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Suitability of simplified overland flow equations
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Abstract.

A dimensionless formulation of the acceleration terms of the Saint-Venant

equations is presented for one-dimensional overland flows under either laminar or
turbulent conditions. For stationary storms over a plane surface of uniform roughness,
dimensionless analytical expressions are derived during the rising limb for the local
acceleration a¥, and during equilibrium for the convective acceleration a® and the
pressure gradient a ((13), (14), and (15), respectively). In terms of the order of
magnitude, the three acceleration terms are inversely proportlonal to the kinematic
flow number K. At equilibrium, the pressure gradient a’, » 1s also inversely proportional
to the square of the Froude number Fr. The relatlve magnitude of the acceleration
terms for supercrrtlcal overland flow (a} > a*% > a*) differs from subcritical overland
ﬂow (a® 2 > a¥ > a%), which in all cases contrasts Wlth open-channel flows (a*

a* > a%). The kinematic wave approximation is therefore only suitable when lgoth K
and Fr are large. Improvements using the diffusive wave approximation are only
possible for subcritical overland flow. Both the diffusive wave and the quasi-steady
dynamic wave approximations are not suitable for supercritical overland flow. The
analysis of moving storms corroborates these findings in that the local acceleration
exceeds the convective acceleration. These effects are particularly pronounced during
the rising limb of overland flow hydrographs for downstream moving rainstorms.

Introduction

The solution to overland flow problems is crucial because
upland areas generally provide a significant source of water
for surface runoff. In turn, knowledge of surface runoff is
essential to determine the timing and magnitude of floods
and to estimate soil erosion losses and nonpoint source
pollutant transport from upland areas. Overland flow origi-
nates from rainfall, snowmelt, or saturation excess on the
soil surface. Rainfall excess over a surface of slope §, and
length L, generates surface runoff of thickness H, and
Froude number F, at the downstream end of the upland
surface. Complete equilibrium hydrographs occur when the
rainfall duration exceeds the time to equilibrium 7,, while
rainstorms shorter than T, generate partial equilibrium hy-
drographs.

The governing equations for one-dimensional overland
flow derived by Saint-Venant are unfortunately not prone to
simple analytical solutions, except in very simplified cases.
Prior analyses of the relative magnitude of the terms of the
momentum equation for open channels lead to several levels
of approximation depending on the desired level of accu-
racy. In their early treatment of flood movement in long
rivers, Lighthill and Whitham [1955] concluded that all
acceleration terms of the momentum equation could be
neglected when the Froude number is less than two. Inves-
tigations focused primarily on the role played by three
acceleration terms: (1) the local acceleration term denoted as
a; describing the temporal variability in velocity, (2) the
convective acceleration term a, describing the spatial vari-

ability in velocity, and (3) the pressure gradient term a,
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describing the spatial variability in flow depth. Subsequent
reviews of the relative magnitude of these acceleration terms
by Henderson (1966}, Ponce and Li [1979], and Weinmann
and Laurenson [1979] suggested that a, > a, > q; for
open-channel flows.

Simplifications of the momentum equation, for computa-
tion of overland and channel flow, have been developed
based upon the relative magnitude of the acceleration terms.
These simplifications are known as (1) the quasi-steady
dynamic wave, which neglects the local acceleration term
a,, (2) the diffusive wave, which neglects both the local and
convective acceleration terms a,; and a., and (3) kinematic
wave approximation, which neglects all three acceleration
terms.

Woolhiser and Liggett [1967] normalized the momentum
equation to simplify overland flow investigations and defined
the kinematic flow number K, = SyLo/HF¢; they found
that the kinematic wave approximation is stitable to over-
land flow when K is greater than 10, which describes most
actual flow situations. Woolhiser [1975] also showed that the
rising outflow hydrograph compares favorably with the
kinematic wave approximation even when F, < 2.

