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Abstract

An algorithm for calculating the time to equilibrium of complex watersheds is developed for
spatially varied watershed characteristics and excess rainfall intensity. The wave travel time
through the flow path originating from the hydraulically most remote point in the basin
essentially determines the equilibrium time of the system. The wave travel time is computed
for two distinct phases: overland flow and channel flow. The hydraulically most remote point is
stationary for all spatially uniform rainstorms but may vary for spatially distributed storms.
The time to equilibrium varies inversely with rainfall intensity raised to the power 0.4. Using a
raster-based approach, algorithms were developed to determine the distance—drainage area
relationship and to perform the numerical integration of the time to equilibrium. Although
approximate, the algorithm provides maps showing the isochromes of surface runoff and travel
time to the outlet, along with time—area histograms for uniform or spatially distributed rain-
storms. Isochrones determine the response time required for water, dilute suspensions and
pollutants to reach the watershed outlet under complete equilibrium. The effects of infiltration
in delaying the time to equilibrium are significant only when 6 /K is large.

1. Introduction

The concept of time to equilibrium ¢, of a watershed is widely used in simple forms
for two major purposes. The first is to define the nature of surface runoff hydrographs
from storms of duration 7,, namely partial (¢, < #,) or complete equilibrium (¢, > ¢,),
which is obtained under uniform rainfaill. The concept of complete vs. partial
equilibrium hydrographs has been well documented by Woolhiser (1975, 1977).
The second is to find the time associated with the maximum potential surface runoff
from a watershed under constant rainfall intensity, which is reached at a time equal to
or greater than .. Time to equilibrium is primarily a function of storm characteristics
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and watershed physical and geometrical properties. Thus, ¢, is representative of how a
given storm interacts with the watershed and is indicative of the basin response time
excited by that storm.

The watershed equilibrium time is often confused with the watershed time of
concentration f,. The time of concentration may be defined as the time needed for
the most remote point of the basin to contribute to the surface runoff at the basin
outlet, whether or not outlet runoff reaches steady state. If the duration of a constant
intensity storm is equal to or greater than the time for the contribution of the most
remote point to the outlet, steady state is reached at the equilibrium time; thus 7. = z,.
Here one needs to stress that the most remote point relative to the outlet is implied in a
hydraulic sense and not in a geometrical sense. Moreover, this most remote point may
not be a unique point for all spatially distributed rainstorms. Hence the most remote
point is not necessarily the farthest point relative to the outlet but instead any point
with the longest wave travel time to the outlet under a given storm condition.

2. Background

The relationship between the kinematic time to equilibrium, catchment
characteristics, and rainfall properties has been analytically derived for well-defined
simple geometries. For example, using the method of characteristics, the kinematic
time to equilibrium was derived by Lighthill and Whitham (1955) and Henderson and
Wooding (1964) for a rectangular plane sloping in a single direction. Using the same
method, Agiralioglu (1984, 1988) derived integral forms for ¢, of converging and
diverging planes.

In the first of a series of classic papers, Wooding (1965a) developed analytical
solutions for a hydraulic model of kinematic flow over a plane V-shaped catchment
under uniform rainfall of finite duration and for a line stream outflow laterally
supplied by the overland catchment discharge. The overland flow and channel flow
were treated separately. A dimensionless time parameter A was introduced as a
measure of the ratio of stream response time (i.e. stream equilibrium time) to catch-
ment response time (i.e. overland equilibrium time). Large values of A cause delay in
the arrival time of flood peak and reduce its amplitude. For small values of ), the
stream outflow tends toward the catchment outflow (Wooding, 1965b, 1966).

