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Abstract: Classical models for one-dimensional (1D) flood routing calculations were tested in a synthetic benchmark and in a real dam break
case, the observed flashy hydrographs on the Doce River after the collapse of the Fundão Tailings Dam in Brazil. The application of existing
methods presented unsatisfactory results, with an error in prediction of the peak discharge up to −18%, and differences in timing to peak up
to 4 h. An improved 1D flood routing approach is proposed, solving the dynamic equation into an equivalent linear diffusive wave format.
This modified method reformulates the hydraulic diffusion coefficient in terms of the Froude number and flood wave celerity, which are
parameters more coherent with the linear model assumption and provide more realistic flood wave attenuation. The solution given by this
approach can be carried out using the Crank Nicolson or QUICKEST schemes. The relative percent difference (RPD) in predicted peak
discharge is reduced to less than −0.1%. DOI: 10.1061/(ASCE)HY.1943-7900.0001755. © 2020 American Society of Civil Engineers.
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Introduction

Recent extreme flood events from dam breaks highlight the impor-
tance of using proper modeling algorithms to simulate flood wave
propagation. The threat of a flood downstream from the Oroville
Dam in California after the damage on the spillway resulted in a
mandatory preventive evacuation order in the cities of Oroville and
surrounding areas, which affected 188,000 people (USSD 2018). In
2018, two cases of dam failure: (1) the Saddle Dam D, part of the
Xe-Pian Xe-Namnoy hydroelectric power project in Laos; and
(2) the Swar Creek Dam in Myanmar impacted tens of thousands
of people (BBC 2018; Reuters 2018). In March 2019, heavy storms
caused severe floods in the Niobrara River, a tributary of the
Missouri River in Nebraska, resulting in the failure of the Spencer
Dam (Dolce 2019).

Knowledge about the propagation of large floods affecting
the safety of riparian communities requires proper flood routing
modeling. Flood routing is defined as the procedure to determine
the time and magnitude of flood hydrographs at a point on a water-
course from known hydrographs at one or more points upstream
(Chow 1988). However, a simple, robust, and accurate model is
still a matter of research (Ostad-Ali-Askari and Shayannejad 2016;
Perdikaris et al. 2018).

In order to solve the governing equations of unsteady flow in
open channels, several commercial codes have been developed us-
ing the finite-difference method (FDM), the finite-volume method
(FVM), and the finite-element methods (FEM) (Rowinski and
Radecki-Pawlik 2015). For three-dimensional (3D) analyses, some
of the available finite-volume-based models are the Flow3D

(Flow Science 2019) and ANSYS Fluent (ANSYS 2019), while
another option is to use Delft3D-FLOW (Deltares 2019) based
on the FDM. These are powerful tools for the simulation of floods
in the vicinity of a dam after failure; however, due to computational
demand, simplified two-dimensional (2D) and 1D formulations are
preferred for the evaluation of flood wave propagation in long river
reaches.

The depth-averaged approximation leads to 2D models, and
commercial software includes the finite-volume HEC-RAS
(USACE 2016c) and SRH-2D (USBR 2017), the finite-difference
FLO-2D (FLO-2D 2019) and MIKE 21 (DHI 2019), and the finite-
element TELEMAC-2D (TELEMAC 2019). However, despite the
gain in popularity of these 2D models, the 1D models are still
extensively used for long river reaches (Pilotti et al. 2014). It
can be attributed to the acquaintance of the practitioners with
the 1D modeling, the simpler computational and implementation
procedures, and the availability of detailed data to run 2D models,
which can be difficult and expensive to obtain in remote areas
(Pilotti et al. 2014). Moreover, the computational demand of
2D models is still high when compared to 1D models. Examples
of common commercial 1D finite-difference models are the
HEC-RAS (USACE 2016d), SRH-1D (USBR 2018), FLDWAVE
(Sylvestre et al. 2010), and MIKE 11(DHI 2017). One can observe
that despite the advantages of the finite-volume approach, which
are physically derived preserving the conservation laws when
compared to the finite-differences (nonconservative approach), 1D
commercial codes based on finite-volume are still rarely found.

Flood routing can be calculated using the hydrologic (lumped)
or the hydraulic (distributed) approach. Hydrologic routing gener-
ally considers the solution of the conservation of mass equation and
a relation of storage and discharge in a stream reach or reservoir. In
contrast, hydraulic routing is based on solutions of the equations of
conservation of momentum and mass (USDA 2014), known as the
Saint-Venant or 1D shallow water equations (Zijlema 2015).

For 1D hydraulic finite-difference models, one of the most
widespread schemes to solve the Saint-Venant equations in com-
mercial codes is the Preissmann scheme (Zijlema 2015; Battjes and
Labeur 2017), also called the four-point implicit method, the box
model or scheme, the Preissmann-Cunge or the Sogreah implicit
method (Chanson 2004). One should note that the software for
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1D flood routing simulation provided by two of the main US agen-
cies responsible for dam operations and safety, the USACE (HEC-
RAS) and Bureau of Reclamation (SRH-1D), uses the Preissmann
scheme. For this reason, this scheme can be considered a standard
practice in the US and worldwide.

Simplified forms of the Saint-Venant equations known as the
diffusive wave model can be solved by other numerical schemes,
including Crank Nicolson or QUICKEST (Szymkiewicz 2010;
Battjes and Labeur 2017; Julien 2018). An alternative approach
is to apply simpler models such as the Muskingum–Cunge method,
which is recommended by the Montana Dam Safety Program for
flood routing calculations in natural channels after dam breaks
(DNRC 2018).