Al-Mashidani and Taylor [1974] solved the Saint-Venant
equations for subcritical, critical, and supercritical flows
while imposing critical flow conditions at the lower bound-
ary; they confirmed the findings of Woolhiser and Liggett
[1967] regarding the suitability of the parameter K,, al-
though higher values of K were needed to use the kinematic
wave approximation. Al-Mashidani and Taylor {1974] also
showed that it is not necessary to impose the condition that
F, < 2 tojustify the kinematic wave approximation and that
the downstream boundary condition has little or no influence
on the outflow hydrograph.

Morris [1979] compared the solution for the zero-depth
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Figure 1. One-dimensional overland flow diagram for a
block moving storm.

gradient to the critical flow lower boundary condition. The
difference between the two solutions decreases as the value
of K, increases. Morris [1979] concluded that for a range of
F, and K, which covers most practical overland flow
situations, the effect of the choice of lower boundary condi-
tion has no significant effect on flow depth and velocity
profiles. Morris and Woolhiser [1980] introduced the addi-
tional criterion which combines Fy and K, and reported that
the kinematic wave approximation fails when Fy < 0.5 and
when F¢K, < S. Morris and Woolhiser [1980] recom-
mended using the different wave approximation for some
cases where FZK, < 5, and they showed that the diffusive
wave approximation is satisfactory at low values of Fy when
K is large. Vieira [1983] recommended using the kinematic
wave approximation when Ky > 50, and when 5 < Ky < 20
the kinematic wave or the diffusive wave approximations are
suitable solutions to overland flow. Govindaraju et al. [1988]
confirmed that the diffusive wave approximation is valid for
small F, and large K.

More recently, Hromadka and De Vries [1988] recom-
mended that use of the kinematic wave method for channel
routing in watershed models be reconsidered. The contro-
versial discussions to the paper led to the analysis of Ponce
[1991], who concluded that the kinematic wave theory can
be improved by extending it to the realm of diffusion waves.

These studies suggest that selection criteria based on the
factors K, or F are not as simple as originally perceived,
and that the downstream boundary condition can influence
the selection of appropriate simplifications of the momentum
equation. The complications arising in the analysis of over-
land flow justifies a second look at the relative magnitude of
the acceleration terms of the momentum equation.

The objective of this paper is to examine the relative

Table 1.
Simons, 1985]
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magnitude of the terms of the momentum equation fo
one-dimensional overland flow over a plane surface witt
constant surface roughness. More specifically, the loca
acceleration term during the rising limb is compared with the
convective acceleration and pressure gradient terms unde:
complete equilibrium. The approach differs from Woolhise
and Liggett’s [1967] normalizing procedure in that the anal
ysis is applicable at any location on the overland flow plan
and encompasses laminar and turbulent flow conditions fo
both stationary and moving storms.

Overland Flow Dynamics

A simplified diagram for one-dimensional overland flov
over a plane of length L, and slope S, with constan
roughness is presented in Figure 1. A block moving storm o
length L, with velocity U generates surface runoff from th
excess rainfall rate i. At a distance X from the uppe
boundary, the unit discharge g varies in time and reaches
maximum value of ¢g,, = iX under equilibrium conditions
The flow depth # and the average flow velocity 7 = g/
depend on the friction slope S ;. Additional variables includ
the gravitational acceleration g and the kinematic viscosity
of the fluid.

The governing one-dimensional overland flow equation
derived by Saint-Venant describe conservation of mass an
momentum in space x and time #:

oh aq ( ) a

_+_=' ,t

at  dx nx
loa a@oi oh
——t-—+—=80— 85 (2
gat gox ox

respectively.

The three partial derivatives on the left-hand side of (.
denote dimensionless forms of local acceleration a; = (1/;
(8i7/9t), convective acceleration a, = (a/g)(di/dx), an
pressure gradient a, = dhldx, respectively. This on
dimensional formulation of the momentum equation neglec
both lateral inflow and the momentum contribution due |
rainfall intensity i7i’h. It can be demonstrated by multiplyis
and dividing @Zi/h by #X that the rainfall momentum
proportional to the convective acceleration term throu
@ilh = a@iX/Xah = @*/X = @3ia/ox. Since both terms yie
similar results, the following analysis focuses on the conve
tive acceleration term.

