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Preface

Probable maximum precipitation (PMP) and probable maximum flood (PMF) have been com-
monly used in engineering practice for designing major hydraulic structures. However, in recent 
decades, there has been a growing concern regarding the uncertainties involved in estimating 
such extreme events. In this chapter, the concepts and methods for estimating the PMP and PMF 
considering their associated uncertainties are examined. After briefly reviewing the underly-
ing concepts and definitions, an overview of the methods for estimating the PMP is presented, 
which includes hydrometeorological methods, the statistical method by Hershfield, and some 
other statistical alternatives. Regardless of the methods applied for obtaining the PMP and 
PMF, a number of studies have shown that their estimates involve many uncertainties. While 
hydrometeorological methods likely provide the best estimates of PMP, however, in many regions 
of the world, hydrometeorological data are lacking, and consequently feasibility studies and 
designs of flood-related projects are being made based solely on Hershfield’s statistical method 
that provides a single value for the PMP. Thus, a method for quantifying the uncertainty of the 
PMP if Hershfield’s method is to be applied has been included in this chapter. Furthermore, the 
chapter includes sensitivity analysis, Monte Carlo analysis, and some statistical alternatives for 
PMF estimation and uncertainty.
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28.1  Introduction

Probable maximum precipitation (PMP) and the corresponding probable maximum flood (PMF) 
have commonly been utilized in engineering practice [81], particularly for designing hydraulic struc-
tures such as spillways of large dams whose failure may cause losses of life and catastrophic damage 
to nuclear power plants. In the United States, many federal and state agencies use the PMP and PMF 
for evaluating the adequacy and safety of major hydraulic structures. Regardless of the method uti-
lized for obtaining the PMP, the practice of designing and evaluating flood-related structures based 
on such PMP has been criticized among others because of the many uncertainties involved in deter-
mining them, the lack of a standard approach for estimating the PMP, and the perception that such 
estimated PMP (and the ensuing PMF) is an upper bound that may not be exceeded and as such a zero 
risk. However, an upper bound with zero risk is not realistic because there have been documented 
cases where the recorded floods have exceeded the estimated PMFs [4,15,45]. Thus, a risk-based design 
approach has been advocated by some hydrologists. For instance, Dawdy and Lettenmaier [15] sug-
gested as an alternative “to retain the PMF as a reference event and estimate its exceedance probability.” 
And they added “…there will be uncertainties associated with any risk estimates, especially for flood 
peaks and volumes with exceedance probabilities as low as those for the PMF. Any rational design 
approach must recognize this uncertainty.”

Therefore, in this chapter, the concepts and methods for estimating the PMP and PMF considering 
their associated uncertainties are examined. The main purpose is to summarize the alternative meth-
ods that are available for determining the uncertainties involved in estimating the PMP and PMF. The 
second section is a brief review of concepts and definitions of the PMP and PMF. The third section gives 
an overview of the classical methods for estimating the PMP such as hydrometeorological methods, the 
statistical method by Hershfield, and some other statistical alternatives. The fourth section discusses 
the uncertainty of the PMP considering hydrometeorological factors, and Section 28.5 presents in some 
detail a procedure for estimating the uncertainty of the PMP based on Hershfield’s method. Section 
28.6 describes PMF estimation and uncertainty, which includes sensitivity analysis and Monte Carlo 
analysis, as well as some statistical alternatives. The chapter ends with a section of concluding remarks.

28.2  concepts and Definitions of the PMP and PMf

PMP has its origin in what used to be called maximum possible precipitation (MPP) where it was defined 
as an upper bound maximum value [4], that is, the concept was to find a maximum value of precipita-
tion for a given storm duration over a basin that physically could occur but would not be exceeded. 
Unfortunately, it has been reported in literature that in some real cases, such MPP values have been 
exceeded [4]. This observation as a consequence has led to the renaming of “maximum possible precipi-
tation” to “PMP.” Thus, the PMP definition that has been widely accepted in literature is: “theoretically 
the greatest depth of precipitation for a given storm duration that is physically possible over a given size 
storm area at a particular geographical location at a certain time of the year” [31,83]. The PMP definition 
used by the World Meteorological Organization (WMO) [84] has been slightly changed, but the essence 
remains the same. The referred definition highlights the PMP as a physical upper limit, and often it is 
perceived to be a quantity that cannot be exceeded. However, WMO [84] acknowledges the fact that 
the value of the PMP that is calculated for a particular study area is only an approximation “due to the 
physical complexity of the phenomena and limitations in data and the meteorological and hydrological 
sciences.” Furthermore, as hinted by WMO [83], one must distinguish between the “theoretical PMP,” 
that is, an upper limit that is unknown, and the “operational PMP,” which is the PMP obtained by a 
given method that involves a number of assumptions, steps, and data that are uncertain.

The PMF is a deterministic upper limit flood that is commonly utilized as a design criterion by several 
organizations in many countries. However, the PMF is not so generally defined as the PMP. Newton 
[55] cites various definitions used by different US and international agencies. The PMF definition used 
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by some organizations such as the US Bureau of Reclamation (USBR) is “the maximum runoff con-
dition resulting from the most severe combination of hydrologic and meteorological conditions that 
are considered reasonably possible for the drainage basin under study” [14]. Other similar definitions 
of PMF are: “a flood that can be expected from the most severe combination of critical meteorologic 
and hydrologic conditions that are reasonably possible in a region” [34] and “PMF is the theoretical 
maximum flood that poses extremely serious threat to the flood control of a given project in a design 
watershed. Such a flood could plausibly occur in a locality at a particular time of the year under current 
meteorological conditions” [84]. The PMF is generally viewed as the flood resulting from a PMP, plus 
snowmelt where appropriate, applied to assumed antecedent basin conditions. However, the assump-
tions and procedures for selecting antecedent conditions and estimating the flood hydrograph from the 
PMP vary depending on the country, agency, and hydrologist. For example, there are some aspects of 
the PMP to PMF conversion that are unique to the USBR [73].

28.3  Overview of Methods for estimating the PMP

The manual of WMO [84] describes six methods for estimating the PMP: (a) the local method (local 
storm maximization model), (b) the transposition method (storm transposition model), (c) the com-
bination method (temporal and spatial maximization of storm), (d) the inferential method (theoretical 
model), (e) the generalized method, and (f) the statistical method. In addition, the manual describes 
two other methods that may be applicable for very large basins. The previous methods, categorized 
as hydrometerological (a–e) are generally based on deterministic approaches, that is, based on physi-
cal laws and principles, while method (f) is essentially the statistical method proposed by Hershfield 
[35,36]. The previous methods, categorized as hydrometeorological methods, the statistical method by 
Hershfield, and some statistical alternatives (that have been proposed in the last three decades), are sum-
marized in the following section.

28.3.1  PMP Based on Hydrometeorological Methods

There are several key references in literature outlining in some detail the various hydrometeorological 
methods available for estimating the PMP [31,32,84]. Modifications and improvements have evolved over 
the years. Hansen [32] summarized the developments through the mid-1980s for the various regions of 
the United States and discussed advances in estimating the PMP for regions where the convergence (non-
orographic) and orographic components of the PMP can be determined. Hansen also reexamined the data 
of estimates of PMPs and observed storms obtained by Riedel and Schreiner [69] and concluded that the 
PMP estimates were not too high. For example, for the east of the 105th meridian, out of 75 storms con-
sidered, 18 storms exceeded 70% of the PMPs and three storms exceeded 90%. Recently England et al. [25] 
reviewed the various PMP procedures and databases used in estimating the PMP based on hydrometeoro-
logical methods particularly those utilized for developing the hydrometeorological reports (HMRs) that 
provide generalized PMP estimates over large regions of the United States (e.g., HMR 58 for California). 
They also described the key concepts involved including depth-area duration analysis of large storms, 
storm maximization, storm transposition, and envelopment. Further technical details of the underlying 
concepts and procedures may be found in Hansen et al. [33] and WMO [84].

