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I. INTRODUCTION 

Sheet flow is classified as "wide" open channel flow because 

channel walls do not affect the flow pattern. Wide open channel flow 

exists when the ratio of channel width to flow depth is larger than 10 

(Chow, 1959). The hydraulic properties of sheet flows depend on the 

relative magnitude of inertia and viscous forces. The ratio of these 

two forces defines the Reynolds number, Re. For wide open channels the 

Reynolds number is equal to the ratio of the volumetric flow rate (unit 

discharge) to the kinematic viscosity of water. Laminar flow conditions 

prevail when Re < 500 for smooth surfaces. The corresponding unit 

2 discharge must be less than about 5 cm /s for the usual range of water 

temperatures. In laminar sheet flows the viscous forces damp the veloc- 

ity fluctuations and the motion of fluid particles follow smooth paths. 

In turbulent flow (Re > 2000 for smooth surfaces) inertia forces 

overcome the friction forces and fluid particles move erratically, 

transferring mass and momentum between adjacent flow regions. 

Under both laminar and turbulent conditions sheet flows can be 

unstable such that an initially small perturbation of the water surface 

amplifies with time and with distance downstream until a well-defined 

wave pattern is observed. These amplified perturbations are called roll 

waves. 

Previous treatments of the formation of roll waves in laminar sheet 

flows were mainly confined to the definition of necessary conditions for 

the occurrence of surface instability. It became apparent with theore- 

tical derivation for turbulent flow (Montuori, 1963 and Liggett, 1975) 

that conditions based on the Froude number are not sufficient since the 

length required for the formation of roll waves is not considered. In 



this study, previous theories relating to this distance are modified in 

the light of laminar sheet flow characteristics. An experimental study 

was conducted in order to verify the results of the theoretical 

analysis. 

The characteristics of steady, uniform sheet flows are first 

described in Chapter 11, followed by a theoretical analysis of free 

surface instability. Chapter 111 presents the results of the experi- 

mental study performed in the Hydraulics Laboratory of the Engineering 

Research Center at Colorado State University. 



11. THEORY ON THE STABILITY OF LAMINAR SHEET FLOW 

The analysis of the free surface stability of laminar sheet flows 

assumes that steady uniform flow conditions exist prior to the occur- 

rence of a small perturbation of the water surface. This chapter dis- 

cusses the characteristics of laminar, steady uniform sheet flow, and 

the criteria which have been used to determine its stability. 

Expressions for the length of roll wave formation are derived. 

2.1 Steady uniform laminar sheet flow characteristics 

The principal variables describing laminar, steady uniform sheet 
- 

flows are: the slope S, the flow depth h, the mean velocity u, the 

unit discharge q, the gravitational acceleration g, and the kinematic 

viscosity V. Two nonlinear partial differential equations were derived 

by Saint-Venant to describe gradually varied unsteady flows. These are 

respectively the continuity and the momentum relationships. For steady 

uniform sheet flows, the continuity equation can be written as: 
- 

q = u h  . (1) 

The momentum equation reduces to the so-called kinematic wave approxima- 

tion for which the bed slope S is equal to the friction slope Sf. 

The friction slope in the laminar region is defined as follows from the 

Darcy-Weisbach equation (in Chow, 1969): 

in which K is the friction coefficient. After combining Eqs. 1 and 2, 

the mean velocity and flow depth are: 



These relationships are valid for uniform or gradually varied 

laminar sheet flows only. The distribution of velocity u at a 

distance y from the water surface is expressed by the following 

relationship (see Chow, 1959): 

This velocity profile decreases parabolically from a maximum of 1.5 

times the mean velocity at the free surface to zero at the boundary. 

