HYPERCONCENTRATED FLOW CLASSIFICATION, RHEOLOGY AND STRUCTURAL DESIGN

Colorado State University
Engineering Research Center
Dr. Pierre Y. Julien
Claudia A. León S.
Objective

Provide guidelines for designing mitigation countermeasures based on the type of hyperconcentrated flow
Rheology of Hyperconcentrated Sediment Flows

Total shear stress:

$$\tau = \tau_y + \tau_v + \tau_t + \tau_d$$

- Yield stress
- Viscous stress
- Turbulent stress
- Dispersive stress
Quadratic rheological equation
(O’Brien and Julien, 1985)

\[\tau = \tau_y + \eta \frac{du}{dy} + \zeta \left(\frac{du}{dy} \right)^2 \]

- **Yield stress**: \(\tau_y = \tau_c + \tau_{mc} \)
- **Viscous stress**: \(\eta \frac{du}{dy} \)
- **Turbulent stress**: \(\zeta \left(\frac{du}{dy} \right)^2 \)
- **Dispersive stress**: \(\zeta = \rho_m l_m^2 + a_i \rho_s \lambda^2 d_s^2 \)
Dimensionless quadratic rheological model
(Julien and Lan, 1991)

\[\tau^* = 1 + (1 + T_d^*) a_i D_v^* \]

\[\tau^* = \frac{\tau - \tau_y}{\eta \frac{du}{dy}} \]

\[T_d^* = \frac{\rho_m l_m^2}{a_i \rho_s \lambda^2 d_s^2} \]

\[D_v^* = \frac{\rho_s \lambda^2 d_s^2}{\eta} \left(\frac{du}{dy} \right) \]

Low \(\tau^* \)
Viscous Flow

High \(T_d^* \)
Turbulent Flow

High \(D_v^* \)
Dispersive Flow
Dimensionless quadratic rheological model

![Graph showing the relationship between dimensionless shear stress and dimensionless dispersive-viscous ratio. The graph includes data points from Govier et al. (1957), Bagnold (1954), and Savage and McKeown (1983).]
Flow Classification

Viscous \rightarrow Mudflow
$D_v^* < 30$

Turbulent \rightarrow Mud Flood
$D_v^* > 400$ and $T_d^* > 1$

Dispersive \rightarrow Debris Flow
$D_v^* > 400$ and $T_d^* < 1$
Mudflow

- High viscosity and yield stress
- High concentration of silts and clays
- $45\% < C_v < 55\%$
- Low velocity
- Low Froude Number
- No abrasion
- Large flow depths
- High pressure
Mud Flood

- Turbulent
- Non-cohesive particles
- Cv as high as 40%
- High velocity
- High Froude Number
- Abrasive
Debris Flow

- Dispersive
- Large clastic particles
- Non cohesive
- Low viscosity
- High velocity
- Destructive impact force

Images showing debris flow at 6 sec and 7 sec.
Countermeasures

Mudflow Features:
- High viscosity and yield stress
- High concentration of silt and clay
- $45\% < \text{Cv} < 55\%$
- Low Froude Number
- No abrasion

Effective Solution → Store, Deflect, Spread
- Storage basins
- Deflection walls
Storage Basin
Countermeasures

Mud Flood Features:
- Turbulent
- Non cohesive particles
- C_v as high as 40%
- High Froude Number
- Abrasive

Effective Solution ➔ Convey
- Straight channels
- Lined canals, berm and levee channels
- Drop structures, energy dissipators
Lined canal with drop structures
Countermeasures

Debris Flow Features:
- Dispersive
- Large clastic particles
- Low viscosity
- Large velocity
- High impact

Effective Solution Retain large clasts
 Drain fluid matrix

- Concrete Sabo dams
- Steel frames and debris rakes
Sabo Dam Construction
Sabo Dam and Steel Frames
Debris Rakes
Conclusions

- Quadratic rheological model describes continuum of hyperconcentrated flow behavior

- Mudflows exhibit high yield and viscous stresses
- Mud floods have dominant turbulent stress
- Debris flows have dominant dispersive stress
Conclusions

• Mitigation structures for mudflows
 » Detention basins
 » Deflection walls

• Mitigation structures for mud floods
 » Straight channels
 » Lined canals, berm and levee channels
 » Drop structures, energy dissipators

• Mitigation structures for debris flows
 » Concrete Sabo dams
 » Steel frames and debris rakes