The methods based on storm models use physical parameters such as dew point temperature, storm 
depth, and inflow and outflow fluxes depending on the storm type [12]. For example, in areas subject to 
the occurrence of hurricanes, a hurricane model may be applied for estimating the PMP. An advection–
diffusion model of clouds for determining the temporal and spatial dynamics of extreme precipita-
tion in a catchment located in the Bernese Alps of Switzerland has been suggested [67]. Atmospheric 
models such as the Regional Atmospheric Modeling System (RAMS) and the fifth-generation NCAR/
Penn State mesoscale model (MM5) are being investigated for modeling extreme rainfall [13,62]. Storm 
maximization consists of adjusting a large observed storm precipitation to enable the convergence of the 
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Uncertainty of the PMP and PMF 579

maximum atmospheric moisture, that is, moisture maximization is increasing storm rainfall depth for 
the location and season, for higher atmospheric moisture than was available in the actual storm [25,37]. 
Transposition of storms means that the observed storm at a given location is translated to another 
location (say for an ungauged basin area) with appropriate adjustments such as those for differences 
in altitude [83]. The method assumes a region of homogeneous meteorology and topography. Using 
probability concepts for storm transposition has been examined by some researchers [1,30,26,27]. The 
regionalization methods (also called generalized PMP) are developed for large areas and generally are 
based on maximization and transposition of several types of storms (e.g., convective or cyclonic storms), 
depth–area–duration analysis, and envelopment. An example of this method is that developed by the 
National Weather Service of the United States [59]. Applications and developments in several other 
countries can be found in WMO [84 and the references therein].

28.3.2  PMP Based on Hershfield’s Statistical Method

Hershfield’s statistical method [35,36] was developed as an alternative to the traditional methods that 
are based on physical concepts. Hershfield’s method, popularized internationally by WMO [82–84], 
has been commonly utilized in practice, particularly for basins lacking hydrometeorological data. 
It has been utilized in several countries worldwide for comparing with other methods for determining the 
PMP [2] and for preliminary and feasibility hydrologic studies [5]. Hershfield’s statistical method is based 
on an equation similar to that of Chow [9] where a quantile of the underlying distribution is expressed as 
a function of the sample mean, the sample standard deviation, and a frequency factor K [10]. In the typical 
procedure for fitting the empirical frequency distribution of the data at hand using a probability distribu-
tion function (PDF), the value of K is related to the skewness coefficient and the exceedance probability. 
But in Hershfield’s method, the value of K was established after analyzing a large number of historical data 
of storm annual daily maximums so that an upper bound of K was determined, which was bigger than all 
values of K obtained from the historical sample.

Hershfield’s method was based on 24 h maximum precipitation data of 2645 stations (90% of which 
were stations in the United States and the rest for other parts of the world), which gave a total of about 
95,000 station-year data. The method uses the equation

 PMP X K Sn n= +  (28.1a)

where
X̅n is the mean annual maximum daily precipitation
Sn is the corresponding standard deviation
K is a frequency factor

Hershfield recognized that because X̅n and Sn are quantities that are estimated from a limited sample (n), 
they must be adjusted for sample size and for the effect of outliers. Graphs are available for obtaining the 
appropriate adjustment factors [35,83,84]. Another correction suggested by Hershfield was to account 
for the difference that exists between the daily maximum values and the 24 h maximums regardless of 
the calendar day.

Based on the data analysis of the 2,645 sites, Hershfield [35] found that the value of K in (28.1a) varied in 
the range 1.00–14.99 and that K ranged between 13.00 and 14.49 for only four stations. Consequently, he 
suggested utilizing the value of K = 15 for estimating the PMP. However, additional studies by Hershfield 
[36] indicated that K varied with the storm duration and the mean annual maximum precipitation; 
therefore, he provided additional relations (graphs) that enable one in determining the value of K for 
practical applications. Furthermore, other studies appeared in literature documenting the most appro-
priate values of K according to the climatic region of the study area. For example, Mejía and Villegas [50] 
analyzed 1, 2, and 24 h duration storm data for Colombia and suggested the corresponding envelopes for 
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determining K as a function of the mean annual maximum precipitation. Similar studies can be found 
for other locations in the world such as the southern half of the Indian peninsula [17], the Alpine region 
in Austria [56], the north region of India [66], the Czech Republic [68], the south region of Malaysia [16], 
and the Cataluña region of Spain [8]. Hershfield [35, pp. 101–102] recognized that K is a random variable 
and illustrated this point by associating the values of K with the return period (or exceeding probability) 
using as examples the Gumbel and lognormal distributions. Nevertheless, his rationale and intent was 
finding a value (actually an envelope function) that could be applicable for a given storm duration and 
climatic region. Such an envelope was obtained based on a large database of numerous storms that have 
been observed in historical records at similar locations. Hershfield [36, p. 967] argued that “enveloping 
K as a function of the mean serves a transposition purpose.”

For easy of explanation and subsequent reference, Hershfield’s method may be summarized as follows: 
(a) adjust X̅n and Sn for effect of outlier; (b) adjust X̅n and Sn for effect of sample size; (c) select K as a func-
tion of Xn̅, the storm duration, and the study region; (d) estimate the PMP from (28.1a); and (e) make an 
additional adjustment to account for the difference between the maximum of a given time period (storm 
duration) and the maximum of the observation time period (e.g., to account for the difference between 
the maximum of 1440 min storm duration and the maximum observed daily).

28.3.3   Statistical alternatives for estimating extreme 
Precipitation (Including PMP)

Koutsoyiannis [45] argued that K used by Hershfield could be fitted using some type of PDF and suggested 
the general extreme value (GEV) as a logical function since it deals with extreme events. Koutsoyiannis 
reexamined Hershfield’s results and concluded that the K = 15 suggested by Hershfield corresponds 
approximately to a return period of 60,000 years based on the GEV distribution. Koutsoyiannis also 
illustrated his alternative approach using 136 years of data of annual maximum daily rainfall in Greece. 
As expected, such a long record offers the alternative of fitting the frequency distribution of the data and 
finding quantiles for any desired return period. Likewise, Papalexiou and Koutsoyiannis [63] suggested 
finding design values of maximum precipitation simply using the frequency analysis of the observed 
data based on the GEV distribution. Douglas and Barros [19] approached the design of maximum pre-
cipitation using a completely different method, which is based on applying multifractal concepts for 
determining what they called the fractal maximum precipitation (FMP), and applied their approach to 
the eastern United States.

In addition to the proposed methods summarized previously, efforts have been made to extend 
(extrapolate) the traditional frequency curves (FCs) that may be obtained from historical records at 
single sites. However, extending the FCs also implies increasing uncertainty of the estimated quantiles. 
Figure 28.1 illustrates the “credible” limits of extrapolation for events considered as large, rare, and 
extreme as the annual exceedance probability (AEP) increases [53]. A technique that is often used for 
extrapolating the FCs is based on regional precipitation frequency analysis (e.g., using the index flood 
approach). This way one can determine precipitation quantiles for return periods further beyond the 
usual historical record lengths, which may be of the order of 50–100 years. Table 28.1 summarizes the 
ranges of “credible extrapolation” for various types of data and methods [53,77]. Also, the tendency has 
been to assign an AEP to the PMP. While assigning an AEP to the PMP may be inconsistent with the 
“upper limit” concept of the PMP, it has been argued that given that the PMP is an uncertain quantity, 
it may conceivably be exceeded [53]. Based on a review conducted by Laurenson and Kuczera [47] on 
studies made in Australia and elsewhere and considering that at present there is no conceptually sound 
basis for assigning an AEP to the PMP, a recommendation was made where the AEP of PMP estimates 
vary solely as a function of catchment area [53]. The recommendation is summarized in Figure 28.2. 
Note that Nathan and Merz [54] cautions that “there is considerable uncertainty surrounding these rec-
ommendations as they are for events beyond the realm of experience and are based on methods whose 
conceptual foundations are unclear.”
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Uncertainty of the PMP and PMF 581

28.4   Uncertainty of the PMP considering 
Hydrometeorological factors

The most recent manual of the WMO [84] states “Storms, and their associated floods, have physical upper 
limits, which are referred to as PMP and PMF. It should be noted that due to the physical complexity of the 
phenomena and limitations in data and the meteorological and hydrological sciences, only approximations 

TABLE 28.1 Data Type and Extrapolation Ranges for Frequency Analysis of 
Extreme Events

Type of Data Used for Frequency Analysis

Range of Credible 
Extrapolation for AEP

Typical Most Optimistic

At-site precipitation data 1 in 100 1 in 200
At-site gauged streamflow dataa 1 in 100 1 in 200
Regional streamflow datab 1 in 500 1 in 1,000
At-site streamflow and at-site paleoflood datac 1 in 4,000 1 in 10,000
Regional precipitation data 1 in 2,000 1 in 10,000
Regional streamflow and regional paleoflood data 1 in 15,000 1 in 40,000
Combination of regional data sets and extrapolation 1 in 40,000 1 in 100,000
aAt-site gauged streamflow data (Australia) 1 in 50 1 in 200
bAt-site/regional gauged streamflow data (Australia) 1 in 200 1 in 500
cAt-site gauged and paleoflood data (Australia) 1 in 5,000 1 in 10,000

Source: Adapted from Nathan, R.J. and Weinmann, P.E., Estimation of large to extreme 
floods, Book VI, Australian Rainfall and Runoff: A Guide to Flood Estimation, National 
Committee on Water Engineering, Institution of Engineers, Australia, 2001; US Bureau of 
Reclamation, A framework for characterizing extreme floods for dam safety risk assessment, 
prepared by Utah State University and USBR, Denver, CO, 67pp., 1999. With permission.
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FIGuRE 28.1 Increase of design events and corresponding uncertainty as the Annual Exceedance Probability 
(AEP) increases. (From Nathan, R.J. and Weinmann, P.E., Estimation of large to extreme floods, Book VI, Australian 
Rainfall and Runoff: A Guide to Flood Estimation, National Committee on Water Engineering, Institution of 
Engineers, Australia, 2001. With permission.)
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are currently available for the upper limits of storms and their associated floods.” This concept must be 
clearly understood by water resources specialists involved in determining the so-called PMP and PMF.