In this article, different flood routing models–three diffusive
wave models and one dynamic wave model–are first tested against
a synthetic benchmark, and then applied to simulate flashy hydro-
graphs of the Doce River in Brazil after the failure of the Fundão
Tailings Dam. This dam with a height of 120 m collapsed on
November 5, 2015, and caused the propagation of a large flood
along 550 km of the Doce River, until its final destination in the
Atlantic Ocean (ANA 2016a). The observed hourly discharges at
multiple stations on the Doce River provided an opportunity to test
and revisit some of the most traditional flood routing procedures
found in the literature, with potential development of an improved
way to solve the Saint-Venant equations.

The main objectives of this paper are: (1) to analyze the features
of widespread 1D flood routing methods; (2) to develop a new sol-
ution for the flood wave propagation problem using the diffusive
wave format of the Saint-Venant equation; and (3) to compare these
methods in a benchmark setting and to test with the observed
hydrographs of the Doce River after the 2015 dam break.

Flood Routing Models

Overview of Models

Conservation of mass and momentum in a channel with variable
cross section define the governing equations generally used to solve
flood wave propagation in open channels. The 1D formulations as a
function of distance x and time t are, respectively

∂Q
∂x þ ∂A

∂t ¼ 0 ð1Þ

∂Q
∂t þ ∂

∂x
�
Q2

A

�
þ gA

∂h
∂x þ gAðSf − SoÞ ¼ 0 ð2Þ

where Q = discharge, A = cross-section area, h = flow depth,
So = river bed slope, Sf = slope of the energy grade line, and g =
gravitational acceleration. These equations neglect minor contribu-
tions from the lateral inflow, wind shear and local losses due to
abrupt contractions or expansions (Chow 1988). In addition, the
main assumptions in the derivation of the Saint-Venant equations
are (Akan 2006; Chaudhry 2007): (1) the velocity is uniformly
distributed over the cross section; (2) the pressure is hydrostatic;
(3) the fluid is homogeneous and incompressible; (4) the average
channel bed slope is small; and (5) the resistance coefficients for
steady uniform turbulent flow are applicable, and Manning’s equa-
tion can be used to approximate the resistance to flow.

The terms of Eq. (2) describe the physical processes governing
the flow momentum. Thus, the local acceleration term ∂Q=∂t
describes the change in momentum over time, the convective ac-
celeration term ð∂=∂xÞðQ2=AÞ denotes the change in momentum
due to the downstream change in velocity along the channel, the

pressure gradient term gAð∂h=∂xÞ is proportional to the change
in the water depth along the channel, the gravitational force term
gASo is proportional to the bed slope So, and the friction force term
gASf is proportional to the friction slope Sf . The application of the
1D momentum equation to a wide rectangular cross section results
in the following simplified dimensionless form (Chow 1988; Sturm
2009; Julien 2018):

Sf ≅ So − ∂h
∂x −

U
g
∂U
∂x − 1

g
∂U
∂t

ðIÞ ðIIÞ ðIIIÞ ðIVÞ ðVÞ
‹ ›
Kinematic

‹ ›
Diffusive

‹ ›
Dynamic ð3Þ

Eq. (3) is useful in classifying different flood wave propagation
models. The simplest model is the kinematic wave ðSf ¼ SoÞ,
where the hydrograph is translated downstream without any peak
discharge attenuation. The full dynamic wave equation is important
when all acceleration terms [Terms IV and V of Eq. (3)] are rela-
tively large when compared with the bed slope. This dynamic wave
approximation is relevant for flood routing in mild slope rivers or
fast rising hydrographs such as those from a breaching dam (USDA
2014). However, as stated by Ponce (2014), the dynamic wave is
strongly diffusive (results in high peak discharge attenuation) es-
pecially for flows in the subcritical regime. Thus, in most rivers
with subcritical flow, the flood wave propagation can be properly
simulated by the diffusive wave approximation. This model corre-
sponds to the case where the acceleration terms are negligible, thus
the reduced momentum equation becomes

Sf ≅ So − ∂h
∂x ð4Þ

A criterion to check the applicability of the diffusive wave is
given by Ponce (2014):

P ¼ TrSo

�
g
ho

�
0.5

ð5Þ

where Tr = hydrograph rising time (from low flow to peak) in
seconds; and ho = average flow depth in meters. The author sug-
gested that the diffusive wave approximation is recommended
when P ≥ 15.

Classical Diffusive Wave Model

Eq. (4) can be converted into an advection-dispersion equation
when coupled with the continuity and the resistance to flow given
by the channel conveyance ðQ ¼ K

ffiffiffiffiffi
Sf

p Þ. The derivation of this
equation has been presented in different ways by several authors
(Hayami 1951; Dooge and Harley 1967; Roberson et al. 1998;
Chanson 2004; Sturm 2009; Szymkiewicz 2010; Battjes and
Labeur 2017) and results in:

∂Q
∂t þ Ce

∂Q
∂x ¼ D

∂2Q
∂x2 ð6Þ

Eq. (6) is the linear diffusive wave model where Ce = flood wave
celerity (flood wave propagation speed); and D = hydraulic diffu-
sivity coefficient (flood wave attenuation factor), where both vari-
ables are treated as constants (Hayami 1951; Dooge and Harley
1967; Roberson et al. 1998). Here a distinction should be made
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between the flood wave celerity Ce and the celerity
ffiffiffiffiffi
gh

p
of a small

perturbation in a frictionless flow. The ratio between the flow
velocity and this small perturbation defines the Froude number
Fr ¼ U=

ffiffiffiffiffi
gh

p
.