An additional relationship such as the Darcy-Weisbax
equation relates resistance to flow with the friction slope
and can be rewritten in the following stage-discharge rel
tionship:

Parameters « and 8 for Four Types of Overland Flow [Julien and

Flow Type a B
Laminar 89S /kv 3.0
Turbulent flow, smooth boundary, 1/»%1% [8¢S5,/0.22]°7 1.72
(Blasius)
Turbulent flow, rough boundary S)5in 1.67
(Manning)
Turbulent flow, rough boundary (Chezy) csp? 1.5
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q=ah® 3

The parameters « and B are summarized in Table 1 for four
overland flow types: (1) laminar sheet flow with constant
value of the resistance parameter k, (2) turbulent flow over a
smooth boundary as described by the Blasius equation, (3)
turbulent flow over a rough boundary with a constant value
of Manning n, and (4) turbulent flow over a rough boundary
with very small relative roughness with constant value of the
Chezy coefficient C. It is important to notice that by
definition of the resistance relationship, the coefficient a is a
function of the friction slope § ;.

Normalization of the
Governing Equations

Woolhiser and Liggett [1967] normalized the momentum
equation after dividing each parameter in (1) and (2) by a
combination of the normal depth H at the downstream end
of the plane L, the corresponding normal flow velocity V,,
and the maximum rainfall intensity iy. The resulting dimen-
sionless parameters (denoted with an asterisk) are defined:

T) = h/Ho, u’f) = ﬁ/VO, XT) = x/Lo, tT) = Vot/Lo, and IT)
= iliy = 1. With this normalization, both the continuity
equation (1) and the momentum equation (2) can be rewritten
in the following normalized dimensioniess form:

ahY  aukh
+
ary  ox}

ou’ dul 1 ahY  SoLg u
0 — T (&)

=1 (4)

oy 0 oxn - F2 ox% HF} h

Note that the kinematic flow parameter K, = SoLo/HyF2
appears on the right-hand side of (5). This normalization
provides tremendous insight into overland flow characteris-
tics, particularly regarding the role played by the parameters
F, and K. The analysis of the relative magnitude of the
acceleration terms on the left-hand side of (5) is somewhat
difficult because the values of the derivatives, such as
du’h/at}y, are unknown even though uj, hj, x%, and ¢} can
be determined at the downstream end under equilibrium
conditions. The following treatment introduces modifica-
tions of the parameters Fy and K. The proposed analysis
evaluates the relative magnitude of the acceleration terms of
the momentum equation for the rising and equilibrium por-
tions of an overland flow hydrograph including laminar and
turbulent overland flows under stationary and moving rain-
storms.

Stationary Storms

With reference to Figure 1, analytical expressions for flow
depth and velocity are derived for long (L, > L) stationary
storms (U = 0) over a plane surface (constant slope S;)
under a constant rainfall intensity i. It is assumed that the
overland flow plane is initially dry (h = 0 and ¢ = 0) prior
to the beginning of precipitation at time ¢ = 0. Woolhiser
and Liggett [1967] clearly demonstrated that according to
the kinematic wave approximation at high values of K, the
flow depth increases linearly with time 42 = it during the
rising limb until the flow depth conveys the equilibrium

discharge (q,, = iX). At the inception of runoff, the
statement h = it is always exact regardless of the momen-
tum equation because it stems solely from continuity (1).
Generally speaking, A = ir is considered a reasonable
approximation during the rising limb, except near the time to
equilibrium.

The time to equilibrium T, is obtained from (3) with h =
iT, under equilibrium discharge ¢, = iX = a(T )8, or

T, =iWBD(x/a)VF (6)

Note that this general form of the time to equilibrium is valid
at any location on the plane for any of the four flow
conditions summarized in Table 1. The time to equilibrium
from (6) is consistent with the full dynamic momentum
equation because « is defined in terms of the friction slope.