The US National Research Council [58] considers two types of uncertainties that are summarized as 
follows: (1) Natural uncertainty represents the inherent variability of the physical system; it cannot be 
reduced. For example, if a given system is represented by a PDF say f(x,θ̲) with known parameter set θ̲, 
then X is random and as such its variability (uncertainty) is irreducible. (2) Knowledge uncertainty is 
due to the lack of understanding of the system and insufficient data. Using the same example as previ-
ously discussed, suppose we know the PDF but the parameter set θ̲ is unknown, so it must be estimated 
from data such as x x xN1 2, ,...,  where N is the sample size. Then, the parameter set is now referred to as 
θ̂ and any quantile say X̂q will be uncertain because of the uncertainty of the parameter set. However, 
knowledge uncertainty is reducible, for example, as the sample size N increases, the uncertainty of θ̂ 
and consequently the uncertainty of X̂q will decrease. In fact, as N → ∞, the uncertainty of θ̂ (and the 
uncertainty of X̂q) will become zero. Note that generally the PDF f(x,θ̲) is also unknown. Sometimes 
knowledge uncertainty has been referred to as “epistemic” [51].

As example of the previous concepts, we illustrate a method for determining the uncertainty of extreme 
precipitation (approaching the PMP) considering some of the hydrometeorological factors involved in 
estimating the PMP. Papalexiou and Koutsoyiannis [63] argued that the estimates of the PMP based on 
maximization of storm moisture do not appear having an upper bound. Based on the analysis of dew point 
temperature, atmospheric moisture, and maximized precipitation, they concluded that no upper bounds 
of the PMP estimates were evident. Instead of using the variability of these factors as they affect the esti-
mates of PMP, the concepts proposed by Klemes et al. [43] and Klemes [44] are described. The concepts are 
simple but have important implications for estimating precipitation FCs for extreme events and near the 
PMP. Actually two approaches were suggested that are summarized as follows. Let us consider that N years 
of one-day maximum rainfall data Rt are available for a given site. Based on this data set, one can make fre-
quency analysis following any well-known technique. Let us further assume that it is possible to separate 
the one-day maximum rainfall Rt into the convergence component Ct and the orographic component Ot. 
Thus, three sets of data of length N years each would be available. Klemes argued that the occurrence of the 
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FIGuRE 28.2 Values of AEP of PMP as a function of the catchment area. (From Nathan, R.J. and Weinmann, 
P.E., Estimation of large to extreme floods, Book VI, Australian Rainfall and Runoff: A Guide to Flood Estimation, 
National Committee on Water Engineering, Institution of Engineers, Australia, 2001. With permission.)
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Uncertainty of the PMP and PMF 583

convergence part of the storm is independent of the occurrence of the orographic part since they depend 
on different physical mechanisms. Then it is possible that in any given year, the maximum one-day rainfall 
may arise from any combination of the convergence and orographic components. Therefore, the combina-
tion of the two sets of data, that is, the convergence and orographic, will produce data of size N2, which is a 
significant gain. For example, if N = 100, the procedure outlined previously will lead to 10,000 data points.

The second approach suggested by Klemes et al. [43] builds on the same concept as in the previous 
discussion but brings a third component, that is, moisture maximization of storms and precipitable 
water (storm efficiency). The assumption is to combine the actual P/M ratio of a given storm (where P 
and M stand for precipitation and precipitable water, respectively) with the maximum observed precipi-
table water. Considering the P/M ratios of the orographic and convergence components as independent, 
the N orographic P/M ratios are combined with the N convergence P/M ratios yielding N2 total storm 
P/M ratios that are then combined with the N values of precipitable water. Thus, a total sample of N3 
possible precipitation values are obtained, which can be useful for frequency analysis.

Klemes et al. [43] and Klemes [44] illustrate the previous approaches for estimating the one-day 
PMP at Coquitlam Lake (CL) basin in Canada. The basin has an area of 193 km2, is located in the 
western Coast Mountains (elevations ranging from 153 m to over 2000 m), and is about 30 km NE 
of Vancouver. The referred authors used 40 years of relevant hydrometeorological variables such as 
maximum one-day precipitation and precipitable water, that is, N = 40. Various estimates of the PMP 
using the traditional hydrometeorological methods have been made for CL, and the referred papers 
suggest for comparison a PMP of about 400 mm. Precipitation essentially free of orographic influ-
ence is recorded at Vancouver International Airport (the airport is located in the general direction 
of the southwesterly flows) and has been considered as a good approximation of the convergence 
component of CL precipitation. Thus, the orographic component was estimated as the difference 
between the total precipitation recorded at CL and that recorded at the airport. Figure 28.3 shows 
the precipitation FCs for the total precipitation at CL and those for the two components. Also Figure 
28.3 shows with arrows a graphical extrapolation through 100 years (which is about twice the length 
of record, i.e., 2N in general). The resulting FC based on the combined sample of length 1600 (402) 
is shown in Figure 28.4. The figure shows also the original FC based on the original sample of size 
40 (square symbol). Figure 28.4 shows a pretty good agreement between the two FCs. Also note the 
final point (based on the extrapolations in Figure 28.3 as previously indicated), which shows a pre-
cipitation of 340 mm corresponding to about 10,000 years of return period. Figure 28.4 also points 
to about 100,000 years of return period for the estimated PMP of 400 mm. The interested reader may 
refer to the paper by Klemes et al. [43] for applications using the approach based on storm maximi-
zation, which enables one estimating the uncertainty of precipitation further closer to the range of 
the estimated value of the PMP.

28.5  Uncertainty of the PMP Based on Hershfield’s Method

The statistical method developed by Hershfield [35,36] gives a single value of the PMP. A simple method 
is proposed here to take into account the uncertainty of the PMP estimator arising from the uncertainty 
of the sample mean and sample standard deviation.

28.5.1  assumptions and Derivations

Referring to the original equation used by Hershfield [35], we observe that the PMP is a function of the 
sample mean X̅n, the sample standard deviation Sn, and the coefficient K. Let us denote by P̂ the estimator 
of the PMP such that

 P̂ X K Sn n= +  (28.1b)
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Uncertainty of the PMP and PMF 585

where n represents the sample size (number of years of data). Also let us recall that
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n
X Xn i
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n

n i n

n

= =
−









 −

=
∑ ∑1 1

1
1

2

1
( )

( )and

where X X Xn1 2, ,...,  is a random sample from an unknown distribution with population mean μ and 
variance σ2. Because X̅n and Sn are uncertain quantities and considering K as a constant (i.e., a maximum 
value corresponding to the duration of the storm, the value of X̅n, and the region where the basin of interest 
is located), one can calculate the mean and the variance of the PMP estimator P̂. It may be worthwhile men-
tioning that a constant value of K is considered following Hershfield’s approach in which a value of K is estab-
lished after analyzing many data of historical storms that have occurred in the region under study. Thus, the 
uncertainty associated with K is accounted for by using an envelope function and as such K is a constant. And 
the remaining uncertainty is associated with X̅n and Sn, which is the main subject of the argument herein.

