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Probability Structure and Return Period of Multiday
Monsoon Rainfall

Nur S. Muhammad; Pierre Y. Julien, M.ASCE?; and Jose D. Salas, M.ASCE?

Abstract: The daily monsoon rainfall data recorded at Subang Airport, Malaysia, from 1960 to 2011 is examined in terms of probability
structure for the estimation of extreme daily rainfall precipitation during the Northeast (NE) and Southwest (SW) Malaysian monsoons. The
discrete autoregressive and moving average [DARMA(1,1)] model is preferable to the first-order Markov chain [DAR(1)] model. The condi-
tional probabilities of ¢ consecutive rainy days are time dependent. Nevertheless, a simple two-parameter gamma distribution appropriately
fits the frequency distribution of multiday rainfall amounts. An algorithm is developed by combining the DARMA(1,1) and gamma models to
estimate the return period of multiday rainfall. Extensive comparisons showed that the DARMA(1,1)-gamma model gives a reliable estimate
of the return period of rainfall for both NE and SW monsoons at Subang Airport. Furthermore, values generated from the models enable the
analysis of the frequency distribution of extreme rainfall events. DOI: 10.1061/(ASCE)HE.1943-5584.0001253. © 2015 American Society

of Civil Engineers.
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Introduction

The planning and design of water resources projects require the
analysis of reliable, long-term hydrological data such as rainfall
and streamflow. The stochastic point process was first introduced
by Todorovic (1968) and subsequently used by Todorovic and
Yevjevich (1969) and Eagleson (1978) for modeling short-term
rainfall. Kavvas and Delleur (1981) were successful in modeling
the sequence of daily rainfall in Indiana using the Neyman-Scott
(NS) cluster process. They assumed that a rainfall event occurs
in midday, to comply with the model order. Multiday rainfall events
were treated as a group instantaneous rainfall that occurs once a
day, with a 1-day interval. Rodriguez-Iturbe et al. (1987) tested
the performance of different types of point process models, i.e., the
Poisson and cluster-based models using hourly rainfall data from
Denver, Colorado. They concluded that the white-noise Poisson
model was unable to produce satisfactory results. Instead,
cluster-based models, namely the Neyman-Scott (NS) and
Bartlett-Lewis (BL) processes, are more flexible, reliable, and able
to represent the actual rainfall scenarios. Since then, other research-
ers have improved the NS and BL processes to model fine-scale
rainfall. Examples of the use of a modified BL. model can be found
in Rodriguez-Iturbe et al. (1988), Glasbey et al. (1995), Khaliq and
Cunnane (1996), Cowpertwait et al. (2007), and Verhoest et al.
(2010). In addition, Cowpertwait (1995), Cowpertwait et al.
(1996), and Burton et al. (2008, 2010) are studies that utilize
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the modified NS to model rainfall. However, Rodriguez-Iturbe et al.
(1988), Cowpertwait et al. (1996, 2007), and Burton et al. (2008)
show that the point-process models were unable to produce extreme
values with good accuracy. Furthermore, Obeysekera et al. (1987)
applied various types of point-process models for hourly rainfall
considering the diurnal cycle that is characteristic at certain
locations during some months of the year.

Low-order discrete autoregressive family models, such as the
discrete autoregressive [DAR(1)] and discrete autoregressive and
moving average [DARMA(1,1)] models, are frequently used for
simulating daily rainfall sequences. The DAR(1) model is also
equivalent to a first-order Markov chain model. This model as-
sumes that the probability of rain depends only on the current state
(wet or dry) and will not be influenced by its past behavior. Haan
etal. (1976), Katz (1977), Roldan and Woolhiser (1982), Small and
Morgan (1986), Jimoh and Webster (1996), Sharma (1996), Tan
and Sia (1997), and Wilks (1998) are among the studies that were
successful in modeling the sequence of rainy and dry days using
first-order Markov chains. Wilks (1998) used the first-order
Markov chain to simulate the occurrence of daily rainfall based
on data from 1951 to 1996 from 25 stations in New York State,
USA. The statistical properties such as the joint probabilities for
both rainy and dry days, mean monthly rainfall, and standard de-
viations of monthly rainfall indicate that the simulated rainfall data
reproduce the rainfall data statistics really well. It was concluded
that the model was successful in preserving the dependence nature
of daily rainfall at these stations. First-order Markov chains are sim-
ple and do not require a lot of computational effort. However,
Feyerherm and Bark (1965) found that first-order Markov chains
are unable to model the scenario of strong dry day persistence.
Similar findings were reported by Wallis and Griffiths (1995)
and Semenov et al. (1998). The order of a Markov chain may
be influenced by seasonal change and location (Chin 1977;
Cazacioc and Cipu 2005; Deni et al. 2009). Chin (1977) found that
the seasonal change has a significant impact in determining the
suitable order of a Markov chain in more than 200 stations located
throughout the USA. High-order Markov chains are suitable to
model the sequence of daily precipitation during winter at most
stations, and first-order Markov chains are appropriate for summer.
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The physical environmental causes and geography can influence
the order of Markov chains. Similar findings were reported by
Cazacioc and Cipu (2005) for the simulation of rainfall sequences
at several stations in Romania.

For tropical regions, a different approach was used by Deni
et al. (2009) in the analysis of Malaysian daily rainfall data based
on the Markov chain model. The objective of their study was to
find the optimum order of a Markov chain for daily rainfall during
the Northeast (NE) and Southwest (SW) monsoons using two dif-
ferent thresholds, i.e., 0.1 and 10.0 mm, where NE and SW are the
directions from which the monsoons are coming. The Akaike
information criteria (AIC) and Bayesian information criteria were
used to determine the appropriate order of the Markov chain mod-
els. The study used the available data from 18 rainfall stations
located in various parts of Peninsular Malaysia. They concluded
that the optimum order of a Markov chain varies with the location,
monsoon season, and the level of threshold. For example, the
occurrence of rainfall (threshold level 10.0 mm) for the NE
and SW monsoons at stations located in the northwestern and
eastern regions of Peninsular Malaysia can be represented using
a first-order Markov chain. Additionally, higher order Markov
chain models are suitable to represent rainfall occurrence,
especially during the NE monsoon, for both levels of threshold.
Other examples of the use of a high-order Markov chain to
simulate the rain and dry day sequence are reported by Mimikou
(1983), Dahale et al. (1994), Katz and Parlange (1998), and
Dastidar et al. (2010).

Even though higher order Markov chain models may be used to
overcome the lack of persistence of the simple Markov chain, more
parameters have to be used, which increases the model uncertainty
(Jacobs and Lewis 1983) and also makes the calculations more
complex. Jacobs and Lewis (1978) and Kedem (1980) discuss
the concept of the stationary DARMA model, which is intended
to be simpler for modeling stationary sequences of dependent
discrete random variables with specified marginal distribution
and correlation structure. Buishand (1977, 1978) modeled the
sequence of daily rainfall using DARMA(1,1) at several stations
in the Netherlands, Suriname, India, and Indonesia. Since
DARMA(1,1) is a stationary model, the data for each station were
divided into their respective seasons in order to consider the rainfall
seasonal variations. The results have shown that the DARMA(1,1)
model is successful in simulating the daily rainfall in tropical and
monsoon areas, where prolonged dry and wet seasons may occur.
The DARMA(1,1) model provides longer persistence than the
DAR(1) model does. Other studies that use the DARMA(1,1)
model to simulate sequences of daily rainfall include Chang et al.
(1982, 1984b, a), Delleur et al. (1989), and Cindri¢ (2006). In
addition, DARMA models have been applied for the analysis of
droughts (Chung and Salas 2000; Salas et al. 2005; Cancelliere
and Salas 2010). For example, Chung and Salas (2000) analyzed
the annual streamflow time series of the Niger River in Africa and
concluded that the drought occurrence can be successfully
simulated using the DARMA(1,1) model. The results showed long
periods of low flows (drought) and high flows, and the DARMA
(1,1) model was suitable for simulating streamflows with a longer
memory as compared to the DAR(1) model.