2.2 Critical Froude number and Vedernikov criteria 

In deriving a fundamental stability criteria for the water surface, 

several approaches were used by different researchers. Early investiga- 

tions by Thomas (1939) and Stoker (1957) suggested that the flow is 

unstable when S > 4g/c2 in which C is the Ch&y coefficient. The fore- 

most criterion for instability published in the Russian literature was 

derived by Vedernikov (1945,1946). For laminar flows, the Vedernikov 

number Ve can be written as: 

in which R is the hydraulic radius; P is the wetted perimeter; and A is 
h 

the cross-sectional area. The Froude number F equals the ratio ;/a 
which represents the ratio of inertia to gravity forces. For an infin- 

itely wide channel, the Vedernikov number is equal to twice the Froude 

number and the flow becomes unstable when the Froude number exceeds 0.5 

(Ve > 1). This critical Froude number was also reported by Robertson 

and Rouse (1941) and Powell (1948). Mayer (1961) observed roll waves in 



subcritical laminar sheet flows but mistakenly concluded that roll waves 

can form only when the slope is larger than 3 percent. Yih (1954, 

1963,1977) and Benjamin (1957) solved the problem of stability of sheet 

flows down an inclined plane using the Orr-Sommerfeld equation. For 

very long waves the flow is unstable when: 

in which Re is the Reynolds number. 

This criterion was also suggested by Taylor and Kennedy (1961). If 

Eq. 2 is substituted into Eq. 7 and a K value of 24 corresponding to a 

smooth channel is assumed, a critical Froude number of Fc = 0.53 

results which is close to the Vedernikov criteria for wide rectangular 

channels. Ishihara et al. (1961) also suggested the critial value Fc = 

0.577. 

Unfortunately, these criteria based on the Froude number ignore the 

distance along the channel required for the formation of roll waves. 

This factor becomes extremely important for subcritical sheet flows 

since previous studies for turbulent flows (Montuori, 1963) demonstrate 

that the distance at which the waves are fully developed increases to 

infinity as the Froude number approaches the critical value. 

2.3 Distance required for the formation of roll waves 

When the flow is unstable (Ve > 1) a minor perturbation of the 

water surface will induce the formation of small waves. The amplitude 

of these waves will increase gradually as they move downstream until a 

bore is formed and the wave breaks. The distance travelled between the 

point at which the perturbation is initiated and the breaking point of 

the wave defines the distance required for the formation of roll waves. 



This distance, tc, is determined theoretically from the following 

procedure using the celerity of roll waves. 

2.3.1 Celerity of roll waves 

The total celerity, c, of a small gravity wave moving in a fluid 

with a uniform velocity distribution along the vertical is: 

In the more general case of a nonuniform vertical velocity 

distribution, the celerity can be theoretically derived from the momen- 

tum equation. After the momentum correction factor, 
Pm, 

is used instead 

of an empirical coefficient, the equation for celerity suggested by 

Arsenishvili (1965) becomes: 

in which c is the celerity of the wave relative to the mean velocity 
0 - 

u; and 

When Bm=l, Eq. 9 reduces to Eq. 8. For sheet flows, however, the 

momentum correction factor Pm = 1.2 is obtained from Eqs. 5 and 10. 

The ratio of celerities c/&6 is: 

Equations 9 and 11 are used to compute the celerity of roll waves. 

2.3.2 Perturbation analysis 

The following perturbation analysis of the shallow water equation 

has been used by Liggett (1975) to determine the distance tc. As 

- 
viewed from a fixed coordinate system the constant u + c defines the 

0 

propagation speed of the wave. The flow appears to be steady to an 



observer moving downstream with the speed of the wave. In the 

derivation, the space and time coordinates x and t are replaced by 

= x and q, defined by: 

in which is the position relative to a fixed observer of a point on 

the wave while q defines its position relative to the moving coordi- 

nate system. This coordinate transformation allows the conservation of 

mass and momentum for a prismatic channel without lateral inflow to be 

written as follows (Dracos and Glenne, 1967): 

ah, ah, - a;, a;, 
- - ) = O  + iG~, (T - F )  + (T a3 B,(U+C~) arl 

and 
- a;, - a;, a;, ah, ahG 
(U+C~) + uG (c - -1 arl + g (c - TI = g(S-Sf,). (14) 

in which the subscript G designates gradually varied flow variables. 