One can write the discharge as a function of parameters (α and
β) dependent on the resistance coefficient adopted (Manning,
Darcy–Weisbach or Chézy)

Q ¼ Wαhβ ð7Þ

where α ¼ ffiffiffiffiffi
So

p
=n; and n = Manning’s coefficient in SI units. The

flood wave celerity can be expressed as a function of the mean flow
velocity U according to the Kleitz–Seddon relationship Ce ¼ βU,
where β gives the ratio between mean flow velocity and celerity,
which can assume different values depending on the roughness
coefficient (e.g., Manning, Darcy–Weisbach or Chézy) and the
shape of the channel cross section (Julien 2018). For instance,
considering Manning’s relationship in a wide rectangular channel
gives β ¼ 5=3. Finally, the hydraulic diffusivity can be written as
(Sturm 2009)

D ¼ K2

2WQ
¼ K

2W
ffiffiffiffiffi
Sf

p ð8Þ

Considering Q ¼ K
ffiffiffiffiffi
Sf

p
and the energy slope is equal to the

bed channel slope, one can obtain the practical relationship for
hydraulic diffusivity (Chaudhry 2007; Sturm 2009; Battjes and
Labeur 2017)

D ¼ Qo

2WSo
ð9Þ

The assumption that the bed slope is equal to the energy slope in
this last equation can be verified from Eq. (4) over a flood wave
cycle in fluvial reaches neglecting backwater. One should see this
during the rising limb of a hydrograph ð∂h=dx < 0Þwith the energy
slope greater than the bed slope ðSf > SoÞ. The opposite is ob-
served during the falling limb (∂h=dx > 0 and Sf < So). Over a
flood cycle, the average value of Sf is approximately equal to the
bed slope So.

For the practical applications of the diffusive wave model the
flood wave celerity can be obtained by iteration, considering the
average value of flood wave celerity (Ce ¼ βU) along the channel.
However, it is not clear in the literature which reference discharge
Qo should be used to calculate D in Eq. (9). The mean and maxi-
mum discharges of the input hydrograph are natural choices.
However, for a quick rising hydrograph from a dam break, the dis-
charge can vary quickly both in time and space, and the use of peak
discharge may lead to excessive diffusivity (excessive flood wave
attenuation). Perhaps the flow discharge is not the best parameter to
be used in the linear model.

The implementation of this flood routing model can be made
through the FDM using numerical schemes such as the Crank
Nicolson and QUICKEST, for instance (Szymkiewicz 2010).
Eq. (9) is also implicitly contained in the Muskingum–Cunge
method (Szymkiewicz 2010; Ponce 2014).

New Way to Solve the Diffusive Wave Model

Herein, a new way to solve the diffusive wave model is proposed,
addressing two issues to improve the calculation of the quickly ris-
ing flow hydrographs in rivers: (1) define the diffusivity coefficient
D in a way less dependent on a rapidly varied discharge as defined

in the classical diffusive wave model [i.e., Eq. (9)], and (2) to
include all terms of the Saint-Venant equation in this model.

Considering a wide rectangular channel it is possible to convert
the terms in Eq. (3) into an equivalent form of Eq. (4) from
∂h=∂t ¼ −∂q=∂x. As shown by Julien (2018), one can reduce
the full dynamic wave equation into an equivalent diffusive wave
format as

Sf ¼ So − ½1 − ðβ − 1Þ2Fr2� ∂h∂x ð10Þ

The term in brackets is the flood wave diffusivity Ω ¼
½1 − ðβ − 1Þ2Fr2�, which depends on β ¼ Ce=U (the ratio between
the flood wave celerity Ce and the mean flow velocity U) and the
Froude number Fr. Hence, the full dynamic equation can be written
in a similar format of the diffusive wave as

Sf ¼ So − Ω
∂h
∂x ð11Þ

The inclusion of Ω takes into account the terms dropped in
the derivation of the diffusive wave approximation. Accordingly,
a similar procedure is used for the derivation of the diffusive wave
approximation, and Eq. (6) simply becomes

∂Q
∂t þ Ce

∂Q
∂x ¼ DM

∂2Q
∂x2 ð12Þ

where DM ¼ ΩD. However, the remaining concern is the need
to select a reference discharge for the calculation of the hydraulic
diffusivity coefficient, which is a caveat of the linear diffusive wave
routing procedure. The novel approach proposed here is to define
the modified hydraulic diffusivity coefficient DM as a function of
the Froude number Fr and the flood wave celerity Ce, which are
parameters with relatively small variances along a channel during
a flood event. For the derivation of the modified diffusivity coef-
ficient the conveyance K in a wide rectangular channel (i.e., K ¼
Q=

ffiffiffiffiffi
So

p
) is rewritten in the following form, considering the energy

slope equal to the bed channel slope:

K ¼ αWffiffiffiffiffi
So

p
�

U2

Fr2g

�
β

ð13Þ

The substitution of Eq. (13) and Ce ¼ βU into DM ¼ ΩD,
considering D ¼ K=2W

ffiffiffiffiffi
So

p
from Eq. (8) leads to

DM ¼ ½1 − ðβ − 1Þ2Fr2� α
2So

�
1

g

�
Ce

βFr

�
2
�
β

ð14Þ

For Manning’s equation in SI, the parameters of Eq. (14) are:

α ¼
ffiffiffiffiffi
So

p
n

; β ¼ 5

3
ð15Þ

and, the modified diffusivity coefficient from Eqs. (14) and (15)
becomes

DM ¼
�ð1 − 0.444Fr2Þ

2n
ffiffiffiffiffi
So

p
��

0.6Ce

Fr
ffiffiffi
g

p
�

10=3
ð16Þ

There are two advantages to this formulation of the modified
hydraulic diffusivity coefficient DM: (1) it takes into account the
full dynamic acceleration terms neglected in the derivation of
the diffusive form; and (2) the reference discharge Qo in the linear
diffusive model [Eq. (9)] is replaced with parameters Fr and Ce,
which remain fairly constant during floods (which is more coherent
with the linear model assumption).