The expected value of the estimator of the PMP, P̂, is equal to

 E P E X KE Sn n( ) ( ) ( )ˆ = +  (28.2a)

It is clear that E X E n X n E Xn i

n

i

n

( ) ( ) ( ) ( ) .= 




= =∑ ∑1 1

1 1
/ / µ  Likewise, it may be shown that 

E S n n nn( ) ( ) ( ) [( ) ]= − −Γ Γ/ / /2 1 2 1 2σ  [42] where μ and σ represent the mean and the standard deviation 
of the population, respectively, and Γ(a) represents the incomplete gamma function with argument a. 
Then (28.2a) may be written as
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n n
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Γ
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/ /
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1 2 1 2
 (28.2b)

Note that in estimating E(P̂) for an actual case, the population quantities μ and σ are replaced by their 
corresponding sample estimates (after the appropriate adjustments for outliers as needed as suggested 
by Hershfield).

The variance of the PMP estimator P̂ of (28.1b) can be calculated as [52]

 Var P Var X K Var S KCov X Sn n n n( ) ( ) ( ) ( , )ˆ = + +2 2  (28.3a)

Since X X Xn1 2, ,...,  is a random sample, it is clear that Var X nn( ) .= σ2 /  Also it may be shown that the 
normal approximations for determining Var(Sn) and Cov(X̅n,Sn) are as follows: Var S nn( ) ( )≈ −σ2 2 1/  and 
Cov X Sn n( , ) ≅ 0 [42]. Then (28.3a) may be approximated as follows:
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And the standard deviation of the PMP estimator P̂ is

 
σ σ

( )
( )

P
n

nK

n
ˆ ≅ +

−
1

2 1

2

 (28.4)

The referred approximations Var S nn( ) ( )≈ −σ2 2 1/  and Cov X Sn n( , ) ≅ 0 are known to be valid where the 
underlying distribution of the random variable X is normal, that is, N(μ,σ2) [42]. However, extreme 
hydrologic events, such as annual maximum precipitation, are generally skewed, and one must check 
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whether the referred normal approximations for determining Var(Sn) and the covariance Cov(X̅n,Sn) are 
still valid for skewed variables. Thus, a limited simulation experiment has been conducted for checking 
the foregoing approximations and introducing the needed corrections as appropriate. For this purpose, 
the GEV type 1 or Gumbel distribution was assumed as the underlying distribution of annual maximum 
precipitation.

Firstly, to verify the approach, 1000 samples of size n = 15 were generated from the standard normal 
distribution and determined from each sample X̅n(i) and Sn(i), i = 1,…, 1000, that is, the sample mean 
and standard deviations, respectively. Then, based on the pair of 1000 values, the variance σ̂2(Sn) and 
covariance Cov X Sn nˆ ( , ) were estimated. The results from the simulated samples gave σ̂2(Sn) = 0.035 and 
Cov X Sn nˆ ( , ) = 0.00062, while the theoretical normal approximations give Var S nn( ) ( )= −σ2 2 1/  = 0.0357 
and Cov(X̅n,Sn) = 0. Hence, the simulation results indicate that even for a short sample, that is, n = 15, the 
approximations for obtaining Var(Sn) and Cov(X̅n,Sn) are correct (as expected).

For the Gumbel distribution, the CDF is given by F x x x( ; ) exp exp ( )θ α= − − −[ ]{ }0 /  in which 
θ α= { , }x0  is the parameter set where x0 is the location parameter and α > 0 is the scale parameter [72]. 
Thus, Gumbel random numbers were generated by x x u= − −0 α ln( ln ) in which u is a uniform (0,1) 
random number. The simulation experiments were made assuming that α = 1 and x0 = 1.9878, 0.7053, 
0.06405, and –0.256575, which correspond to coefficients of variation ηX = 0.5, 1.0, 2.0, and 4.0, respec-
tively (note that for α = 1, the population variance of the Gumbel distribution is σ2 = 1.645.) Also in this 
case, 1000 samples were simulated for sample sizes n = 15, 50, 100, and 150 and the variance σ̂2(Sn) and 
correlation coefficient ρ̂(X ̅n,Sn) determined. Table 28.2 summarizes and compares the results obtained 
for the variance and the correlation coefficient using the formulas that are valid for the normal distri-
bution and using simulation, assuming the Gumbel distribution. In Table 28.2, the rows corresponding 
to Var S nn( ) ( )= −σ2 2 1/  were obtained based on the assumed values of σ2 = 1.645 and n (e.g., for n = 15, 
Var(Sn) = 0.05875). On the other hand, the rows corresponding to simulation were obtained from the 

TABLE 28.2 Comparison of the Variances Var(Sn) and Correlation Coefficients ρ(X̅n,Sn) Obtained Based 
on the Normal Approximations and from Generated Random Samples Gumbel Distributed with 
Parameters α = 1 and x0 = 1.9878, 0.7053, 0.06405, and –0.256575 (for Coefficients of Variation ηX = 0.5, 1.0, 
2.0, and 4.0, respectively)

Sample 
Size n
(1)

Variance and 
Correlation

(2)
Approacha

(3)

Coefficient of Variation ηX

Average
(8)

Correction 
Factor fn

(9)
0.5
(4)

1.0
(5)

2.0
(6)

4.0
(7)

15 Var(Sn) σ2/2(n − 1)
Simulation

0.05875
0.1011

0.05875
0.1026

0.05875
0.1006

0.05875
0.1075

0.05875
0.10295

1.752

ρ(X̅n,Sn) 0.0
Simulation

0.0
0.5494

0.0
0.5550

0.0
0.4942

0.0
0.5388

0.0
0.5344b

50 Var(Sn) σ2/2(n − 1)
Simulation

0.01679
0.0323

0.01679
0.0342

0.01679
0.0328

0.01679
0.0336

0.01679
0.03322

1.979

ρ(X̅n,Sn) 0.0
Simulation

0.0
0.5581

0.0
0.5097

0.0
0.5515

0.0
0.5634

0.0
0.5457b

100 Var(Sn) σ2/2(n − 1)
Simulation

0.00831
0.0163

0.00831
0.0173

0.00831
0.0191

0.00831
0.0182

0.00831
0.01772

2.133

ρ(X̅n,Sn) 0.0
Simulation

0.0
0.5541

0.0
0.5367

0.0
0.5332

0.0
0.5516

0.0
0.5439b

150 Var(Sn) σ2/2(n − 1)
Simulation

0.00552
0.0110

0.00552
0.0118

0.00552
0.0120

0.00552
0.0120

0.00552
0.0117

2.120

ρ( , )X Sn n 0.0
Simulation

0.0
0.5377

0.0
0.5628

0.0
0.5279

0.0
0.5480

0.0
0.5441b

a Var(Sn) = σ2 2 1/ ( )n −  and ρ( , )X Sn n  = 0 are based on the normal approximation.
b The average value of ρ( , )X Sn n  obtained from the simulated samples is about 0.542.
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Uncertainty of the PMP and PMF 587

1000 values of Sn(i), i = 1,…, 1000. Likewise, for ρ(X ̅n,Sn), the rows of zero’s correspond to the result 
based on the normal approximation, while the values in the rows corresponding to simulation were 
obtained by correlating X ̅n(i) and Sn(i), i = 1,…, 1000.

First of all, one may observe that the values of Var(Sn) obtained by simulation do not vary that much with 
the coefficient of variation ηX; thus, one may use the average figures shown in the eighth column of Table 
28.2 (e.g., 0.10295 for n = 15). The ratios of the average values (obtained by simulation) and those from the 
formula (based on the normal approximation) are 1.752, 1.979, 2.133, and 2.120 for n = 15, 50, 100, and 
150, respectively, as shown in the last column of Table 28.2 (e.g., for n = 15, fn = 0.10295/0.05875 ≈ 1.752). 
As expected, Var(Sn) varies with n, but the ratios, denoted correction factors fn, after an initial increase 
for small n, seem to converge to a constant value as n increases, as shown in Figure 28.5. Thus, the factor 
fn can be used to calculate Var(Sn) for the Gumbel as Var S n fn n( ) [ ( )]≈ − ×σ2 2 1/  where fn, for a particular 
value of n, can be either interpolated from the values of Table 28.2 or read of from Figure 28.5. Note that 
for values of n ≥ 100, one may use fn ≈ 2.13, which is an average value for large n. Likewise, Table 28.2 
shows that the correlation coefficient ρ(X̅n,Sn), obtained from simulation, does not vary much with the 
coefficient of variation ηX nor with the sample size n (Figure 28.5); thus, an average figure such as 0.542 
may be a reasonable correlation to use for the Gumbel distribution (Table 28.2).