Return periods are useful in hydrology to measure the severity
of an event. Various definitions of return period have been reported
in the literature, such as first arrival time and interarrival time or
recurrence interval. These definitions give different values when
the events are dependent in time. However, for single and indepen-
dent events, the first arrival time and recurrence interval give the
same value (Ferndndez and Salas 1999a). Extensive theories
and applications on the return period definitions and serial
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dependence are discussed in Ferndndez and Salas (1999a, b).
Woodyer et al. (1972), Kite (1978), Lloyd (1970), Loaiciga and
Marino (1991), and Sen (1999) defined recurrence interval as
the average elapsed time between the occurrences of critical events,
such as earthquakes of high magnitude and extreme floods or
droughts. In addition, Vogel (1987) and Douglas et al. (2002) used
the return period as the average number of trials required to the first
occurrence of a critical event. This definition may be more useful in
relation to reservoir operation because knowing the first time that
the reservoir is at risk of failure is of greater interest than the aver-
age time between failures (Douglas et al. 2002). Furthermore, Goel
et al. (1998), Shiau and Shen (2001), Kim et al. (2003), Gonzélez
and Valdéz (2003), Salas et al. (2005), and Cancelliere and Salas
(2004, 2010) reported studies on the calculation of return period
and risk that include both the amount and duration of extreme
hydrological events.

This study concentrates on the occurrence of multiday rainfall
events in Malaysia. The country experiences two major seasons
classified as the Northeast (NE) and Southwest (SW) monsoons.
The NE monsoon typically occurs from November to March, while
the SW monsoon is from May to September. April and October are
known as intermonsoon months. Both monsoons bring lots of
moisture and as a result, Malaysia receives between 2,000 to
4,000 mm of rainfall with 150 to 200 rainy days annually (Suhaila
and Jemain 2007). One of the most devastating recent multiday
rainfall events resulted in the Kota Tinggi flood in December
2006 and January 2007. These two extreme monsoon events re-
sulted in more than 350 and 450 mm of cumulative rainfall in less
than a week. The estimated economic loss reached half a billion US
dollars and more than 100,000 local residents had to be evacuated
(Abu Bakar et al. 2007). Even though it is well known that multiday
events are the main cause of flooding in Malaysia, the topic has
received little attention from local researchers.

This paper discusses various aspects of Malaysian monsoons,
including the probability distribution and probability structure of
multiday monsoon rainfall events, the modeling and simulation
of daily rainfall sequences, the estimation of extreme rainfall quan-
tiles, and the estimation of the return period of multiday rainfall.
The occurrences of daily rainfall are characterized and simulated
using the discrete autoregressive and moving average [DARMA
(1,1)] model. These approaches were tested using the observed
daily rainfall measurements collected from Subang Airport near
Kuala Lumpur, Malaysia.

Summary of DAR(1) and DARMA(1,1) Models

This study uses the DAR(1) and DARMA(1,1) models to simulate
the occurrence of daily rainfall. The DAR(1) model is represented
as (Jacobs and Lewis 1978)

A=V A_ + (1 - Vt)Yt

) A,_; with probability A
with A, = . .. (1)
Y, with probability (1 — \)
where V, is an independent random variable taking values of 0 and
1 such that

P(V,=1)=A=1-P(V, =0) 2)

and A is a parameter. The variable Y, is another independent and
identically distributed (i.i.d.) random variable, with a common
probability 7, = P(Y, = k), k =0,1.

It should be noted that A, is a first-order Markov chain
and the process of simulation is assumed to start at A_
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(Buishand 1978). The autocorrelation function of the DAR(1)
model is (Jacobs and Lewis 1978)

corr(A, A,y) = ri(A) = X k> 1 (3)

where r; is the lag-k (days) autocorrelation function.

The autocorrelation function (r;) is estimated based on the se-
quences of dry and rainy days, i.e., 0 s and 1 s, and not the rainfall
amounts (Delleur et al. 1989) as

N —1
Iy = |: (o = %) (X4 — 3_5):| |:Z (x; — )_5)2:| (4)

=

—k

1 t=1

59
X=— Xy (5)
N t=1

where r; is the lag-k autocorrelation coefficient and N is the
sample size.

There are two parameters associated with the DAR(1) model,
i.e., my (or m;) and A. The parameter A may be estimated from
the lag-1 autocorrelation coefficient as given in Egs. (3) and (4).
The parameters 7, and 7 are based on the dry and wet run lengths
that are obtained from the observed daily rainfall data set. They are
estimated using Egs. (6) and (7) (Buishand 1978) as follows:

_ T
To+ T,

(6)

o

m =1-m (7)

where Ty = mean run length for dry days and 7', = mean run length
for wet days.

The one-step transitional probability, p(i,j) = P(A,; =
JlA; = i) is given by (Jacobs and Lewis 1978) as follows:

A+ (1= N, ifi =

p(l’f):{(l—A)wj, ifi # j i,j=0.1 (8
Eq. (8) can also be represented in terms of the transitional
probability matrix, as shown in Eq. (9)

A0 =N1, 1=N7
P_[(l—)\)wo ot (= ©)

The transitional probability matrix simplifies the calculation of
run length. The concept of run length is important, especially in mod-
eling the sequence of daily rainfall. The run length is defined as the
succession of events of the same kind, and it is bounded at the begin-
ning and the end by events of a different kind. For the DAR(1) model,
the probability distribution of wet and dry run lengths can be ob-
tained from Eqgs. (10) and (11) as derived by Chang et al. (1984b)

P(Ty =n) = p" (1, )[1 = p(1,1)] (10)

P(Ty = n) = p"'(0,0)[1 — p(0,0)] (11)
The DARMAC(1,1) model is represented as (Jacobs and Lewis
1978)

X, =UY + (1 - Uz)At—l
Y, with probability

with X, = { (12)
A,_, with probability(1 — )
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where U, is an independent random variable taking values of 0 or 1
only such that

PU,=1)=03=1-P(U,=0) (13)

Y, is another i.i.d. random variable having a common
probability m, = P(Y, = k), k = 0,1, and A, is an autoregressive
component given by

A — A,_; with probability A
"7 Y, with probability (1 — X)

The variable A, has the same probability distribution as Y, but is
independent of Y,. It should be noted that X, is not Markovian, but
(X,,A,) forms a first-order bivariate Markov chain.

The autocorrelation function of the DARMA(1,1) model is
(Buishand 1978)

corr(X,, X,_y) = rp(X) = A1, k>1 (14)

where ¢ = (1 — 3)(f+ A —2X0) (15)

The three parameters of the DARMA(1,1) model need to be
estimated, namely 7, or m, A, and 3. The parameters 7, or
may be estimated from Egs. (6) to (7). The estimation of A\ may
be determined by minimizing Eq. (16) using the Newton-Raphson
iteration techniques. Buishand (1978) suggested using the ratio of
the second to the first autocorrelation coefficients as an initial
estimate for )\, as shown in Eq. (17)

6N =) [re— e k21 (16)
k=1

~ }"2
== 17
; (17)
in which M is the total number of lags considered, ¢ can determined
from the lag-1 autocorrelation coefficient of the DARMA(1,1)
model, and 3 can be estimated from Eq. (18)

(18)

The probability distributions of the wet and dry run lengths
for the DARMA(1,1) model are well known in the literature
(e.g., Jacobs and Lewis 1978), see the Appendix for more details.

Probability Distribution and Return Period of Multiday
Rainfall Events

In this section, the probability distribution and return period for
multiday rainfall events are investigated considering that the
occurrence of daily rainfall is correlated. The return period of multi-
day rainfall events is based on the number of trials between two
successive occurrences of the same event. Multiday rainfall events
occur frequently during the NE and SW monsoons. Therefore, it is
appropriate to estimate the return period as the average time
(in days) between the occurrences of specific events. It may also
be referred to as the recurrence interval. The most important
parameters that hydrologists and water resources specialists are
concerned about when analyzing a multiday rainfall event are
the duration and the amount of cumulative rainfall. Hence, this
study considers both parameters in formulating the estimation of
the return period.
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Muhammad (2013) found that the two-parameter gamma func-
tion is most suitable for representing the rainfall amount distribu-
tion for specified durations at Subang Airport. The method of
moments is used to estimate the parameters and the formulas
can be found in Mood et al. (1974) or Yevjevich (1984). It should
be noted that (e.g., Mood et al. 1974) if two independent gamma
variables are added, for example, X = R; 4+ R, where both R; and
R, are gamma(a, (3), then X is also gamma(c, 23). Likewise, if you
add ¢ independent gamma(c, [3) variables then X = R+
R, + ... + R, is gamma(q, 13). The data analysis showed that
the two-parameter gamma distribution was best for describing
the distribution of 1-day and multiday rainfall events at Subang
Airport. The empirical representation of rainfall amount distribu-
tion in ¢ consecutive rainy days is given in Eq. (19)

1% oo (k) 0(ais)

where x = total amount of rainfall for 7 consecutive rainy days (mm)
and 7 = number of consecutive rainy days.

