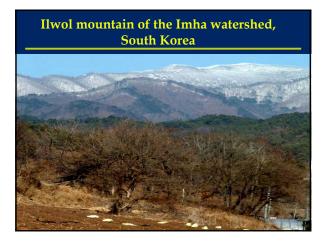
Watershed Processes and Modeling

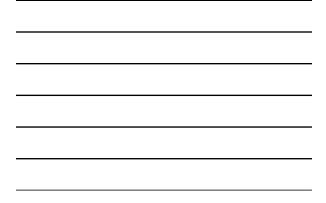
Pierre Y. Julien Hyeonsik Kim

Department of Civil Engineering Colorado State University Fort Collins, Colorado

Kuala Lumpur - May 2006

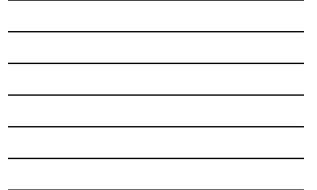
Objectives

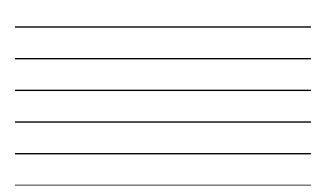

Brief overview of Watershed processes and Modeling :


- 1. Watershed Processes;
- 2. Watershed Modeling;
- 3. Sediment Delivery Ratio.

Upper Basin: high-elevation snowpack; snowmelt runoff

Diverse Topography: highest mountains in Colorado – Elbert, Massive, Harvard, etc.





Peligre Dam (sedimentation)

Imha reservoir

RUSLE

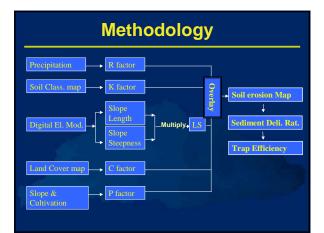
- Revised Universal Soil Loss Equation
- Widely used method for estimating soil erosion
- The original USLE is an empirical equation
 - 1. Derived from more than 10,000 plot years of data
 - 2. Natural runoff plots (72.6ft length, 9% slope)
- Originally developed for agricultural purpose.

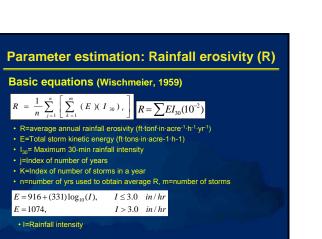
Main parameters

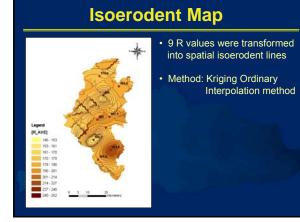
A = R K L S C P

- A is the computed average soil loss (tons/acre/year)
- R is the rainfall-runoff erosivity factor
- K is the soil erodibility factor
- L is the slope length factor
- S is the slope steepness factor
- C is the cover management factor
- P is the support practice factor

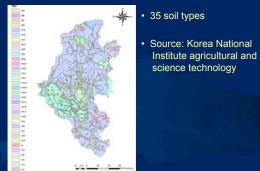
Imha Watershed, South Korea

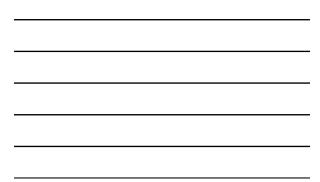


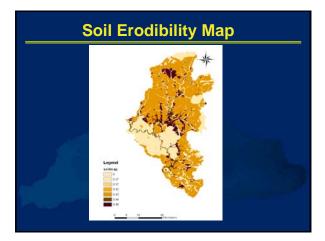

Watershed area: 1,361km²

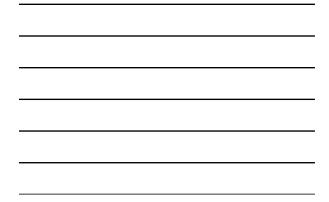

Channel length : 96 km

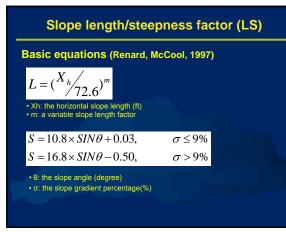
Average watershed slope: 40%

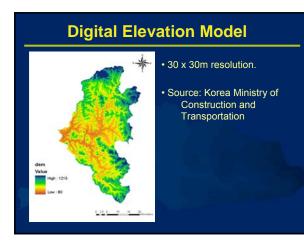

 Fast and high peak runoff characteristics

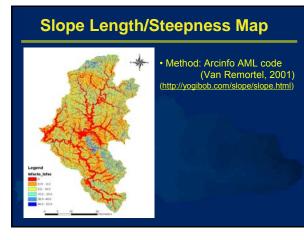

Soil Classification Map

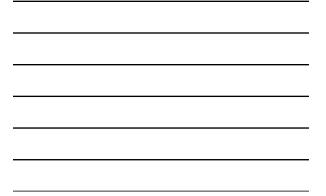


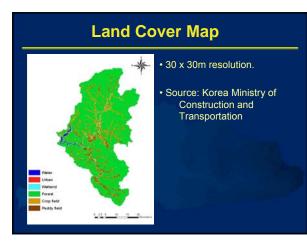

Soil Erodibility Factor (K)