In reality, the absolute steady state is achieved only when the rainfall duration is
infinite. For practical purposes, however, a virtual equilibrium condition often
replaces the absolute equilibrium condition. Larson (1965), for example, selected
the ‘time to virtual equilibrium’ to be the time when the discharge reaches 97% of
steady-state discharge. However arbitrary, the ‘time to virtual equilibrium’ may be
effectively used as the upper limit, though not in the exact sense, for a rainfall
duration which produces a partial equilibrium hydrograph. Machmeier and Larson
(1968) derived a relationship for the time to virtual equilibrium ¢,,, the time at which
flow rate is 97% of equilibrium flow, for the case of a synthesized model watershed of
54.66 km? in size, having a channel system with defined physical characteristics. The
procedure involved disaggregating the watershed into several units of overland plane
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and then routing the lateral inflow in the channel network. The results indicated that
t,. varied inversely with the 0.23 power of rainfall rate, results similar to those of
Ben-Zvi (1984).

By taking 7,, to be the particle travel time from the watershed farthest point to the
outlet, Golany and Larson (1971) tried to develop a general relationship for ¢,,. The
physical and geomorphological characteristics used previously by Machmeier and
Larson (1968) were incorporated in a synthesized watershed model that routes the
runoff on overland planes and in channel network. This model was used to estimate
the constants in the z,, equation.

Hjelmfelt (1978) provided a method to calculate the time of concentration ¢, for
constant rainfall intensity and transient infiltration. He pointed out that the outflow
increases after reaching that time. He also inferred that as a general trend the varying
infiltration during a storm has a significant effect on the time of concentration and on
the shape of the runoff hydrograph.

Akan (1986) developed a mathematical model based on kinematic flow and the
Green—Ampt infiltration equation to calculate the time of concentration ¢, of over-
land flow on a rectangular plane surface. He expressed ¢, in a dimensionless form, in
terms of two dimensionless parameters. More recently, Akan (1988) attempted to
determine the time of concentration and the peak runoff discharge from an infiltrating
converging basin. He used a similar approach to that of a rectangular plane and
provided several charts for 7, and peak discharge for storms with duration equal to ..

Based on this background information, the literature clearly lacks in the develop-
ment of a time to equilibrium formulation applicable to large watersheds. Numerical
solutions are required when dealing with two-dimensional watersheds subjected to
spatially distributed rainstorms. Accordingly, the primary objectives of this paper are
to (1) develop a formulation for time to equilibrium of watersheds under distributed
rainfall and (2) propose and implement a raster-based (cellular) numerical approach
to compute time to equilibrium, which also results in a ‘travel time’ map and time—
area histogram of a watershed under equilibrium conditions.

Time to equilibrium for small and large watersheds is a very important parameter
governing the linearity of the rainfall-runoff process. When the rainfaill duration ¢,
exceeds the time to equilibrium ¢,, the surface runoff discharge increases linearly with
rainfall intensity in the sense of the rational formula. Accordingly, linear methods
such as the unit hydrographs (UH) and instantaneous unit hydrographs (IUH) are
applicable. On the other hand, when the rainfall duration is short compared with
the time to equilibrium, partial equilibrium hydrographs are obtained for which
the relationship between rainfall and surface runoff is non-linear. Surface runoff
calculations based on linear techniques such as UH and IUH are not applicable
and methods that account for the non-linearity of surface runoff must be used.

In recent investigations (Julien and Moglen, 1990; Ogden and Julien, 1993), the
concept of time to equilibrium was applied to impervious planes and to small semi-
arid watersheds. When considering the magnitude and variability of peak discharge
owing to spatial and temporal variability in watershed and rainfall characteristics,
there is similarity at different scales when plotting the runoff response versus the ratio
of rainfall duration to time to equilibrium. To examine whether the similarity
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characteristics also extend to large watersheds, one must be capable of calculating the
time to equilibrium for large watersheds.