Thus, for a given rainfall duration, ¢, Eq. (19) enables one to
determine the probability of any rainfall event exceeding say x,. De-
noting such a probability as P(E|t), it may be determined as follows:

P(EJ) = / Fx)dx (20)

To determine the return period of rainfall events, E, of a given
duration, ¢, an approach used previously for determining the return
period of droughts (e.g., Cancelliere and Salas 2002; Gonziles and
Valdés 2003; Salas et al. 2005) were followed. It follows that the
return period of multiday rainfall events can be determined as

T, +T,
T— 1+ 1y
P(E|r)

(21)

where 7| = mean run length for wet days; T, = mean run length for
dry days; and P(E|r) = probability of a rainfall event given
by Eq. (20).

Results and Discussion

Probability Distribution of Daily Rainfall

The daily rainfall measurements at Subang Airport (3°7'1.20"N,
101°33'0.00"E) were used in this study. A long and reliable record
of 52 years for the period 1960 to 2011 was provided by the
Department of Meteorology, Malaysia.

Fig. 1 shows the cumulative distribution function (CDF) for
1-day and multiday rainfall at Subang Airport. The figure shows
that the two-parameter gamma distribution function given by
Eq. (19) fits reasonably well the historical CDF for 1 through 6 days
of rainfall duration. The CDF plot shows that for a single rainy day,
there is about 60% chance that the rainfall amount will be less than
10 mm, and there is a less than 5% chance that the rainfall amount
will exceed 50 mm. The multiday rainfall events resulted in a
significant amount of rainfall to the study area. The CDF plot also
shows that there is a nonnegligible probability that 2 and 3 consecu-
tive rainy days may produce more than 100 mm of rain. Further,
there is 50% of chance of 4, 5, and 6 consecutive rainy days
yielding more than 55, 65, and 85 mm of rainfall, respectively.
The probability of rainfall events with more than 100 mm of rain
increases as the number of consecutive rainy days increases. These
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Fig. 1. Cumulative distribution function of 1-day and multiday rainfall
events at Subang Airport

results illustrate the important need for a detailed analysis of both
duration and magnitude of multiday rainfall events.

Probability Structure of Rainfall Occurrence

When rain occurs on a given day, it is called a wet day while the
absence of rain on a given day is called a dry day. In this study, a
wet day is indicated for rainfall amounts of more than 0.1 mm,
while a dry day is assumed for amounts less than or equal to
0.1 mm. The threshold amount was determined based on the Von
Neumann (1941) ratio and a more detailed analysis is presented in
Muhammad (2013).

The analysis of the probability structure of rainfall events at
Subang Airport shows that more than 50% of the events observed
at the study site are rainy days. The estimated probability of rain on
any given day is 0.53. If day-to-day rainfall events were indepen-
dent, the probability of rain on any day would remain constant at
0.53 [shown by a triangle in Fig. 2(a)]. However, Fig. 2(a) shows
that the field rainfall measurements of the conditional probability
increases significantly as the number of consecutive rainy day in-
creases, i.e., from 0.53 for a single rainy day to about 0.80 for 15
consecutive rainy days. For example, the estimated conditional
probability of a fourth rainy day, given that it follows 3 consecutive
rainy days, is 0.68. This probability is far greater than the estimated
probability of the first day of rain, i.e., 0.53. The occurrence of rain
on a given day affects the probability of rain the following days.
Thus, the conditional probabilities estimated from the historical
data show that the events are dependent.

Likewise, Fig. 2(b) gives the estimated conditional probabilities
of n consecutive dry days at Subang Airport. The estimated
probability that any given day is dry is 0.47, which increases
significantly to 0.72 after 15 consecutive dry days. For example,
the estimated conditional probability for a second consecutive
dry day is 0.58, and the estimated probability for the third dry
day increases to 0.63. Thus, the probability structure of n consecu-
tive dry days is also dependent as is the case for rainy days. Table 1
gives the details of the frequency and the estimated conditional
probabilities of 1 to 15 consecutive wet and dry days.

Modeling the Occurrence of Daily Rainfall

In this study, the NE and SW monsoons are considered as the daily
rainfall recorded during the months of October to March and April
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Fig. 2. Plot of conditional probability of ¢ consecutive (a) wet days and
(b) dry days

to September, respectively. Separate analyses are conducted for NE
and SW monsoons. The sample mean wet (7) and dry (T,) run
lengths are estimated from the observed daily rainfall data set.
The results from the field measurements give T, = 3.00 days
(2.43 days) and T, = 2.19 days (2.58 days) for the NE (SW)

monsoon. The probabilities of a day being dry or wet were esti-
mated using Eq. (6) or Eq. (7), respectively. The analysis gives
m = 0.5781 (0.4851) and 7, = 0.4219(0.5149), respectively,
for the NE (SW) monsoons.

The A parameter of the DAR(1) model is calculated based on
Eqgs. (3) and (4). The estimated values for \ are 0.196 (0.192)
for NE (SW) monsoon. It can be observed that there are no signifi-
cant differences in the estimated values of \ for the two monsoon
seasons. For the DARMA(1,1) model, the parameter ) is estimated
based on the Newton-Raphson iteration techniques using Egs. (16)
and (17). Then, Eq. (18) was applied to estimate the parameter /3.
For the NE (SW) monsoon, the estimated model parameters for
DARMA(1,1) are A = 0.7339(0.7827) and 8= 0.5775(0.5789).

The autocorrelation functions (ACFs) for the DAR(1) and
DARMA(1,1) models are determined using Eqs. (3) and (14), re-
spectively. Figs. 3(a and b) show the comparisons between the ob-
served and theoretical ACFs of the DAR(1) and DARMA(1,1)
models for the NE and SW monsoon, respectively. The ACFs esti-
mated using the DAR(1) model decays to zero after day 2 and de-
parts from the sample autocorrelation. On the other hand, the fitted
DARMA(1,1) models” ACFs for NE (SW) monsoon decay slowly
and eventually reach zero at day 15. Thus, close agreement between
the observed and theoretical ACFs for the estimated DARMA(1,1)
model are shown for both monsoon seasons. This suggests that the
DARMA(1,1) model may be suitable for representing the occur-
rence of daily rainfall for any season at Subang Airport.

In addition, Chang et al. (1984b, a) suggested minimizing
the sum of squared errors between the observed and theoretical
probability distributions of wet and dry run lengths for further
assessing and comparing alternative models. The transitional
probabilities are used to calculate the probability distribution
function of wet and dry run lengths. The transitional probabilities
for the DAR(1) model during NE and SW monsoons are esti-
mated using Eq. (9) as [0.5352 0.4648} and [0.6079 0.3921}

’ 0.3392  0.6608 0.4161 0.5839 )"
respectively.

