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Abstract.

The Eulerian and Lagrangian correlation structures of 13 convective rainstorms

were investigated using rainfall data from the 1987 Convective Initiation Downburst
Experiment in Denver, Colorado. One minute rainfall data were available for two
superposed raingage networks: 46 raingages on the portable automated mesonet (PAM)
network at a mean spacing of 10.6 km and 31 additional raingages on the Federal
Aviation Administration Lincoln Laboratory Operational Weather Studies (FLOWS)
network at a mean spacing of 2.4 km. Eulerian correlation coefficients are low and often
negative for high-resolution 1 min rainfall data. Correlation increases with time-averaging,
beyond 10-15 min for single rain cells on the FLOWS network and small-mesoscale
rainstorms on the PAM network. The average speed of rain cells and small-mesoscale
rainstorms was found to be 76.5 and 56.4 km hr !, respectively. Storm kinematic is
identified as the cause of data scatter and low Eulerian correlations. Convective
rainstorms are essentially uncorrelated in the Eulerian reference frame at a typical
raingage spacing of 2-3 km for rain cells and 10-15 km for small mesoscale rainstorms. A
spatial cross-correlation analysis in a Lagrangian reference frame moving with the center
of mass of the storm separates the kinematic component from the structural component of
a rainfall field. The spatial cross correlations in the Lagrangian rainfall field show
considerable improvement over the Eulerian spatial correlation plots, and data scatter is
greatly reduced. The increase in correlation coefficients from Eulerian to Lagrangian

reference frames typically ranged from 0.5 to 1.1.

1. Introduction

The mathematical structure of rainfall events has been ex-
amined using point process theory since Todorovic [1968] and
Todorovic and Woolhiser [1974]. A stochastic representation of
ground level rainfall intensity in space and time was presented
by Waymire et al. [1984]. Rodriguez-Iturbe et al. [1984] showed
that the mathematical description of rainfall process depends
on the scale of measurements. Valdes et al. [1985] proposed a
model representing the temporal structure of a multidimen-
sional rainfall process. The model simulates moving storms
with mesoscale meteorological features including clustering,
birth, and death of rain cells and cell intensity attenuation in
space and time. Rodriguez-Iturbe and Eagleson [1987] investi-
gated rainfall from storm events using point process tech-
niques. Accordingly, cells are distributed in space either inde-
pendently following a Poisson process or with clustering
according to a Neyman-Scott scheme. Multidimensional mod-
els of nonstationary space-time rainfall have been developed
by Sivapalan and Wood [1987] in which a storm is assummed to
consist of a hierarchy of scales of which the rain cells are
embedded within small mesoscale areas, which are then em-
bedded within large-mesoscale areas. Several methods based
on multiscaling and self-similarity ideas have been proposed in
recent years and a multicomponent decomposition of spatial
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rainfall fields are given by Kumar and Foufoula-Georgiou
[1993a, b]. The effects of radar rainfall resolution on surface
runoff calculation were examined by Ogden and Julien [1994],
showing that the correlation length of radar rainfall precipita-
tion was of the order of 2-3 km. The practical lower-limit
resolution for weather radars was found to be of the order of
1 km for unbiased surface runoff calculations. The foregoing
analysis focuses on the correlation structure of rainfall mea-
surements from large networks of raingages.

Ground-based raingage networks supply a reliable source of
precipitation data used in statistical analyses associated with
the development of rainfall models and the calibration of radar
estimates of rainfall. For years, various correlation techniques
have been used to evaluate both the temporal and spatial
structure of rainfall events [Boyer, 1957; Berndtsson, 1972}. A
study by Felgate and Read [1975] demonstrated the potential
for correlation techniques to accurately describe the small-
scale structure of rainstorms in quantitative terms. Using a
network of 16 gages at 1 km spacing, they were able to deter-
mine the spatial scale, mean lifetime, and velocity of rainfall
cells. Drufuca and Zawadski [1975] evaluated 10 years of rain-
gage data from a single site for numerous statistical measures
including the autocorrelation function and the probabilities of
various rainfall rates. They proposed the notion that the vari-
ability in a gage measured rainfall pattern arises from two
effects: (1) advection of the spatial rainfall pattern and (2)
changes that occur as the pattern moves over the gage. Zawad-
ski [1973] measured space and time autocorrelation functions
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for the rainfall process on a horizontal plane. He determined
the structure and motion of the storm and differentiated be-
tween convective cell motion and storm motion.

Marshall [1980] performed a cross-correlation analysis at
different time lags between all pairs of gages for storms passing
over two networks in England. Both networks were at the cell
scale and covered ~25 km?. One network had 16 gages, arid
the other had 36. His results gave an indication of the temporal
and spatial structure of the storms analyzed. He used a frame
of reference which moves with the rainfall feature and the
autocorrelation function to indicate the rate of change of mov-
ing rainfall patterns. In conclusion, Marshall was able to use
correlation surfaces to determine the shape, orientation, and
rate of decay of convective cells as well as their kinematic
properties.

Shaw [1983] performed both autocorrelation and cross-
correlation analyses in evaluating the cellular structure of
storms. He performed these analyses on groups of three gages
at a time. He delineated characteristic ellipses representative
of the 0.5 correlation contour and thien used the size of this
cllipse as a measure of the cell size. Shaw was also able to
obtain an estimate for the mean lifetime of storm cells.

A cross-correlation analysis by Messaoud and Pointin [1990]
was used to determine the minimum time interval and spatial
gage resolution for which statistically significant results can be
obtained. Their study included a comparison of data from both
a gaged network and a weather radar for the same event. They
found that the cross-correlation coefficient between pairs of
stations decreased as the gage separation distance increased.
In addition, they found that for time intervals <15 min the
mean rainfall rate for a single gage is not statistically repre-
sentative of a mean value over the area that the gage is sup-
posed to cover.