© ASCE 04020043-3 J. Hydraul. Eng.
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This new way to solve the diffusive model can be implemented
using the same numerical schemes applied to the solution of the
classical diffusive wave model (Crank Nicolson and QUICKEST).
The main difference is the use of the modified coefficient DM
[Eq. (16)] instead of the traditional coefficient D [Eq. (9)].

This new approach will be tested and compared with other flood
routing models in a benchmark test and in a real case of the flood
wave propagation in the Doce River after the failure of the Fundão
Dam in Brazil.

Numerical Solutions Procedures

Herein the classical diffusive wave model is solved using three
different numerical schemes: Crank Nicolson, QUICKEST, and
the Muskingum–Cunge method, all implemented in MATLAB
version R2018b. These numerical schemes are also compared to
the commonly used Preissmann scheme in HEC-RAS for the full
dynamic wave model. Each scheme is briefly described below with
more details in the Appendix.

Crank Nicolson Scheme

The Crank Nicolson (CN) scheme can be applied to solve
advection-dispersion transport equations, which can represent dif-
ferent physical processes. In this article, this method is used to
solve the classical and the new diffusive wave models, i.e., Eqs. (6)
and (12), respectively. The accuracy of finite-difference schemes
is introduced here; it describes how fast the approximation errors
reduce to zero when Δx and Δt approach zero (Abbott and Basco
1990). Thus, the Crank Nicolson scheme is second-order accurate
(faster reduction of truncation error than first-order schemes).
Furthermore, this scheme is unconditionally stable and does not
cause numerical dissipation, even though it can present phase errors
and result in oscillations if large time steps are chosen (Moin 2010;
Szymkiewicz 2010).

QUICKEST Scheme

The QUICKEST (Quadratic Upstream Interpolation for Convective
Kinematics with Estimated Streaming Terms) is an explicit scheme
developed by Leonard (1979). This is a third-order scheme to solve
unsteady flows in the format of advection-dispersion, i.e., the dif-
fusive wave model [Eqs. (6) or (12)]. The method does not present
numerical dissipation; however, due its explicit nature, the stability

is conditioned on the choice of the mesh size (Leonard 1979;
Szymkiewicz 2010; Julien 2018).

Muskingum–Cunge Method

The Muskingum–Cunge (MC) method is a modification of the
Muskingum method where the diffusive wave approximation is ap-
plied instead of the kinematic wave. In general, the wide rectangu-
lar channel assumption is implicit in its derivation. It also considers
the hydraulic diffusivity from Eq. (9). The accuracy can deteriorate
in mild slope rivers (Price 2009).

Preissmann Scheme

The Preissmann scheme is arguably the most popular method ex-
tensively used in commercial codes (Zijlema 2015; Battjes and
Labeur 2017). It is accepted as a robust scheme for being stable
without time-steps limitations (Szymkiewicz 2010; Rowinski and
Radecki-Pawlik 2015). However, this method can result in non-
physical smoothing, which becomes significant when strong gra-
dients occur in the solution (Szymkiewicz 2010).

This scheme considers weight coefficients for the time deriva-
tive ψ and for the space derivative θ. The time derivative is gen-
erally computed with ψ ¼ 0.5 (Abbott and Basco 1990), and the
scheme is unconditionally stable, but displays numerical dissipa-
tion when 0.5 < θ ≤ 1. For practical applications, the parameter
θ usually ranges from 0.6 to 1; the value of θ ¼ 0.6 results in more
accurate solutions, but it is more susceptible to instabilities. Con-
versely, the value of θ ¼ 1.0 (the fully implicit scheme) provides
the most stable solutions (USACE 2016d). For many real-world
simulations, there are no significant differences in the results when
changing θ from 1.0 to 0.6 (USACE 2016d). More details about this
method can be easily found in the literature or in software manuals
(Akan 2006; Wu 2007; Sturm 2009; Szymkiewicz 2010; USACE
2016d).

The Preissmann scheme is a first-order method, which means
that approximation errors slowly approach zero, when compared
with second- and third-order schemes. This scheme is readily avail-
able in HEC-RAS, herein using the version 5.0.1 (USACE 2016d).
HEC-RAS is a very popular software and is one of the 1D models
recommended for downstream routing of the breach hydrograph
in the US according to federal guidelines for inundation mapping
of flood risk associated with dam incidents and failures (FEMA
2013).

A summary of the main features of each method is given on
Table 1.

Table 1. Summary of characteristics of widespread methods to calculate flood routing

Numerical
approach

Continuity
equation

Full dynamic
wave equation

Diffusive wave
equation

Accuracy
order Comments

Crank Nicolson — — X 2nd Implicit, nondiffusive and unconditionally stable. It can be dispersive
(oscillations of the solution) depending on the mesh size. The hydraulic
diffusivity coefficient must be known in advance and requires an
additional method or function to calculate the water level

QUICKEST — — X 3rd Explicit and nondiffusive. Its stability is defined by a stability diagram
depending on the choice of the Courant numbers ðCa;CdÞ. The
hydraulic diffusivity coefficient must be known in advance and requires
an additional method or function to calculate the water level

Preissmann X X — 1st Implicit, unconditionally stable and presents numerical dissipation
when 0.5 < θ ≤ 1. Can result in unphysical smoothing when sharp
gradients occur on the solution. It is available in HEC-RAS

Muskingum–Cunge X — X 1st Explicit, unconditionally stable. It loses accuracy as the river bed slope
becomes milder. Requires an additional method or function to calculate
the water level

© ASCE 04020043-4 J. Hydraul. Eng.
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Test Setup Description

Two tests are proposed to compare the performance of the pre-
sented models: (1) a hypothetical channel under a range of bed
slopes and time-to-peak of the input hydrograph; and (2) a real case
of the flood wave propagation in the Doce River after the collapse
of the Fundão Dam in Brazil. The tests are described in the follow-
ing sections.

