HYPERCONCENTRATED FLOW CLASSIFICATION, RHEOLOGY AND STRUCTURAL DESIGN

Colorado State University Engineering Research Center Dr. Pierre Y. Julien Claudia A. León S.

Objective

Provide guidelines for designing mitigation countermeasures based on the type of hyperconcentrated flow

Rheology of Hyperconcentrated Sediment Flows

Total shear stress :

Quadratic rheological equation (O'Brien and Julien, 1985)

Dimensionless quadratic rheological model (Julien and Lan, 1991) $\tau^* = 1 + (1 + T_d^*)_{a_i} D_v^*$ $\tau^* = \frac{\tau - \tau_y}{\eta \frac{du}{dy}}$ $T_d^* = \frac{\rho_m l_m^2}{a_i \rho_s \lambda^2 d_s^2}$ $\mathsf{D}_{\mathsf{v}}^* = \frac{\rho_{\mathsf{s}}\lambda^2 \mathsf{d}_{\mathsf{s}}^2}{\eta} \left(\frac{\mathsf{d}\mathsf{u}}{\mathsf{d}\mathsf{y}}\right)$ Low T* High T_d^* High D_v^* Viscous Turbulent Dispersive Flow Flow Flow

Dimensionless quadratic rheological model

Flow Classification

Dispersive \longrightarrow Debris Flow D_v* > 400 and T_d*<1

Mudflow

- High viscosity and yield stress
 - High concentration of silts and clays
- 45% < Cv < 55%
- Low velocity
- Low Froude Number
- No abrasion
- Large flow depths
- High pressure

Mud Flood

- Turbulent
- Non-cohesive particles
- Cv as high as 40%
- High velocity
- High Froude
 Number
- Abrasive

Debris Flow

- Dispersive
- Large clastic particles
- Non cohesive
- Low viscosity
- High velocity
- Destructive impact force

Countermeasures

Mudflow Features:

- High viscosity and yield stress
- High concentration of silt and clay
- -45% < Cv < 55%
- Low Froude Number
- No abrasion

Effective Solution Store, Deflect, Spread

- Storage basins
- Deflection walls

Storage Basin

Deflection Wall

Countermeasures

Mud Flood Features:

- Turbulent
- Non cohesive particles
- Cv as high as 40%
- High Froude Number
- Abrasive

Effective Solution — Convey

- -Straight channels
- -Lined canals, berm and levee channels
- Drop structures, energy dissipators

Straight Channel

Lined canal with drop structures

Countermeasures

Debris Flow Features:

- Dispersive
- Large clastic particles
- Low viscosity
- Large velocity
- High impact

Drain fluid matrix

- Concrete Sabo dams
- Steel frames and debris rakes

Sabo Dam Construction

Sabo Dam and Steel Frames

Debris Rakes

Conclusions

 Quadratic rheological model describes continuum of hyperconcentrated flow behavior

- Mudflows exhibit high yield and viscous stresses
- Mud floods have dominant turbulent stress
- Debris flows have dominant dispersive stress

Conclusions

Mitigation structures for mudflows

» Detention basins

» Deflection walls

Mitigation structures for mud floods

» Straight channels
 » Lined canals, berm and levee channels
 » Drop structures, energy dissipators

Mitigation structures for debris flows

» Concrete Sabo dams» Steel frames and debris rakes