3. Analytical formulation
3.1. General approach

In this paper we assume that surface runoff over a watershed occurs in two distinct
but consecutive phases, namely overland flow and channel fiow. Although it is
difficult to separate these two phases clearly, overland flow is generally slower
owing to shallow flow depths, whereas channel flow is usually confined to a limited
width boundary with faster flood wave celerity. A simple technique is proposed that
accounts for channelized flow on overland planes. For a basin to reach steady state at
the time to equilibrium, the wave originating from the hydraulically most remote
point in the basin must reach the basin outlet by traveling through both the overland
and channel flow phases. The wave travel time is first formulated in a general form
and then separately computed for these two phases.

Let us assume, for the time being, rainfall of constant intensity falling over an
impervious watershed. As a wave originates from a point at a distance x = X; and
travels to x = X5, in either overland or channel flow phase, the wave travel time ¢,
may be written as

X2

W= |2 1)

4
X1

where x is the distance measured along the flow path and c is the wave celerity. The
celerity of the wave depends upon an expression for resistance as well as the wave
type. In general, the wave celerity is expressed by

_ 90 _0Q dh
T84, OhdA, @

where Q is the discharge, & is the flow depth, and A, is the flow cross-section area.
With regard to the wave type, the kinematic wave approximation is appropriate for
most overland flow conditions (Woolhiser, 1975). This approximation will be
eventually applied to simplify the general form.

The relationship between flow depth 4, flow velocity V, and unit discharge ¢ for a
general resistance law can be written as

V=ahﬂ_1; q:ahﬂ 3)

where o and 3 are resistance parameters. Based on flow cross-section, the area 4, and
the hydraulic radius R can be determined as functions of flow depth #, either precisely
through geometrical relationships or approximately through rating curves. In
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equation form, let us assume
A, =ah™;  R=ah" @)

where a;, a,, by, and b, are constants for a given cross-section. Substituting the
discharge Q = A4,V from (3) and (4) in the wave celerity Eq. (2) yields

coBtbi—1

-1
pah ®)

At this stage, we must evaluate flow depth at the equilibrium state. As a wave
originates from the hydraulically most remote point P, in the basin and it travels
downstream along a certain kinematic path x, each flow cross-section reaches
equilibrium just as the wave from P, passes through. Each cross-section along flow
path x is assumed to have a certain drainage area (upslope area). The equilibrium
discharge passing through a given cross-section p would be the spatially integrated
rainfall rate over the drainage area associated with that cross-section. This can be
mathematically expressed by

A(xp,9,)

Qe(xjnyp) = J l(xay)dA (6)
0

where Q,(x,, y,) is the equilibrium discharge passing through cross-section p, (Xp, ¥p)
are the rectangular coordinates of cross-section p, A(x,,y,) is the total drainage area
at p, i(x,y) is rainfall intensity at coordinates (x,y), and (x,y) are rectangular
coordinates of any point draining to p. The steady-state discharge for a uniform
rainfall, for instance, wouid simplify to equal the rainfall rate times the drainage
area. The equilibrium flow depth is computed based on Q, = 4, (h,)V (h,) using (3)
and (4) as follows:

h, = (&)(54'—21—3 (7

a\«x

By substituting £, in the wave celerity Eq. (5) and then back into the wave travel time
Eq. (1) one obtains

X2

dx
ZWZJ B—1 (8)
X1a<ﬂ+b1—1)<%—>ﬂ+bl_l
bl a|x
Let
__B-1
[y ®
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which yields

X3

_ b @ |
o= [ (3) o 1o

X1

Equation (10) is the general wave travel time relationship which accounts for basin
characteristics, including slope, roughness, drainage area density, flow width, and
flow cross-section, as well as rainfall properties reflected in spatial distribution of
rainfall rate. When the flow is turbulent over the major portion of a watershed, the
Manning resistance equation can be applied. Alternate formulations for laminar flow
are possible (e.g. Woolhiser, 1975; Julien and Simons, 1985). The flow velocity in SI
units is obtained from

1 oainatz Lo op23g12
V =~ RY3 2 _ 2\2/3 g / 11
where Sy is friction slope; and o, 3, and v are expressed by
1 23172 2 2b,
=-a;""S,’"; ==by+1; = 12
a=anST PEgh Y= T (12)

Consequently, ¢, for the Manning resistance equation transforms into
X2

a Y n =
S J(l —) (@) <W> dx ‘ (13)

X1

It should be noted that the equation retains its generality with respect to the spatial
variability in rainfall. When the friction slope is replaced by the bed slope S, for
the kinematic wave approximation, the derived time is cailed kinematic time to
equilibrium.