The probability distributions of wet and dry run lengths for the
DARMA(1,1) model were determined based on the transitional
probability matrices, Hy, and H;. The details are given in the
Appendix. The transitional probability matrices, H, and H,,
0.6012  0.06507

for the NE and SW monsoons are H, = 00648 01788 |°

Table 1. Frequencies and Estimated Conditional Probabilities of ¢+ Consecutive Wet and Dry Days

Wet Dry

t consecutive Estimated conditional t consecutive Estimated conditional
wet days Frequency probability dry days Frequency probability

1 10,092 0.53 1 8,901 0.47

2 6,366 0.63 2 5,174 0.58

3 4,226 0.66 3 3,236 0.63

4 2,875 0.68 4 2,148 0.66

5 2,009 0.70 5 1,455 0.68

6 1,432 0.71 6 1,006 0.69

7 1,050 0.73 7 700 0.70

8 778 0.74 8 485 0.69

9 582 0.75 9 335 0.69

10 444 0.76 10 236 0.71

11 345 0.78 11 161 0.68

12 266 0.77 12 117 0.73

13 207 0.78 13 85 0.73

14 162 0.78 14 61 0.72

15 129 0.80 15 44 0.72
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Fig. 3. Observed (dependent) and theoretical ACF for (a) NE mon-
soons; (b) SW monsoons

)

H, = [0.2450 0.0888}

0.0474 0.6548
H — [0.2198 0.0610
7 10.0471  0.6548
The analysis of run length distributions shows that the DARMA
(1,1) model is able to generate the probabilities with the least
amount of error, as compared to the DAR(1) model. For
example, during the NE (SW) monsoon, the theoretical probability
distribution for 2 consecutive wet days estimated for the DARMA
(1,1) is 0.197 (0.206), while the observed rainfall data give a
probability of 0.207 (0.218). On the other hand, the corresponding
probabilities for the DAR(1) model are 0.224 (0.243) for 2
consecutive wet days. Likewise, the sum of squared errors for
NE (SW) monsoons for the DARMA(1,1) model is 0.0015
(0.0021), as compared to 0.0091 (0.0079) for the DAR(1) model.
In addition, Fig. 4 gives the wet run length distributions during
NE monsoons for wet run lengths varying from 1 to 14 days.

and Hy = [0.6748 0.0444}

0.0648 0.2333

} , respectively.

Simulating Sequences of Daily Rainfall Using DARMA
(1,1) Models

Sequences of daily rainfall were generated separately for the NE
and SW monsoons. For each monsoon season, two simulations
were performed; simulation A consists of 100 samples of
9,600 days while simulation B consists of a very long sequence,
i.e. 1,000,000 days. The sample size of 9,600 days was chosen be-
cause this size is about the same as that of the observed data for
each monsoon. The main purpose of simulation A is to assess the
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Fig. 4. Probability distribution of wet run lengths for NE monsoons

variability of a number of statistics that are derived from the fitted
DARMA(1,1) model and to compare them to those of the historical
sample measured at Subang Airport.

Simulation B was conducted to estimate the population proper-
ties of the fitted DARMA(1,1) model, particularly those that cannot
be derived in analytical form. This analysis may also indicate
whether some statistics obtained from the limited historical sample
may show some evidence of departures or bias.

The statistics estimated in both simulations include the mean
and standard deviation of the amount of rainfall, maximum rainfall
in a day, lag-1 autocorrelation coefficient, and the maximum wet
and dry run lengths. The mean, standard deviation, and the
maximum daily rainfall were included to evaluate the statistics
of the generated rainfall amounts, while the lag-1 autocorrelation
and maximum wet and dry run lengths are used to evaluate the
statistics of the simulated sequences of the occurrence of daily
rainfall. Table 2 summarizes the statistics of the observed and
simulated daily rainfall events at Subang Airport during the NE
and SW monsoons.

Generally, the statistics of generated rainfall from simulation A
show good results for both monsoons. For NE monsoons, all
statistics derived from the observed data fall within two standard
deviations relative to the mean calculated from the simulated sam-
ples. The results are similar for SW monsoon except for the mean,
which falls within three standard deviations. The coefficient of
variation obtained from the generated samples are generally small,
i.e., on the order of 0.02 for the mean and standard deviation, 0.065
for the lag-1 correlations, and about 0.16 for the statistics related to
the maximums.

For the NE and SW monsoons, the results obtained from
simulation B regarding the mean, standard deviation, and lag-1
correlation are similar to those obtained from simulation A. The
maximum rainfall obtained from simulation B is about 70% higher
than that obtained from the historical sample for NE monsoon and
about 100% higher for SW monsoon. The higher results are ex-
pected because of the longer sample considered for simulation
B. Likewise, the maximum wet run length and the maximum
dry run length obtained from simulation B are higher than those
obtained from the historical data and the differences are more
noticeable for the SW monsoon.

Further verification was made by comparing the probabilities of
wet and dry run lengths obtained from the observed data and from
simulations A and B. Overall, the analyses show reasonable results.
For example, for the NE (SW) monsoon the estimated probabilities
for 5 consecutive rainy days derived from the observed data and
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Table 2. Statistics for Observed and Simulated Daily Rainfall during NE (SW) Monsoon

Observed data NE

Simulation A—Simulated daily
rainfall (based on 100 samples,

each 9,600 days) Simulation B—Simulated

daily rainfall (based on one

Statistics monsoon (SW monsoon) Mean Standard deviation sample of 1,000,000 days)
Mean (mm) 13.4 (12.0) 12.9 (12.9) 0.3 (0.3) 12.9 (12.9)
Standard deviation (mm) 17.6 (16.8) 17.2 (17.2) 0.4 (0.4) 17.3 (17.2)

Maximum rainfall in a day (mm) 171.5 (158.3)
Lag-1 correlation 0.196 (0.192)
Maximum wet run length (days) 31 (17)
Maximum dry run length (days) 21 (20)

178.9 (173.6)
0.179 (0.181)
24 (20) 4 (3) 34 (27)
16 (20) 33) 25 (28)

24.6 (26.4)
0.012 (0.011)

292.2 (325.1)
0.181 (0.180)

simulations A and B, respectively, are 0.0588 (0.0469), 0.0550
(0.0458), and 0.0519 (0.0434). Likewise, the estimated probabil-
ities for 7 consecutive dry days obtained from the observed data
and simulations A and B, respectively, are 0.0130 (0.0216),
0.0134 (0.0216), and 0.0135 (0.0209). In addition, Fig. 5(a) gives
the plot of wet probability distributions obtained from the observed
data and simulations A and B for NE monsoons and Fig. 5(b) show
results for dry run lengths. Therefore, the results obtained sug-
gest that the DARMA(1,1) model for representing the rainfall
occurrence and the two-parameter gamma model for representing
the distribution of the rainfall amount for a given rainfall duration
give reasonable results for simulating the sequences of daily rainfall
for the monsoons at Subang Airport.

1 ] ! 1 . 1
@ OBSERVED - NE MONSOON
A SIMULATION A - 9,600 DAYS
& SIMULATION B - 1,000,000 DAYS
*®
=
19
= 0.1 L
E 8
2 .4
5 -]
= 2
= .3
E 2
=]
S 001 4 2
a =
£
0.001
1 2 3 4 5 6 7 8 9 10 11 12 13 14
(a) Wet run length (days)
1 ' ' T ' f
i ® OBSERVED - NE MONSOON
A SIMULATION A - 9,600 DAYS
2 © SIMULATION B - 1,000,000 DAYS
0.1 ]
g 3
E} [}
=}
B #
2 P
S|
> 0.01 &
z 8
2 8
£ s
0.001 4 & X
0.0001
1 2 3 4 5 6 7 8 9 10 11 12 13 14
(b) Dry run length (days)

Fig. 5. Probability distribution of (a) wet run lengths for NE monsoons
generated from simulations A and B; (b) dry run lengths for NE
monsoons generated from simulations A and B
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Return Period Curves

Egs. (19)—(21) were used to calculate the theoretical return periods,
which were then compared with those obtained from the observed
data. The threshold amounts of rainfall, x, (in mm), considered for
this analysis are 1, 13, 30, 60, 90, 120, and 150. The smallest
amount of 1 mm is selected to represent the majority of rainfall
events and 13 mm is the average daily rainfall. The other amounts
are selected because they represent significant values of rainfall,
especially during multiday events. The return periods were
estimated separately for the NE and SW monsoons.

The observed return period, 7, was calculated for a given
duration, e.g. 2 days, for precipitation exceeding a specified
threshold, say x, (in mm). Empirical frequency analysis was made
using the Weibull (plotting position) formula and 7 = 1/ p, where
p is the exceeding probability.

