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A B S T R A C T

Spatiotemporal variability, teleconnection, and predictability of the Korean precipitation related to large scale
climate indices were examined based on leading patterns of observed monthly Rx5day and total precipitation
through an empirical orthogonal teleconnection (EOT). Cross-correlation and lag regression analyses for the
leading modes and global atmospheric circulation dataset were employed on a monthly basis. The spatial pattern
of the leading EOT modes for Rx5day and total precipitation represents a northern inland mode for boreal
summer and a southern coastal mode in boreal winter. The temporal evolution of the leading EOT modes ex-
hibits increasing trends during summer season and decadal variability for winter season. The leading EOT
patterns of Rx5day precipitation show more widespread coherent patterns than those of total precipitation
during warm and cold seasons, while the former explains less variance in precipitation variability than the latter.
The tropical ENSO forcing has a coherent teleconnection with September and November-December precipitation
patterns, while the Indian Ocean dipole is identified as a driver for precipitation variability in September and
November. The monsoon circulation over the western North Pacific also exhibits a significant negative corre-
lation with winter precipitation EOTs, while tropical cyclone indices are positively correlated with the fall
precipitation EOTs. The leading patterns of the September and December Rx5day precipitation time series are
predictable at up to six month lead time from the tropical Pacific sea surface temperatures (SSTs), while a
somewhat weak predictable response from Indian Ocean SSTs was only detected at longer lead times. In addi-
tion, predictability from the Pacific SSTs for above normal precipitation is greater than that for below normal
precipitation.

1. Introduction

Deciphering the physical mechanisms through which the large scale
climate phenomena affect hydroclimatic processes is of great interest.
The Korean peninsula experiences a large degree of spatiotemporal
precipitation variability. Precipitation varies with fluctuation of various
global-regional scale climate indices (CIs) including the El
Niño–Southern Oscillation (ENSO), Indian Ocean dipole (IOD), western
North Pacific monsoon, and tropical cyclone activity. These large scale
climate indicators have been extensively studied because the extreme
phases of these indicators can produce major hydrologic extremes of
floods and droughts in many regions all over the globe. In global and
regional scale studies, significant relationships have been reported be-
tween the large-scale CIs and hydro-meteorological variables such as
precipitation, temperature, and streamflow in the tropics and

extratropics.
The effects of the ENSO on precipitation variability on a global and

regional scale have been widely documented. Since the first investiga-
tion of Walker (1923) on the influence of the Southern Oscillation (SO)
on rainfall fluctuations in Indian monsoon, many recent global scale
studies have documented climatic links between ENSO tropical ocean
sea surface temperature variability and global precipitation anomaly
patterns (e.g. Bradley et al. (1987); Kiladis and Diaz (1989); Ropelewski
and Halpert (1989)). In addition, regional scale studies in low and
middle latitudes (e.g. Douglas and Englehart (1981), Shukla and
Paolino (1983), Kahya and Dracup (1994), Rasmusson and Wallace
(1983), Redmond and Koch (1991), Price et al. (1998), Kug et al.
(2010), Yeh et al. (2017), Mehr et al. (2017), Nourani et al. (2017), and
Degefu and Bewket (2017)) have revealed statistically significant cor-
relations between regional precipitation and ENSO forcing. Douglas and
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Englehart (1981) revealed that the southeastern United States has a
tendency for positive winter precipitation anomalies for the warm
phase of ENSO event. Karabörk and Kahya (2003) investigated the
statistically significant correlation between two opposite phases of
ENSO and precipitation patterns over Turkey using harmonic analysis,
and showed the mid-latitude precipitation responses to the ENSO for-
cing are detectable in the climate of two core regions in Turkey.

The IOD is considered one of the key CIs of precipitation variability
in the Indian and Pacific rim countries. Some studies of IOD have noted
the distinct behavior of the IOD-related precipitation anomalies relative
to ENSO and other phenomena. Since Saji et al. (1999) reported a di-
pole mode of the Indian Ocean influencing precipitation fluctuations,
Ashok et al. (2001, 2003) revealed that a significant statistical re-
lationship exists between the IOD and the Indian monsoon precipitation
variability as well as examined the remote response of Australian pre-
cipitation anomalies in winter to the IOD through an atmospheric
general circulation model (AGCM). The monsoon activity could also be
considered as a CI for precipitation variability in the Indian and Pacific
rim countries. Wang et al. (2008) performed a comparative analysis on
pros and cons of 25 existing East Asian monsoon indicators from a
viewpoint of interannual variabilities of precipitation and circulation,
suggested a new index extracted by principal component analysis, and
then stressed the important role of the precipitation during the mei-yu
season in quantifying the intensity of the East Asian monsoon activity.