If the wave travel time is computed for X; = 0 and X, = L, where L is the total
length along the hydraulically longest flow, then ¢, represents the kinematic
equilibrium time for the portion of the basin draining along length L:

T ar Y n =
.=[o-0(3) (75m) * e
0 € 2 20

or if the rainfall intensity i is uniformly distributed in space:

L 1—y
1 ap\y n
t, ZFJ(I —) (Z) (_-—2/3 1/2) dx (14b)
a8,

0

The total time to equilibrium ¢, can be separated into two phases: the travel time for
overland flow ¢, and for channel flow z... Explicitly:

to = lep + Lo (15)

We now analyze the overland flow and channel flow phases separately. It should be
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noted that the channel flow phase considers the cumulative runoff from the upstream
overland flow phase.

3.2. Overland flow

The parameter values corresponding to the flow over an overland plane are as
follows: ay = W; by =10y =1; b, =1;,v=2/5, L= L,,; S, = S,,; where W is the
local overland plane width and L, is the total length of the overland plane starting
from the hydraulically most remote point. The bed slope S,, would then be the local
overland plane bed slope. Therefore, the kinematic time to equilibrium for turbulent
overland flow from Eq. (14a) becomes

ov

L3 (W
teo = "5“ J n (@) de (16)

If variations of width W, drainage area A, surface roughness #n, bed slope S,, and
rainfall intensity 7 along the hydraulically longest flow path are known, the overland
flow travel time can be estimated by simplifying the above equation. For example,
in the case of a uniform rectangular plane under uniform rainfall intensity i, the
equilibrium discharge of rectangular plane (Q,).. is given by

(Qe)rec = iA(x) =ixW 17
Solving (16) yields the following well-known formula:

3/573/5
_ 7L,
(tea)rcc - i2/5S03v/10 (18)

Saghafian (1992) tested (14b) for converging and diverging planes. The calculated
values of time to equilibrium matched those reported by Agiralioglu (1984, 1988). The
raster-based algorithm for surface runoff calculations has also been tested against
runoff measurements from small overland flow plans. Saghafian (1992) showed good
agreement with the experimental data of Schaake (1965), Dickinson et al. (1967) and
Woolhiser (1969).

3.3. Channel flow

Once a kinematic wave enters the channel network, it travels faster depending
upon flow depth and channel cross-section geometry. Certain relationships for
Ay(h,x), R(h,x), S,(x), and Q,(x), or alternatively i(x,y) and A4(x), must be
obtained to allow the calculation of the travel time integral. If the channel system
consists of several segments with uniform cross-section, then the integral may be
performed piecewise. For the jth channel segment of uniform cross-section and
constant roughness from X; =L, ; to X, = L;, we can estimate the travel time
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from (14a) by

n - d
| n x
tee,j = (1= 7)) (@1,)" (ﬁ) j o= (19)

(1~ /2
hj Ly QZ]Sé W

where ¢, ; is the travel time through the jth channel. If the bed slope is essentially
uniform for the jth channel, the bed slope may be removed from the integral and
approximated by

E_,—E
SO‘ o ] J (20)
b Li— L
where E denotes the bed elevation. The substitution for Q, requires knowledge of
spatial variability of rainfall and also that of drainage area along the channel path.
Numerical methods to evaluate Q, are discussed for impervious and pervious
watersheds.

