Stream Rehabilitation Concepts, Guidelines and Examples

Pierre Y. Julien
Wuhan 2005

Objectives

Part I - Stream restoration and rehabilitation:

1. Present and discuss important concepts, laws, criteria and guidelines
2. Present examples of stream rehabilitation

Three Laws of Stream Restoration

#1 There is no cookbook approach to stream restoration projects.
Example Showing the Impact of Deforestation and Flood Control
Water Resources Development

Demographic Expansion

Lowland Slash and Burn
Three Laws of Stream Restoration

#1 There is no cookbook approach to stream restoration projects.

#2 Solutions normally seek **equilibrium** conditions between water and sediment regime and stream ecology.

Concept of Equilibrium

- **Mountain Headwater Streams**: Flow swiftly over steep slopes and in steep V-shaped valleys. Rapids and substantial erosion are common.
- **Low-elevation streams**: Meander and flow down gentler slopes. The valley becomes wider and the river begins to meander.
- At even lower elevation, the river widens and meanders slowly across a broad, nearly flat valley. At its mouth, it may divide into many separate channels as it flows across a delta built up of river-borne sediments and into the sea.

Channel Type, Sediment Load, Net Load

- **Sediment Load**:
 - High:
 - High sediment load
 - High nutrient levels
 - Low river flow
 - Low:
 - Low sediment load
 - Low nutrient levels
 - High river flow

- **Net Load**:
 - High:
 - High sediment accumulation
 - High nutrient accumulation
 - Low river flow
 - Low:
 - Low sediment accumulation
 - Low nutrient accumulation
 - High river flow

Concept of Equilibrium

Time Scale

- Geological ~ 1,000,000 years
- Engineering ~ 100 years
- Aquatic life ~ 1 year
Hydraulic geometry of the Rio Grande
Impact on Aquatic Life

Debris Deposition

Restoration vs Rehabilitation

Restoration
- returning a resource to some former condition.

Rehabilitation
- maximize the potential beneficial uses of a resource to some reasonable and practical level.
Three Laws of Stream Restoration

1. There is no cookbook approach to stream restoration projects.

2. Solutions normally require equilibrium conditions between sediment regime and stream ecology.

3. Solutions need to be effective, environmentally acceptable and economical.
Economical

E, E and E!

Erosion and River Mechanics Textbooks
Objectives

Part II – Guidelines and Case Study

1. Guidelines for Stream Restoration Projects
2. Case-study on the Rio Grande

Stream Restoration Guidelines

1. OBJECTIVES - Clearly define the engineering and ecological objectives. Restoration vs rehabilitation.

2. PAST, PRESENT and FUTURE – Consider present conditions in the perspective of past events and examine future changes.

Rio Grande Restoration– Santa Ana

Project Goals

• Protect Levee
• Create a Functioning Floodplain
• Improve Wildlife Habitat
Stream Restoration Guidelines

3. **UPPER WATERSHED** – Look at the
geology, deforestation, land use changes,
urbanization, climate and extreme events.
Examine water and sediment supply, flood
frequency curves, sediment mass curves
sediment concentrations, water quality, etc.

4. **DOWNSTREAM REACH** – Look at possible
changes in the downstream reach that may
affect current conditions – like reservoirs,
base level changes, headcutting, etc.
5. Woody Debris against Bridges

5. Woody Debris - Lower Mississippi River

Vertical Degradation

Headcutting
Stream Restoration Guidelines

5. **CHANNEL GEOMETRY** – Determine equilibrium downstream hydraulic geometry in terms of width, depth, velocity, slope, discharge and morphology.

6. **AQUATIC HABITAT** – determine appropriate aquatic habitat conditions including low and high flow periods, pools, riffles, spawning grounds, shade, aeration, migration, etc.

Rio Grande Restoration – Floodplain restoration

Santa Ana Reach - Mid 80’s

Santa Ana Reach – Mid 90’s

Rio Grande Restoration – Endangered Species

- Bimodal sand/gravel bed
- Deep water $h \sim 1.20$ m
- Water velocities 1.4 m/s

Restoration
- Create wider channels

- Sandy/silty substrate
- Shallow water $h < 0.4$ m
- Water velocities 0.1 m/s < V < 0.5 m/s
Stream Restoration Guidelines

7. **EXAMINE ALTERNATIVES** – Identify several different stream rehabilitation schemes that would suit the engineering and environmental needs.

8. **DESIGN SELECTION** – examine the various alternatives and select the best possible alternative and proceed with the design. Solution must be effective, environmentally sound and economical.

Gradient Restoration Facility

• Raise Riverbed with GRF
River Realignment

• Construct Bio-engineering Bankline

Habitat Improvement

• Sediment Storage Upstream from GRF
• Low Velocity Overbank Flows
• Planting and Natural Reseeding of Native Vegetation

Stream Restoration Guidelines

9. **CONSTRUCTION** – Carefully plan the construction and consider the possible impact of possible extreme events during the construction period.

10. **MONITORING** – Things may not work as planned. A post-construction analysis and monitoring should be carried out until the objectives have been met.
Post-Runoff Assessment

- More Gravel than Anticipated
- Mean Bed Elevation 2 ft Higher than Anticipated
- Pilot Channel 50-100 ft Narrower than Desired

Effects on Bio-engineering

- Most Willows in Fabric Encapsulated Soil (FES) Completely Submerged
- Sections of Bio-engineering Covered in Sediment

Rio Grande Conclusions

- Thoroughly study river mechanics and apply finding to the design process.
- Understand the evolution of the project and consider intermediate conditions.
- Be Flexible…Apply adaptive management techniques.
Stream Restoration Guidelines

1. Clearly define the **OBJECTIVES**
2. **PAST**, Present and **FUTURE**
3. Look at the **UPPER WATERSHED**
4. Look **DOWNSTREAM** for degradation
5. **EQUILIBRIUM** Hydraulic Geometry
6. Appropriate **AQUATIC HABITAT**
7. Examine various design **ALTERNATIVES**
8. **DESIGN** must be Effective, Environmentally sound and Economical
9. Plan **CONSTRUCTION** for the unexpected
10. Post-construction **MONITORING**

pierre@engr.colostate.edu

THANK YOU for your Attention!