May and Julien [1990] found similar results using a cross-
correlation analysis of 1 min rainfall data from a 30 raingage
network. The use of spatially fixed raingages as a tool to mea-
sure the very dynamic nature of rainfall events suggests that
resulting rainfall records may be more complicated than orig-
inally thought. Raingages operate in the Eulerian reference
frame, and Eulerian spatial correlations make perfect sense for
stationary rainstorms. The correlation structure is, however,
expected to deteriorate as the speed of moving rainstorms
increases. In fact, when the rainfall ceases at a given raingage,
one cannot determine whether rainfall ceased over the entire
cell or whether the storm moved outside of the raingage net-
work. One expects a stationary rainstorm to be better repre-
sented by the Eulerian rainfall data than a moving rainstorm.
As the speed and rate of deformation of the rain cells increase,
the results of traditional analyses in the Eulerian reference
frame are less likely to be meaningful. The frame of reference
which moves with the rainfall cell is termed the Lagrangian
reference frame and forms the basis for the method presented
in this paper.

2. Objectives

A Lagrangian transformation based on the hypothesis that
the observed variations in a rainfall event moving over a net-
work can be substantially attributed to two quasi-independent
and distinct processes: (1) rain cell kinematics and (2) and rain
cell structure. Ideally, the true nature of rainfall fields, repre-
sented by data collected from raingage networks, would be
better modeled if the structural and kinematic components
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were considered separately. One may assume that the atmo-
spheric mechanism which controls storm speed is independent
of the mechanisms which controls rainfall intensity, duration,
and geometry of a rain cell. If this hypothesis is ttue, a statis-
tical picture of the data after Lagrangian transformation
should be clearer than a picture of the data prior to the trans-
formation.

The objective of this study is to examine the correlation
structure of several convective rainstorms after a Lagrangian
transformation moving with the center of mass of a rain cell. It
is intended to examine whether or not the correlation structure
improves after Lagrangian transformation. The specific objec-
tives of this study are to (1) examine the Eulerian correlation
structure of several convective rainstorms measured from two
superposed raingage networks; (2) examine rainstorm kine-
matics of several events in terms of storm speed and direction
with raingage network data; and (3) determine the Lagrangian
rainfall field and compare the Lagrangian correlation structure
with the Eulerian correlation structure for the same rain-
storms. Data used in this study were collected from the porta-
ble automated mesonet (PAM) and Federal Aviation Admin-
istration Lincoln Laboratory Operational Weather Studies
(FLOWS) autorhated mesonet stations associated with the
Convective Initiation Downburst Experiments held in Denver,
Colorado during the summer of 1987 [Kessinger, 1987].

3. Cinde Field Experiment: Rainfall Data

During the summer of 1987 a joint field program entitled the
Convection Initiation Downburst Experiment (CINDE) was
conducted in the Denver area by a number of agencies and
universities. The purpose of the CINDE project was (1) to
investigate the kinematic and thermodynamic structures of
boundary layer convergence lines that lead to the initiation of
storms, (2) to investigate the structure and evolition of the
mesoscale boundary layer, and (3) to study processes which
lead to microburst downdrafts [Kessinger, 1987).

Numerous atmospheric measurement systems were incorpo-
rated in the experiment including 31 Federal Aviation Admin-
istration (FAA)-Lincoln Laboratory Operational Weather
Studies (FLOWS) automatic weather stations and 46 National
Center for Atmospheric Rescarch (NCAR) portable auto-
mated mesonet (PAM) II stations. These instruments measure
a suite of climatologic variables including the 1 min rainfall
depth analyzed in this study. Kessinger [1987] and Wolfson
[1989] provide detailed descriptions of the PAM and FLOWS
instrumentation. The locations of the PAM and FLOWS rain-
gages are shown in Figure 1.

A summary of the spatial and temporal characteristics of the
PAM and FLOWS networks is given in Table 1. Data quality
and compatibility between networks were evaluated using sev-
eral measures. May [1993] found that on the basis of close
comparison of the cumulative rainfall depths between collo-
cated stations the PAM and FLOWS data were sufficiently free
of instrumental bias to allow direct intercomparison between
data derived from these networks. It was further found that the
use of 1 min data should be restricted to analyses where timing
is not eritical. In general, 2 min or greater time averages should
be used. Table 2 shows the scale properties, equivalent diam-
eter, and duration of 13 rainstorm events used in this analysis.
The scale classification is based on Orlanski’s [1975] taxonomy
of meteorologic features. Nearly all storms used in this study
were convective. The FLOWS network monitored rain cells
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Figure 1. Raingage locations for the portable automated mesonet (PAM)

and Federal Aviation Adminis-

tration Lincoln Laboratory Operational Weather Studies (FLOWS) networks. The origin is at the CP-3 radar

location.

and clusters. The PAM network monitored large cell clusters
and small-mesoscale rainstorms.

4. Eulerian Correlation Structure of Rainstorms

The correlation coefficient is a measure of the dependency,
or predictability, between two time series. It can be used to
characterize the structure of a rainfall process represented by
the measured time series from two raingages of a network.
Spatial correlation graphs display values of the correlation
coefficient against the separation distance between two rain-
gages. Normally, stations in close proximity should be highly
correlated, while stations far apart should be poorly correlated
or uncorrelated. The rate of change of the spatial correlation
curve is a function of the size and type of rain cell being
analyzed. In the case of convective rain cells, once the separa-
tion distance is greater than the cell size, any correlation is due
to background rainfall common to all local cells and is attrib-
uted to larger-scale features.

4.1.