4. Time to equilibrium of nearly impervious or saturated watersheds

On nearly impervious watersheds (high ratio of rainfall intensity over perme-
ability), the calculation of time to equilibrium from Eq. (14) requires good estimates
of drainage area 4 and consequently equilibrium discharge Q.. A comprehensive
raster-based approach is proposed and the tools were developed whereby numerical
approximations can be made for the variables inside the integral 7, in Eq. (14). The
output of this approach can also be used for other applications such as the time—area
technique of runoff estimation.

In a first step, a watershed is discretized using a square grid mesh with a predeter-
mined size given the required level of accuracy on one hand and practicality on the
other. Ground elevation and surface roughness coefficients are assigned to each grid
cell. The channel cross-section geometry of drainage channel cells is then determined.
The following algorithms lead to the numerical solution of the integral ¢ in Eq. (14).

The kinematic flow path is determined from the topography of the watershed.
Trajectories for all the grid cells in the watershed are determined from digital eleva-
tion model (DEM) data. It is expected that all trajectories terminate at the outlet
unless they lead to ponding areas such as lakes. The algorithm selects one grid cell and
determines which of the surrounding grid cells has the lowest elevation. If the lowest
neighboring cell is also lower than the original grid cell then the trajectory marches
through; otherwise a depression has been intercepted. This action is repeated until the
trajectory meets the outlet or a depression area, at which point this trajectory has
reached its downstream bound. A similar process is performed for all of the grid cells
and the results are stored in computer files.

The trajectories determined using this method are then employed to calculate the
drainage area for each grid by counting how many trajectories pass through a given
cell. The output consists of a list of grid cells specified by their column and row
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addresses, and their corresponding drainage area 4. When available, a raster
geographic information system (GIS) with capabilities similar to these algorithms
can be substituted.

The trajectories and drainage area data are used in Eq. (14) to compute the wave
travel time along all trajectories originating from primary cells, those grid cells which
have no other cells draining into them. This process is done for all such trajectories
because the hydraulically longest trajectory may not necessarily originate from the
geometrically farthest cell. The true equilibrium time is the longest travel time of all
the travel time values that are computed.

The time to equilibrium equation (14) is numerically integrated using the trapezoi-
dal method. At each grid cell G along a trajectory x the drainage area is known and
the bed slope is determined based on grid cell elevations along the trajectory x. If grid
cell G is a channel cell, then the channel cross-sectional geometry is used in estimating
toc- Overland flow width is taken as cell size if the grid cell is an overland cell. Finally,
the ¢, integral is computed along the length of the grid cell. This piecewise integration
is continued until the outlet grid cell is encountered.

An alternate algorithm is capable of accounting for spatial variability of rainfall
intensity. The equilibrium discharge is estimated from Eq. (6) as follows:

(Jpskp)
Qelipkp) = W2 > i(j k) @1

(Josko)

where j, and k; are, respectively, row and column numbers of primary grid cells
draining into p; j, and k, are, respectively, grid cell row and column numbers at
point p; j and k are, respectively, row and column numbers of any grid cell draining
into p; W is grid cell length (or width); i( j, k) is rainfall intensity over cell (j, k). The
rainfall intensity is assumed uniform within each square grid cell. A simple alternative
to Eq. (21) would be to compute the spatially averaged rainfall rate. However, the
flow velocity distribution, and thus wave travel time, along ali flow trajectories
produced by a given rainfall spatial distribution is generally different from that
produced by the spatially averaged rainfall. Moreover, spatial distribution of rainfall
may relocate the position of the hydraulically most remote cell.

