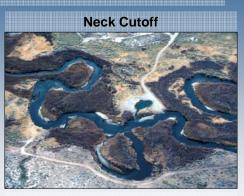

Restoration of Abandoned Channels

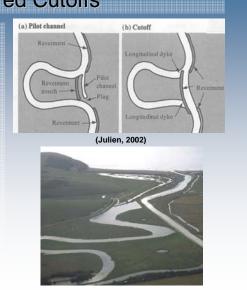
Prepared for KICT, South Korea

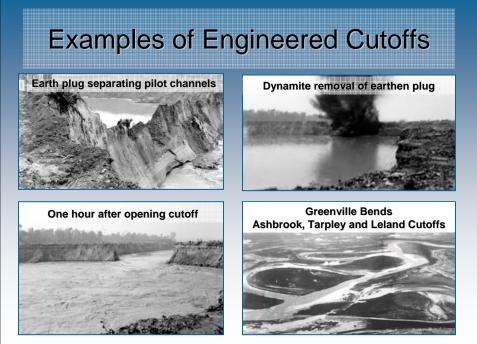
by Pierre Y. Julien, Ph.D. Seema C. Shah-Fairbank Jaehoon Kim

Colorado State University April 2008



Examples of Natural Cutoffs


Williams River, AK (Photo by N.D. Smith)



Owens River, CA (Photo by Marli Bryant Miller

Abandoned Channel Processes -Engineered Cutoffs

- Designed for Navigation and/or Flood Control
- Protect river path by constructing revetment upstream and downstream of outer side of meander
- Excavate small trench and build revetment on inside at meander neck
- Excavate pilot channel at meander neck from downstream to near upstream (1V:3H Side Slope, 15 to 60 m bottom width, 2 to 4 m below low-water reference plane)

http://www.mvd.usace.army.mil/mrc/Upon_There_Shoulders/Chapter12.htm

Abandoned Channel Restoration Analysis of Key Factors

Problems

Effect

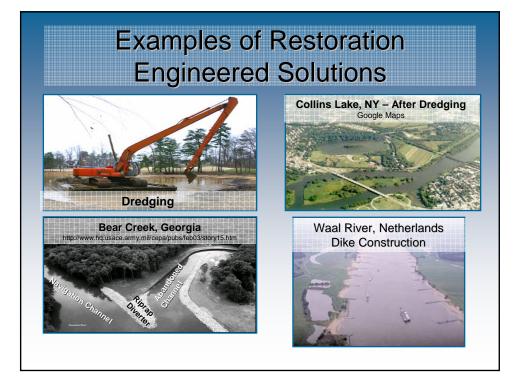
- Contaminated Runoff from Non-Point Sources
 - Turbidity
 - Sediment
 - Nitrogen
 - Phosphorous
 - Dissolved Oxygen
- Reduction in Water Level
 - Dewatering
 - Lack of Connectivity to main channel

Loss of Aquatic Habitat Fish Kill

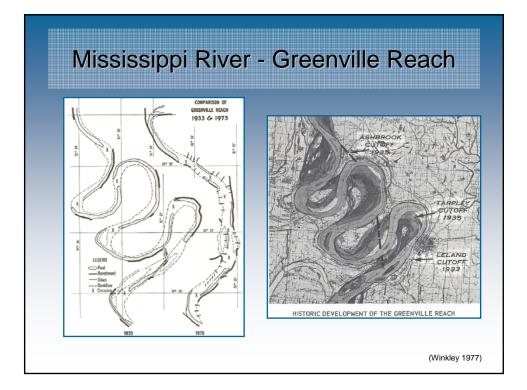
- Reduction in Recreational Value
- Hypoxic Conditions with Lake

