Riverbank Protection Pierre Y. Julien Department of Civil Engineering Colorado State University Fort Collins, Colorado Kuala Lumpur, May 2006

Objectives

Riverbank Protection

- 1. Riprap design guidelines
- 2. Examples of bank protection measures for small streams
- 3. Examples of bank protection measures for large rivers

Determination of Riprap thickness: U.S Army Corps of Engineers

- 12 in. (30cm) for practical placement
- Less than the diameter of the upper limit of d100 stone
- Less than 1.5 times the diameter of upper limit d50 stone, whichever is greater.
- If riprap is placed under water, the thickness should be increased by 50%.
- If it is subject to attack by large floating debris or wave action it should be increased 6-12 in. (15-30 cm).

Gradation of Riprap

- Well graded riprap scours less than uniform size riprap due to the process of armoring
- Suggested Riprap gradation from USACE is shown to the right
- · Riprap with poor gradation may be used, but a "filter" layer is required

Percent finer by weight	Sieve diameter $(\times d_{50})$	Stone diameter (×d ₅₀)
0	0.25	
10	0.35	0.28
20	0.50	0.43
30	0.65	0.57
40	0.80	0.72
50	1.00	0.90
60	1.20	1.10
70	1.60	1.50
90	1.80	1.70
100	2.00	1.90

Gravel Filters

- 1/2 thickness of Riprap layer is a good guideline
- Suggested gravel filter gradation equations are shown to the right

• Gravel filters should not be less than 6-9 inches
$$\frac{d_{50}(filter)}{d_{50}(bank)} < 40$$

$$5 < \frac{d_{15}(filter)}{d_{15}(bank)} < 40$$

$$\frac{d_{15}(filter)}{d_{85}(bank)} < 5$$

$$\frac{d_{15}(filter)}{d_{05}(bank)} < 5$$

Riprap Failure

- There are four main types of riprap failure: particle erosion, transitional slide, riprap slump, and sideslope failure.
- The four types of riprap failure are shown in the figure to the right.
- The most common failure type is particle erosion from flow

Poorly Designed Riprap • d₁₅ of riprap is more than 5 times larger than d₈₅ of bank material, no filter layer • Riprap is piled • Riprap is not well graded

REQUIREMENTS OF BANK STABILIZATION • Effective • Environmentally Sound • Economical (Listed in order of necessity)

Acknowledgements

- Dr. Phil Combs (USACE-ERDC)
- Dr. Drew Baird (US Bureau of Reclamation)
- James Halgren (CSU)
- Will de Rosset (CSU and Ayres and Assoc.)
- Kyeong Seop Shin (CSU)
- Travis Rounsaville (CSU)

pierre@engr.colostate.edu

THANK YOU for your Attention!