The comparison of the estimated return periods for NE
monsoons is shown in Fig. 6(a). In general, the theoretical return
period curves obtained from the DARMA(1,1)-gamma model show
good agreement with those of the observed data. Fig. 6(a) shows
the complex behavior of the return period curves for various rainfall
durations and rainfall threshold amounts of the corresponding
events. For the smallest amounts, the return periods increase as
the rainfall durations increase (e.g., the estimated return periods
for multiday rainfall events for amounts >1 mm are higher as com-
pared to the 1-day event). It can be said that the 1-day events occur
more often as compared with 2 consecutive days or more. However,
for higher rainfall amounts (in mm), e.g, 30, 60, 90, 120, and 150,
the return periods decrease as the rainfall duration ¢ increases, reach
a minimum, then increase steadily after that. Similar patterns of
return period curves are shown in Fig. 6(b) for the case of SW
monsoons. Both Figs. 6(a and b) indicate that for the frequent
events where there are a large number of historical observations,
the return periods estimated from the fitted DARMA(1,1)-gamma
models (theoretical) correspond reasonably well with those
estimated from the observations. However, in those cases where
a very small number of observations are available because of
the rarity of the events (e.g., for large rainfall thresholds or large
rainfall durations) some significant departures may occur. In
addition, the comparison of Figs. 6(a and b) show that while the
return period patterns for the NE and SW monsoons are similar,
some differences can be noted particularly for rainfall events longer
than 4 days.

Extreme Rainfall Events

A sample of 1,000,000 days (more than 2,000 years) of daily
rainfall was generated to further verify the applicability of
Egs. (19)—(21) for estimating the return period. In this case, the
estimations were performed for significant rainfall threshold
values, 1.e. 50, 100, 150, 200, 250, 300, and 350 mm. Values in
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Fig. 6. Observed and theoretical return periods for (a) NE monsoons
and (b) SW monsoons

excess of 150 mm are considered to represent extreme to rare events
and can cause devastating floods on large watersheds.

Fig. 7 shows the comparison between calculated return periods
based on the generated sample and the theoretical equations
corresponding to NE monsoons. The 2,000-year rainfall was
generated using the fitted DARMA(1,1)-gamma models as de-
scribed earlier. Generally, the return period curves for most rainfall

100000000 ~
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Mo N, o >50 — >50

N N o >100 - >100

10000000 === == o >150 - >150
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Fig. 7. Return periods calculated from generated daily rainfall se-
quence (1,000,000 days) and theoretical equations for NE monsoons
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rainfall derived from the generated daily rainfall based on the fitted
DARMA(1,1)/gamma models

threshold amounts show excellent agreement, which further verifies
that Eqs. (19)—(21) are reliable to estimate the return periods for
multiday events. Some departures are noted for the very extreme
amounts, i.e. 300 and 350 mm, which is attributed to the variability
of the generated samples.

Furthermore, it was desired to illustrate the applicability of the
fitted DARMAC(1,1)-gamma models for obtaining via stochastic
rainfall generation the variability of the T-year rainfall quantiles,
i.e., the annual frequency distribution of the maximum daily rainfall
at Subang Airport. Fig. 8 shows the computed annual frequency
distribution of maximum daily rainfall obtained from the 52-year
historical records and from the 100 samples of 2,000 years of rain-
fall derived from the generated daily rainfall based on the fitted
DARMA(1,1)-gamma models. This result may be particularly use-
ful in cases of short records that may be available at a given site
where the occurrence of daily rainfall and the variability of rainfall
amount can be modeled using the procedures described in this pa-
per and the variability of the annual frequency distribution obtained
based on data generation.

Summary and Conclusions

The analysis of both the Northeast (NE) and Southwest (SW) mon-
soon rainfall precipitation events at Subang Airport in Malaysia
from 1960-2011 demonstrates the following:

1. The majority (57%) of rainfall events are multiday events;

2. The distribution of daily rainfall is well reproduced (Fig. 1)
with a gamma distribution. Likewise, the distribution of
multiday rainfall events is also well reproduced with a gamma
distribution. Considering the well-known properties of the
sum of independent gamma variables enables the derivation
of a simple two-parameter gamma distribution to fit the
distribution of daily and multiday rainfall;

3. As expected, the probability of rainfall occurrence (or nonoc-
currence) on a given day is not independent, but depends on
whether the previous day was dry or wet. The conditional
probabilities increase with the number of consecutive rainy
(or dry) days (Fig. 2);

4. The rainfall occurrence for both NE and SW monsoons at
Subang Airport can be well represented by the DARMA(1,1)
model. It reproduces reasonably well a number of key statistics,
such as the autocorrelation function (Fig. 3) and run lengths;
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5. A simple algorithm has been suggested for estimating the return
period for multiday rainfall events defined by combining the
DARMA(1,1) model and the gamma distribution. The resulting
DARMAC(1,1)-gamma model yields good agreement (Fig. 6)
between the return periods estimated from the observed histor-
ical sample and those estimated by the proposed method. As
expected, some departures occur in cases of rare rainfall ex-
tremes for which very few observations are available; and

6. The proposed DARMA(1,1)-gamma model also enables the
estimation of the variability in 7-year daily maximum rainfall,
which could be especially useful for the analysis of extreme
rainfall precipitation in areas with short historical records.

Appendix. Probability Distributions of the Wet and
Dry Run Lengths for DARMA(1,1) Model

The procedures to estimate the probability distributions of wet and
dry run lengths are given in this section.

The one-step transitional probabilities H(u, v) can be written
as (Jacobs and Lewis 1978)

Hi(u,v) = P(Xpp1 =k, Ay = v|X, =m, A, = u)
=P(Xi11 =k A =v[A = u)

where (X,,1,A,1) is independent of X, and u, v, k, and m are 0,1
values.
The transition probability matrices are

A(L=8) + [1 = A1 = B)]m (1—5)(1—>\)7ﬁ}
B(1 = Nmo BAT,
H (1.0) = [ BT, B(1 =N }
(I=8)1=Nm A1 =5)+[1=A(1 = B)|m

Lloyd and Salem (1979) introduced the use of label variable
W, =2X,+ A, to convert the first-order bivariate Markov chain
(X,,A,) into a four-state simple Markov chain. (X,,A,) can have
values of 0 or 1, so there are four possibilities for the value of
W,, i.e., {0,1,2,3}. Table 3 summarizes the W, values.

The value of 0 and 1 for W, corresponds to the state of 0 in X/,
which implies a dry day. In the same manner, a wet day is repre-
sented as 1 in X,, which gives the value of 2 and 3 for W,.

The transition probabilities are given as

Holw0) = |

pw(0.1) = P(X, = 0,A;; = 11X, = 0.4, = 0)
=P(X,11 =04, = 1|4, = 0) = H(0.1)
pw(0.2) = P(X;1; = LA, =0]X, = 0,4, =0)
=P(X;y1 =LA, =0JA, = 0)=H,(0,0)
pw(0.3) = P(X;11 = 1Ay = 11X, = 0.4, =0)
=P(X;;1 = LA, = 1A, =0)=H,(0,1)
pw(10) = P(X;41 = 0,44, =0]X, = 0,4, = 1)
=P(X;11 = 0.4, = 0[A, = 1)=H,(1.0)

Table 3. Four State Markov Chain, W,
Variable Value

Transition probability matrix, Q, of the univariate Markov chain

0 1 2 3
0 [Hy(0.,0) Hy0,1) H,(0,0) H,(0,1)
Q=1 |[Hy(1.0) Hy(l.1) H\(1,0) H(l1)
2 | Hy(0,0) Hy(0.1) H,(0,0) H,(0,1)
3 | Hy(1.0) Ho(1.1) H,(1,0) H,(1.1)

and its marginal distribution is

P[W; =0] = P(X,=0,4, = 0)
=P(X,=0,A, = 0|4, , = 0)P(A,_, = 0)
+P(X,=0,A, =0]A,_, =0)P(A,_; = 1)
= Hy(0,0)my + Ho(1,0)7,
PW;=1]=P(X,=0.A,=1)
=P(X,=0,A,=1]A,_, =0)P(A,_; =0)
+P(X,=0,A, = 1A, =1)P(A_, = 1)
= Hy(0,1)m + Hy(1,1)7

