Riverbank Protection

Pierre Y. Julien
Department of Civil Engineering
Colorado State University
Fort Collins, Colorado

Kuala Lumpur, May 2006

Objectives

Riverbank Protection

1. Riprap design guidelines
2. Examples of bank protection measures for small streams
3. Examples of bank protection measures for large rivers

Project Goals

- Protect Levee
- Create a Functioning Floodplain
- Improve Wildlife Habitat
Definition of Riprap

A permanent, erosion-resistant ground cover of large, loose, angular stone.

Design with the velocity method

Equation

\[V_t = K \cdot \sqrt{2(G - 1)gd_s} \]

K = \log \left(\frac{d_s}{\tan \theta} \right)

Determination of Riprap thickness: U.S Army Corps of Engineers

- 12 in. (30cm) for practical placement
- Less than the diameter of the upper limit of d100 stone
- Less than 1.5 times the diameter of upper limit d50 stone, whichever is greater.
- If riprap is placed under water, the thickness should be increased by 50%.
- If it is subject to attack by large floating debris or wave action it should be increased 6-12 in. (15~30 cm).
Gradation of Riprap

- Well graded riprap scours less than uniform size riprap due to the process of armoring.
- Suggested Riprap gradation from USACE is shown to the right.
- Riprap with poor gradation may be used, but a “filter” layer is required.

<table>
<thead>
<tr>
<th>Percent</th>
<th>Size diameter</th>
<th>Size diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0.23</td>
<td>0.29</td>
</tr>
<tr>
<td>10</td>
<td>0.39</td>
<td>0.45</td>
</tr>
<tr>
<td>20</td>
<td>0.65</td>
<td>0.72</td>
</tr>
<tr>
<td>50</td>
<td>1.00</td>
<td>1.10</td>
</tr>
<tr>
<td>60</td>
<td>1.10</td>
<td>1.14</td>
</tr>
<tr>
<td>80</td>
<td>1.30</td>
<td>1.30</td>
</tr>
<tr>
<td>90</td>
<td>1.60</td>
<td>1.70</td>
</tr>
<tr>
<td>100</td>
<td>3.00</td>
<td>1.90</td>
</tr>
</tbody>
</table>

Gravel Filters

- Gravel filters should not be less than 6-9 inches.
- \(\frac{d_{50} \text{(filter)}}{d_{50} \text{(bank)}} < 40 \)
- \(\frac{5}{d_{15} \text{(filter)}} < \frac{40}{d_{15} \text{(bank)}} \)
- \(\frac{d_{15} \text{(filter)}}{d_{85} \text{(bank)}} < 5 \)

Riprap Failure

- There are four main types of riprap failure: particle erosion, transitional slide, riprap slump, and sideslope failure.
- The four types of riprap failure are shown in the figure to the right.
- The most common failure type is particle erosion from flow.
Poorly Designed Riprap

- d_{15} of riprap is more than 5 times larger than d_{85} of bank material, no filter layer
- Riprap is pitted
- Riprap is not well graded
REQUIREMENTS OF BANK STABILIZATION

- Effective
- Environmentally Sound
- Economical

(Listed in order of necessity)
Acknowledgements

- Dr. Phil Combs (USACE-ERDC)
- Dr. Drew Baird (US Bureau of Reclamation)
- James Halgren (CSU)
- Will de Rosset (CSU and Ayres and Assoc.)
- Kyeong Seop Shin (CSU)
- Travis Rounsaville (CSU)

THANK YOU for your Attention!

pierre@engr.colostate.edu