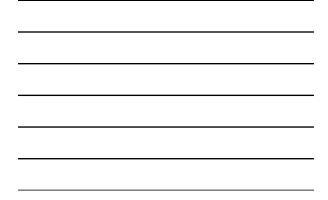

Applied soil erodibility factor (Schwab, 1981)


	Organic Matter Content (%)		
Textural Class	0.5	2	
Fine sand	0.16	0.14	
Very fine sand	0.42	0.36	
Loamy sand	0.12	0.10	
Loamy very fine sand	0.44	0.38	
Sandy loam	0.27	0.24	
Very fine sandy loam	0.47	0.41	
Silt loam	0.48	0.42	
Clay loam	0.28	0.25	
Silty clay loam	0.37	0.32	
Silty clay	0.25	0.23	



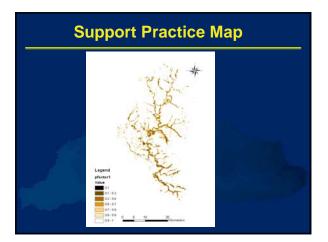


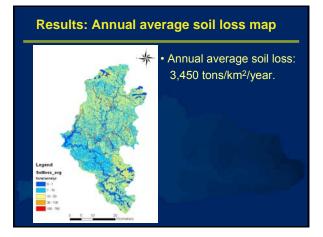


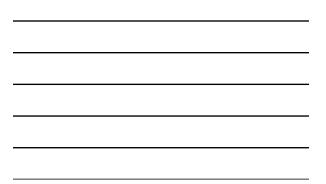


Cover Management Factor (C)

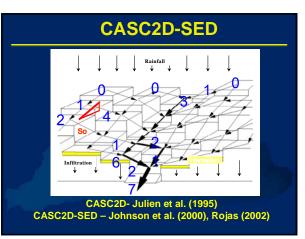
A	Applied cover management factor					
	Num	Land cover type	Cover Management Factor (C)	Applied method		
	1	Water	0.00			
	2	Urban	0.01	Urban density		
	3	Wetland	0.00			
	4	Forest	0.03	Trial and Error		
	5	Paddy field	0.06	Kim, 2002		
	6	Crop field	0.37	NIAST, 2003		


Support Practice Factor (P)


Applied support practice factor


• Cultivation method and slope (Shin, 1999)

Slope (%)	Contouring	Strip Cropping	Terracing
0.0 - 7.0	0.55	0.27	0.10
7.0 - 11.3	0.60	0.30	0.12
11.3 - 17.6	0.80	0.40	0.16
17.6 - 26.8	0.90	0.45	0.18
26.8 >	1.00	0.50	0.20
2010 P		0.00	0.20

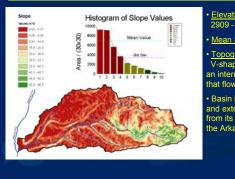


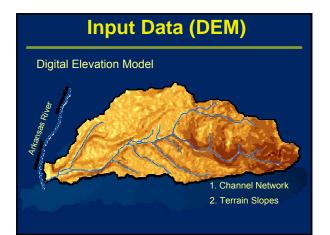
CASC2D-SED

- Water
 - 1. Rainfall
 - 2. Infiltration
 - 3. Overland and Channel Flow

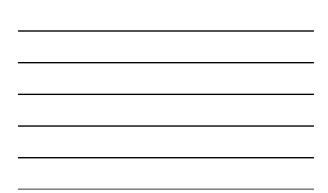
Sediment

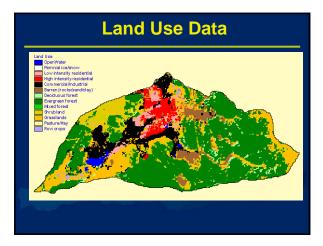
- 1. Upland Erosion and Deposition
- 2. Channel Processes
- 3. Sediment yield