Under equilibrium conditions, the flow depth is space
dependent but time invariant. The relationships for flow
depth and velocity (@ = gq/h) obtained from (3) under
equilibrium discharge (g = iX = ahP) are

h=(iX/a) VB @)
i= a(iXla)F~VE (8)

respectively.

The Froude number Fr = iz/( gh)”z, obtained from (7)
and (8), and the kinematic flow number K = S()X/hFr2
obtained from (7) and (9), are written as a function of the
dimensionless distance from the upstream end of the over-
land flow plane (X* = X/Ly):

Fr=g12q328(ix)1-0128) = p xx(1-6126)  (9)
K = gS,a ~2BiCIB-Dx @B)-1) — gy (@)= (10)

respectively. Both Fr and K from (9) and (10) vary along the
plane. They are slightly different from F, and K previously
defined at the downstream end of the plane by Woolhiser and
Liggett [1967]. Both formulations are equivalent when X* =
1. Example calculations of the Froude number using (9)
indicate that overland flow generated by uniform excess
rainfall intensities of 1 in/hour (7.05 X 107 m/s) are super-
critical (Fr > 1) at any slope steeper than 0.01 over a smooth
surface longer than 50 m. The corresponding kinematic flow
number is large (K > 150). In supercritical flow, backwater
effects cannot propagate upstream and downstream bound-
ary conditions are not required.

Analytical Description of Acceleration Terms

A normalized dimensionless form of the momentum equa-
tion is obtained after dividing (2) by the bed slope Sy:

[aT+a%t+a}]l=1-84S,
where (11)

1 oa u ou 1 oA
* *

= — — ap:————

SO ax

The local acceleration term a? is zero during equilibrium but
varies during the rising and falling limbs. On the other hand,
the convective acceleration term a® and the pressure gradi-
ent term a’; vanish when A = it during the rising limb
because 4 does not vary with x at the downstream end of the
plane. The following analysis first focuses on defining the

maximum values of each term and then compares the
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Figure 2. Ratio of a%/a* for stationary storms.

relative magnitude of these maximum values. Therefore the
local acceleration term a7 which is largest during the rising
limb is compared with the convective acceleration term a*
and the pressure gradient term «} which are largest at
equilibrium.

During the rising limb of a hydrograph, the flow depth,
velocity, and discharge at a given point change primarily
with time, while space derivatives.are comparatively small.
The depth-averaged velocity @ = g/h varies with time from
h = it. The following expression for the local acceleration
a’ is obtained from (8) after neglecting da/dt:

B-1
950

at= e L (12)
This approximate relationship deviates from an identity only
because of two approximations, 4 = it and da/dr = 0. The
first approximation is valid at the beginning of the storm
because both ¢ = 0 and dqg/dx = 0 at the early rise. The
second approximation relates to changes in friction slope
and « with time. The time derivative of the friction slope,
which is nearly constant, remains small compared to the
time derivative of flow depth, which is the dominant factor
during the rising limb.

The local acceleration term @’} from (12) can be rewritten
as a function of the following dimensionless parameters: (1)
the kinematic number K from (10), (2) the dimensionless
time t* = ¢/T,, with T, from (6), and (3) the distance X* =
X/L():

B-1 o (B
K K,

a*l‘ = (¥ 2y (1-(2/8)) (13)
Notice in (13) that the formulation using K does not involve
the parameter X*, which justifies our preference for using X
instead of K.

After equilibrium, the flow depth, velocity, and discharge
at a given point change primarily with space, while time
derivatives vanish. Analytical relationships for a% and a7,

follow from g = iX and (7) after considering that « is nearly
LODHREL, O DRDHRENE, BN,

=Pt (ﬁ _ I)X*u—(zw))

BK BK,

(14)
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)X*((l/ﬁ)l) (15)

e [
P~ BKFr* \BK,F?