Simultaneous and time-lagged serial correlations give infor-
mation about the temporal structure of an event. In a similar

Cross-Correlation Algorithm

Table 1. Spatial and Temporal Characteristics of the PAM
and FLOWS Networks

Characteristic FLOWS PAM
Number of stations 30 46
Mean gage spacing, km 2.4 10.6
Areal coverage, km* 8.4 X153 52.4 X 69.6
Time increment, min 1 1

PAM, portable automated mesonet; FLOWS, Federal Aviation Ad-
ministration Lincoln Laboratory Operational Weather Studies.

*This reflects the dimensions of the clustered array of stations.
Seven stations were located outside this area.

manner the spatial structure of rainfall events is evaluated
using time-lagged cross correlations between the time series
from pairs of raingages at different spatial locations. The vari-
able of interest in this time series analysis is the rainfall depth
r(G,t), occurring during time period ¢ at position G. The
general form of the equation used to compute the cross-
correlation coefficient p is

p7(Gi’Gj)

S H(G ) 8 — G (Gty + 18, — F(G))]

k=1

1

nT

SG)S(G) )
where p.(G;, G;) is the correlation coefficient between the
time series at stations G, and G, at lag time 7, . is the number
of values from the lagged series used in the computation of p,
8, is a joint rainfall indicator defined below, 7 is the mean for
the series, and S is the biased estimate of the standard deviation.

In order to avoid artificially increasing p because of extended
periods without rain the joint rain indicator 8, used by Mes-
saoud and Pointin [1990] is defined as

0, ifr(Gut) =r(Gptp+ 1) =0
5, =10, ift,<tgor (tx, + 1) >T=1t,+ (n— 1)At (2)
else 1

where T is the event duration, Az is the time step, and ¢, is the
starting time period.

The lag time 7 can be positive, negative, or zero. A positive
lag between stations G; and G; is defined as the rainfall (G, £)
occurring at station G, and time ¢ is correlated with the rainfall
r(G;, t + 7) occurring at station G, and time (f + 7).
McCuen and Snyder [1986] recommend limiting the magnitude
of 7to ~10% of the record length n at a lag of zero. For each
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Table 2. Kinematic and Scale Properties of CINDE Rainfall Events

Equivalent
Diameter, Duration, Speed, Azimuth,
Network Scale km min km hr™? deg ¢

6-29B FLOWS  cluster 7-12 60 40.3 1245
7-12B FLOWS  cluster 3-10 65 156.1 137.6
7-29 FLOWS  cell 4-8 30 23.1 3312
6-29A PAM SMSA 20-25 200 91.1 136.0
6-29B PAM SMSA 21-36 180 375 108.8
7-03a PAM cluster/SMSA 20-25 26 87.8 48.3
7-12B PAM SMSA 18-24 141 36.4 114.6
7-17 PAM SMSA 21-31 58 56.3 27.2
7-03b PAM cluster/SMSA 20-25 26 15.5 140.1
7-12a PAM SMSA 18 102 70.0 132.3
7-12b FLOWS  cluster 3-10 65 110.2 132.4
6-29a FLOWS  cell 5-9 16 89.8 1433
6-29b FLOWS  cluster 7-12 60 394 124.9
Average or range FLOWS  cells and clusters 3-12 46 76.5 124-331
Average or range PAM clusters and SMSAs 18-36 117 56.4 27-136

CINDE, Convection Initiation Downburst Experiment; SMSA, small-mesoscale area.

lag, one observation point is lost. Thus the number of data
points used in the correlation computation at any lag 7 is equal
to

N, =H,o— T 3)

Once T exceeds this empirical limit (10% of n), the correlo-
gram may begin to oscillate and produce unreliable results.

4.2. Negative Correlation Coefficients

The value of the correlation coefficient for a one-dimen-
sional random variable such as temporal rainfall is directly
indicative of the relationship between two time series. Re-
peated computations for numerous time series reflect the
structure of the rainstorm. In the case where the variable is
multidimensional, like cross correlations of space-time rainfall,
interpretation of the correlation coefficient is not as simple.
Two series may exhibit a strong positive dependency in one
domain, spatial, for example, but variations in the temporal
domain can mask this dependency resulting in a poor or neg-
ative correlation. The hypothetical example shown in Figure 2
illustrates this phenomenon. In each of these five graphs the
same base time series was assigned to two stations. This is
representative of a moving storm cell whose structure is time
invariant. The series at station 2 is then progressively lagged in
time, and the correlation coefficient is computed. For this
specific example the correlation coefficient gradually decreases
from 1, 0.63, 0.1, —0.15, and —0.39 as the time lag increases
from 0 to 4, respectively. Even though the series are identical
in structure and thus spatially highly correlated, time differ-
ences result in poor and negative correlations. In nature, time
lagging may be caused by rain cell kinematics as will be shown
in the Lagrangian correlation analysis.

4.3. Results of Eulerian Correlations

The general form of spatial correlation graphs for the
CINDE data set is shown in Figures 3 through 7. Data scatter
and low correlation or inverse correlation are prominent fea-
tures of these plots. Several display the expected decrease in
spatial correlation as the gage separation distance increases.
The magnitudes of the corresponding correlations are, how-
ever, very low or negative.

The FLOWS network is well suited to the description of

single convective rain cells with a diameter typically <10 km.
Figure 3 illustrates the scatter obtained from 2 min resolution
data. There is little to achieve on single cells at such short-time
rainfall resolution. Figure 4 is typical of the results obtained for
a single convective rain cell. The 1 min rainfall data exhibit
very low correlations as in Figure 3 with a decreasing value of
the correlation coefficient with raingage spacing. Data aggre-
gation over periods of 5 and 15 min largely improves the
correlation structure of single rain cells. For instance, 1 min
data that were uncorrelated at a distance of 6 km showed
average correlation coefficients as high as 0.7 when the data
was aggregated over periods of 15 min. One way to alleviate
the effects of moving rainstorms on the correlation structure is
to aggregate the data over longer time periods. The values of
the correlation coefficient p > 0.6 for 15 min rainfall data on
Figure 4 correspond to separation distances <~7 km, which is
approximately the equivalent diameter of the convective rain
cell given in Table 2 as 4-8 km.