Benchmark Testing for a Hypothetical Channel

To compare the performance of the flood routing models consid-
ering a wide range of parameters (bed slope and time to peak), the
simulation of a hypothetical channel is first considered. This is a
50 km-long channel, with a width of 100 m (wide rectangular) and
Manning n equal to 0.03. Three different slopes are considered:
0.01, 0.001, and 0.0001. One should note that steep slope channels
are not the focus of this paper; however, it is only used in the bench-
mark testing for comparison of the effect of the bed slope on the
flood routing models.

As an upstream boundary condition, a flashy hydrograph with
similar features to the Fundão Dam collapse in the Doce River
is simplified as a triangular hydrograph, varying from 30 to
2,000 m3=s. To test the effect of the flashiness, two different rising
times Tr were considered (3h and 15 h), providing a wide range of

Ponce parameter P (from 1 to 1,211) when considering three bed
slopes. The flood routing models tested are: (1) the classical dif-
fusive wave model using the Crank Nicolson, QUICKEST scheme,
and Muskingum–Cunge, (2) the dynamic wave model using the
Preissmann scheme, and (3) the new diffusive wave model using
the Crank Nicolson and QUICKEST scheme.

The HEC-RAS reference manual (USACE 2016d) provides
a starting point for the estimation of the cross-section distance
Δx in dam break simulations. Accordingly, it can be determined
by the following expression:

Δx ≤ 0.15H
So

ð17Þ

whereΔx = distance between the cross-sections in meters; andH =
average main channel bankfull depth in meters. An alternative
equation for Δx is

Δx ≤ CeTr

20
ð18Þ

whereCe = celerity (wave speed) in m=s; and Tr = hydrograph rising
time in seconds. An initial guess for the wave celerity can be done
using by the Kleitz–Seddon equation (Chanson 2004; Julien 2018)

Ce ¼
∂Q
∂A ≈ ΔQ

ΔA
ð19Þ

Fig. 1. Doce River basin: location of the Fundão Dam and the gaging stations.
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Furthermore, a practical time step Δt for medium to large rivers
is given by USACE (2016d)

Δt ≤ Tr

20
ð20Þ

The expressions above are useful in setting up the initial mesh
size for the benchmark test.

Fundão Dam Failure Case

The Fundão Dam was located in the upper Doce River basin, in
the southeast region of Brazil, as shown in Fig. 1. This basin
has a drainage area of 82,600 km2 and the Doce River extends
550 km to the Atlantic Ocean. The Fundão Dam collapsed on
November 5, 2015, around 16:00 h (Morgenstern et al. 2016). Then
the flood of the Doce River started on November 6 (CPRM and
ANA 2015; Palu and Julien 2019), and reached the Atlantic Ocean
on November 11 (Palu 2019).

The propagation of the flood wave in the Doce River was reg-
istered at four stations of the alert system of critical events of the
geological survey of Brazil and the National Water Agency, de-
signed to alert the towns around the Doce River about flood risks
during the rainy season (CPRM and ANA 2016). Table 2 presents
the description of the stations and the type of data available.

The flood propagated only in the main channel of the Doce
River, not reaching the floodplain. Fig. 2 shows the resultant flashy
hydrographs registered by stations along the Doce River. Despite
the distance from the dam collapse, the observed hydrograph rose
quickly when compared with natural floods. For instance, at the
first hydropower reservoir (Candonga Dam) the hydrograph rising
time was 3 h (from 30 to 2,000 m3=s), at gaging station G6 it was
8.5 h (60 to 900 m3=s), 9 h for station G5 (75 to 700 m3=s), and

approximately 9.5 h for station G4 (100 to 630 m3=s). This rising
time of natural floods is about 140 h (Table 3). In order to quantify
the hydrograph flashiness (rate of change in flow) after the dam
break, the Richards–Baker flashiness index is considered (Baker
et al. 2004):

R − B Index ¼
P

N
i¼1 jQi −Qi−1jP

N
i¼1 Qi

ð21Þ

where Qi refers to discharge for a time i and N is the number of
observations. For comparison, the index is also applied to a natural
flood event in the Doce River between December 2016 and January
2017 which lasted for approximately 30 days according to data
from the National Water Agency (ANA 2017). Table 3 shows the
results considering hourly discharge measurements. As one can
observe, the flashiness index for the hydrograph after the dam break
is upto 15 times higher than for natural floods in the same river.

The test of the flood routing models focuses on two fluvial
reaches (Reaches 1 and 2) for which high-quality discharge mea-
surements were available on an hourly basis. Reach 1 is located
between the stations G6 and G5 and extends 74 km at an average
width of 200 m. The second reach (Reach 2) is 60 km long located
between the stations G5 and G4, with an average width of 280 m.
The cross sections at stations G6 and G4 are presented in Fig. 3.

The bed slope for both reaches is equal to 0.0005, obtained
from the digital elevation model of the Doce River basin at a spatial
resolution of 10 m, provided by the National Water Agency
(Geonetwork 2007). Daily mean water level data from the reservoir
monitoring system of the National Water Agency (ANA 2016b)
showed negligible flood peak attenuation in the Baguari Reservoir
(between stations G5 and G4).