These two approximate relationships deviate from strict
identities only because «, or the friction slope, is nearly
constant. It is acknowledged that the friction slope and «
vary with space. The space derivative of the friction slope,
which is nearly constant, remains small compared to the
space derivatives of flow depth and velocity, which are the
dominant factors during equilibrium because dah/dx = i.

All three dimensionless acceleration terms a7, a*, and a’;
from (13), (14), and (15) are inversely proportional to the
kinematic flow number K, or K, and only a’; depends on
the Froude number Fr, or F. These three expressions can
be used to assess the friction slope for overland flow with
stationary storms. Furthermore, a’} can be related to the
friction slope by @ = 1 — (§ £/8¢) during the rising limb of
the hydrograph (when 0 < t* < 1), while a® in conjunction
with a’ can be related to the friction slope by a% + a} =
1 — (5 #/S,) when the flow is steady and nonuniform under
equilibrium conditions (¢* = 1).

Relative Magnitude of Acceleration Terms

The ratio of a¥ during the rising limb to a% at equilibrium
is obtained from (13) and (14):

alla* = gr*P2 (16)
Note that this ratio is independent of both the kinematic flow
number and the Froude number but varies solely with
dimensionless time and the exponent B of the resistance
equation. For turbulent flow, as represented by either the
Chezy or Manning equations, B is less than two, which
indicates that the minimum value of the ratio a’j/a% for
turbulent flows must be larger than B. This minimum value
(1.5 for Chezy and 1.67 for Manning) will occur when the
dimensionless time is unity. For laminar flow, the ratio of
at/a® has a minimum value of zero, when r* = 0. The
implication of this observation is that a7 will be greater thar
a”, asis illustrated in Figure 2, except for laminar flow wher
t* is less than about 0.3. For a complete equilibrium hydro-
graph on a plane surface with uniform roughness, the ratio of
the two largest acceleration terms is obtained when
t* = 1. The largest value of a’} always exceeds the maximun
value of a® in all cases because 8 > 1 for both laminar and
turbulent flows. It is concluded that for complete equilibrium
hydrographs, the local acceleration term always exceeds the
convective acceleration term regardless of the kinematic
flow number. This demonstrates that the quasi-steady wave
approximation does not necessarily improve upon the diffu:
sive wave approximation because the neglected term a7 i
larger than the term a® retained in this simplification.

The ratio of the convective acceleration a* to the pressure
gradient term a’; under complete equilibrium conditions i
obtained from (14) and (15):

atlat = (B - DFri=(B - DFX*2" B (71

This ratio does not depend on the kinematic flow number bu
varies with the exponent @ and the Froude number. Th
ualnes, of, fhe. Brendle. aagnes, s wiiedns < L, Ssssd
unity are Fr > 0.7 for laminar flow (8 = 3); Fr > 1.22"
Manning equation (8 = 5/3); and Fr > 1.4 for Che
equation (8 = 1.5). Considering all cases, a® exceeds |
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when the flow is supercritical with Fr > 1.4, while a% < a’,
for subcritical flows with Fr < 0.7.

The ratio of the local acceleration a’ during the rising limb
to the pressure gradient a: at equilibrium is obtained from
(13) and (15):

allaly, = B(B — 1)Frir*P 2 = B(B — 1)Fgr*P~2x*2-C/B)
(18)

This ratio is independent of the kinematic flow number but
varies with flow type, Froude number, and dimensionless
time ¢*. For complete equilibrium hydrographs (1* = 1), the
values of the Froude number above which a > a7, are Fr >
0.4 for laminar flow (8 = 3); Fr > 0.95 for Manning
equation (B = 5/3); and Fr > 1.15 for Chezy equation (8 =
1.5). These criteria are similar to those for a%/a’,. Therefore
a’ exceeds a’, when the flow is supercritical with Fr > 1.4,
while a} < a, for subcritical flows with Fr < 0.4.

The results can be summarized as follows: (1) a > a®% >
a’, for supercritical flows with Fr > 1.4 and (2) a}, > a7 >
a’ for subcritical flows with Fr < 0.4.