This corroborates the results of a radar rainfall data analysis
by Ogden and Julien [1994] whereby the correlation length of
convective rainstorms at the Colorado State University (CSU)
Universities of Chicago and Illincis (CHILL) radar located
near Greeley, Colorado, was estimated at 2.3 km for several
convective rainstorms. The implications in terms of modeling
surface runoff using the model CASC2D developed by Julien et
al. [1995] are that rainfall precipitation can be assumed to be
fairly uniform on watersheds not exceeding ~5 km?. For large
watersheds in this area, i.e., exceeding ~100 km?, one may
assume an uncotrelated rainfall precipitation field for the cal-
culations of surface runoff from convective rainstorms.

Small-mesoscale rainstorms and cell clusters are best ana-
lyzed with the PAM raingage network. Short-term 5 min rain-
gage data display low correlation on Figures 5 and 6 for sep-
aration distances between raingages from 10 to 100 km. It is
very difficult to obtain any substantial correlation with the
PAM network because the spacing between raingages is too
large. For the same small-mesoscale rainstorms the correlation
structure is shown on Figure 7 at raingage spacing <15 km with
raingage data varying from 1 to 15 min. The 1 min raingage
data display slightly negative correlations, while the 5 min data
display slightly positive correlations. Correlation coefficients
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exceeding 0.6 are only obtained after time averaging the rain-
fall data over time intervals exceeding 15 min.

Causes of these unexpected low correlation coefficients ob-
tained for high-resolution 1 min rainfall data were investigated
in detail. Two probable explanations were identified:

1. The first and most significant is due to the progressive
spatial displacement of rain cells between the raingages. As the
rainfall cell moves over a fixed network, raingages collect rain-
fall from different positions within the cell.

2. The lag time betyeen hyetograph centroids which max-
imizes the correlation between the time series is different for
each pair of raingages in the network. For instance, one would
expect high correlation between two adjacent raingages under
rain cells of constant and uniform intensity. For fast moving
storms, however, this expected correlation is degraded because
the time series at any two stations can easily be lagged from
one another by several time periods. The principal conclusions
obtained from this Eulerian analysis are that (1) high-
resolution rainfall data (<5 min) are prone to negative and low
correlation coefficients; (2) correlation coefficients are much
higher after time-averaging of the rainfall data over periods
>10 min; (3) the PAM network with an average raingage
spacing of 10 km is suited for small-mesoscale rainstorms but
is too sparse for either single rain cells or clusters; and (4) the
FLOWS network with an average raingage spacing of 2-3 km
is conducive to a satisfactory correlation analysis for cells and
clusters when the data is averaged over at least 10 min.

5. Rainstorm Kinematics

Rainstorm kinematics describes both the speed and direc-
tion of a rainfall cell. The determination of rainstorm kinemat-
ics is an essential component of the forthcoming Lagrangian
transformation process. Quantitative estimation of average
rainstorm kinematics results in a single vector which represents
the average direction and velocity of an entire rainfall cell. The
degree to which the average represents a useful estimate of
rainstorm kinematics depends on the scale of the cell. An
increase in scale is paralleled with an increase in the complex-
ity of the composite motion of the ever-increasing number of
smaller cells imbedded within a cluster. As the scale increases,
the average becomes a coarser estimate of the kinematics of
the aggregate. The analysis of single cells, however, should be
straightforward, and rainstorm kinematics can be refined when
using shorter time steps.

5.1. Diskin’s Model: A Linear Bivariate Scheme

Diskin [1987, 1990] proposed a method for estimating storm
kinematics. Accordingly, moving storms are characterized by
the fact that the hyetographs at stations along the direction of
the storm movement are displaced on the time axis with re-
spect to one another. Diskin [1987, 1990] states that the prob-
lem can be interpreted geometrically as the determination of
the equation of an inclined plane in the x, y, ¢ space, so that it
best represents a given data set. In his scheme the maximum
slope on the inclined plane is the inverse of the speed, and the
direction of the maximum slope is the direction of the storm
motion.

The equation of the plane is derived from data sets of (x, y)
coordinates of the raingages and the time of arrival of some
significant feature of the recorded hyetograph. The resuits of
this study showed that the outcome is critically dependent on
the choice of the significant cell. The time of inception of
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Figure 2. Correlation coefficients for lagged time series:
(top) lag = 0 and p = +1 and (bottom) lag = 4 and p = —0.39.

rainfall and the center of mass of the hyetograph are evaluated.
Because of the irregularity in setting the onset of rainfall at any
one station, this option gave relatively poor results. The use of
the center of mass of the hyetograph, on the other hand, has an
averaging effect which yields good results.

5.2. Optimal Fit of Kinematic Parameters

Using the Diskin technique, storm speed and direction are
determined by the time of arrival, ¢, of the center of mass of
the hyetograph at a station of known location (x, y). At each
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Figure 3. Eulerian correlation versus separation distance for a rain cell (F729a).

raingage the time centroid of the hyetograph of intensity, r
over the rainstorm duration T is computed using

T
J t,'ri dt
b

h,

h,=f
0

where f,, h;, and r; are the time, rainfall depth, and rainfall
intensity at time step , respectively, and #, is the total rainfall
depth under the hyetograph.