Table 2. Available data on the Doce River’s gaging stations

ID Station name Type NWA code Data available

G6 Cachoeira dos Óculos Telemetric 56539000 Discharge each 15 min, cross-section and stage-discharge curve
G5 Belo Oriente Telemetric 56719998 Discharge each 15 min, cross-section and stage-discharge curve
G4 Governador Valadares Telemetric 56850000 Discharge each 1 h, cross-section and stage-discharge curve
G3 Tumiritinga Conventional 56920000 Discharge with two measurements per day, cross-section and stage-discharge curve

Fig. 2. Observed hydrographs in the Doce River after the Fundão Dam collapse. (Data from ANA 2017.)
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Flood Routing Results

Benchmark Testing Results

Initially, the hypothetical channel with the mild slope So ¼ 0.0001
considering Tr ¼ 3 h was used in the analysis of the mesh, since it
was the closest combination to simulate the flood wave propagation
after a dam break in a natural stream. Fig. 4 shows the results of
analysis of mesh size for the different methods. The left-hand side

Table 3. Analysis of hydrograph flashiness

Station

Fundão Dam break Natural flood (2016–2017)

TrðhÞ P
Flashiness
index TrðhÞ P

Flashiness
index

G6 8.5 21 0.17 144 345 0.011
G5 9.0 29 0.14 139 378 0.011
G4 9.5 35 0.11 146 371 0.019

Note: Based on hourly measurements.

Fig. 3. Doce River cross sections at stations G6 and G4.

Fig. 4. Mesh analysis for the flood routing simulation for different methods.
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of Fig. 4 shows the effect of varyingΔx whileΔt ¼ 900 s, and the
right-hand side shows the effect of varying Δt while Δx ¼ 250 m.
The final mesh size selected for all schemes was Δx ¼ 250 m
and Δt ¼ 60 s, since no substantial improvements were observed
with more refinements, even though it was clear that the models
presented different degrees of flood wave attenuation. For the dif-
fusive wave models there was no noticeable difference between the
Crank Nicolson and QUICKEST scheme; for this reason only the
Crank Nicolson scheme is presented. After the mesh analysis,
the attenuation of the peak discharge for each model is presented
in Fig. 5.

During the simulations the dynamic wave model using the
Preissmann scheme and the classic diffusive wave model using
Muskingum–Cunge presented oscillations in the steepest channel
(So ¼ 0.01). Despite this, all other models presented similar at-
tenuation of the flood wave. On a mild bed slope (So ¼ 0.001),
the simulation of flashy hydrographs (Tr ¼ 3 h) showed some

divergence in the results. One can observe that at the same slope,
the results for the slower peak (Tr ¼ 15 h) are very similar for all
models. Finally, the test of the mildest channel (So ¼ 0.0001) with
the flashiest hydrograph (Tr ¼ 3 h) presented the largest diver-
gence among the models. The classic diffusive model solved using
the Muskingum–Cunge model presented the maximum diffusivity
(Q=Qmax ¼ 0.13); conversely, the new way to solve the diffusive
wave model using the Crank Nicolson scheme resulted in the most
conservative peak discharge attenuation (Q=Qmax ¼ 0.57). Con-
trary to expectation, this last simulation (So ¼ 0.0001 and Tr ¼
3 h) resulted in a larger attenuation at a low Ponce parameter
(P ¼ 1) for the dynamic wave model rather than for the diffusive
wave model. Even though the dynamic wave model considers all
terms of the momentum equation, the excessive diffusivity of the
flood wave can be attributed to the combination of the strong
flood wave diffusivity implicit in the dynamic wave model (Ponce
2014) with the numerical dissipation of the Preissmann scheme,

Fig. 5. Comparison of the flood wave attenuation in a hypothetical channel for different methods: (a) So ¼ 0.01, P ¼ 242; (b) So ¼ 0.01, P ¼ 1211;
(c) So ¼ 0.001, P ¼ 17; (d) So ¼ 0.001, P ¼ 86; (e) So ¼ 0.0001, P ¼ 1; and (f) So ¼ 0.0001, P ¼ 6.
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which is magnified for sharp hydrographs. In contrast, these same
effects were not observed for the diffusive wave models solved us-
ing the Crank Nicolson and QUICKEST scheme. Both schemes do
not present numerical dissipation; moreover, we note that the new
way to solve the diffusive wave presented more conservative results
in terms of flood wave attenuation when compared with other tested
models. Now the next step is to test these algorithms on the Doce
River after the Fundão Dam collapse.

Fundão Dam Case Results

The flood routing models were tested for flood wave propagation
in two Doce River reaches after the Fundão Dam collapse. The cal-
ibration of the models was based on historical stage-discharge data
of the National Water Agency collected at stations G6, G5, and G3
(ANA 2017), since these stations presented better-quality measure-
ments. The estimated Manning’s n roughness coefficient at each
station are 0.056, 0.046, and 0.047, respectively (Palu 2019). Thus,
an average Manning’s coefficient equal to 0.05 for the first reach
(between stations G6 and G5) and 0.047 for the second reach
(between stations G5 and G4) was used for all flood routing mod-
els. These values present an estimate of the natural roughness of
the river, and the use of these coefficients resulted in proper flood
wave celerity. A sensitivity analysis carried out showed that the
application of smaller roughness accelerated the hydrograph and
higher values resulted in delayed propagation. The initial condition
for all models was the initial observed discharge starting from
the steady state (60 m3=s for Reach 1 and 75 m3=s for Reach 2).
The upstream boundary condition was the observed hydrographs
at stations G6 and G5 while the downstream hydraulic boundary
condition was the normal depth consideration. The mesh analysis
resulted in the same values as the benchmark testing (Δx ¼ 250 m
and Δt ¼ 60 s).