Moving Storms

The relative magnitude of the acceleration terms of the
momentum equation for block moving rainstorms is ana-
lyzed numerically, as analytical solutions become overly
complex. The one-dimensional full-dynamic wave model
FDCASC tested by Richardson [1989] simulates runoff un-
der spatially and temporally varied rainfall precipitation.
This model simulates one-dimensional overland flow for
upslope and downslope block moving storms, as is sketched
in Figure 1. The dimensionless discharge g* = g/iL, varies
with dimensionless time ¢* = ¢/T,. Two dimensionless
storm parameters define the length of the storm L, = L,/L,
and the storm celerity U* = UT,/L,. Positive and negative
values of U* correspond to storms moving down and up the
plane, respectively.

Downslope Moving Storms

This analysis summarizes typical results from Richard-
son’s [1989] investigation on one-dimensional moving rain-
storms. For instance, the acceleration terms for the rising
and equilibrium portions of a downslope moving storm with

0.06 T

0.04

a* 0.02

-0.02w L
o}

Figure 3. Acceleration terms for a downslope moving
storm (U* = 1).

0.020 T T

1

0.015

a* 0.010

T

0.005

Figure 4. Acceleration terms for an upslope moving storm
(U* = —1).

celerity U* = 1 and storm length L* = 1.5 are shown in
Figure 3. The other parameters for this case are Fy = 1.63
and K, = 105. Under these conditions, the values of the
acceleration terms for stationary storms from (13), (14), and
(15) are aj ~ 0.006, a% ~ 0.004, and a}, ~ 0.002,
respectively; thus a > a% > a},.

For the downslope moving storm in Figure 3, all three
acceleration terms are zero prior to runoff, after which the
term a’} increases rapidly as soon as the flood wave reaches
the downstream end of the plane. It is found that the
maximum value of a7 = 0.04 is roughly an order of
magnitude larger than the corresponding value for an equiv-
alent stationary storm a’} = 0.006. Both values of a’ and a’,
are negative, and their absolute magnitude is smaller than a’
as predicted for supercritical stationary storms (a} > a% >
a’;). It is clear from Figure 3 that for downslope moving
storms, all the acceleration terms reach a maximum during
the rising limb of the hydrograph. Equilibrium conditions are
reached for sufficiently large storms. Figure 3 shows that the
analytical expressions of a* and a’; for stationary storms are
reached asymptotically as ¢t* > 1.3. The numerical sum of
all three acceleration terms (a* = a} + a’% + a}) is also
presented on the plots for a storm moving down a plane.
During the rising limb, the sum of all three acceleration
terms a* is smaller than the single contribution because the
values of a} oppose those of a’ and a’,.

This analysis contrasts with the previous discussion per-
taining to stationary storms. It is important to note that each
acceleration term contributes to the value of the friction
slope during the rising limb. The term a¥ peaks at a positive
value while the other two acceleration terms are negative,
which indicates that using either the quasi-steady dynamic
wave or the diffusive wave approximation results in ‘‘false
improvement’” of the computation of the friction slope.
Indeed, a friction slope greater than the bed slope is calcu-
lated when it actually should be less than the bed slope.

Upslope Moving Storms

Upslope moving storms produce gradually rising limbs
when compared with downslope moving storms. The time to
equilibrium is consequently delayed, and a value of L* = 2
ensures that the discharge reaches equilibrium. The values
of the acceleration terms are plotted on Figure 4 for a storm
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moving up the plane at a dimensionless storm speed (U* =
—1). The other parameters for these simulations are the
same as for the simulation of upslope moving storms.

The magnitude of acceleration terms for upslope moving
storms differs largely from downslope moving storms. Run-
off immediately increases at the downstream end of the plane
and consequently, the flow depth, velocity, and discharge at
the terminus of the plane are larger than for locations further
upstream. All three acceleration terms are positive during
the rising limb, the dominant term being aj. As equilibrium
conditions are approached, the value of a} decreases to zero
and the values of a* and a’; approach the analytical values
obtained for stationary storms as shown in Figure 4 when
t* > 1.5.