Assuming a constant speed and direction throughout the
storm, the prediction equation for the time centroid of a rain-
storm calculated from (4) for each raingage of known location
(%, y) can be defined as

i

T
>t At

t=t;

h,

(4)

T
ridt"‘“v"

> r At (5)

t=ax +by+c

(6)

The parameters a, b, and ¢ in (6) are determined by minimiz-
ing the sum of the squared deviations between observed and
predicted values of ¢ for all the raingages of a network. A
numerical optimization routine was used to accomplish this

task. Once the optimized parameters are determined, the
speed v and direction 6 are found using the following equa-
tions:

- ™
6 = tan! (g) 8)

5.3. Results of Rainstorm Kinematics

The events from the PAM and FLOWS networks were used
to test this technique. Figure 8 shows several plots of the
arrival times of the hyetograph centroid versus distance from
the edge of the network for four sample events. This simple
bivariate linear relationship proposed by Diskin worked well
on the CINDE data. Deviations between the predicted and
actual arrival times can be attributed to the nonlinear motion
of rainstorms and the incongruent motion of multiple cells
within an event. Unusually large discrepancies occur when
computed centroidal times spread near the extremities of the
network domain. The remaining variations between computed
and predicted centroid arrival times can be associated with
internal changes in a cell, particularly when clusters form.,
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Figure 4. Eulerian correlation versus gage separation distance for a rain cell (F729).
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It can be seen from the speed and direction data in the last
two columns of Table 2 that most storms move to the northeast
at speeds ranging from 15 to 156 km hr ™. The average velocity
for the FLOWS events is 76.5 km hr ! and for the PAM events
is 56.4 km hr™!. For general comparison purposes, Diskin
[1990] reported a velocity range for convective events in Lund,
Sweden, of 59-120 km hr'. Marshall [1980] estimated that
60% of the 230 convective storms he analyzed near Winch-
combe, England, had a velocity <54 km hr~'. Sherman [1977],
working with a data set of convective cells from Cardington,
England, computed a mean velocity of 41 km hr™! with a
maximum of nearly 120 km hr ™, With reference to the surface
runoff simulations using the distributed rainfall-runoff model
CASC2D, Ogden et al. [1995] found that for a given rain cell,
kinematics increases the peak discharge for watersheds drain-
ing in the direction of the moving rainstorm when the rain-
storm length is less than half the length of runoff. On the
eastern slopes of the Colorado Rockies the northeastward
storms move in the direction of drainage, and for convective
rain storms with an effective size of 10 km the effect on peak
surface runoff should be significant on watersheds covering a
drainage area exceeding 400 km”. When comparing identical
moving rainstorms on two identical watersheds, one located on
the eastern slopes and the other on the western slopes, a lower

20 25 30 35
Distance (km)

Eulerian correlation coefficient versus gage separation distance for a cell cluster (P703).

peak discharge is expected on the western slopes than on the
eastern slopes.

6. Lagrangian Correlation Structure

The Eulerian reference frame E is a fixed stationary system
from which observations are made. All operational raingage
networks measure rainfall in E. In contrast, the Lagrangian
reference frame L can be conceptually thought of as attached
to and moving with the centroid of rainfall cells. Since a rainfall
time series measured with respect to L theoretically exhibits no
effect because of storm kinematics, one would expect this se-
ries to have a simpler structure or at least to be more repre-
sentative of the internal structure of rain cells.

Measurement from L is physically impossible with raingage
networks; however, the information collected in E contains the
L information and thus can be used to generate L fields. The
desired outcome of the transformation process is to build a
rainfall field R; («, B, 7), which is relative to the Lagrangian
reference frame, from rainfall data R (x, y, t) measured in
the Eulerian reference frame. The rainfall field subscripts «, B,
7, and x, y, and ¢ represent the two spatial coordinates of the
gages and time for the Lagrangian and Eulerian reference
frames, respectively.

0.8 | _S-min ;
~ ‘
" 06 T e % e
£ 04 e e -
5 o el T Sl -
g 02 — o e =
ool KBS K" e T o 3
8 ol HE . >§2 ”" -
O . »~ A
5 -0.2 1 P e
B o = -
G -06 8 e
(&) 08 :;‘ el e
< e R -
-1 - =
0 20 40 60 80 100 120

Separation Distance (km)

Figure 6.

Eulerian correlation versus gage separation distance for a small-mesoscale rainstorm (F629).
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Conversely, a Lagrangian rainfall field (@, 8, ) can be used The problem of extracting a Lagrangian rainfall field from
to construct a rainfall field in E by moving R, («, B, 7) over the measured Eulerian rainfall data set is solved by removing
the fixed Eulerian reference frame with a speed and direction  the effects of storm motion from the Eulerian data. This pro-
representative of the storm from which R, (o, B, 7) was cess, termed Lagrangian transformation, is accomplished with
derived. The resulting field R (x, y, t) exhibits the structural the following steps: (1) identify an appropriate rain cell
variability of R, («, B, 7) as well as the kinematic variability R &(x, y, t), from the raw data, (2) estimate the cell’s kine-

introduced by the moving rainfall field R, («, B, T). matic characteristics, for example, using the Diskin model, (3)
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increase the density of the E network by interpolating the
measured data to a rectangular grid, where the distance be-
tween the interpolation nodes is based on the kinematic char-
acteristics Of the event, thus resulting in an interpolated rain-
fall field R(x, y, t), and (4) define the Lagrangian rainfall
field R; (e, B, ) by moving the initially empty R, (a, B8, 7)
over Ri(x, y, t) and from accumulating rainfall during each
time period.