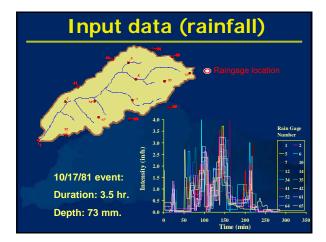


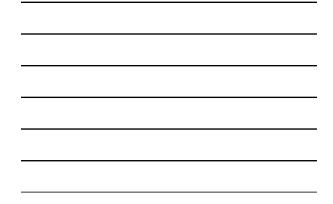


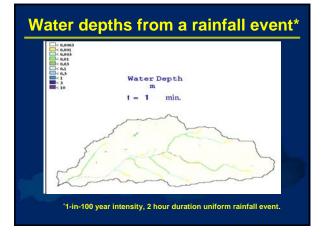
Physical characteristics of sites



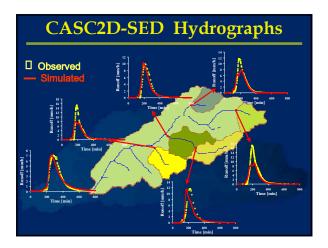

Elevation Range: 2909 - 3654 m Mean Slope: 12.6 % • <u>Topography:</u> V-shaped valley with an intermittent stream that flows to west. • Basin is 30.6 km² and extends 12.6 km from its headwaters to the Arkansas River.


I	np	out d	lata	(soil t	yp	e)		
Soil	Callov Fallay Grena Loring	a Ida 1	ير			10	10	
				(me				3
soil Parame	Memp Gullie	his		erent soil types:	7			3
Soll Parame Soil Type	Memp Gullie	bhis d land	Number of diff Infiltration Suction Head	erent soil types: Moisture Deficit	7 Sand	F7 Silu	Erosion	KUEL
Soil Type	Memp Gullie ters	his d land <i>P</i> <i>Hydr. Cond.</i> [cm/h]	Infiltration	Moisture Deficit [cm3/cm3]	[%]	Sile [%]		<u>к</u>
	Memp Gullie ters	his d land F Hydr. Cond.	Infiltration Suction Head	Moisture Deficit		Silt	Clay	1
Soil Type Calloway Fallaya	Memp Gullie ters Soil Index 1 2	his d land <i>Hydr. Cond.</i> [cm/h] 0.350 0.320	Infiltration Suction Head [cm] 22 14	Moisture Deficit [cm3/cm3] 0.34 0.34	[%] 0.25 0.25	Sile [%] 0.55 0.55	Clay [%] 0.20 0.20	0.4
Soil Type Calloway	Memp Gullie ters Soil Index	His d land Hydr. Cond. [cm/h] 0.350 0.320 0.370	Infiltration Suction Head [cm] 22 14 17	Moisture Deficit [cm3/cm3] 0.34 0.34 0.34	[%] 0.25 0.25 0.3	Sile [%] 0.55 0.55 0.6	Clay [%] 0.20 0.20 0.10	0.4
Soil Type Calloway Fallaya Grenada Loring	Memp Gullie ters Soil Index 1 2 3 4	his d land <i>Hydr. Cond.</i> (cm/h) 0.350 0.320 0.370 0.380	Infiltration Suction Head (cm) 22 14 17 22	Moisture Deficit [cm3/cm3] 0.34 0.34 0.34 0.34	[%] 0.25 0.25 0.3 0.25	Sile [%] 0.55 0.55 0.6 0.55	Clay [%] 0.20 0.20 0.10 0.20	0.4
Soil Type Calloway Fallaya Grenada Loring Collins	Memp Gullie ters Soil Index 1 2 3	his d land ////////////////////////////////////	Infiltration Suction Head [cm] 22 14 17 22 18	Moisture Deficit [cm3/cm3] 0.34 0.34 0.34 0.34 0.34 0.34	[%] 0.25 0.3 0.25 0.3	Sile [%] 0.55 0.55 0.6 0.55 0.6	Clay [%] 0.20 0.20 0.10 0.20 0.10	0.4 0.1 0.2 0.6 0.2
Soil Type Calloway Fallaya Grenada Loring	Memp Gullie ters Soil Index 1 2 3 4	his d land <i>Hydr. Cond.</i> (cm/h) 0.350 0.320 0.370 0.380	Infiltration Suction Head (cm) 22 14 17 22	Moisture Deficit [cm3/cm3] 0.34 0.34 0.34 0.34	[%] 0.25 0.25 0.3 0.25	Sile [%] 0.55 0.55 0.6 0.55	Clay [%] 0.20 0.20 0.10 0.20	0.4