The proposed method of calculating time to equilibrium was applied to Macks
Creek (Cline, 1988), a 32.2 km? steep semi-arid watershed located in southwest Idaho.
Elevation over the Macks Creek watershed drops from about 1830 m in the
mountains to about 1130 m at the outlet, with overland plane slopes up to 30%.
Two principal channels with slopes averaging 5% collect surface runoff. F ig. 1 depicts
the graphical topomap of the watershed overlaid by the geometrically longest
trajectory. Both uniform and spatially varied rainstorms were examined. The
computed equilibrium times matched the hydrograph times associated with
discharge values, simulated by the two-dimensional raster-based rainfall-runoff
model CASC2D (Julien and Saghafian, 1991), exceeding 98% of the equilibrium
discharge. For Macks Creek watershed, the geometrically longest flow trajectory
was identical to the hydraulically longest trajectory for uniform rainstorms. Once
this trajectory is determined, it will remain the same for all other uniformly
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Fig. 1. Geometrically longest flow trajectory for Macks Creek.

distributed rainfall, and ¢, will vary inversely with intensity raised to 0.4 power.
However, for nonuniform storms concentrated on the upstream portion of the
watershed, the hydraulically most remote cell relocated itself to a different cell as
far as about half the distance of the geometrically most remote cell to the outlet,
which had a longer overland plane length but shorter channel reach. For this
particular distributed rainstorm the ¢, was about 15% shorter than ¢, determined
assuming a spatially averaged rainfall intensity. Values for the parameter A (as
defined by Wooding, 1965a) turned out to be 0.25 and 0.2, respectively, for the
uniform and nonuniform storms examined above. These low values of A highlight
the relative dominance of overland flow compared with channel flow over Macks
Creek. Similarly, the hydraulically most remote point has a higher likelihood to be
relocated when overland flow is the dominant process.

Fig. 2 shows the ‘travel time’ map for Macks Creek watershed under a uniform
storm. In this figure the entire watershed area has been divided into a number of
subareas (displayed with different intensity of gray shading), each subarea covering a
certain range of wave travel time associated with cells contained in that subarea. The
30 min contour isochrones of travel time to the outlet are also depicted in Fig. 2. The
consequent time—area histogram in increments of 1 min travel time for a low rainfall
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Fig. 2. Travel time map and 30 min contour isochrones for Macks Creek watershed under uniform rainfall
(lighter shades imply longer travel time to the outlet).

intensity of 3.6 mm h~! and grid length of 150 m is illustrated in Fig. 3. Similar figures
can be developed for spatially distributed rainstorms. The travel time map and the
time—area histogram may be effectively used in runoff estimation under complete
equilibrium conditions based on a time—area technique.

The outcome of above the raster-based algorithm depends on the choice of
computational grid scale, which determines the level of geometric simplification of
the watershed and rainfall characteristics. For the Macks Creek watershed subject to
uniform excess rainfall, an increase of 44% in equilibrium time was computed as the
computational grid length increased by 400% from 150 m to 600 m. This effect is
mainly attributed to topographic rescaling under coarser square grids, which
generally results in smoothing of surface elevation, bed slope, and drainage
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Fig. 3. Time—area histogram for the Macks Creek watershed subject to rainfall intensity of 3.6 mm h~'ata
150 m grid size.

characteristics of the watershed. Besides affecting the terrain representation, an
increase in grid cell size results in an increased proportion of overland flow, which
drains slowly compared with the channel flow. Grid coarsening causes an increase in
surface runoff time at grid cell sizes coarser that the overland runoff length. In
watersheds where overland flow is dominant, as given by the parameter A, it is
important to have a grid cell size that is shorter than or equal to the physical size
of surface runoff by overland flow. On Macks Creek, A = 0.25, and a grid size
resolution of 150 m is appropriate.