6.1. Densification of the Eulerian Network

A dense Eulerian field is obtained by interpolating rainfall
time series at artificial stations located on an equal interval
grid. For example, consider a rain cell Rz(x, y, ) described by
a measured rainfall data set collected from a network of n
nonuniformly spaced gages. Limits on the interpolation grid
are defined from delineating the effective area L, X L, from
the boundary formed by the outermost gages. The number of
interpolation nodes and the grid spacing are determined by the
incremental distance the rainfall feature travels during one
time period At at the computed speed and direction. Specifi-
cally, the rainfall feature will move (Ax, Ay) during one time
period. If we let the cell move at angle 6 at speed u, then
during one period At the cell moves a distance Ad = uAt, or,
correspondingly, Ax = uAt, and Ay = vAt, where u and v are
the x andy components of the rainstorm velocity, respectively.
Interpolation at a grid spacing of (Ax, Ay) results in a denser
Eulerian rainfall field R(x, y, t) with (L,/Ax) x (L,/Ay)
stations derived from the measured data at the original n
gages.

Many different schemes have been developed for interpo-
lating spatial information. Creutin and Obled [1982] evaluated
six techniques for their effectiveness in interpolating rainfall
data. They found that in general the more sophisticated statis-
tical techniques, such as kriging or optimal interpolation, gave
better results than the smoothing techniques such as the Thies-
sen polygons. They also concluded that the extra computa-
tional burden of the more sophisticated methods may not be
worth the increased accuracy. Kriging has been successfully
applied to rainfall interpolation in other studies by Lebel et al.
[1987] and Dong-Jun et al. [1990]. In this study a kriging routine
was used for rainfall interpolation. A development of the krig-
ing theory is given by Delhomme [1978].

6.2. Example of Eulerian Densification

In this example, time series from 41 stations of the PAM
network (event July 12, 1987) were used to implement the
kinematic model and the kriging interpolation routine. The
speed of the rainfall feature was determined to be 36 km hr™?
at a direction S 65°E. Using the 5 min time period associated
with this data and the spatial extent, 60 X 80 km, of the 41
gages resulted in grid spacing parameters of Ax = 2.76 km
and Ay = —1.26 km. Using these, the gridded network for the
P712y event has 22 columns and 63 rows or 1386 interpolated
stations. Upon comparison it was found that densified hyeto-
graphs Ri(x, y, t) from the interpolated grid match very
closely with the measured hyetographs at the same location.

6.3. Construction of the Lagrangian Rainfall Field

The Lagrangian rainfall field R, (a, B, T) can now be ex-
tracted from the densified R (x, y, t). Numerically, this
means moving an initially empty Lagrangian rainfall network
over Rz(x, y, t) while accumulating rain in R; (e, 8, 7). The

Lagrangian rainfall field R; («, B, 7) is made up of one
rainfall vector for each station and can be represented as

RL(a>B’T) = [;L(abBl,T)y FL(“Z:BZ’T)v T, ?L(amBmT)]
&)

where 7, (a, B, T) is a rainfall vector at spatial coordinates (e,
B), T is the duration in periods of the event in L, n is the
number of stations in the L network. The vector 7, (e, B8, T)
can be expressed relative to the Eulerian reference frame E
given the following algorithm

P, B,T) = {re(xe.yot), relxy + Ax,ye + Ay,1,),
re(xo + 24x,y4 + 24y,t5),
coorglxg + (T — 1)Ax,y, + (T — DAy, T1} (10)

where r(x, y, t) is the rainfall depth at spatial location (x, y)
and time ¢ in the gridded Eulerian reference frame. At¢ = 1
a typical L station is initially positioned over an E gridded
station with coordinates (xg,y,). At t = 2 the L station has
moved diagonally to (x, + Ax, y, + Ay) where it accumu-
lates its second period of rainfall. In this fashion the L station
moves diagonally across the E interpolated network accumu-
lating one period of rainfall from a new E station each time
period. When this process is simultaneously carried out for all
L stations, the Lagrangian rainfall field R, («, B, 1) is con-
structed, and the Lagrangian transformation process is com-
pleted.

6.4. Results of Lagrangian Correlations

A rainfall field in the Lagrangian reference frame is concep-
tually free of kinematic effects and thus describes the intrinsic
structure of rainfall cells. Once the Lagrangian rainfall field
has been determined, the Lagrangian correlations are obtained
from a direct application of the cross-correlation algorithm in
(1) to the Lagrangian rainfall field R; («, B, 7). As an exam-
ple, Figures 9a and 9b show an isohyetal plot and the spatial
correlation graph for the same event relative to the Eulerian
and Lagrangian reference frames, respectively. The tops of
Figures 9a and 9b illustrate a series of isohyetal plots at a grid
spacing of 5 km for four period intervals where each period is
2 min long. These plots show the progression of the small
mesoscale rainstorm across the network. Note that in Figure 9a
the cell is moving slightly to the east but mostly north. This
agrees with the computed directional azimuth of 27.2° for this
event. Both the structure of the contours and the location of
the centroid change with time.

Study of the isohyetal plots in Figure 9b shows that the same
event in the Lagrangian reference frame exhibits little or no
motion but that the general structure is slightly changing with
time. Because the Lagrangian transformation is based on the
average cell kinematics, fluctuations around the center of mass
occur when the changes during any given time interval are not
accurately represented by the average conditions. A close com-
parison of the structure of the contours shows that both ref-
erence frames yield similar but not identical results. This is the
expected outcome of the Lagrangian rainfall field which is
constructed from the Eulerian network. The spatial correla-
tions are graphed on the bottoms of Figures 9a and 9b. The
average correlation for all points in the Eulerian reference
frame is poor, i.e., —0.43. The average correlation for the same
event in the Lagrangian reference frame increased to +0.69.
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Figure 10. Correlation versus gage separation distance for the FLOWS-729A event.