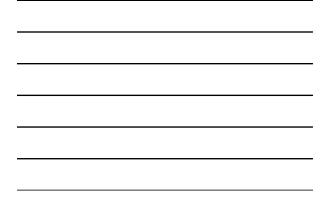


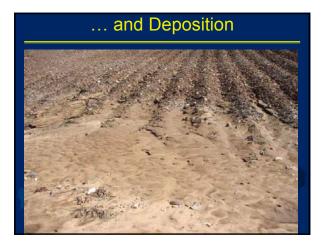


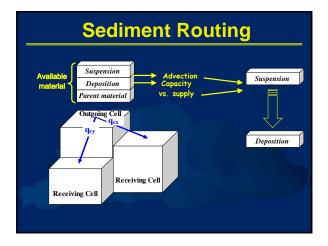
Land Use Forest Water Cultivated Pasture						
Land Use Parameters Number of different land use classes: 4						
Land Use Type	Land Use	Manning n	Interception	C USLE	P USLE	
	Index	[]	[mm]	[]	[]	
Forest	1	0.25	1.5	0.005	1	
Water	2	0.01	0	0	1	
Cultivated	3	0.1	0.8	0.1	1	
Pasture 4 0.2 1 0.09 1						



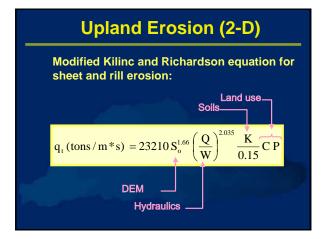


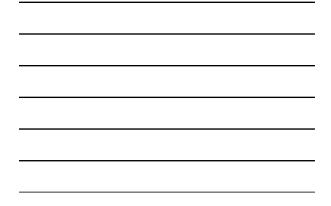


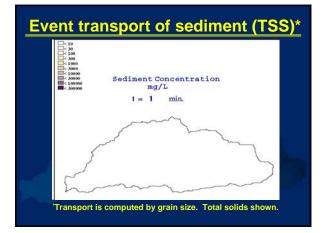


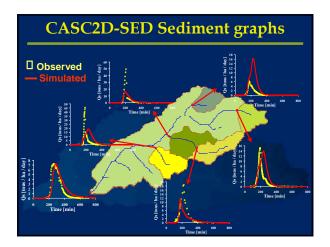


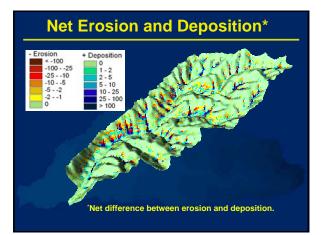


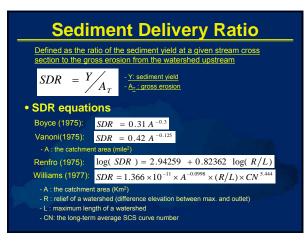


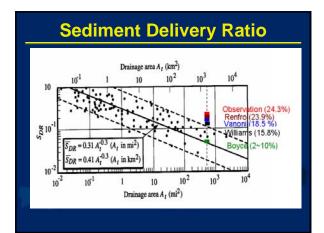












Trap Efficiency				
Defined as the percentage of the total inflowing sediment that is retained in the reservoir				
$TE = \frac{Y_s(in) - Y_s(out)}{Y_s(in)}$ - Ys (in) : sediment yield in inflow - Ys (out) : sediment yield in outflow				
TE equations				
Julien (1998): $TE = 1 - e^{\frac{-X \omega_{\perp}}{Vh}}$ - Vh = q (unit discharge)				
Brown (1943): $TE = 1 - \begin{bmatrix} \frac{1}{(1 + KC / W)} \end{bmatrix}$				
Brune (1953): $TE = 0.97^{-0.19} \log \left(\frac{c}{r}\right)$				
- K : coeffiecient k ranges from 0.046 to 1.0				
 - C : reservoir capacity (acre-ft) - W: watershed area (miles²), I : inflow rate (acre-ft/year) 				

Results of trap efficiency

Methods	Julien(1998)	Brown(1943)	Brune(1953)
TE (%)	99	96	98

• Results of TE range from 96 to 99% at the Imha reservoir.

• Considering the spillway discharge for flood season, TE of Imha reservoir might be around 95%

CASC2D-SED Web Page

At Colorado State University
 Under direction of Dr. Pierre Julien

pierre@engr.colostate.edu

Current manual, source code, example, MPEG movies

http://www.engr.colostate.edu/%7epierre/ce_old/ projects/casc2d-Rosalia/index.htm

Acknowledgments

Dr. Mark Velleux (CSU, now Hydroqual) Dr. John England (CSU, also US Bureau of Reclamation) Dr. Rosalia Rojas (formerly Colorado State University) Hyeon Sik Kim (KOWACO)