Therefore, (28.4) was modified so as to consider the corrections pertaining to the variance Var(Sn) and 
the covariance Cov(X̅n,Sn) as described previously. The covariance term can be written as

 
Cov X S X S X S

n

f

n
X Sn n n n n

n
n n( , ) ( ) ( ) ( , )

( )
( , )= =

−
σ σ ρ σ σ

ρ
2 1

and using ρ( , ) . ,X Sn n ≈ 0 542  one can rewrite (28.4) as

 
σ σ
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P
n

nK f
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nK f

n
n nˆ ≅ +

−
+

−








1

2 1
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2 1
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 (28.5)

which is the standard deviation of the PMP estimator P̂ after the corrections as described previously that 
are applicable for skewed distributions such as the Gumbel distribution (the assumed distribution here).
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FIGuRE 28.5 Variation of the correction factor fn and the correlation coefficient ρ(X̅n,Sn) as a function of the 
sample size n obtained by simulation using Gumbel random numbers (see Table 28.2). The correction factor fn and 
the correlation coefficient ρ(X̅n,Sn) are used in developing σ(P̂) of (28.5).
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28.5.2  Design PMP and risk

Considering the uncertainty of the mean X̅n and the standard deviation Sn and the ensuing uncertainties 
of the PMP estimator P̂, one can estimate design values of the PMP by

 
ˆ ( ˆ) ( ˆ)P E P c Pd = ± σ  (28.6)

where
P̂d represents a design PMP value
c > 1

In other words, P̂d is a quantile of the uncertain quantity P̂ of which we do not know its distribution but 
only the estimate of its mean E(P̂) and the estimate of its standard deviation σ(P̂). Furthermore, in order 
to have an approximation to the probability that the PMP estimator P̂ may be smaller or greater than the 
said quantile P̂d, one can apply Chebyshev’s inequality [52], which can be expressed as

 
P E P c P P E P c P

c
[ ( ) ( ) ( ) ( )]ˆ ˆ ˆ ˆ ˆ− < < + ≥ −σ σ 1

1
2

 (28.7)

This inequality gives a bound of the probability that does not depend on the distribution of P̂. As 
expected, the probability bound is conservative since one only knows the mean and the standard devia-
tion of P̂ but not its distribution. The applicability of (28.7) is illustrated in the case study presented in 
the following section.

The proposed method for determining the PMP estimate, the corresponding uncertainty, the design 
PMP, and associated probability bounds may be summarized as follows: (a) adjust X̅n and Sn for effect of 
outlier as in the original method by Hershfield; (b) select K as a function of X̅n, the storm duration, and 
the study region; (c) estimate the expected value of the PMP estimator E(P̂) by using (28.2b) and multiply 
this value by an adjustment as in step (e) of Hershfield’s method as described previously at the end of 
Section 28.3.2; (d) estimate the standard deviation of the PMP estimator σ(P̂) by using (28.5) where the 
correction factor fn is obtained by interpolating from Table 28.2 or from Figure 28.5; (e) use (28.6) to 
obtain design values P̂d of the PMP; and (f) use Chebyshev’s inequality (28.7) for obtaining probability 
bounds of the PMP estimator P̂. This modified method is further illustrated in the following case study.

28.5.3  case Study

The case study refers to the design of the spillway capacity of a high dam that is being constructed 
at the Tona River north of Bucaramanga, Colombia, near its confluence with the Surata River (the area 
of the basin at the dam site is 195 km2 and the mean slope of Tona River is about 7%.) For this purpose, 
the Metropolitan Aqueduct for Bucaramanga contracted the pertinent hydrologic studies with leading 
consulting firms in Colombia. The consultants and designers of the dam decided using the PMP and PMF 
approach for estimating the design flood for the spillway. The hydrologic data and basic studies performed 
by the consultants considered estimating the PMP for various storm durations, and the methods utilized 
included storm maximization and transposition and Hershfield’s original statistical method. However, in 
this case study, only the statistical method due to Hershfield’s including the proposed modifications to 
account for the uncertainty (as described previously) is compared and discussed. The statistical estimates 
were based on 15 years of annual maximum daily precipitation recorded at the Martín Gill station (located 
within Tona’s River basin) where Xn̅ = 66.5 mm, Sn = 24.5 mm, and n = 15 (Table 28.3).

The main results of applying the original (statistical) method by Hershfield and those obtained using 
the proposed method of PMP with uncertainty are included in Table 28.3. The first line of results in 
Table 28.3 corresponds to the estimates based on the original method of Hershfield as described previ-
ously. The adjustments for the mean and the standard deviation to account for the limited sample size 

© 2014 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

C
ol

or
ad

o 
St

at
e 

U
ni

ve
rs

ity
 L

ib
ra

ri
es

],
 [

Pi
er

re
 J

ul
ie

n]
 a

t 0
8:

51
 1

3 
Ju

ne
 2

01
4 



Uncertainty of the PMP and PMF 589

(as suggested by Hershfield) were made using the graphs available at WMO [83], (Figure 4.4) that gave 
adjustment factors equal to 1.03 and 1.13, for the mean and the standard deviation, respectively. Thus, 
the adjusted values of the sample mean and standard deviation are 68.5 and 27.7 mm, respectively (Table 
28.3). In addition, the value of the frequency factor K = 8.9 was obtained from the results for Colombia 
for 24 h duration of precipitation [50]. Then using the foregoing values, one can obtain from Equation 
28.1a the value of PMP = 315 mm. Note that Hershfield [35] recommended an additional adjustment of 
1.13 on the estimated PMP value to account for the difference between the daily maximums and the 24 h 
maximums. But other recent studies such as those in Spain [8] and Great Britain [20] gave adjustment 
factors of 1.16 and 1.17, respectively. Hence, in all subsequent calculations, the factor 1.17 was applied. 
Therefore, the PMP adjusted value using Hershfield’s method becomes 369 mm as shown in Table 28.3 
(see the notes at the bottom of table). One must also note that no adjustments for outliers were made 
because the analysis of the 15 years of data did not show any evidence of outlying observations. In addi-
tion, Hershfield’s method for adjusting for outliers gave adjustment coefficients for the mean and the 
standard deviation that were practically equal to one in both cases.

While Hershfield’s adjustments for the mean and the standard deviation have been a way of taking into 
account the limited sample size of the available precipitation records, however. Hershfield’s method does 
not give any information on the uncertainty of the PMP estimates, that is, the standard error of the estima-
tor P̂ of (28.1b), which arises from the uncertainties of the estimators X̅n and Sn. As suggested in Section 
28.5.1 previously, those estimates with uncertainties can be obtained approximately by (28.2b), (28.4), and 
(28.5), depending on the approximations utilized. For example, the second row of results in Table 28.3 
shows that E(P̂) = 328 mm, which is obtained from (28.2b) based on X̅n = 66.5, Sn = 24.5, n = 15, and K = 8.9 
and then multiplying the result from (28.2b) by the adjustment factor 1.17 as described previously. Next 
(column before the last one) are the results obtained for σ(P̂) applying (28.4), based on the normal approx-
imation that gave σ(P̂) = 41.7 mm and (28.5) based on the Gumbel approximation, which gave σ(P̂) = 58.2 
mm. In addition, the last column in Table 28.3 shows results of the design PMP P̂d of (28.6) consider-
ing four values of c, that is, c = 1, c = 2, c = 3, and c = 4. First, the concepts based on the results obtained 
using the normal approximations (for Var(Sn) and Cov(Xn̅,Sn)) are illustrated, and subsequently the results 

TABLE 28.3 Comparison of the 24 h PMP for Tona River Obtained Based on Hershfield’s Original Method 
and Based on the Proposed Method Considering Uncertainty Assuming the Normal and Gumbel 
Approximations for Calculating Var(Sn) and Cov X Sn n( , )

Mean X̅n (mm) Std. Deviation Sn (mm)

K

Traditional 
Hershfield’s 
PMP (mm) 
from (28.1a)

PMP with Uncertainty (mm)

Original
Adjusted 

Hershfield Original
Adjusted 

Hershfield
E(P̂) 

(28.2b) σ(P̂) (28.4) P̂d
∗ (28.6)

66.5 68.5 24.5 27.7 8.9 369a

66.5 24.5 8.9 328b 41.7 370c

411d

453e

495f

From (28.5)
58.2 386c

444d

503e

561f

a PMP = (68.5 + 8.9 × 27.7) × 1.17 ≈ 315 × 1.17 ≈ 369 mm (using an adjustment factor 1.17).
b The E(P̂) obtained from (28.2b) is multiplied by the adjustment factor 1.17.
P̂d of (28.6) considering the upper limit, that is, P̂d

∗ = E(P̂) + c × σ(P̂) in which
c c = 1.
d c = 2.
e c = 3.
f c = 4.
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obtained based on the Gumbel approximation are discussed. One may observe that (28.6) with c = 1 and 
the + sign, that is, P̂d

∗ = E(P̂) + σ(P̂), gives P̂d
∗ = 370 mm, which is the least conservative estimate and is about 

the same value obtained using Hershfield’s original method, that is, PMP = 369 mm. Obviously, the most 
conservative estimate included in Table 28.3 corresponds to c = 4, that is, P̂d

∗ = 495 mm. The decision for 
selecting a design value of the PMP based on statistical concepts must consider the fact that the estimates 
are based on statistics that are computed from a limited sample, and in this case study, the sample is 
only 15 years long. Thus, the selected design value must be such that the probability of that value being 
exceeded must be small.