PW;=2]=P(X,=1,A,=0)
=PX,=1,A,=0|A,_, =0)P(A,_, =0)
+PX,=1,A,=0|A_, =1)P(A,_, =1)
= H,(0,0)my + H,(1,0)7,
PW,=3]=PX,=1,A,=1)

=P(X, =LA, =1A,_; =0)P(A,_, =0)
+PX =LA =1A_ =1)PA_ =1)
:HI(O,I)W0+H1(1,1)7F1

Probability distributions of wet and dry run lengths of
t consecutive days for the DARMA(1,1) model, denoted by
P(T, =1t) and P(T, = 1), respectively, can be calculated using
conditional probabilities, as given by Chang et al. (1984b)

P(T,=1)=P(X,=0X,=1,....X,=1,
X, =0/Xg=0,X, = 1);r=12, ...
P(Xo=0.X,=1,....X, = 1.X,,, = 0)
- P(Xo=0.X, =1)

Note that

= 0][H" (0)
— 1" (0)] + PW, = 1)[H" (1) — BV (1)}

P(XOZOXlzl X:1Xt+l:0):{P[W0

where H\"'(/) = H"(.0) + H{"(j.1);j = 0.1
Both H'"”(j.0)andH\" (j.1) are elements of the n step
transition probability matrix

1 1
P(O—OXl—lz ZHI
k=0 j=0

[ j ;Hl(l»j)wl}

X, 0 1 1
A 0 ! 0 ! where H{(j, k), H;(l,j) = elements of the n step transitional
W, 0 1 2 3 o ,

probability matrix
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P(Ty=1)=P(Xo=1,X,=0,....X, =0,
X =1Xo=1,X,=0)1=12, ...
CP(Xp=1,X,=0,....X,=0,X,,, = 1)
P(Xo=1.X,=0)
P(Xog=1X,=0,....X,=0,X,,; =1)

= {P[W, =2][H}" (0) — H{""(0)]
+ P[Wo = 3][H" (1) — HY (1)}
where H{" W =H{"(j.0) + H{"(j.1).j = 0,1
(

Both H{"(j.0)andH{"(j.1) are elements of the n step
transition probability matrix

1

> Hy(j. k) {wj - IZIO: Ho(l»j)ﬂl}

j=0

P(X(): l,Xl :0):

M_

k

Il
=}

where H(()”) (. k),H(()")(l, Jj) are elements of the n step transition
probability matrix.

Acknowledgments

This study has been carried out at Colorado State University during
the Ph.D. studies of the first author. Financial support for the first
author from the Ministry of Education, Malaysia and Universiti
Kebangsaan Malaysia is gratefully acknowledged.

References

Abu Bakar, S., Yusuf, M. F,, and Amly, W. S. (2007). “Johor almost par-
alysed (. . .).” (http://www.utusan.com.my/utusan/ info.asp?y=2007&
dt=0115&pub=Utusan_Malaysia&sec=Muka_Hadapan&pg=mh_01
.htm) (Feb. 11, 2013).

Buishand, T. A. (1977). Stochastic modelling of daily rainfall sequences,
Veenman & Zonen, Wageningen, the Netherlands.

Buishand, T. A. (1978). “The binary DARMA (1, 1) process as a model for
wet-dry sequences.” Technical Note, Agricultural Univ., Wageningen,
the Netherlands.

Burton, A., Fowler, H. J., Blenkinsop, S., and Kilsby, C. G. (2010). “Down-
scaling transient climate change using a Neyman-Scott rectangular
pulses stochastic rainfall model.” J. Hydrol., 381(1-2), 18-32.

Burton, A., Kilsby, C. G., Fowler, H. J., Cowpertwait, P. S. P., and
O’Conrnell, P. E. (2008). “RainSim: A spatial-temporal stochastic rain-
fall modelling system.” Environ. Modell. Software, 23(12), 1356-1369.

Cancelliere, A., and Salas, J. D. (2002). “Characterizing the recurrence of
hydrologic droughts.” AGU Fall Meeting San Francisco, American
Geophysical Union, Washington, DC.

Cancelliere, A. and Salas, J. D. (2004). “Drought length properties for
periodic-stochastic hydrologic data.” Water Resour. Res., 40(2), 1-13.

Cancelliere, A., and Salas, J. D. (2010). “Drought probabilities and return
period for annual streamflow series.” J. Hydrol., 391(1-2), 77-89.

Cazacioc, L., and Cipu, E. C. (2005). “Evaluation of the transition
probabilities for daily precipitation time series using a Markov chain
model.” Mathematics in Engineering and Numerical Physics, Proc.,
3rd Int. Colloquium, Balkan Society of Geometers, Geometry Balkan
Press, Bucharest, Romania, 82-92.

Chang, T. J., Kavvas, M. L., and Delleur, J. W. (1982). “Stochastic daily
precipitation modeling and daily streamflow transfer processes.” Tech-
nical Rep. No. 146, Purdue Univ. Water Resources Research Center,
West Latayette, IN.

Chang, T. J., Kavvas, M. L., and Delleur, J. W. (1984a). “Daily precipita-
tion modeling by discrete autoregressive moving average processes.”
Water Resour. Res., 20(5), 565-580.

© ASCE

04015048-10

Chang, T. J., Kavvas, M. L., and Delleur, J. W. (1984b). “Modeling of
sequences of wet and dry days by binary discrete autoregressive moving
average processes.” J. Clim. Appl. Meteorol., 23(9), 1367-1378.

Chin, E. H. (1977). “Modeling daily precipitation occurrence process with
Markov chain.” Water Resour. Res., 13(6), 949-956.

Chung, C. H., and Salas, J. D. (2000). “Drought occurrence probabilities
and risks of dependent hydrologic processes.” J. Hydrol. Eng., 10.1061/
(ASCE)1084-0699(2000)5:3(259), 259-268.

Cindri¢, K. (2006). “The statistical analysis of wet and dry spells by binary
DARMA (1, 1) model in Split, Croatia.” BALWOIS Conf. 2006,
Balwois, Skopje, Republic of Macedonia.

Cowpertwait, P. S. P. (1995). “A generalized spatial-temporal model of
rainfall based on a clustered point process.” Proc. R. Soc. London,
450(1938), 163-175.

Cowpertwait, P. S. P., Isham, V., and Onof, C. (2007). “Point process
models of rainfall: Developments for fine-scale structure.” Proc. R.
Soc. London, 463(2086), 2569-2587.

Cowpertwait, P. S. P., O’Connell, P. E., Metcalfe, A. V., and Mawdsley, J. A.
(1996). “Stochastic point process modelling of rainfall. I. Single-site
fitting and validation.” J. Hydrol., 175(1-4), 17-46.

Dahale, S. D., Panchawagh, N., Singh, S. V., Ranatunge, E. R., and
Brikshavana, M. (1994). “Persistence in rainfall occurrence over
tropical south-east Asia and equatorial Pacific.” Theor. Appl. Climatol.,
49(1), 27-39.

Dastidar, A. G., Ghosh, D., Dasgupta, S., and De, U. K. (2010).
“Higher order Markov chain models for monsoon rainfall over West
Bengal, India.” Indian J. Radio Space Phys., 39(1), 39—44.

Delleur, J. W., Chang, T. J., and Kavvas, M. L. (1989). “Simulation models
of sequences of dry and wet days.” J. Irrig. Drain. Eng., 10.1061/
(ASCE)0733-9437(1989)115:3(344), 344-357.

Deni, S. M., Jemain, A. A., and Ibrahim, K. (2009). “Fitting optimum of
order Markov chain models for daily rainfall occurrences in Peninsular
Malaysia.” Theor. Appl. Meteorol., 97(1-2), 109-121.

Douglas, E. M., Vogel, R. M., and Kroll, C. N. (2002). “Impact of
streamflow persistence on hydrologic design.” J. Hydrol. Eng.,
10.1061/(ASCE)1084-0699(2002)7:3(220), 220-227.

Eagleson, P. S. (1978). “Climate, soil and vegetation: I. Introduction to
water balance dynamics.” Water Resour. Res., 14(5), 705-712.