Numerous rainfall fields constructed in the Lagrangian ref-
erence frame tested the effectiveness of the Lagrangian trans-
formation in terms of the degree of spatiail correlation ob-
tained in both reference frames. Figures 10 and 11 show the
spatial correlation curves for two sample events in the FLOWS
and PAM networks, respectively. Figures 10a and 11a show
spatial correlations in the Eulerian reference frame with cor-
responding correlations in the Lagrangian reference frame
shown in Figures 10b and 11b. It is evident from these graphs
that the level of spatial correlation increased and the amount
of data scatter significantly decreased after transformation to
the Lagrangian reference frame. The minimum increase in the
average correlation coefficient for five test events was 0.53,
while the largest increase was 1.11. This is out of a total cor-
relation coefficient range of 2.0 and thus represents increases
in average correlation from 25% to over 50%.

The appropriate correlation length that defines the size of
convective rainstorms must be determined after the Lagrang-
ian transformation. For instance, it is shown that the intrinsic
scale of the rainstorm shown in Figure 9 is ~10-15 km in
radius, while the correlation level remains high up to a distance
of ~10 km. The equivalent correlation length for the same
small-mesoscale rainstorm in the Bulerian reference frame
would be much shorter, i.e., 2-3 km.

The implications in terms of hydrologic modeling are that on
the basis of the analysis in the Eulerian reference frame one
could assume uncorrelated rainfall precipitation fields on large
watersheds, for example, in excess of 100 km?. However, the

cross-correlation analysis in the Lagrangian reference frame
enables the user to better define (1) the effective size of rain-
storms, which is larger than that viewed in the Eulerian refer-
ence frame, and (2) the storm kinematics, which can be used to
determine whether or not storm kinematics plays a role or not
in the peak discharge frame.

To illustrate the effects of storm kinematics, the analysis by
Ogden et al. [1995] based on two-dimensional surface runoff
calculations using CASC2D [Julien et al., 1995] shows that
when compared with stationary rainstorms, peak discharge will
increase when 0 < (Ut,/V/A) < 5 and decrease otherwise.
The storm speed U is important for rainstorms moving in the
direction of drainage depending on the watershed drainage
area A and the time to equilibrium z,. For instance, the time ta
equilibrium of a complex watershed can be calculated from the
method of Saghafian and Julien [1995]. For instance, peak
surface runoff would be increased on a 900 km? watershed with
t, = 2 hours for rainstorm velocities U < 75 km h™%.

7. Conclusions

This investigation explored the spatial and temporal nature
of rainfall events measured in the Eulerian reference frame,
i.e., ground-based measured rainfall events. The physical and
statistical characteristics of 13 events were determined using an
extensive data set from two overlapping networks with a total
of 76 raingages.

In the fixed Eulerian reference frame an extensive analysis
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Figure 11.

using spatial cross correlations showed an obscured statistical
picture for both raingage networks. High-resolution data at 1
min intervals give poor correlation and large data scatter. With
an average raingage spacing of 2.4 km the FLOWS network
yields good correlation coefficients for single cells, clusters,
and small-mesoscale events only when the data are aggregated
over periods exceeding 10 min. At an average raingage spacing
of 10 km the PAM network only yielded good results for
small-mesoscale events.

Low Eulerian correlations and large scatter of high-
resolution 1 min rainfall data were primarily attributed to
storm movement. Rainstorm kinematics cause (1) a progres-
sive spatial displacement between a network of fixed raingages
and (2) the lag time between hyetograph centroids which max-
imizes the correlation between the time series and is different
for each pair of gages in the network. These two factors are
present in all ground-based network data, but the impact on
the correlation structure and other statistics is dependent on
the speed of rainstorms. Fair correlations may be obtained for
stationary rainstorms. Rain cells and clusters move at an aver-
age speed of 76 km h™, and small-mesoscale rainstorms move
at an average speed of 56 km h™'. Storm kinematics cause
significant time lag effects for high-resolution 1 min data.

The proposed Lagrangian transformation removes the kine-
matic effects, significantly increases the average correlation

5 6 7 8
Separation Distance (km)

10 11

Correlation versus gage separation distance for the PAM-703 event.

levels, and considerably reduces scatter. The correlation struc-
ture in the Lagrangian reference frame better described the
internal structure of rainstorms than the Eulerian correlations
did. The quality of this description is nevertheless dependent
on the spatial and temporal scale of the rainfall data and the
ability of the network to accurately capture an event. The
Lagrangian transformation is particularly useful for high-
resolution rainfall data of moving rainstorm cells, clusters, and
small-mesoscale rainstorms. In conclusion, rainfall data col-
lected from raingage networks should be separated into a rain-
fall structure component and a rainstorm kinematic compo-
nent prior to statistical analyses and modeling.

Acknowledgments. The authors wish to acknowledge the indirect
contributions of F. Ogden, J. Richardson, and B. Saghafian. Special
thanks to V. Bringi, V. Chandra, A. Molinas, and F.M. Smith. Assis-
tance in acquiring data was provided by B. Rilling, National Center for
Atmospheric Research, Boulder, Colorado. This work was partially
sponsored by the U.S. Army Research Office under grants ARO/
DAAL 03-86-K-0175 and ARO/DAAH 04-94-G-0420.

References

Berndtsson, R., Temporal variability in spatial correlation of daily
rainfall, Water Resour. Res., 24, 1511-1517, 1972.




L %

MAY AND JULIEN: EULERIAN AND LAGRANGIAN RAINFALL CORRELATIONS 2683

Boyer, M. C., Correlation of the characteristics of great storms, Eos
Trans. AGU, 38, 233-236, 1957.

Creutin, J. D., and C. Obled, Objective analysis and mapping tech-
niques fo‘r rainfall fields: An objective comparison, Water Resour.
Res., 18, 413-431, 1982.

Diskin, M. H., On the determination of the speed of moving rainfall
patterns, J. Hydrol. Sci., 32, 1-14, 1987.