The Inequality 28.7 provides some useful information that may help in selecting the design PMP 
value. Thus, applying (28.7) and σ(P̂) based on (28.4) gives the following:

 Forc P P= < < ≥1 286 370 0 0, [ ] .ˆ

 For c P P= < < ≥2 245 411 0 75, [ ] .ˆ

 For  c P P= < < ≥3 203 453 0 89, [ ] .ˆ

 For  c P P= < < ≥4 161 495 0 94, [ ] .ˆ

These results must be interpreted as follows. For example, for c = 3, the probability that the PMP esti-
mator P̂ is bigger than 453 mm and smaller than 203 mm is less than 11%. For comparison, if the true 
underlying distribution of P̂ were normal, then that probability would be less than 0.3% (instead of 11%). 
Likewise, if we take instead c = 4, then in this case the foregoing probabilities would be less than 6% and 
0.01%, respectively. Naturally, one could select even higher values of c and obtain more conservative 
values of the PMP with smaller risks of exceedances.

The foregoing analysis of the results included in Table 28.3 suggests that the PMP estimates considering 
the effect of uncertainty and the normal approximations vary in the range of 370–495 mm (the top four 
values shown in the last column of Table 28.3). The lowest value 370 mm corresponds to the case where 
the PMP is obtained simply by adding one standard deviation to the estimated mean value E(P̂). Without 
further information beyond the mean E(P̂) and the standard deviation σ(P̂), the probability bound pre-
viously suggests that it is very likely (in fact almost certain) that such value of 370 mm will be exceeded 
because of the uncertainty associated with estimating Xn̅ and Sn that are based on only 15 years of records. 
On the other hand, the value of 495 mm corresponds to a conservative estimate, that is, it is less likely that 
it will be exceeded because of the uncertainties associated with Xn̅ and Sn. Thus, the results show a major 
difference between the single value of the PMP (equal to 369 mm) that one obtains applying the original 
method of Hershfield and the range of PMP values obtained by the proposed method that takes into 
account the effect of uncertainty and their associated probabilities of exceedances.

The calculations and analysis of design PMP and probability bounds of the previous discussion have 
been made using (28.4) for calculating the standard deviation of the PMP estimator σ(P̂), which assumes 
the normal approximations for the variance Var(Sn) and the covariance Cov(X̅n,Sn) as described previ-
ously. However, using σ(P̂) of (28.5) will give more accurate results if the distribution of the annual 
maximum daily precipitation is skewed as one may expect. Thus, for comparison, we applied (28.5) 
where n = 15, σ = 24.5, K = 8.9 (Table 28.3), and f15 = 1.752 (see Section 28.5.1 and Table 28.2), which gives 
σ(P̂) = 58.2 mm, an amount that is about 40% higher than that based on (28.4). However, the overall 
increase in the design value of the PMP of (28.6) is not as high. Thus, we computed four design values 
of the PMP based on (28.6) for c = 1, 2, 3, and 4, and the values obtained are those shown in the lower 
portion of the last column of Table 28.3. For illustration, for c = 1, we get P̂d

∗ = 386 mm, which compared 
to the value 370 mm (Table 28.3) represents an increase of about 4%. Likewise, the percent increases for 
the other cases shown in Table 28.3 are about 8%, 11%, and 13% for c = 2, 3, and 4, respectively.
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Uncertainty of the PMP and PMF 591

One must note that the previous analysis clearly indicates the striking difference between the PMP 
value obtained using the traditional Hershfield’s method (PMP = 369 mm) and the PMP values that are 
obtained using the proposed method that accounts for the uncertainties involved, which gives values 
varying in the range of 386–561 mm (lower portion of the last column in Table 28.3). These values (386, 
444, 503, and 561 mm) are, respectively, about 5%, 20%, 36%, and 52% higher than the single value 
of PMP obtained with the original Hershfield’s method. Furthermore, the proposed method, which 
includes the probability bounds, suggests that using say the smaller value of 386 mm as the design PMP 
(which is even 5% bigger than the 369 mm PMP obtained from the original Hershfield’s method) would 
not be wise because it is certain that it will be exceeded. Therefore, a bigger value must be selected con-
sidering the associated exceedance probabilities (risk) as described previously.

28.6  PMf estimation and Uncertainty

28.6.1  PMf estimation from PMP

Several books and manuals have documented the procedures for determining the PMF from the PMP 
[14,57,65]. The following list is a simplified summary of the procedures followed by USBR and many 
other agencies in the United States [73]: (1) divide the basin into subbasins as needed and determine 
the drainage areas; (2) estimate the PMP; (3) arrange the PMP into a storm rainfall pattern; (4) estimate 
the rainfall losses due to surface detention and infiltration, and determine the rainfall excess for each 
time interval; (5) route the rainfall excess through each subbasin to estimate the flood hydrograph for 
each subbasin; (6) add to the flood hydrograph of each subbasin the corresponding base flow, flow from 
prior storms, as the case may be, to get an estimate of the flood hydrograph for each subbasin; (7) route 
the flood hydrograph from each subbasin to estimate the PMF at the point of interest (e.g., site of a 
dam); and (8) route the PMF through the reservoir storage, outlets, and spillway to obtain estimates of 
maximum storage, elevation, discharges, and durations at the project site. The procedures also include 
comparisons of applicable envelope curves of flood peaks and volumes if available.

Some of the previous steps (e.g., steps 4 through 7) may be computed using a given rainfall–runoff 
model. For this purpose, a number of models have been developed for the past several decades. For 
example, in the United States, the Hydrologic Engineering Center (HEC)-1 [75] and HEC-Hydrologic 
Modeling System (HEC-HMS) [76] models are widely utilized in practice for flood hydrograph computa-
tions. These models are based on the unit hydrograph concept, and also the flood hydrograph and runoff 
(FHAR) model promoted by the USBR uses the unit hydrograph [73]. The unit hydrograph approach rep-
resents the rainfall–runoff process as a linear system. Also, various rainfall–runoff models that consider 
the underlying nonlinear mechanism of the rainfall–runoff processes have been proposed in literature 
such as CASC2D [40] and Two-dimensional runoff, erosion, and expert model (TREX) [80].

In addition, the advances in GIS-based computer models in the past decades brought further capa-
bilities for analyzing runoff hydrographs as a function of the watershed characteristics and enhancing 
the applicability of distributed modeling in watershed hydrology. For example, CASC2D [39,40,41] is a 
raster-based watershed model that accounts for the spatial variability in the watershed topography, soil 
type, and land use. The CASC2D model has been extended to TREX by Velleux et al. [80] to simulate the 
transport and fate of metals in relation to rainfall–runoff and sediment transport at the watershed scale. 
England et al. [23] applied TREX to simulate extreme storms including the PMP on the Upper Arkansas 
watershed covering 12,000 km2 in Colorado.

As one may observe from the previous summarized steps, estimating the PMF for a specific basin (proj-
ect) involves a wide range of factors such as rainfall depth and duration (PMP), temporal pattern of the 
PMP, spatial distribution of the PMP, centering of the storm over the basin, lag time and unit hydrograph 
estimation, loss rates estimation, antecedent flooding before the onset of the PMP (previous storms and 
snowmelt as the case may be), and flood routing through the basin channels and reaches. Each of the 
referred factors of the previous discussion and the calculation steps to estimate the PMF involve some 
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degree of uncertainty. While this issue has been recognized in literature, still the knowledge for quantify-
ing the various uncertainties and their effects on the PMF is lacking. Bondelid et al. [6] indicated that the 
uncertainty in estimating the lag time may cause errors in estimating the maximum floods of the order of 
75%. Useful references on uncertainties of time of concentration and lag time for various types of water-
sheds and formulas commonly utilized in practice are available [29,48,49,74]. In the following sections, we 
illustrate the variability of the PMF based on sensitivity analysis and Monte Carlo simulation.