A small perturbation of an initially steady uniform flow is then 
- 

considered. The perturbed variables h', u, B' and A' can be 

defined as follows: 

ah' 1 a2hl 2 h l = h + - q + - - -  
arl q + ... 

aQ2 

B ' = B +  aB' ah' m a r l  q + . . .  

aA' ah' A ' = A + - -  
aht an r l + .  

in which the perturbed variables are primed while the uniform flow 

variables remain unprimed. 



The truncated series are valid for small values of q and the 

solution is examined in the neighborhood of q=0. 

The perturbed friction slope, S;, can be approximated by 

- 
substituting h' and u' for the depth and velocity in Eq. 2. After 

considering only the first order terms of the series: 

Reducing Eq. 19 to a first-order approximation results in: 

The perturbed variables of Eqs. 15 through 18 and 20 replace the 

- 
gradually varied flow varibles hG, uG, BG, AG and S in Eqs. 13 and 

fG 

14 to describe fluid motion when a small perturbation is imposed. The 

terms of equivalent powers of q are set equal and after several 

elementary algebraic manipulations presented in Appendix I, the shallow 

water equations can be combined to give: 

a2h' ah' 2 ah' 
z $ ~ j -  B(-1 arl + I c - = ~  arl 

in which for rectangular channels (B  = B '  and - aB' - - O), the coefficients 
ah' 

$ and y are respectively: 

8 = 
3g 

c o '+2;co+gh 

The derivation presented in Appendix I improves the one given by 

Liggett (1975) since the wave celerity defined by Eq. 9 is not 



restricted to the relationship c = &h. The coefficients f3 and y are 
0 
- 

a function of the variables S, u, c h, F and g and Eqs. 22 and 23 
0' 

reduce to the coefficients proposed by Liggett for the particular case 

when c = m. 
0 

The solution of Eq. 21  is: 

ah' - - & 

arl BE + e" 
Y 

in which & is a constant of integration along the longitudinal distance 

E. The critical distance E at which the wave breaks is assumed to occur 
C 

when the water surface is vertical. Mathematically, this condition is 

obtained when the denominator of Eq. 24 is set equal to zero, or when: 

After combining Eqs. 22, 23 and 25, the distance Ec can be written 
as follows: 

C - 
0 in which, Y = 

and, 

c2~' c 
0 0 

@ = an (2 - - -) (28) 
u -2 i 

From Eq. 10, c /; can be written as a function of the Froude number 
0 

for a given value of p . Taking pm = 1.2 for laminar sheet flows, the m 

variables Y and @ from Eqs. 27 and 28 are dimensionless and unique 

functions of the Froude number as plotted in Fig. 1. For supercritical 

flows, W has a nearly constant value of 2.0  while @ increases 
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gradual ly  with t h e  Froude number. I t  can a l s o  be demonstrated t h a t  over 

S 
a  f a i r l y  wide range of s lopes  t h e  expression in(%) w i l l  be substan- 

S 
t i a l l y  cons tant .  I f  @ i s  small  compared t o  in(%) then  t h e  

following approximate r e l a t i o n s h i p  f o r  can be wr i t t en :  
C 

h  E E D -  
C S (29) 

i n  which D i s  equiva lent  t o  t h e  f a c t o r  i n  braces i n  E q .  26 and i s  

approximately cons tant .  Equations 25 and 29 r ep resen t  a l t e r n a t e  expres- 

s ions  f o r  eva lua t ing  E c ,  t h e  l a t t e r  expression being a  s impl i f i ed  

express ion  of t h e  former f o r  s u p e r c r i t i c a l  flows. The a b i l i t y  of 

Eqs. 25 and 29 t o  p r e d i c t  t h e  d i s t ance  Ec i s  evaluated with l abora to ry  

da ta  described i n  t h e  fol lowing s e c t i o n .  



111. EXPERIMENTAL INVESTIGATION OF ROLL WAVES 

Laboratory experiments were conducted in the Hydraulics Laboratory 

at the Engineering Research Center. The experiments determined laminar 

flow conditions which produced roll waves. Measured roll wave charac- 

teristics included the length required for their formation, wave 

frequency and wave celerity. 