A summary of the simulation parameters is presented on Table 4,
while Figs. 6 and 7 show the result of the simulation in comparison
with the observed hydrographs for Reaches 1 and 2, respectively.
The quantitative comparison between the observed discharges
and the numerical simulations is made using the relative percent

difference (RPD) applied on the peak discharge, the root mean
square error (RMSE), the mean absolute percentage error (MAPE),
and the difference in the time of peak, as presented in Table 5.

In terms of flood attenuation, the results were coherent with the
benchmark testing. For the case of the classic diffusive wave mod-
els solved with the Crank Nicolson and QUICKEST schemes, the
issue concerned the determination of the hydraulic diffusivity
coefficient, which was overestimated by the expression from the
literature [Eq. (9)]. The result was an excessively diffused hydro-
graph with both methods, with the peak underestimated by 18%.
The uncertainty about the reference discharge prevailed, since the
mean discharge resulted in a poor estimation of D, while the use
of the peak discharge would have led to even worse results (since it
would have resulted in a higher D). The Muskingum–Cunge
method presented low peaks, underestimating the peak discharge
by 16%. For the Preissmann scheme the variation on the weight
parameter θ from 0.6 to 1 did not result in any improvement. More-
over, it smoothed the solution by lowering the peak by 14%, when
compared with the observed discharges. As observed in benchmark
testing, the combination of a mild slope of the sharp hydrograph
resulted in high flood wave diffusivity for this method. Ultimately,
none of the classical methodologies tested presented a satisfactory
fit with the observed data.

The application of the new way to solve the diffusive wave
model, Eq. (16) on the Doce River was made using constant values
of the Froude number and β ¼ 5=3 (where β is not a calibration
parameter). The roughness coefficient was the same calibrated for
the classical models (n ¼ 0.05 for the first reach, between stations
G6 and G5 and n ¼ 0.047 for the second reach, between stations
G5 and G4).

The results considering the two numerical schemes (Crank
Nicolson and QUICKEST) using the new approach are almost
identical. For the QUICKEST scheme, for instance, the maxi-
mum reduction found was RPD (−18% to −0.1%), RMSE
(72–34 m3=s), and MAPE (32%–15%). The maximum difference
found in the time of peak was about 1.2 h. Moreover, the results in
both reaches are consistent, better fitting the observed data when
compared with all the previous methodologies. In addition, the
results obtained along the Doce River are also consistent with those
from the hypothetical channel.

The enhanced performance of the new approach is mainly attrib-
uted to the modified hydraulic coefficient used on the linear model,
which uses parameters with less variability (Froude number and
celerity) rather than a highly variable discharge. It also takes into
account the additional acceleration terms of the Saint-Venant equa-
tion in the full dynamic wave. Moreover, the numerical schemes
used to integrate the Saint-Venant equations (Crank Nicolson
and QUICKEST) are nondiffusive schemes, avoiding numerical
dissipation.

Discussion and Conclusion

The applicability of different flood routing models to flashy hydro-
graphs was tested on a hypothetical channel and in two Doce
River reaches after the Fundão Dam failure. Classic models such
as the diffusive wave model numerically solved using the Crank
Nicolson, QUICKEST, and Muskingum–Cunge methods and the
dynamic wave model solved using the Preissmann scheme pro-
duced excessive flood wave attenuation in a mild slope channel
with a flashy hydrograph. Application of those methods in the real
case of the Fundão Dam failure in Brazil resulted in unsatisfactory
results; the peak discharge of the predicted hydrograph presented
an error up to −18% when compared with measured hydrographs.

Table 4. Summary of parameters for the flood routing simulations using
different models

Parameter Reach 1 (G6 to G5) Reach 2 (G5 to G4)

L (km) 74 60
W (m) 200 280
S (m=m) 0.0005 0.0005
Manning n 0.05 0.047
H (m) 6.5 5.6
Tr (h) 8.5 9.5
Δxmin ðmÞ 2,050 1,080
Δx adopted (m) 250 250
ΔtminimumðsÞ 1,670 1,530
Δt ðsÞ adopted 60 60
Fr 0.19 0.18
θ (Preissmann scheme) 1.0 1.0

Diffusive wave model
P (Ponce parameter) 26 38
Ce (m/s) initial guess 1.34 1.0
Ce (m/s) final 1.19 1.04
Qref (m3=s) 465 384
D (m2=s) 2,325 1,370

New dynamicwavemodel
Ω 0.98 0.99
DM (m2=s) 740 663
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Fig. 6. Evaluation of flood routing methods in the Doce River, Reach 1: (a) classic diffusive wave—Crank Nicolson; (b) classic diffusive
wave—QUICKEST; (c) classic diffusive wave—Muskingum–Cunge; (d) dynamic wave—Preissmann; (e) new diffusive wave—Crank Nicolson;
(f) new diffusive wave—QUICKEST.

Fig. 7. Evaluation of flood routing methods in the Doce River, Reach 2: (a) classic diffusive wave—Crank Nicolson; (b) classic diffusive
wave—QUICKEST; (c) classic diffusive wave—Muskingum–Cunge; (d) dynamic wave—Preissmann; (e) new diffusive wave—Crank Nicolson;
(f) new diffusive wave—QUICKEST.
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Efforts to refine the mesh, to calibrate the models, and to change
scheme parameters, as Preissmann weight parameters θ for in-
stance, did not improve the results.

A new way to solve the diffusive wave model was developed
using the modified hydraulic diffusivity coefficient DM, which
considers all terms of the Saint-Venant equation. The coefficient
DM is a function of the Froude number Fr and flood wave celerity
Ce, two parameters with relatively small variation along the chan-
nel during a flood event. The use of these parameters in Eq. (16) is
more coherent with the linear model assumption and results in
more realistic flood wave attenuation. The numerical solution could
be implemented using the QUICKEST (explicit) or the Crank
Nicolson (implicit) scheme, since both give very similar results
without numerical dissipation.