Several recent studies for the Korean peninsula have also suggested
statistically significant responses of precipitation variability to large
scale CIs. Lee and Julien (2015, 2016) revealed that cold and warm
ENSO phases are the dominant drivers of precipitation and temperature
fluctuations over the Korean peninsula based on harmonic and lag
correlation analysis. In the study on prediction of Korean precipitation
variability using the downscaling super ensemble method, Kim et al.
(2004) suggested that during winter precipitation variability is corre-
lated with the second Empirical Orthogonal Function (EOF) mode of sea
level pressure (SLP) over East Asia modulating moist flow from the
Western North Pacific (WNP), and highlighted enhanced climatic re-
sponse of the East Asian monsoon activity to precipitation anomalies in
winter. Moon et al. (2005) examined the climatic links between sea-
sonal precipitation and global Sea Surface Temperature (SST) based on
the principal components extracted by independent component analysis
combined with wavelet transform. They noted interannual-in-
derdecadal variation and increasing trend during the spring and
summer seasons showing the consistent precipitation-related SST sig-
nals over Indian and Pacific Oceans. Cha (2007) investigated the re-
lationship between ENSO and IOD mode events and the impacts of
these two phenomena on the precipitation of the Korean peninsula, and
indicated that the distribution of the Indian Ocean SST represents the
Southern and Northern Oscillation in ENSO year, and Eastern and
Western in IOD year with above normal precipitation departure in both
summer and winter seasons. Also, Kim et al. (2012) carried out an
exploratory analysis on the correlation of the Pacific Japan pattern with
typhoon activity associated with extreme precipitation variability for
all river basins in Korea, and revealed that the Tropical Cyclone (TC)
activity occurs more frequently during positive Pacific Japan (PJ) phase
years than negative phase years.

As described above, almost all aforementioned regional and global
approaches concentrate on monthly or seasonal mean based precipita-
tion variations, and relatively little attention has been given to the far
reaching effects of climate indicators on extreme precipitation varia-
bility. Since localized and intensified extreme precipitation events have
a critical effect on people’s livelihood and the environment, under-
standing the underlying regional impacts of various climate indicators
on extreme precipitation may provide a promising way to predict and
respond unexpected natural hazards. Also, the previous studies have
focused mostly on the global scale remote influences of large-scale
modes of climate variability through perturbations to the large scale
ocean-atmospheric circulation and less on the influence of both global

and regional CIs on regional and local scale precipitation. Hence, there
has been less focus in the literature concerning the climate impacts of
both global and regional CIs on precipitation variability. However, the
influence of CIs on the East Asian climatology is not limited to the
global scale remote CIs, highlighting a gap in knowledge that requires
the need for more information about the overall features of the hy-
drometeorological impacts modulated by various CIs. Thus, it is ne-
cessary to investigate systematically how both global and regional CIs
affect extreme and total precipitation variability in East Asian regions.
In the super-ensemble prediction analysis, Kim et al. (2004) revealed
strong and consistent climatic link between monsoon activity and
Korean precipitation variability. From the visual inspection of the sta-
tion location map in their papers, a significant CI-precipitation re-
lationship over East Asia cannot be completely discerned because of
station coverage limitations. In the present study, we are motivated to
expand on previous work by diagnosing the influences of global and
regional CIs on precipitation variability over the Korean peninsula
using an expanded surface dataset that can resolve local and regional
features.

In this study, for the purpose of investigating spatiotemporal pat-
terns of Rx5day and total precipitation over the Korean peninsula, we
employed Empirical Orthogonal Teleconnection (EOT) decomposition
technique, rather than the classical approach by Empirical Orthogonal
Function (EOF) analysis because EOTs provide a straightforward in-
terpretation of patterns within data with a minimum of computation.
King et al. (2014) examined Australian monthly precipitation varia-
bility through EOT decomposition analysis, and found that the first
December EOT mode shows notable predictability up to several month
(one year) in advance given knowledge of tropical Pacific Ocean (In-
dian Ocean) SST. Also, in a diagnostic study to understand the physical
mechanism behind the effects of large-scale climate indices on pre-
cipitation patterns in Queensland, Australia, Klingaman et al. (2013)
used EOT decomposition to identify remote and local drivers affecting
the inter-annual and decadal variability of seasonal precipitation pat-
terns.

The present study mainly aims to investigate the spatial pattern and
temporal behavior of Rx5day and total precipitation anomalies over the
Korean peninsula through an empirical orthogonal teleconnection
(EOT) decomposition method (Van den Dool et al., 2000), to identify
significant teleconnections between these leading EOT modes of Korean
precipitation variability and climate indicators that represent large
scale climate fluctuations and regional synoptic circulations, and to
demonstrate the predictability of Rx5day and total precipitation pat-
terns through knowledge of sea surface temperature (SST) anomalies,
using regression of the EOT modes onto the SST fields at varying lead
times.