28.6.2  Sensitivity analysis

The TREX model is applied for sensitivity analysis of some of the model parameters on the PMF. For 
this purpose, the Semenyih watershed (236 km2), which is located in the state of Selangor in Malaysia, 
is utilized. The watershed is partially used for agriculture but urbanization (residential and industrial) 
development has rapidly transformed the area in recent decades. The topography of the watershed has 
been discretized with 29,139 cells at a 90 m × 90 m grid scale. The digital elevation model (DEM) data for 
the study site (Figure 28.6a) were obtained from the Department of Surveying and Mapping of Malaysia. 
The lowest elevation at the outlet is 40 m above sea level, while the highest point reaches 1100 m at the 
upstream end of the watershed. The average terrain slope is about 45% and ranges between 4% and 85% 
with very steep mountains overhanging flat and wide valleys (Figure 28.6a). The DEM also allowed the 
delineation of the channel network of the watershed where the total stream length reached about 36 km. 
Four soil types (Figure 28.6b) and six land uses (Figure 28.6c) were included in the raster-based GIS rep-
resentation of the watershed. The soil types allowed the definition of the effective hydraulic conductivity 
Kh, and the land use types enabled the definition of the land surface Manning’s roughness coefficients n.

The April 13, 2003, storm was used for model calibration where the precipitation and flow records were 
obtained from the Department of Irrigation and Drainage of Malaysia. The calibration procedure focused 
on properly simulating peak flow, discharge volume, and time to peak at the outlet. The TREX model has 
several parameters such as hydraulic conductivity, Manning’s roughness coefficient, interception depth, 
capillary suction head, and soil moisture deficit. These parameters were adjusted during calibration so as 
to achieve good agreement between the measured and simulated flow. The antecedent moisture condition 
of the watershed was assumed dry. Table 28.4 gives the values of the calibrated parameters Kh and n for the 
specified type of soils and land use (the other parameters are omitted).

Several studies have been made to estimate the PMP for Malaysia. For example, Poon and Hwee [64] 
reviewed earlier studies and Figure 28.7 shows the PMP estimates for various storm durations in the state 
of Selangor (S-PMP). For comparison, the figure also shows the rainfall depths for the 100-year-return 
period [18] and the world’s greatest precipitation events [38]. For the purpose of this study, the 16 h 
precipitation depths were utilized as input to the calibrated TREX model. These rainfall events are sum-
marized in Table 28.5. TREX calculates the distribution of flow depth on each calculation cell as a function 
of time. To illustrate the results, Figure 28.8 shows the calculated distribution of the peak flow depth on 
the Semenyih watershed at the time of the peak discharge during the S-PMP. The PMF hydrograph at the 
outlet of the basin is shown in Figure 28.9. For comparison, this figure also shows the flood hydrographs 
calculated for the 100-year and the world’s greatest storm events (Table 28.5). Also for comparison, the 
figure shows the hydrographs obtained using the HEC-HMS model (dashed lines).

Experience using the TREX model in simulating a wide range of rainfall–runoff events has shown that 
the most sensitive parameters are the saturated hydraulic conductivity Kh and the overland flow resistance 
Manning’s coefficient n [22,79]. Thus, the sensitivity analysis of the PMF considered here uses the range of 
values of the parameters Kh and n shown as lower and upper values in Table 28.4. The combination of the 
upper, lower, and calibrated values of Kh and n gave a range of calculated PMF values that are summarized 
in Table 28.6. It shows that the PMF values vary in the range of 1245–1866 cm and the mean and standard 
deviation are about 1527 and 270 cm, respectively. The maximum discharge is obtained for the lowest values 
of Kh and n. Besides showing the variability of the computed PMF, the results also suggest that the Manning’s 
roughness coefficient is the most important parameter controlling the flow at the outlet of the basin.
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FIGuRE 28.6 (a) Elevation, (b) soil type, and (c) land use for the Semenyih watershed in Malaysia.
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TABLE 28.4 Hydraulic Conductivity Kh and Manning’s n Values Obtained after 
Calibrating TREX Model for the Semenyih Watershed

Parameter Lower Calibrated Upper Soil Type/Land Use

Hydraulic 
conductivity Kh (m/s)

5.60 × 10−9

6.35 × 10−9

1.53 × 10−9

5.90 × 10−11

1.12 × 10−8

1.27 × 10−8

3.06 × 10−9

1.18 × 10−10

1.68 × 10−8

1.91 × 10−8

4.59 × 10−9

1.77 × 10−10

Sandy loams
Loams
Clay
Mountain–limestone

Manning’s n 0.050
0.025
0.100
0.050
0.050
0.020

0.100
0.050
0.200
0.100
0.100
0.040

0.150
0.075
0.300
0.200
0.150
0.060

Agriculture
Urban/commercial
Forest
Grass area
Open area
Channel bed

TABLE 28.5 Precipitation Depth and Intensity and Corresponding 
Flood Properties Obtained from Model TREX for the 100-year, PMP, and 
World’s Greatest Storms for the Semenyih Basin

Events

Precipitation Flood Hydrograph Results

Depth 
(mm)

Intensity 
(mm/h)

Peak Discharge 
(cm)

Time to 
Peak (24 h)

100-year 173 11 223 23:36
PMP 585 37 1484 19:06
World’s greatest rainfall 1092 68 3686 17:30

1

Minute
Hour 2

10010
100

1092.16 mm (68.26 mm/h)

585.44 mm (36.59 mm/h)

172.80 mm (10.80 mm/h)

1000

D
ep

th
 (m

m
)

4 6 8 10 16

1000

Duration

World greatest rainfall events
Selangor PMP
Selangor 100-year event

FIGuRE 28.7 PMP estimates for the state of Selangor, Malaysia, for various storm durations. For comparison, the 
100-year rainfall depths and the world’s greatest rainfall depths are also shown.
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28.6.3  Monte carlo analysis

A Monte Carlo method has been developed to determine the uncertainty of the PMP in a joint effort 
by the USBR and Washington state [3]. Since then, a number of articles and applications have been 
made [70]. In Barker et al. [3], the various factors involved in estimating the PMF including some of 

0.00–0.01
0.01–0.03
0.03–0.10
0.10–0.30
0.30–1.00
1.00–2.49
2.49–4.49

Alert
Danger

Water depth in meter
Time: 15:00

Normal
4.49–6.09
> 6.09

Legend

FIGuRE 28.8 Spatial distribution of peak flow depth in meters for the PMP event (37 mm/h at 16 h duration).
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FIGuRE 28.9 Flood hydrographs obtained from TREX and HEC-HMS models using the 16 h 100-year, PMP, and 
world’s greatest storms.
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the hydrologic model input parameters were treated as variables with specified distributions. Values of 
the various factors and parameters were drawn at random from the corresponding distributions that 
were then utilized for estimating the PMF. The overall method is summarized in the following steps: (a) 
select the season of occurrence of the PMP; (b) select all hydrometeorological, hydrologic, and hydraulic 
parameters that are dependent upon season of occurrence; (c) select all parameters that are independent 
of other parameters; (d) select all hydrologic and hydraulic parameters that are dependent upon other 
flood model parameters; (e) estimate the flood; (f) repeat steps (a) through (e) a large number of times, 
for example, 500 times; and (g) do statistical analysis of the estimated flood values.

The method summarized previously has been applied to the Bumping Lake basin located in the Cascade 
Mountains in Washington state [3]. The basin area is 67 miles2, the topography ranges from 3400 ft at the 
dam site to over 6000 ft at the headwaters near the crest of the mountains, and the mean annual precipita-
tion varies from about 48 in. near the dam to over 70 in. at the headwaters. The PMPs were determined 
based on the HMR-57 [60] as 10.6 in. for 6 h, 20.6 in. for 24 h, and 32.2 in. for the 72 h. The HEC-1 
program was utilized for the flood computations [75], and probability distributions were used for the fol-
lowing input parameters: season of occurrence of the PMP, antecedent precipitation, initial streamflow, 
antecedent snowpack, antecedent soil moisture, occurrence of frozen ground, minimum infiltration rate, 
and unit hydrograph time lag. Since the HEC-1 model utilized does not account for subsurface catchment 
response, appropriate additional steps were added to account for that component. Based on detailed analy-
sis of the hydrometeorological historical data for the study region, appropriate PDFs were selected for the 
various input parameters as summarized in Table 28.7. The results of 500 Monte Carlo simulations based 
on the PMPs specified in HMR-57 (as noted previously) are shown in the frequency distribution of the 
PMFs in Figure 28.10. The simulated PMFs gave the following: mean PMF = 64,000 cfs and standard devia-
tion of PMF = 7,220 cfs and a range of 45,000–84,000 cfs. Note that the PMF computed using the standard 
USBR approach gave a PMF equal to 71,000 cfs that is about one standard deviation above the mean of 
the simulated results. The results obtained suggest the uncertainty of the PMF (for the specified PMP) that 
arises from the uncertainty of the various hydrometeorological factors involved in estimating the PMF.