As in the case of downslope moving storms, all three
acceleration terms contribute to the determination of the
friction slope during the rising limb with downslope moving
storms. However, for upslope moving storms, all accelera-
tion terms are positive during the rise, and the use of either
the quasi-steady or the diffusive wave approximation will
adjust the friction slope in the right direction. The use of
either approximation, however, is insufficient because the
largest acceleration term a7 is neglected.

Conclusion

This investigation focuses primarily on the relative mag-
nitude of the acceleration terms of the Saint-Venant equa-
tions applied to one-dimensional overland flow on a plane
surface with uniform roughness. Both stationary and block
moving rainstorms are considered and the analysis is appli-
cable to laminar and turbulent flows. In absolute value, all
acceleration terms (a7, a%, a’},) become small compared to
S when K is large, as given by (13), (14), and (15). When
considering the relative magnitude of the acceleration terms
for complete equilibrium hydrographs under stationary rain-
storms, it is found that (1) the local acceleration term a?
during the rising limb is always larger than the convective
acceleration term a% at equilibrium, (2) a] > a% > a, for
supercritical overland flow with Fr > 1.4, and (3) a’; >
a’f > a* for subcritical overland flow with Fr < 0.4. These
results on the relative magnitude of the acceleration terms
are independent of the kinematic flow number K.

In supercritical overland flow, these results (a} > a% >
a’,) are opposite to those for open channels (a7 < a’ < a%)
in that the diffusive wave approximation and the quasi-
steady dynamic wave approximation do not improve upon
the kinematic wave approximation because the additional
term considered is smaller than the terms deleted from the
approximation. On the other hand, the results for subcritical
overland flow (a} > af > a?%) support the use of the
diffusive wave approximation but prohibit the use of the
quasi-steady dynamic wave formulation.

The findings for moving rainstorms corroborate those of
stationary storms in that a7 > a’% > a for supercritical
overland flow. Individual values of the acceleration terms for
moving rainstorms can be up to one order of magnitude
larger than for an equivalent stationary storm. Figures 3 and
4 clearly show that either the quasi-steady dynamic wave
approximation (neglecting the term a7) or the diffusive wave
approximation (neglecting both a% and a®) would neglect
terms significantly larger than a’;. This effect is found to be
more pronounced during the rising limb of overland flow
hydrographs for downslope moving storms.

RICHARDSON AND JULIEN: SIMPLIFIED OVERLAND FLOW EQUATIONS

Notation
a* sum of three dimensionless acceleration terms.
a. convective acceleration.
a* dimensionless convective acceleration.
a, local acceleration.
a’} dimensionless local acceleration.
a, pressure gradient.
a}", dimensionless pressure gradient.
C Chezy resistance coefficient.

Fr Froude number.

F, downstream Froude number.

g gravitational acceleration.

h flow depth.

% dimensionless flow depth.

downstream normal flow depth.
i excess rainfall intensity.

iy, maximum rainfall intensity.

ip dimensionless rainfall intensity.
k laminar resistance parameter.
K kinematic flow number.

K, downstream kinematic flow number.

L, storm length.

L* dimensionless storm length.

Ly runoff length.
n Manning resistance coefficient.
q unit discharge.

dimensionless unit discharge.

4, equilibrium unit discharge.

Sy bed slope.

friction slope.
t time.

t* dimensionless time.

ty dimensionless time from Woolhiser and Liggett

[1967].

T, time to equilibrium.
U storm velocity.
U* dimensionless storm velocity.
# average flow velocity.
u?, dimensionless flow velocity.
Vo downstream normal flow velocity.
X distance from upstream boundary.
x downstream coordinate.
x% dimensionless downstream distance.
a coefficient of the stage-discharge relationship.
B exponent of the stage-discharge relationship.
v kinematic viscosity of water.
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