2. Data

The monthly precipitation gridded dataset was derived from station-
based observed precipitation data covering the entire Korean peninsula.
The observational data were obtained from Korea Meteorological
Administration (KMA), an affiliated organization of the Ministry of
Environment (MOE). The total precipitation timeseries cover more than
20 ENSO events spanning the time period 1904 through 2015. The
observational records are selected only if they have less than a month
missing data, and each monthly precipitation data record is required to
cover at least 43 years of observation between the years 1973 and 2015,
thus spanning at least 10 ENSO episodes. Using these criteria, 60 sta-
tions were used in our analysis as shown in Fig. 1. In order to estimate
high resolution precipitation with a regular spaced grid, the Parameter-
elevation Regression on Independent Slope Model (PRISM) developed
by Daly et al. (1994, 2008) was employed for the observational pre-
cipitation data. PRISM method is well suited to regions with mountai-
nous terrain because it incorporates a conceptual framework that ad-
dresses the spatial scale and pattern of orographic precipitation using
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geographic information of the elevation, distance, topographic facet,
and coastal proximity (Daly et al., 2008). This model is an independent
model for each target grid which can estimate target grid value by
weighting each station differently based on the similarity in elevation,
distance, topographic facet, and coastal proximity between observa-
tional station and target grid. Using this method, we produced grid data
(0.25°× 0.25° [27.7 km×22.2 km]) of Rx5day and total precipitation
on a monthly basis from 1973 to 2015.

For comparative analysis between large scale climate indicators and
precipitation EOT patterns, several CIs were applied in this present
study. Taking into account both atmospheric and oceanic fluctuations,
we employed the Oceanic Niño Index (ONI) and the Multivariate ENSO
Index as indicators for tropical ENSO forcing, in addition to the SOI that
is widely used in atmospheric circulation analysis. The ONI is one of the
main indicators for monitoring the tropical ENSO phenomena. The
positive phase of ENSO is represented by the condition that the ONI
index exceeds +0.5, while the negative phase of ENSO is represented
when the ONI index is less than −0.5. The ONI is extracted by calcu-
lating the moving average of consecutive 3-month SSTs over the east-
central Pacific Ocean, also known as Niño 3.4 index area of 120–170°W
and 5°S–5°N. The monthly ONI time series applied in this analysis was
derived from the SST dataset of the National Oceanic Atmospheric
Administration (NOAA)-Climate Prediction Center (CPC). The
Multivariate ENSO Index (MEI) is derived from the leading modes
calculated by unrotated decomposition technique for several air-sea
variables over the tropical Pacific Ocean, including SST, Sea Level
Pressure (SLP), surface air temperature, cloudiness fraction, and zonal-
meridional surface wind (NOAA-Earth System Research Laboratory,
Physical Sciences Division). Because it integrated both atmospheric and
oceanic factors related to ENSO, the MEI may be considered as a better
indicator of ENSO relative to other single variable CIs. In this analysis,
we employed the standardized bimonthly MEI values regularly updated

by the Climate Diagnostic Center (CDC) that start in December 1949-
January 1950. The SOI, as an atmospheric pressure-based climate in-
dicator, is usually computed using the Darwin-Tahiti Mean Sea Level
Pressure (MSLP) difference based on standardized Darwin SLPs and
standardized Tahiti SLPs. In the present analysis, we used the dataset of
SOI calculated by the NOAA-Climate Prediction Center. Unlike the ONI
and MEI, the positive phase of the SOI represents La Niña-like condi-
tions. As an indicator of the IOD, we employ the Dipole Mode Index
(DMI) computed by the empirical approach by Saji et al. (1999). This
index that we obtain from the NOAA Climate Prediction Center re-
presents the magnitude of the anomalous SST gradient from the
southeastern (90–110°E, 10°S–0°) to the western (50–70°E, 10°S–10°N)
near-equatorial Indian Ocean and is derived from the Hadley Centre
Global Sea Ice and SST (HadISST) dataset. In the current analysis, the
DMI index was employed in cross-correlation analysis as well as partial
correlation analysis with the EOT time series to remove the linear in-
fluence of the ENSO forcing on precipitation variability.