Diskin, M. H., The speed of two moving rainfall events in Lund, Nord.
Hydrol., 21, 153-164, 1990.

Dong-Jun, S., W. Krajewski, and D. Bowles, Stochastic interpolation of
rainfall data from rain gages and radar using cokriging, 1, Design of
cxperiments, Water Resour. Res., 26, 469—477, 1990.

Drufuca, G., and 1. 1. Zawadski, Statistics of raingage data, J. Appl.
Meteorol., 14, 1419-1429, 1975.

Felgate, D. G., and D. G. Read, Correlation analysis of the cellular
structure of storms observed by rain gauges, J. Hydrol., 24, 191-200,
1975.

Julien, P. Y., B. Saghafian, and F. L. Ogden, Raster-based hydrologic
modeling of spatially-varied surface runoff, Water Resour. Bull., 31,
523-536, 1995.

Kessinger, C. (ed.), The CINDE project, operations plan for the con-
vection initiation and downburst experiment (CINDE) near Denver,
Colorado, 22 June to 7 August, 1987, Natl. Cent. for Atmos. Res.,
Natl. Oceanic and Atmos. Admin., Univ. of Wyo., Boulder, Colo.,
1987.

Kumar, P, and E. Foufoula-Georgiou, A multicomponent decompo-
sition of spatial rainfall fields, 1, Segregation of large- and small-
scale features using wavelet transforms, Water Resour. Res., 29,
2515-2532, 1993a.

Kumar, P., and E. Foufoula-Georgiou, A multicomponent decompo-
sition of spatial rainfall fields, 2, Self-similarity in fluctuations, Water
Resour. Res., 29, 2533-2544, 1993b.

Lebel, T., G. Bastien, C. Obled, and J. D. Creutin, On the accuracy of
areal rainfall estimation: A case study, Water Resour. Res., 23,2123
2134, 1987.

Marshall, R. J., The estimation and distribution of storm movement
and storm structure using a correlation analysis technique and rain-
gauge data, J. Hydrol., 48, 19-39, 1980.

May, D. R., The space-time correlation structure of convective rain-
storms in the Lagrangian reference frame, Ph.D. dissertation, Colo.
State Univ., Fort Collins, 1993.

May, D. R., and P. Y. Julien, Raingage network resolution with spatial
statistics, paper presented at Watershed Planning and Analysis in
Action, Am. Soc. of Civ. Eng., Durango, Colo., 1990.

McCuen, R. H., and W. M. Snyder, Hydrologic Modeling: Statistical
Methods and Applications, Prentice-Hall, Englewood Cliffs, N. J.,
1986.

Messaoud, M., and Y. B. Pointin, Small time and space measurements
of the mean rainfall rate made by a gage network and by a dual-
polarization radar, J. Appl. Meteorol., 29, 830-841, 1990,

Ogden, F. L., and P. Y. Julien, Two-dimensional runoff sensitivity to
radar resolution, J. Hydrol., 128, 1-18, 1994.

Ogden, F. L., J. Richardson, and P. Y. Julien, Similarity in catchment
response, 2, Moving rainstorms, Water Resour. Res., 31, 1543-1547,
1995.

Orlanski, I., A rational subdivision of scales for atmospheric processes,
Bull. Am. Meteorol. Soc., 6, 527-530, 1975.

Rodriguez-Tturbe, 1., and P. S. Eagleson, Mathematical models of
rainstorm events in space and time, Water Resour. Res., 23, 191-190,
1987.

Rodriguez-Iturbe, I, V. K. Gupta, and E. Waymire, Scale conside-
ation in the modeling of temporal rainfall, Water Resour. Res., 20,
1611-1619, 1984.

Saghafian, B., and P. Y. Julien, 1995, Time to equilibrium for spatially
variable watersheds, J. Hydrol., 172, 231-245, 1995.

Shaw, S. R., An investigation of the cellular structure of storms using
correlation techniques, J. Hydrol., 62, 63-79, 1983.

Sherman, R. J., The speed and direction of movement of storm rainfall
patterns with reference to urban storm sewer design, Hydrol. Sci. J.,
3, 421-431, 1977.

Sivapalan, M., and E. F. Wood, A multidimensional model of non-
stationary space-time rainfall at the catchment scale, Water Resour.
Res., 23, 1289-1299, 1987.

Todorovic, P., A mathematical study of precipitation phenomena, Rep.
CERG67-68PT65, Eng. Res. Cent., Colo. State Univ., Fort Collins,
1968.

Todorovic, P., and D. A. Woolhiser, Stochastic model of daily rainfall,
paper presented at Symposium on Statistical Hydrology, U.S. Dep.
of Agric., Tucson, Ariz., 1974.

Valdes, J. B., I. Rodriguez-Iturbe, and V. K. Gupta, Approximations of
temporal rainfall from a multidimensional model, Water Resour.
Res., 21, 1259-1270, 1985.

Waymire, E., V. K. Gupta, and 1. Rodriguez-Iturbe, A spectral theory
of rainfall intensity at the meso-B scale, Water Resour. Res., 20,
1453-1465, 1984.

Wolfson, M. M., The FLOWS automatic weather station network, J.
Atmos. Oceanic Technol., 6, 307-326, 1989.

Zawadzki, 1. 1., Statistical properties of precipitation patterns, J. Appl.
Meteorol., 12, 459471, 1973.

P. Y. Julien, Civil Engineering Department, Colorado State Univer-
sity, Fort Collins, CO 80523. (e-mail: pierre@engr.colostate.edu)

D. R. May, Engineering Department, Fort Lewis College, Durango,
CO 81301.

(Received May 12, 1997; revised March 27, 1998;
accepted May 5, 1998.)




