Process Linkage Report Update

CSU/UNM/ASIR Meeting

March 23, 2020

Tori Beckwith, Caitlin Fogarty, and Dr. Pierre Julie

American Southwest Ichthyological Researchers, L.L.C

South Valley

Contents

- 1 Habitat Maps/Restoration Potential
- 2 Geomorphology
- 3 Habitat Curves and Time Integrated Habitat Metric
- 4 Conclusions
- **5** Future Recommendations/Limitations

From Isleta Diversion Dam to San Acacia Diversion Dam

Total length = 53.1 mi

Isleta:

ullet

• Sub-reaches 11-16

Rio Puerco:

Sub-reaches P1 – P5

Map Delineations

Sub-reach	Agg/Deg
11	657-700
l2a	700-760
l2b	760-815
l3a	815-875
I3b	875-920
l3c	920-964
14	964-1015
15	1015-1053
16	1053-1097
P1	1097-1126
P2	1126-1151
P3	1151-1182
P4	1182-1191
Р5	1191-1206

Contents

1

Habitat Maps/Restoration Potential

Hydraulic Modeling Methods

RAS Mapper (2012)

1-D modeling Years 1962, '72, '92, 2002,'12 Q = 0-5,000 cfs at 500 cfs increment + 6k, 8k and 10k cfs Velocity (cm/s) Depth (cm) Stage

Larvae	0-5	0-15
Juvenile	0-30	1-50
Adult	0-40	5-60

4 5. 3 5 3 5 7 2.5 0.5 2000 4000 6000 8000 10000 Discharge (cfs)

Stage	Velocity (cm/s)	Depth (cm)
Larvae	0-5	0-15
Juvenile	0-30	1-50
Adult	0-40	5-60

Juvenile

- Adult

Habitat Curves

12000

Habitat Maps (2012)

Overtopping Discharge

Rio Puerco

Isleta Sub-reach I1: agg/deg 657 – 700 Restoration Potential (Low, Medium, High?)

Sub-reach I2a: (agg/deg 700-760)

Restoration Potential (Low, Medium, High?)

Sub-reach I2b: (agg/deg 760-815)

Restoration Potential (Low, Medium, High?)

Sub-reach I3a: (agg/deg 815-875)

Restoration Potential (Low, Medium, High?)

Isleta Sub-reach I3b: agg/deg 875 – 920 Restoration Potential (Low, Medium, High?)

Isleta Sub-reach I3c: agg/deg 920 – 964 Restoration Potential (Low, Medium, High?)

Isleta Sub-reach I4: agg/deg 964 – 1015 Restoration Potential (Low, Medium, High?)

Isleta Subreach I5: (agg/deg 1015 - 1053) Restoration Potential (Low, Medium, High?)

Isleta Sub-reach I6: (agg/deg 1053 - 1097) Restoration Potential (Low, Medium, High?)

Rio Puerco Sub-reach P1: (agg/deg 1097-1126) Restoration Potential (Low, Medium, High?)

Rio Puerco Sub-reach P2: (agg/deg 1126 - 1151) Restoration Potential (Low, Medium, High?)

Rio Puerco Sub-reach P3: (agg/deg 1151-1182) Restoration Potential (Low, Medium, High?)

Rio Puerco Sub-reach P4: (agg/deg 1182-1191) Restoration Potential (Low, Medium, High?)

Rio Puerco Sub-reach P5: (agg/deg 1191- 1206) Restoration Potential (Low, Medium, High?)