3.1 Laboratory Equipment and Experimental Procedure 

A 0.21 m wide by 9.75 m long, rectangular flume constructed of 

plexiglass and supported by an aluminum I-beam was utilized for the 

experimental runs. A pump circulated water from a tailbox to the head 

end of the flume. The slope of the flume was adjusted with a screw 

jack. Discharge was controlled by a valve located on the discharge side 

of the pump. The range of flow conditions investigated were as follows: 

Unit Discharge 6.5x10-~ to 5 .5x10-~ m2/sec 

Channel Slope 1.5 to 4.0 percent 

Water Temperature 20.0 to 24.0°C 

Discharge was obtained using the volumetric method in which time and 

water volumes were measured with a stopwatch and a graduated cylinder. 

Channel slope was set using the screw jack and a slope scale which had 

been calibrated with a surveyor's level. Water temperature was measured 

using an electronic digital thermometer. Reynolds numbers were calcu- 

lated using the unit discharge and the viscosity obtained from water 

temperature. The theoretical value of the friction parameter, K, was 

verified by measuring the surface velocity, u of small buoyant sf 

particles (styrofoam and paper) under steady uniform sheet flow condi- 

tions. The friction factor, K, was calculated from measured us values 

using Eqs. 5 and 4: 



An average value of K = 25.7 was determined from the surface velocity 

measurements in the experimental flume. This result was considered 

sufficiently close to the theoretical value of K = 24 to justify its 

- 
use in calculating the uniform flow depth, h, and the mean velocity, u, 

from Eqs. 3 and 4. 

For each of the 31 main experimental runs the flow conditions were 

given sufficient time to reach equilibrium before discharge measurements 

were made. Roll waves were noted by visual inspection when a well- 

defined breaking wave front could be observed across the entire width of 

the flume. The length Ec, for roll wave formation was estimated with 

the aid of reference marks at 0.61 m (2 ft) intervals along the trans- 

parent side walls of the flume. Consecutive reference marks which 

bounded the point where roll waves could first be observed were noted. 

The distance from the upstream end of the flume to the midpoint between 

the two noted reference marks was used to define the distance for roll 

wave formation 
Ec. 

In addition to the formation length, roll wave period (frequency) 

and celerity were also measured. Wave period was determined by counting 

the number of flow surges over a given amount of time at the downstream 

end of the flume. Wave celerity was determined by timing the progress 

of 5 or more wave crests over a known distance and averaging the 

results. 

All the data collected in this experimental investigation are 

presented in Appendix 11. The main data base is composed of the first 

31 experimental runs while the additional data (runs 32-57) were 

collected during a preliminary investigation. 



3 .2  Data Summary 

A summary of the experimental data is presented in Table 1. The 

first 5 columns read as follows: slope, flow Reynolds number, wave 

celerity, wave period, and distance for roll wave formation. Wave 

celerity and period values represent the average of several measurements 

for each run. In Table 1, the parameters in columns 6 to 15 are calcu- 

lated from columns 1 to 5 and will be discussed in the following section 

dealing with the analysis of experimental data. 

3.3  Data analysis 

The velocity, flow depth and Froude number were computed from the 

measured slope and Reynolds number using Eqs. 2, 3 and 4. These three 

variables are shown in Table 1 in columns 6, 7 and 8. The first part of 

this analysis of experimental data is focused on the evaluation of the 

wavelength, period and celerity. 

3.3.1 Wavelength, period and celerity 

In this section three important characteristics of roll waves are 

discussed: the wavelength, the period and the wave celerity. The wave- 

length can be evaluated from the wave celerity and the period. The 

observed values of the ratio c/@ have been plotted against the 

Froude number on Fig. 2a. The agreement with the theoretical relation- 

ship (Eq. 11 with pm = 1.2)  is excellent. Equation 11 can also be 

- 
written as the ratio of the wave celerity to the mean flow velocity u. 