The test of the methodology on a hypothetical channel and
in two Doce River examples showed more conservative results
in terms of flood wave attenuation and greatly improved the accu-
racy of the hydrograph predictions. It is a matter of preference
whether the user wants to apply a simpler explicit subject to a con-
ditioned mesh choice and proper handling of boundary conditions
(QUICKEST), or an implicit scheme which is more flexible
about the mesh size but requires greater computational effort
(Crank Nicolson). These two schemes presented very similar re-
sults. For instance, the QUICKEST scheme decreased the error
from −18% to −0.1% for RPD, 72 to 34 m3=s for RMSE, and
32% to 15% for MAPE. The maximum difference found in the time
of peak decreased from 5 to 1.2 h.

Appendix. Numerical Schemes for Flood Routing
Calculation

Crank Nicolson

This scheme is given by the application of a central difference in
space and the trapezoidal method for time advance in the diffusive
wave approximation [Eq. (6)]

Qnþ1
jþ1

�
Ca

4
− Cd

2

�
þQnþ1

j ð1þ CdÞ −Qnþ1
j−1

�
Ca

4
þ Cd

2

�

¼ −Qn
jþ1

�
Ca

4
− Cd

2

�
þQn

j ð1 − CdÞ þQn
j−1

�
Ca

4
þ Cd

2

�
ð22Þ

where Qn
j refers to the discharge at the cross section j and in the

time level n in the computational grid. In addition, Ca = the Courant
number; and Cd = the diffusive Courant number, given by

Ca ¼ Ce
Δt
Δx

Cd ¼ D
Δt
Δx2

ð23Þ

The calculation of the discharges for the next time steps is made
by matrix inversion. Once the discharges are calculated, the flow
depth can be obtained by the discretization of the continuity equa-
tion. For instance, the leap-frog scheme (Mahmood and Yevjevich
1975) can be applied, since it is a second-order method:

hnþ1
j ¼ hn−1j − Δt

WΔx
ðQn

jþ1 −Qn
j−1Þ ð24Þ

QUICKEST Scheme
This scheme is given by Julien (2018)

Qnþ1
j ¼ Qn

j þ ϕ1Qn
jþ1 − ϕ2Qn

j þ ϕ3Qn
j−1 þ ϕ4Qn

j−2 ð25Þ
where

ϕ1 ¼ Cdð1 − CaÞ − Ca

6
ðC2

a − 3Ca þ 2Þ ð26Þ

ϕ2 ¼ Cdð2 − 3CaÞ − Ca

2
ðC2

a − 2Ca − 1Þ ð27Þ

ϕ3 ¼ Cdð1 − 3CaÞ − Ca

2
ðC2

a − Ca − 2Þ ð28Þ

ϕ4 ¼ CdðCaÞ þ
Ca

6
ðC2

a − 1Þ ð29Þ

Preissmann Scheme

The application of the Preissmann scheme for the Saint-Venant
equations results in the discretized continuity and momentum
equations

1

Wp

�
ð1 − θÞQ

n
jþ1 −Qn

j

Δx
þ θ

Qnþ1
jþ1 −Qnþ1

j

Δx
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�
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Δt

�
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ψ

�
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jþ1
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�
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��
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A

�
n
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−
�
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A

�
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j
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��
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�
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−
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þ
�
g n2MjQjQ
R4=3A

�
p
− g ApSo ¼ 0 ð31Þ

where n and j are indexes of time level and cross section,
respectively. The index P means that the function or expression

Table 5. Comparison between the observed hydrograph and the numerical simulations

Simulation Method

Reach 1 Reach 2

Peak
(m3=s)

RPD
(%)

RMSE
(m3=s)

MAPE
(%)

Peak time
Difference (h)

Peak
(m3=s)

RPD
(%)

RMSE
(m3=s)

MAPE
(%)

Peak time
Difference (h)

— Observed 704 — — — — 635 — — — —
A Diffusive wave—Crank Nicolson 581 −18 72 30 −1.2 570 −10 58 31 0.83
B Diffusive wave—QUICKEST 592 −16 72 32 −1.7 579 −9 68 33 0.17
C Diffusive wave—Muskingum–Cunge 589 −16 84 23 −3.5 578 −9 78 23 −1.83
D Dynamic wave—Preissmann 606 −14 89 25 −4.0 577 −9 85 24 −2.00
E New diffusive wave—Crank Nicolson 704 −0.1 49 17 −0.4 626 −2 48 18 1.17
F New diffusive wave—QUICKEST 704 −0.1 34 15 −1.2 626 −2 61 21 0.42
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requires discretization. In addition, ψ and θ are weighting param-
eters varying from 0.5 to 1.

Muskingum–Cunge

This method is well described by Szymkiewicz (2010)

Qnþ1
j ¼ C1Qn

j−1 þ C2Qn
j þ C3Q

nþ1
j−1 ð32Þ

The coefficients C1, C2, and C3 are equal to

C1 ¼
KX þ 0.5Δt

Kð1 − XÞ þ 0.5Δt
ð33Þ

C2 ¼
Kð1 − XÞ − 0.5Δt
Kð1 − XÞ þ 0.5Δt

ð34Þ

C3 ¼
−KX þ 0.5Δt

Kð1 − XÞ þ 0.5Δt
ð35Þ

where the parameters K and X are defined as

K ¼ Δx
Ce

ð36Þ

X ¼ 0.5 − Q
2WSoKC2

e
ð37Þ

The parameters can be kept constant to a chosen reference
discharge (linear approach), or updated using the known discharges
at every time step (nonlinear) (Akan 2006; McCuen 2016).
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