Fernandez, B., and Salas, J. D. (1999a). “Return period and risk of
hydrologic events. I: Mathematical formulation.” J. Hydrol. Eng.,
10.1061/(ASCE)1084-0699(1999)4:4(297), 297-307.

Fernandez, B., and Salas, J. D. (1999b). “Return period and risk of
hydrologic events. II: Applications.” J. Hydrol. Eng., 10.1061/
(ASCE)1084-0699(1999)4:4(308), 308-316.

Feyerherm, A. M., and Bark, L. D. (1965). “Statistical methods for
persistent precipitation patterns.” J. Appl. Meteorol., 4(3), 320-328.
Glasbey, C. A., Cooper, G., and McGechan, M. B. (1995). “Disaggregation
of daily rainfall by conditional simulation from a point-process model.”

J. Hydrol., 165(1-4), 1-9.

Goel, N. K., Seth, S. M., and Chanra, S. (1998). “Multivariate modeling of
flood flows.” J. Hydraul. Eng., 10.1061/(ASCE)0733-9429(1998)124:
2(146), 146-155.

Gonzilez, J., and Valdés, J. B. (2003). “Bivariate drought recurrence analy-
sis using tree ring reconstruction.” J. Hydrol. Eng., 10.1061/(ASCE)
1084-0699(2003)8:5(247), 247-258.

Haan, C. T., Allen, D. M., and Street, J. O. (1976). “A Markov chain model
of daily rainfall.” Water Resour. Res., 12(3), 443—-449.

Jacobs, P. A., and Lewis, P. A. W. (1978). “Discrete time series generated
by mixtures. I: Correlational and runs properties.” J. R. Stat. Soc. Ser. B
(Method.), 40(1), 94-105.

Jacobs, P. A., and Lewis, P. A. W. (1983). “Stationary discrete autoregressive-
moving average time series generated by mixtures.” J. Time Ser. Anal.,
4(1), 19-36.

Jimoh, O. D., and Webster, P. (1996). “The optimum order of a Markov
chain model for daily rainfall in Nigeria.” J. Hydrol., 185(1-4), 45-69.

Katz, R. W. (1977). “Precipitation as a chain-dependent process.” J. Appl.
Meterol., 16(7), 671-676.

Katz, R. W., and Parlange, M. B. (1998). “Overdispersion phenomenon in
stochastic modeling of precipitation.” J. Clim., 11(4), 591-601.

J. Hydrol. Eng.

J. Hydrol. Eng.


http://www.utusan.com.my/utusan/ info.asp?y=2007&dt=0115&pub=Utusan_Malaysia&sec=Muka_Hadapan&pg=mh_01.htm
http://www.utusan.com.my/utusan/ info.asp?y=2007&dt=0115&pub=Utusan_Malaysia&sec=Muka_Hadapan&pg=mh_01.htm
http://www.utusan.com.my/utusan/ info.asp?y=2007&dt=0115&pub=Utusan_Malaysia&sec=Muka_Hadapan&pg=mh_01.htm
http://www.utusan.com.my/utusan/ info.asp?y=2007&dt=0115&pub=Utusan_Malaysia&sec=Muka_Hadapan&pg=mh_01.htm
http://www.utusan.com.my/utusan/ info.asp?y=2007&dt=0115&pub=Utusan_Malaysia&sec=Muka_Hadapan&pg=mh_01.htm
http://www.utusan.com.my/utusan/ info.asp?y=2007&dt=0115&pub=Utusan_Malaysia&sec=Muka_Hadapan&pg=mh_01.htm
http://www.utusan.com.my/utusan/ info.asp?y=2007&dt=0115&pub=Utusan_Malaysia&sec=Muka_Hadapan&pg=mh_01.htm
http://dx.doi.org/10.1016/j.jhydrol.2009.10.031
http://dx.doi.org/10.1016/j.envsoft.2008.04.003
http://dx.doi.org/10.1016/j.jhydrol.2010.07.008
http://dx.doi.org/10.1029/WR020i005p00565
http://dx.doi.org/10.1029/WR013i006p00949
http://dx.doi.org/10.1061/(ASCE)1084-0699(2000)5:3(259)
http://dx.doi.org/10.1061/(ASCE)1084-0699(2000)5:3(259)
http://dx.doi.org/10.1061/(ASCE)1084-0699(2000)5:3(259)
http://dx.doi.org/10.1098/rspa.1995.0077
http://dx.doi.org/10.1098/rspa.1995.0077
http://dx.doi.org/10.1098/rspa.2007.1889
http://dx.doi.org/10.1098/rspa.2007.1889
http://dx.doi.org/10.1016/S0022-1694(96)80004-7
http://dx.doi.org/10.1007/BF00866286
http://dx.doi.org/10.1007/BF00866286
http://dx.doi.org/10.1061/(ASCE)0733-9437(1989)115:3(344)
http://dx.doi.org/10.1061/(ASCE)0733-9437(1989)115:3(344)
http://dx.doi.org/10.1061/(ASCE)0733-9437(1989)115:3(344)
http://dx.doi.org/10.1061/(ASCE)1084-0699(2002)7:3(220)
http://dx.doi.org/10.1061/(ASCE)1084-0699(2002)7:3(220)
http://dx.doi.org/10.1029/WR014i005p00705
http://dx.doi.org/10.1061/(ASCE)1084-0699(1999)4:4(297)
http://dx.doi.org/10.1061/(ASCE)1084-0699(1999)4:4(297)
http://dx.doi.org/10.1061/(ASCE)1084-0699(1999)4:4(308)
http://dx.doi.org/10.1061/(ASCE)1084-0699(1999)4:4(308)
http://dx.doi.org/10.1061/(ASCE)1084-0699(1999)4:4(308)
http://dx.doi.org/10.1175/1520-0450(1965)004<0320:SMFPPPtpmkset 
http://dx.doi.org/10.1061/(ASCE)0733-9429(1998)124:2(146)
http://dx.doi.org/10.1061/(ASCE)0733-9429(1998)124:2(146)
http://dx.doi.org/10.1061/(ASCE)0733-9429(1998)124:2(146)
http://dx.doi.org/10.1061/(ASCE)1084-0699(2003)8:5(247)
http://dx.doi.org/10.1061/(ASCE)1084-0699(2003)8:5(247)
http://dx.doi.org/10.1061/(ASCE)1084-0699(2003)8:5(247)
http://dx.doi.org/10.1029/WR012i003p00443
http://dx.doi.org/10.1111/j.1467-9892.1983.tb00354.x
http://dx.doi.org/10.1111/j.1467-9892.1983.tb00354.x
http://dx.doi.org/10.1016/S0022-1694(96)03015-6
http://dx.doi.org/10.1175/1520-0450(1977)016<0671:PAACDPtpmkset 
http://dx.doi.org/10.1175/1520-0450(1977)016<0671:PAACDPtpmkset 

Downloaded from ascelibrary.org by Colorado State Univ Lbrs on 09/18/15. Copyright ASCE. For personal use only; all rights reserved.

Kavvas, M. L., and Delleur, J. W. (1981). “A stochastic cluster model of
daily rainfall sequences.” Water Resour. Res., 17(4), 1151-1160.

Kedem, B. (1980). Binary time series, Marcel Dekker, New York.

Khalig, M. N., and Cunnane, C. (1996). “Modelling point rainfall
occurrences with the modified Bartlett-Lewis rectangular pulses
model.” J. Hydrol., 180(1-4), 109-138.

Kim, T. W., Valdés, J. B., and Yoo, C. (2003). “Nonparametric approach for
estimating return periods of droughts in arid regions.” J. Hydrol. Eng.,
10.1061/(ASCE)1084-0699(2003)8:5(237), 237-246.

Kite, G. W. (1978). Frequency and risk analyses in hydrology, 2nd Ed.,
Water Resources, Littleton, CO.

Lloyd, E. H. (1970). “Return periods in the presence of persistence.”
J. Hydrol., 10(3), 291-298.