Two additional Monte Carlo studies were made where the magnitude and temporal characteristics 
of the precipitation input were assumed to vary in addition to the other parameters described previ-
ously [3]. In the first case, the 24 h PMP (20.6 in.) specified by HMR-57 was held constant, and the 
temporal characteristics were varied by examining the depth-duration curves contained in HMR-57 
and the extreme storms observed in the past. The results of 500 simulations gave mean PMF = 42,300 

TABLE 28.6 Sensitivity Analysis of the PMF Obtained 
from the TREX Model for Various Combinations of the 
Parameters for the Semenyih Watershed

Hydrologic Model Parameters
Flood Peak 

(cm)Hydraulic Conductivity Kh Manning’s n

Calibrated values 1474

Lower limit Lower limit 1866
Upper limit Upper limit 1242
Lower limit Upper limit 1249
Upper limit Lower limit 1859
Calibrated value Lower limit 1859
Calibrated value Upper limit 1245
Upper limit Calibrated value 1476
Lower limit Calibrated value 1472
Mean 1527
Standard deviation 270
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cfs and standard deviation of PMF = 10,200 cfs and a range of 14,700–75,100 cfs. Figure 28.11 shows the 
frequency plot of the PMFs obtained. The results show the sensitivity of the peak flow to the temporal 
pattern of the storm, the peak precipitation intensity, and the total volume of the storm [3]. In the second 
case, the 24 h precipitation depth was allowed to vary for each simulation run. For this purpose, the 
4-parameter kappa distribution was fitted to the historical 24 h annual maximum precipitation events. 
Monte Carlo simulations of the 24 h precipitation gave an AEP = 10−7.3 of the PMP, and the correspond-
ing simulations of the flood peaks gave a frequency distribution as shown in Figure 28.12. The figure 
shows that the PMF (71,000 cfs) has an AEP of 1.5 × 10−8, and the mean of the flood conditioned on the 
occurrence of the 24 h PMP (42,300 cfs, Figure 28.11) has an AEP of 1.8 × 10−6. This implies that the 
methods that are used to develop the PMF (standard USBR procedures) give a flood that is about two 
orders of magnitude more rare than the 24 h PMP that was used to generate the flood [3]. The results of 
the simulations serve not only for quantifying the uncertainty of the PMF but also for estimating the 
order of magnitude of the AEP of the PMF that is estimated using the traditional approaches.

28.6.4   Statistical alternatives for estimating 
extreme floods (Including PMf)

In the last decades, a tendency worldwide has been towards risk-based approaches for designing flood-
related structures such as flood walls and spillways [24]. As for extreme precipitation, studies of high 

TABLE 28.7 Probability Distributions Utilized in the Monte Carlo Method

Parameter Probability Model

PMP season of occurrence Beta distribution
Antecedent precipitation (bimonthly) Beta distribution
Antecedent temperature (bimonthly) Normal distribution
Antecedent snowpack (bimonthly) Regression with antecedent precipitation and 

temperature plus error term
September 1 soil moisture deficit Beta distribution
Minimum infiltration rate Symmetrical beta distribution
Deep percolation rate Symmetrical beta distribution
Unit hydrograph lag (natural variability) Normal distribution
Unit hydrograph lag (runoff mechanism) Linear scaling factor
Initial streamflow Regression with antecedent precipitation plus error term

Source: Barker, B. et al., A Monte Carlo approach to determine the variability of PMF estimates, 
Final Report on Bumping Lake Dam for USBR Dam Safety Office, 1997. With permission.

Bumping Lake PMP response histogram
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nc
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30%
35%
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(500 simulations)

Peak flow in 1000’s cfs

FIGuRE 28.10 Relative frequency distribution of the PMFs obtained from the 500 simulations for Bumping Lake 
using the PMP specified in HMR-57. (From Barker, B. et al., A Monte Carlo approach to determine the variability of 
PMF estimates, Final Report on Bumping Lake Dam for USBR Dam Safety Office, 1997. With permission.)
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return period floods based on statistical approaches have been proposed. They generally involve extrap-
olations of the FCs obtained from the systematic flood records including historical and paleoflood data 
[7,21,28,71]. However, federal and state agencies in the United States and similar organizations in other 
countries still use the PMF as the standard for assessing flood-related infrastructure. For example, the 
USBR’s current policy is to use the PMF as an upper limit to hydrologic hazard curve extrapolations 
[78] without directly assigning an AEP to the PMF [24], that is, there is no fixed assumption for AEP of 
the PMF. Examples of an array of techniques developed by USBR in the last two decades can be found 
in Swain et al. [73]. They involve using historical and paleoflood data, mixed-population approach, 
expected moments algorithm (EMA), and Bayesian maximum likelihood [11,21,61].

Bumping Lake PMF histogram
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FIGuRE 28.11 Relative frequency distribution of the PMFs obtained from the 500 simulations for Bumping Lake 
where the 24 h precipitation was held constant at the PMP, while the other variables, including the precipitation 
temporal pattern, varied. (From Barker, B. et al., A Monte Carlo approach to determine the variability of PMF esti-
mates, Final Report on Bumping Lake Dam for USBR Dam Safety Office, 1997. With permission.)
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FIGuRE 28.12 Frequency distribution of the flood peaks obtained by Monte Carlo simulation considering the 
uncertainty of the 24 h annual maximum precipitation in addition to the uncertainty of the other driving variables 
to estimate the flood. (From Barker, B. et al., A Monte Carlo approach to determine the variability of PMF esti-
mates, Final Report on Bumping Lake Dam for USBR Dam Safety Office, 1997. With permission.)
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Likewise, the USACE has been developing methods for extrapolating the flood frequency curves 
(FFCs) all the way to the AEP of the PMF. For example, the HEC has been developing methods for FFC 
extension to the level of the PMF and provides simple methods to estimate the AEP of the PMF [34]. 
For this purpose, the return period for the PMF is assumed to be in the range 10−3 to 10−6 and provide a 
simple equation to calculate the AEP of the PMF. In some cases, the extrapolation of FFCs beyond the 
range of the 100-year flood has been based on assuming (assigning) an AEP to the PMF. For example, 
the guidelines on extreme flood analysis for the Department of Transportation of Alberta, Canada, 
specify that the AEP for the PMF be set to 10−5 (100,000 years of return period) so that flood estimates 
for return periods of 1,000 and 10,000 years can be made [2].

28.7  Summary and conclusions

The topic of uncertainty in estimating the PMP and PMF has been the main trust of this chapter. 
There are many studies documenting the various developments for estimating the PMP and PMF 
based on physically based (hydrometeorological) and statistical approaches. And many federal and 
state organizations worldwide use the PMP and PMF as standards for designing some flood-related 
hydraulic structures. However, in recent decades, there has been a growing concern (expressed in 
literature) regarding the uncertainties involved in estimating such extreme events, and the tendency 
has been to estimate their exceedance probabilities. In this chapter, we included some developments 
directed to quantify the uncertainty of the PMP and PMF. While hydrometeorological methods likely 
provide the best estimates of PMP, however, in many regions of the world, hydrometeorological data 
are lacking, and consequently feasibility studies and actual designs of flood-related projects are being 
made based solely on the well-known Hershfield’s statistical method that provides a single value for 
the PMP. Thus, a method to quantify the uncertainty of the PMP if Hershfield’s method is to be 
applied has been included in this chapter.

Regardless of the method used for estimating the PMP and PMF, the current concern of climate 
change brings the issue on how possible changes in hydrometeorological variables such as air tempera-
ture, wind, humidity, snow cover, and sea levels may affect the estimates of extreme events in general 
and PMP and PMF in particular. Many studies have been made documenting possible trends in extreme 
precipitation and flood events and the possibility of using the so-called global climate model (GCM) 
outputs and projections for estimating extreme events, but results are still debatable and controversial 
(e.g., [25,46,65]). A review on efforts made on this issue in the past decades is available [25].
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