5. Effect of infiltration

For a pervious watershed subject to a given rainstorm, the infiltration capacity of
the soil decreases with time. The actual infiltration rate, however, may increase or
decrease depending upon storm temporal variations. For uniform rainfall at a
constant intensity, one should expect that the decreasing infiltration rate allows the
flow rate to increase after the time of concentration is reached. If the rainfall duration
is very long, surface runoff gradually approaches an asymptotic steady state. The
equilibrium discharge is estimated based on the ultimate excess rainfall rate, which is
equal to the point rainfall intensity minus the soil saturated hydraulic conductivity
(K) integrated over the watershed area. Theoretically speaking, the equilibrium time
on pervious watersheds is never reached because the infiltration rate reaches the
saturated hydraulic conductivity after an infinite time. However, a time to virtual
equilibrium (Larson, 1965) may serve as a measure of response time of pervious
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watersheds subject to uniform or distributed rainstorms. The time to virtual
equilibrium provides an approximation rather than an exact time. The approxima-
tion is acceptable as long as the characteristic time of ponding is short compared with
the total time to equilibrium, which is a reasonable approximation for large
watersheds.

The virtual equilibrium time, 7,,, for pervious watersheds subject to a constant
rainfall intensity is defined as follows:

Le = (ts)max +1, (22)

where (#)max is the maximum time along the longest trajectory for the point
infiltration rate to reach the infiltration rate f, = £K at a rate slightly in excess of
the saturated hydraulic conductivity at a level £, where ¢ > 1; 1, is the equilibrium time
from Eq. (14) for the steady excess rainfall intensity equal to (i— K). The
Green—Ampt infiltration equation is used:

K(t,—1,) = (F,— F,) — §In (ﬁ s : g) (23)
r

and

fs=§K=K<l+ﬁ) 29
F;
where ¢ = (1 — §)0,H, is a function of the degree of initial saturation S, effective
porosity §,, and capillary pressure head Hy; 1, = K§/[i(i — K)] represents the ponding
time (i > K); F, = it,; F, denotes the cumulative infiltration depth at the time ¢,
defined below.

The time 7, to reach near steady-state flow at the level f, = (€K is obtained after
combining Egs. (23) and (24):

AR 1L i-K)
’“K[i(i—m%—l) ‘“(e—l)i]

This approach in computing ¢, from (25) and ¢,, from (22) was tested on Macks Creek.
For £ = 1.05, the CASC2D-generated hydrograph discharges at = ¢,, were within
90% and 95% of the equilibrium discharge. For practical purposes, #, is large only
when 6/K is large. For near-impervious watersheds, ¢, ~ 176/K as K/i — 0, and for
highly pervious watersheds, ¢, — tpas K —i.

25)

6. Summary and conclusions

A technique has been formulated to allow calculation of the kinematic time to
equilibrium of complex watersheds associated with the hydraulically, not necessarily
geometrically, most remote point in watersheds. The algorithm accounts for spatially
variable watershed characteristics and spatially distributed rainfall intensity. Using a
raster-based approach, algorithms were developed to determine flow trajectories,
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drainage area density, and the wave travel time for kinematic waves originating from
primary cells. A time to virtual equilibrium ¢,,, which reduces to ¢, for impervious or
saturated surfaces, was defined as an approximate measure of response time of
pervious watersheds.

In conclusion, the time to equilibrium of natural watersheds is not easily calculated
because of the complexities surrounding the spatial distribution of hydrologic
parameters, such as topography, surface resistance, soil types, infiltration parameters
and rainfall distribution, as well as the time-varying nature of the infiltration process.
Although an exact solution is not likely to be found, reasonable approximations
can be obtained from this algorithm applied to raster-based data sets. The main
conclusions of this study are:

(1) the position of the hydraulically remotest point of a watershed depends on the
spatial distribution of rainfall.

(2) Time to equilibrium is inversely proportional to the rainfall intensity raised to
the power of 0.4.

(3) The isochrone map displays the surface runoff travel time required to route
water and pollutants to a watershed outlet under complete equilibrium. The
distribution of surface area within the isochrones in Fig. 3 can also be used to define
complete equilibrium hydrographs at the outlet from the time—area method.

(4) The effects of infiltration on delaying the time to equilibrium are calculated from
Eq. (25)—for practical purposes, t, is large only when §/K is large.
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