Rio Grande Silvery Minnow Biology, Monitoring, Geomorphology and Habitat Needs/Restoration

Drew C. Baird

Hydraulic Engineer Sedimentation and River Hydraulics Group Denver Technical Service Center

Reclamation River Restoration Training Workshop May 1-3, 2019, Sacramento, CA

Rio Grande S & T Research Projects

- Arroyo de los Piños Research Station
 - Low confidence in estimating sediment delivery from ephemeral streams to mainstem rivers (Rio Grande and others)
 - Construct and operate total sediment load (bed and suspended load) gaging station near Socorro, NM
 - 10 U.S. and International partners
 - 5 storms during 2018 monsoon season
 - Multiple suspended sediment, bedload, depth and velocity and automated recorded measurements
- Principle Investigator: David Varyu, SRH Group TSC

Rio Grande S & T Research Projects

- Field Deployment of a Continuous Sediment Load Surrogate
 - Deploy instruments in lieu of physical measurements. Reduced cost for determining suspended sediment load.
 - USGS-Partner
- Principle Investigator Ari Posner, Albq. Area Office

Rio Grande S & T Research Projects

Stochastic Hydraulic Simulations using HEC-RAS

- Develop software tool for performing Monte Carlo simulation on input parameters for HEC-RAS
- Uncertainty estimation important due to large uncertainties with input parameters
- Stochastic simulations provide probabilities associated with input parameters.
- Principle Investigator: Ari Posner, Albq. Area Office

- Linking Morpho-dynamics with Biology
 - Colorado State University
 - Civil and Env. Engineering Department, Pierre Julien
 - University of New Mexico
 - Division of Fishes, Museum of Southwest Biology, Robert Dudley, Steve Platania, Thomas Turner
 - American Southwest Ichthyological Researchers, L.L.C. Jacob Mortensen
 - Objectives:
 - Overall: Improve understanding of changing morphodynamics of the MRG between Bernalillo NM and Elephant Butte Reservoir regarding habitat for Rio Grande Silvery Minnow (RGSM).
 - Develop on sub-reach scale (a few miles)
 - Overcome challenge with spatial scale of transect data and fish habitat
 RECLAMATION

Linking Morpho-dynamics with Biology

- Planned Actions:
 - Compile morphological data on a decadal scale 1962-2012 ~200 miles.
 - Develop and compare changes in channel hydraulics
 - Determine changes through time in floodplain connectivity
 - Document what is known or unknown about RGSM biology
 - Develop relationships between channel conditions, and habitat
 - Evaluate various strategies to overcome challenge with spatial scale of transect data and fish habitat

- RGSM Minnow Population Monitoring 1993 to Present
 - University of Mexico Division of Fishes, Museum of Southwest Biology
 - Reclamation Technical Service Center (Mike Horn's group)
 - Objectives:
 - Long-term systematic monitoring of MRG fish community
 - Assessment of RGSM recruitment over short periods
 - Comparing changes in recruitment among years,
 - Status of species conservation, vital during periods of reduced abundance
 - Sites based on spatial distribution, site accessibility, relative permanence of flow and presence of realtively diverse habitat
 - Correlation between spring runoff flow rate, overbank flows and fall population

- Post project morphological changes (Reclamation's Technical Service Center, Nathan Holste Team Leader)
 - Utilize 2012-13 LiDAR and 2017 high flow and low flow LiDAR to determine depositional patterns in habitat restoration features
 - Field review (preliminary take aways)
 - Placing excavated material in the river seems effective method
 - Restoration features with multiple elevation surfaces has best change of longer term success.
 - Woody vegetation growth, increased resistance to flow increases suspended sediment deposition.

RECLAMATION

Photographs by Nathan Holste and Joel Sholtes

Rio Grande Silvery Minnow (RGSM)

Historical Range
Current Range (Red)

Mortenson, J.G, Dudley, R.K., Platania, S.P., and Turner, T.F, final draft report for U.S. Bureau of Reclamation, 2019 (UNM)

RGSM

Antropogenic Effects

- Dispersal Interruption (3 Diversion Dams and Cochiti)
- Lateral Confinement (levee and channelization)
- Desiccation
- Reduction in Geomorphic Drivers (peak flow and sediment supply)
 - Disconnection of historical floodplain- channel bed lowering
 - Uniform velocity and depth (narrowing)

Photographs by UNM

MRG Habitat Degradation and Connectivity (UNM)

Habitat implications of channelization and incision:

- + depth
- + velocity
- channel complexity
- floodplain connectivity

Life Stages of Rio Grande Silvery Minnow (UNM)

Illustrations by JP Sherrod, WH Brandenburg

Life History of Rio Grande Silvery Minnow (UNM)

RGSM Velocity and Depth Habitat Preference by Life Stage

Spawning generally occurs at moderate depths (~20 cm or a little larger) and "seemingly imperceptible flow velocity"

RECLAMATION

(UNM)

Reach Average Channel Width 1918 to 2010 1935 Aerial Photogra

1935 Aerial Photographs show evidence of MRGCD levees and drains.

After 1949 width changes attributed to:

- Reclamation
 Channelization
- Upstream Sediment and Flood Control Dams (reduced sediment loads and peak flows).
- Trans-mountain diversions can encourage channel narrowing (vegetation growth).

RECLAMATION

The most recent width reduction is also related to drought conditions

Planform Change

Historically: wide, low flow braided channel that frequently shifted position, aggrading, low bank height, high floodplain connectivity, shallow variable depth and velocity. Lateral migration avulsion.

Currently: narrow, single thread channel with relatively fixed position (Fossilized), high bank height, very low floodplain connectivity, essentially uniform deep depth and higher velocity. Lateral migration process, low sinuosity bend migration.

RECLAMATION

Photographs Holste 2016

Average Bed Elevation, Decreased Floodplain Connectivity

Angostura to Bernalillo Reach

1971-1995 lowered 7.3 Ft. Bernalillo to Corralles Reach 1972-1992 lowered 3.5 Ft. Rio Puerco to San Acacia Reach 1962-1992 lowered 3 Ft. San Acacia to Escondida Reach 1962-1999 lowered 9.6 Ft.

Habitat Restoration Objectives

- Increase floodplain connectivity
- Provide heterogeneity of velocity and depth
- Improve bankline complexity

Habitat Restoration

- Lower banks for floodplain connectivity
- Create backwaters

Deposition of suspended sediment reduces sustainability

Research Questions

1. Understanding Flow-Habitat Relationships (UNM)

- How does habitat availability vary with discharge in the MRG (instream and floodplain habitats), and how do flow-habitat relationships influence the recruitment of RGSM?
- How have flow-habitat relationships changed relative to historical conditions?

2. Improving Longitudinal Connectivity (UNM)

 How does longitudinal disconnectivity (i.e., diversion dams) affect the distribution, abundance, and genetic viability of RGSM?

Habitat Restoration Project Research Questions

3. Sediment

- How does restoration projects effect sediment dynamics of the system?
- 4. Sustainability (embracing periodic sediment removal or new sites-life cycle):
 - What is the interaction between lowered channel surfaces (variable elevations) between vegetation recruitment sediment dynamics and eventual sediment deposition?

Photograph Joel Sholtes

Habitat Restoration Project Research Questions

4. Sustainability (cont.)

• What features, geometries, and topography should be included in floodplain projects to improve sustainability?

5. Habitat Restoration Site Usage

- What is the RGSM usage of created habitat?
- What life stages use created habitat?
- Is there a correlation between RGSM use of created habitat and the numbers of fish at the population monitoring sites.

ECLAMATIO

Illustration by W.H. Brandenburg