Lloyd, E. H., and Saleem, S. D. (1979). “Waiting time to first achievement
of specified levels in reservoirs subject to seasonal Markovian inflows.”
Inputs for risk analysis in water systems, E. A. McBean, K. W. Hipel,
and T. E. Unay, eds., Water Resources, Fort Collins, CO, 339-379.

Loaiciga, H. A., and Marino, M. A. (1991). “Recurrence interval of geo-
physical events.” J. Water Resour. Plann. Manage., 10.1061/(ASCE)
0733-9496(1991)117:3(367), 367-382.

Mimikou, M. (1983). “Daily precipitation occurrences modeling with
Markov chain of seasonal order.” Hydrol. Sci. J., 28(2), 221-232.
Mood, A. M., Graybill, F. A., and Boes, D. C. (1974). Introduction to the

theory of statistics, 3rd Ed., McGraw-Hill, Tokyo.

Muhammad, N. S. (2013). “Probability structure and return period calcu-
lations for multi-day monsoon rainfall events at Subang, Malaysia.”
Ph.D. dissertation, Dept. of Civil and Environmental Engineering,
Colorado State Univ., Fort Collins, CO.

Obeysekera, J., Tabios, G., and Salas, J. D. (1987). “On parameter
estimation of temporal rainfall models.” Water Resour. Res., 23(10),
1837-1850.

Rodriguez-Iturbe, 1., Cox, D. R., and Isham, V. (1987). “Some models for
rainfall based on stochastic point process.” Proc. R. Soc. London, A410
(1839), 269-288.

Rodriguez-Iturbe, 1., Cox, D. R., and Isham, V. (1988). “A point process
model for rainfall: Further developments.” Proc. R. Soc. London, A417
(1853), 283-298.

Roldan, J., and Woolhiser, D. A. (1982). “Stochastic daily precipitation
models. 1: A comparison of occurrence process.” Water Resour.
Res., 18(5), 1451-1459.

Salas, J. D., et al. (2005). “Characterizing the severity and risk of drought
in the Poudre River, Colorado.” J. Water Resour. Plann. Manage.,
10.1061/(ASCE)0733-9496(2005)131:5(383), 383-393.

© ASCE

04015048-11

Semenov, M. A., Brooks, R. J., Barrow, E. M., and Richardson, C. W.
(1998). “Comparison of the WGEN and LARS-WG stochastic weather
generators for diverse climates.” Clim. Res., 10, 95-107.

Sen, Z. (1999). “Simple risk calculations in dependent hydrological series.”
Hydrol. Sci. J., 44(6), 871-878.

Sharma, T. C. (1996). “Simulation of the Kenyan longest dry and wet
spells and the largest rain-sums using a Markov model.” J. Hydrol.,
178(1-4), 55-67.

Shiau, J. T., and Shen, H. W. (2001). “Recurrence analysis of hydrologic
droughts of differing severity.” J. Water Resour. Plann. Manage.,
10.1061/(ASCE)0733-9496(2001)127:1(30), 30-40.

Small, M. J., and Morgan, D. J. (1986). “The relationship between a
continuous-time renewal model and a discrete Markov chain model
of precipitation occurrence.” Water Resour. Res., 22(10), 1422-1430.

Suhaila, J., and Jemain, A. A. (2007). “Fitting daily rainfall amount in
Malaysia using the normal transform distribution.” J. Appl. Sci.,
7(14), 1880-1886.

Tan, S. K., and Sia, S. Y. (1997). “Synthetic generation of tropical rainfall
time series using an event-based method.” J. Hydrol. Eng., 10.1061/
(ASCE)1084-0699(1997)2:2(83), 83-89.

Todorovic, P. (1968). “A mathematical study of precipitation phenomena.”
Rep. CER 67-68 PT65, Engineering Research Center, Colorado State
Univ., Fort Collins, CO.

Todorovic, P., and Yevjevich, V. (1969). “Stochastic processes of
precipitation.” Colorado State Univ., Fort Collins, CO, 61.

Verhoest, N. E. C., Vandenberghe, S., Cabus, P., Onof, C., Meca-Figueras,
T., and Jameleddine, S. (2010). “Are stochastic point rainfall models
able to preserve extreme flood statistics?”” Hydrol. Processes, 24(23),
3439-3445.

Vogel, R. M. (1987). “Reliability indices for water supply systems.”
J. Water Resour. Plann. Manage., 10.1061/(ASCE)0733-9496(1987)
113:4(563), 563-579.

Von Neumann, J. (1941). “Distribution of the ratio of the mean square
successive difference to the variance.” Ann. Math. Stat., 12(4), 367-395.

Wallis, T. W. R., and Griffiths, J. F. (1995). “An assessment of the weather
generator (WXGEN) used in the erosion/productivity impact calculator
(EPIC).” Agric. Forest Meteorol., 73(1-2), 115-133.

Wilks, D. S. (1998). “Multisite generalization of a daily stochastic
precipitation generation model.” J. Hydrol., 210(1-4), 178-191.

Woodyer, K. D., McGilchrist, C. A., and Chapman, T. G. (1972). “Recur-
rence intervals between exceedances of selected river levels: 4. Seasonal
streams.” Water Resour. Res., 8(2), 435-443.

Yevjevich, V. (1984). Probability and statistics in hydrology, Water
Resources, Littleton, CO.

J. Hydrol. Eng.

J. Hydrol. Eng.


http://dx.doi.org/10.1016/0022-1694(95)02894-3
http://dx.doi.org/10.1061/(ASCE)1084-0699(2003)8:5(237)
http://dx.doi.org/10.1061/(ASCE)1084-0699(2003)8:5(237)
http://dx.doi.org/10.1016/0022-1694(70)90256-8
http://dx.doi.org/10.1061/(ASCE)0733-9496(1991)117:3(367)
http://dx.doi.org/10.1061/(ASCE)0733-9496(1991)117:3(367)
http://dx.doi.org/10.1061/(ASCE)0733-9496(1991)117:3(367)
http://dx.doi.org/10.1080/02626668309491962
http://dx.doi.org/10.1029/WR023i010p01837
http://dx.doi.org/10.1029/WR023i010p01837
http://dx.doi.org/10.1098/rspa.1987.0039
http://dx.doi.org/10.1098/rspa.1987.0039
http://dx.doi.org/10.1098/rspa.1988.0061
http://dx.doi.org/10.1098/rspa.1988.0061
http://dx.doi.org/10.1029/WR018i005p01451
http://dx.doi.org/10.1029/WR018i005p01451
http://dx.doi.org/10.1061/(ASCE)0733-9496(2005)131:5(383)
http://dx.doi.org/10.1061/(ASCE)0733-9496(2005)131:5(383)
http://dx.doi.org/10.3354/cr010095
http://dx.doi.org/10.1080/02626669909492286
http://dx.doi.org/10.1016/0022-1694(95)02827-7
http://dx.doi.org/10.1016/0022-1694(95)02827-7
http://dx.doi.org/10.1061/(ASCE)0733-9496(2001)127:1(30)
http://dx.doi.org/10.1061/(ASCE)0733-9496(2001)127:1(30)
http://dx.doi.org/10.1029/WR022i010p01422
http://dx.doi.org/10.3923/jas.2007.1880.1886
http://dx.doi.org/10.3923/jas.2007.1880.1886
http://dx.doi.org/10.1061/(ASCE)1084-0699(1997)2:2(83)
http://dx.doi.org/10.1061/(ASCE)1084-0699(1997)2:2(83)
http://dx.doi.org/10.1061/(ASCE)1084-0699(1997)2:2(83)
http://dx.doi.org/10.1002/hyp.v24:23
http://dx.doi.org/10.1002/hyp.v24:23
http://dx.doi.org/10.1061/(ASCE)0733-9496(1987)113:4(563)
http://dx.doi.org/10.1061/(ASCE)0733-9496(1987)113:4(563)
http://dx.doi.org/10.1061/(ASCE)0733-9496(1987)113:4(563)
http://dx.doi.org/10.1214/aoms/1177731677
http://dx.doi.org/10.1016/0168-1923(94)02172-G
http://dx.doi.org/10.1016/S0022-1694(98)00186-3
http://dx.doi.org/10.1029/WR008i002p00435