Restoration Potential Assessment

Sub-reach	CSU's Prelim. Assessment	UNM/ASIR's Assessment!!!
11	High	
12	Medium-High	
13	Medium	
14	Low	
15	Low	
16	Medium	
P1	Medium	
Ρ2	Medium-High	
Р3	Low-Medium	
Ρ4	Low	
Р5	Low	

Contents

1

Habitat Maps/Restoration Potential

2 Geomorphology

M = Migrating

753

Larvae Juvenile Adult

Rio Puerco

1972: Agg/Deg 1133 (Rangeline 815)

1992: Agg/Deg 1133 (Rangeline 815)

2002: Agg/Deg 1133 (Rangeline 815)

Stage 1

Isleta	Geomorphic Stage Classification				
Subreach	1962	1972	1992	2002	2012
11	1	1	2	2	M5
12	1	1	2	3	M4
13	1	1	2	M7	M8
14	1	1	3	M5	M5
15	1	1	2	2	3
16	1	1	2	3	M4

Rio Puerco	Geomorphic Stage Classification				
Subreach	1962	1972	1992	2002	2012
P1	1	1	2	3	M4
P2	1	1	2	2	3
Р3	1	3	M4	M5	M5
P4	1	3	M4	M7	M8
P5	1	3	3	M4	M6

Typical Patterns

Contents

1

- Habitat Maps/Restoration Potential
- 2 Geomorphology
- 3 Habitat Curves and Time Integrated Habitat Metric

Habitat Curves From Width-Slice Method

- HEC-RAS steady flow analysis for years 1962, '72, '92, 2002, and 2012. Flow distribution data with 20 width-slices assigned to the floodplain and 5 slices to the channel in HEC-RAS.
- In excel, data for each cross-section is analyzed to determine how many slices meet the RGSM depth and velocity criteria for each life stage.
- A width of suitable habitat is obtained, multiplied by 500 ft (distance between agg/deg lines) and normalized based on the length of the reach.

Stage	Velocity (cm/s)	Depth (cm)
Larvae	0-5	0-15
Juvenile	0-30	1-50
Adult	0-40	5-60

Isleta and Rio Puerco Combined Habitat Curves

4.5 3.5 Habitat (Million ft²/mi) 2.5 1.5 0.5 Discharge (cfs)

Juvenile Habitat

Isleta and Rio Puerco Combined Habitat Curves

₩ 1962 ₩ 1972 ■ 1992 ■ 2002 ■ 2012

1962 1972 ■1992 ■2002 ■2012

Isleta and Rio Puerco Combined Habitat Curves

Adult Habitat

Temporal Interpolation of Flow-Habitat Curves

Time Integrated Habitat Metric (TIHM)

Macro calculates amount of habitat on that day

Rio Grande at Albuquerque Gage (08330000)

TIHM Results – Representative Sampling Months

TIHMs Results – Life Stage Over Entire Year

Fish Population Density

Contents

1

- Habitat Maps/Restoration Potentia
- 2 Geomorphology
- 3 Habitat Curves and Time Integrated Habitat Metric
- 4 Conclusions

Conclusions

- For all Isleta sub-reaches, earlier years (1962 and 1972) showed distinct geomorphic stage 1 patterns, while years 1992 - 2012 shifted to geomorphic stages 3 - M8. For Rio Puerco sub-reaches, we see earlier shifts in geomorphic stage than Isleta.
- Stages 1-3 tend to have "round" habitat curves while other stages tend to have "step" and 'hook" habitat curves above bankfull discharge.
- ▶ For RGSM habitat restoration potential, the best sub-reaches are I1-I3 and P1/P2.
 - These sub-reaches have disconnected areas close to the main channel that could be reconnected to increase habitat.
- ▶ The larvae TIHM seems to correlate well with the RGSM population density.

Contents

1

- Habitat Maps/Restoration Potential
- 2 Geomorphology
- 3 Habitat Curves and Time Integrated Habitat Metric
- 4 Conclusions
- **5** Future Recommendations/Limitations

Future Recommendations/Limitations

- For 1-D modeling, more LIDAR data will be needed (approximately every 10 years and same year as Agg-deg surveys) to map the RGSM habitat. This would better describe changes in habitat and restoration potential.
- Manning's n can significantly change velocity, and thus habitat results; therefore, accurate Manning's n on floodplains are desirable.
- > 2-D modeling is recommended for areas with better habitat restoration potential.
 - 1-D models do not account for flow distribution between cross-sections and do not always accurately predict the amount of water in the main channel vs floodplain (USBR, 2020).

Thank you!