For unstable flows (F>0.5), the ratio c/; calculated from Eq. 31 

(p = 1 .2 )  decreases from 3.26 to a minimum of 1.69 as shown in Fig. 2b. 
m 



Table  1 .  Data Summary 
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Fig. 2. Dimensionless celerity as a function of Froude number. 



The measured wave periods T shown in Table 1 (column 4) were fairly 

constant with a mean value of ? = 1.41 seconds and a standard 

deviation of 0.20 seconds. 

The wavelength L can be approximated by taking the product of the 

celerity c and the mean wave period. The following relationship for 

the wavelength is obtained from Eq. 8 with bm = 1.2 and .E = 1.41: 

$--" L G c T = 1 . 6 9 u + 1 . 4 1  g h + O 2 4 u  (32) 

The wavelength can also be written in the following dimensionless 

form, L/;T. It is easily demonstrated from Eq. 31 with pm = 1.2 that 

the dimensionless wavelength varies with the Froude number as follows: 

This equation is more general than Eq. 32 since it depends on the 

wave period T as opposed to the mean value '? = 1.41 s used in Eq. 32. 

3.3.2 Critical distance for the formation of roll waves 

In Section 2.3.2, two equations were theoretically derived to 

define the critical distance Cc. Prediction of Ec from Eq. 25 

requires evaluation of the parameter, &, while Eq. 29, valid only for 

supercritical flows, requires the evaluation of the parameter D. In 

this section, both relationships are examined in the light of experi- 

mental data for laminar sheet flows. 

In Eq. 25, the distance Ec is a function of b, y, and &. The 

parameters 6 and y are computed from Eq. 22 and 23 and presented in 

Columns 9 and 10 in Table 1. The values of En & calculated from 

Eq. 25 using measured values of tc are presented in Column 12, 

Table 1. The values of an & range from -61 to -9.4 with a mean value 



of -25.7. As suggested by Montuori (1963) and Liggett (1975), the 

values of fin(*) or yEc were computed as shown in Table 1 (Col. 11). 
Y 

Measured values of Ec were converted to the dimensionless 

parameter @tc/i2 in column 13 of Table 1 and plotted against the 

Froude number in Fig. 3. This figure clearly defines a region where 

roll waves were observed (E > -35/y) and a region where roll waves 

were not completely developed (E < -5/y). Between these limits exists a 

zone of uncertainty defined by -35/y < Ec < -5/y. This figure can be 

used to estimate the distance for the formation of roll waves from the 

parameter y. The evaluation of y from Eq. 23 is possible provided 
- 

the variables S, u, co and F are known. 

If the flow is supercritical, the evaluation of Cc from Eq. 29 

involves only the flow depth, slope and the coefficient D. It was 

demonstrated in Section 2.3.2 that D is substantially constant if I$ 

is small compared to ln(S/3&). This condition is satisfied for the 

range of data in this experimental study. The values of D tabulated 

in column 14 (Table 1) were computed from the experimental values of 

Cc, S and h using Eq. 29. The mean value for D is 38.5 with a stan- 

dard deviation equal to 18.5. Equation 29 is therefore recommended to 

estimate for supercritical flows, when depth and slope are known. 
C 

The flow depth in Eq. 29 can also be replaced by a function of the 

slope and the Reynolds number from Eq. 4: 

KV 
2 113 

in which, E = D(-) 
8g 



These relationships indicate that for the same slope and Reynolds 

number, the constant E, and therefore the critical distance, cc> 

increases with increasing viscosity and surface roughness, K. The 

parameter E, has dimensions of length. Values of E from the 

experiments are tabulated in column 15 of Table 1. This parameter has a 

mean value of 2.67 mm and a coefficient of variation of 48 percent. 

Equation 34 is recommended for supercritical laminar sheet flows over 

smooth surfaces. It should be noted that the mean values of the coeffi- 

cients, D = 38.5 and E = 2.67 mm, apply to the range of conditions used 

in this experimental study. These values may not be applicable beyond 

this range. 
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Fig. 3. Dimensionless critical distance as a function of Froude number. 




