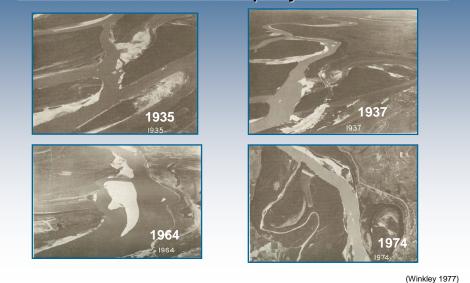

Abandoned Channel Restoration Classification

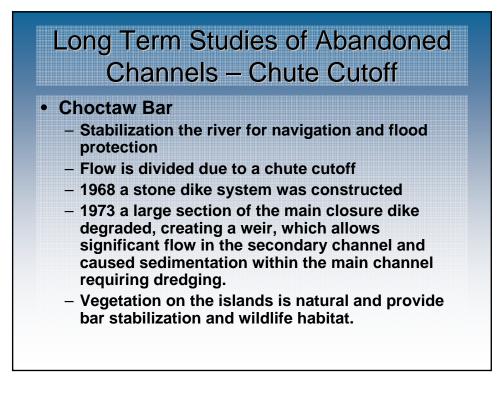
	Type of Restoration	Benefits		
Wetlands	Riparian Wetlands	Improved Water Quality, Enhance Wildlife Habitat		
	Agronomics	Reduced Sediment, Nitrogen and Phosphorous		
Å,	Edge-of Field Practices	Reduced Sediment		
BMPs	Stream Buffer Strips	Reduced Sediment, Nitrogen and Phosphorous		
	Bank Stabilization	Reduced Sediment		
Solution	Weir Construction	Increase flow interaction, improve water quality, navigation		
	Dam and gate	Increase flow interaction and improve water quality		
ed	Pump to divert flow out of lake	Improve Water quality		
Engineered	Dredging	Remove organics, nutrient rich sediment and deepen lake		
ů.	Adding Water from Power Plant	Increase flow depth		
ш	Riparian Buffer	Prevent channel migration		

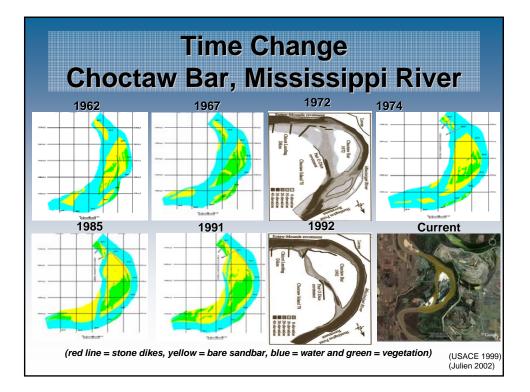

Best Management Practices Analysis and Evaluation Examples

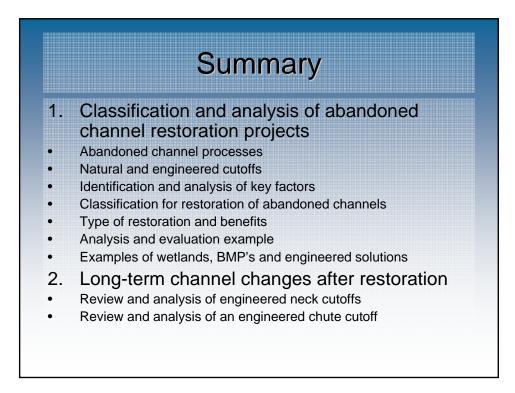
- Mississippi River
 - Beasley (Edge of Field)
 - Deep Hollow (Edge of Field and Agronomics)
 - Thighman (Agronomics)


	Beasley		Deep Hollow		Thighman	
Parameters	Pre BMP	Post BMP	Pre BMP	Post BMP	Pre BMP	Post BMP
Secchi (cm)	14	17	12	25	11	15
Total Solids (mg/L)	482	265	351	143	505	334
Suspended Solids (mg/L)	429	202	289	70	405	169
Dissolved Solids (mg/L)	58	65	52	75	115	166
Nitrate (mg/L)	0.534	0.553	0.393	0.387	1.157	0.85
Ammonium-Nitrogen (mg/L)	0.123	0.139	0.189	0.116	0.168	0.224
Total Phosphorous (mg/L)	0.496	0.344	0.522	0.233	0.437	0.299
Ortho Phosphorous (mg/L)	0.032	0.049	0.019	0.046	0.018	0.044
Chlorophyll (μ/L)	16.6	118.9	24.4	61	9.9	72.2






C		nels	S -	Engi			ndoned Sutoff	
Location	Construction Date	Cutoff Length	Bend Length	Change in Slope	Initial Dimensions		Post Construction Activity	
Ashbrook Cutoff	Aug-35	4,530 ft	13.3 miles	15.5 Times Steeper	13 feet to 23 feet below low water		River Widened causing formation of bars which required dredging	
Tarpley Cutoff	Jan-35	13,000 ft	12.2 miles	5 Time Steeper	Cutting occurred from the downstream to upstream initially. The width was from 250 to 300 feet. The flow depth was 15 feet below low water level.		Soil was sandy and resulted in the development of bars which caused the river tendency to be braided. Dredging was needed for many years.	
Leland Cutoff	Jul-33	4,600 ft	11.2 miles	13 Times Steeper	Not Available		Dredging due to braiding of river and excessive sediment transported by the upstream cutoffs.	
	Co	nstructi	on Requ	uirements to	Maintain N	Navigation		
							1934-1974	
Number of times crossings were dredge to maintain navigation						0	135	
Length of revetment to hold channels Length of dikes in reach						76,350 ft 3,377 ft	137,050 ft 61,596 ft	
Length of river from upstream end of construction to lower end						51 miles	24 miles	



Mississippi River Leland and Tarpley Cutoffs

