/s given the mean flow celerity c = 1 m/s and dispersion 

coefficient K = 1,000 m2/s is shown in Figure E-11.1. Let us calculate the discharge at a 

distance of 75 km after one day. 

Solution 

Consider 75,000x m= , 86,400t s= and pulse duration 6 3,600 21,600T s=  = . 

From Eq. 11.6, we obtain 

32

1,000 11,400 10,200
(75 ,1 )

2 18,590 16,099

1,000 161,400 139,800
3.733 10

2 18,590 16,099

Q km day erfc erfc

erfc erfc

 −   
= − +    

    

    
  −    

    

 

32 34 34(75 ,1 ) [500(1.6142 0.3703)] [500 3.733 10 (1.1873 10 1.1574 10 )]Q km day − −= − +    −   

(75 ,1 ) 622 0.56 622.5Q km day cms= + =  

 
Fig. E-11.1. Analytical advection-dispersion example 

The main characteristics of flood wave propagation are clearly visible from Fig. E-11.1: 

(1) translation of the floodwave moving downstream at the celerity

1 / 86.4 /c m s km day= = ; and (2) floodwave attenuation through the parameter 

2(1 )

2 2f f

Q Fr Q
K

WS WS

 −
=  as the flood propagates downstream. It is noted that the 

dispersion of the flood wave is due to the momentum equation Eq. (11.3) because 0K =  

when 0= . Also, the principle of superposition can be applied to a sequence of step 

functions because Eq. (11.5) is linear. The advantage of the analytical solution is that we 

can directly calculate the values of discharge at any time and space value. However, the 

analytical solution becomes less practical for long hydrographs where discharge varies 

rapidly with time. To handle large variability in discharge, the numerical method of 

Section 11.2.2 is usually more convenient.  
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11.2.2. Numerical Solution for Flood Wave Propagation 
The numerical solution to the advection-diffusion equation can contaminate the 

results by adding numerical diffusion which artificially attenuates the flood wave. 

Higher order numerical schemes can eliminate numerical diffusion (Abbott and 

Basco 1989). From Julien (2018), the grid size x and time step t are 

determined from the flood celerity c and diffusion coefficient K as 
10K

x
c

 = , 

and 
2

10

c

K
t = . A practical finite difference numerical scheme of Eq. (11.5) 

without numerical diffusion is  

1

2 1   0.1 0.8   0.1k k k k

j j j jQ Q Q Q+

− −= ++  (11.7) 

The subscript from j-2 to j refers to space, the superscript refers to time from k to 

k+1. This algorithm requires two 

upstream boundary conditions at j-2 and 

j-1 as shown in Figure 11.4, and the 

initial condition at k =0 describes the 

flow discharge along the channel reach 

at the beginning of the flood. Example 

11.2 shows calculations for a double 

pulse, and Example 11.3 presents the 

case study of a dam break event in the 

Doce River.  

    Figure 11.4. Double upstream boundary condition 

 

Example 11.2: Numerical Solution for Triangular Pulses 

Simulate the propagation of a double triangular flow pulse in a river where the celerity is 

c = 1 m/s and the diffusion coefficient is K = 1,000 m2/s.  Find the hydrograph at x = 

100 km downstream of the double pulse shown in Figure E-11.2.  

Solution:  

First the grid spacing is 10 / 10,000 10x K c m km = = = and the time step

210 / 10,000 0.116t K c s day = = = . The algorithm is 

1

2 1   0.1 0.8   0.1k k k k

j j j jQ Q Q Q+

− −= ++  and we develop a marching procedure shown in 

Figure E-11.2. The boundary conditions are in the first two columns. Note that we offset 

the upstream boundary condition with a one time-step lag (because c t x =  ) in the 

downstream direction (see the table at x = -10 km and x = 0). For example, the discharge 

at successive times where x = 10 km are calculated as 

 At t = 0.116 day,   
0.116

10 (0.1 500) (0.8 250) (0.1 100) 260day

kmQ cms=  +  +  = , 

At, t = 0.231 day,   
0.231

10 (0.1 750) (0.8 500) (0.1 260) 501day

kmQ cms=  +  +  = , etc. 
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Fig. E-11.2. Numerical calculation table for floodwave propagation  

 

 

 

 