To examine the relationship between the previously introduced CIs
and the EOT modes for Rx5day and total precipitation, we employ SST
and atmospheric circulation datasets. For SST data, the Extended
Reconstructed SST (ERSST.v4) datasets (Huang et al., 2014) are used in
this study. The ERSST is a global monthly SST dataset calculated based
on the International Comprehensive Ocean and Atmosphere Dataset
(ICOADS), which is widely used in global and regional scale studies. It
is provided on a 2.0°× 2.0° grid that uses statistical techniques to
provide global coverage and spans the period from January 1854 to the
present. The global atmospheric circulation fields are obtained from the
reanalysis derived from the joint project of the National Centers for
Environmental Prediction-National center for Atmospheric Research
(NCEP-NCAR), which are available on NOAA-Earth System Research
Laboratory, Physical Sciences Division. This dataset is continually up-
dated to produce fields on a 2.5°× 2.5° grid using a state-of-the-art
numerical modeling system for prediction and data assimilation with
continuously entrained observations. The monthly NCEP-NCAR re-
analysis dataset is available for the period from 1948 to present.

Links between precipitation EOTs and monsoon circulation varia-
bility are investigated using the WNPMI index over western North
Pacific. Using the methodological approach in Wang et al. (2008), the
WNPMI index is calculated based on the difference between 850 hPa
zonal winds (U850) in the region 5–15°N, 100–130°E and the region
20–30°N, 110–140°E. The former region represents the intensity of the
monsoon westerlies from Indochina Peninsula to the Philippines, while
the latter indicates the magnitude of the easterlies over the south-
eastern part of the WNP subtropical anticyclone. The monthly Tropical
Cyclone Index (TCI) quantifying the tropical cyclone activity is calcu-
lated based on the tropical cyclone tracks recorded by the IBTrACS
(Knapp et al., 2010) and the National Typhoon Center (NTC) of KMA.
For the period from 1973 through 2015, the TCI is obtained from the
frequency of tropical cyclones passing through the index area as shown
in Fig. 2.

3. EOT and statistical analysis

The general methodology used in this present analysis, which fol-
lows the comprehensive empirical approach by Van den Dool et al.
(2000) can be briefly summarized in Fig. 3, and is described in more
detail below. The first step is to convert the original data to a monthly
time series, i.e., transformation of precipitation time series into Stan-
dardized Precipitation Index (SPI) for Rx5day and total precipitation.
Then, EOT techniques are performed for identification of the spatio-
temporal variability of Rx5day and total precipitation over the Korean
peninsula. The next step is to conduct both cross correlation and linear
regression analyses to quantify the teleconnection between global and
regional CIs and leading EOT precipitation modes. The final step is to
perform a lag regression analysis using the regression of SST data onto
Empirical Orthogonal Teleconnection (EOT) modes with varying lead

Fig. 1. Gridded precipitation data with stations.
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times to examine the potential predictability of Rx5day and total
Korean precipitation relative to Pacific tropical thermal forcing.

In this present analysis, Rx5day precipitation time series are gen-
erated following the recommendation of the Climatic Variability and
Predictability (CCI/CLIVAR) panel. The monthly highest five con-
secutive day precipitation is employed to define Rx5day precipitation.
During the period from 1973 to 2015, the monthly Rx5day and total
precipitation time series are calculated for each station. Prior to the
EOT analysis to examine the CI-precipitation teleconnection, we con-
verted the precipitation data to a SPI formulated for effective assess-
ment of wet and dry condition.

EOT analysis decomposes a SPI dataset with spatiotemporal

variability into a set of orthogonal components, namely EOT patterns.
The first EOT spatial modes are obtained by finding the point with the
highest sum in explained variance of all other points, which is desig-
nated as a base point by Van Den Dool et al. (2000). Then, the pre-
cipitation time series of the base point is defined as the first temporal
mode of the precipitation pattern. The second EOT spatial modes are
extracted by removing the influence of the base point on all other points
using regression analysis for precipitation time series of the base point
and all other points. From this modified precipitation dataset, the
second base point is identified by detecting the point explaining the
most variance of the residual precipitation record. This procedure is
repeated for subsequent modes until the desired number of modes is
derived. The following mathematical expressions of EOT procedure are
based on van den Dool et al. (2000). After detecting the base point (s )b1
in space that explains the maximum possible variance at all other
points, its associated spatial mode, e (s)1 , is defined as the first EOT. The
temporal mode, α (t)1 associated with EOT-1 is simply the original time
series for its base point. After extracting EOT-1, the data are split into a
portion of which variance is explained, P (s, t)e and a residual, P (s, t)r as
follows.
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After dividing the data into explained and residual portions, the
procedure is repeated using the once reduced data. The point in space
that explains the most variance at all other points in P (s, t)r becomes the
base point for EOT-2. The time series connected with EOT-2 is re-
presented by the series at its base point in the once reduced data. After
removing the variance explained by EOT-2 from the data set, the
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Fig. 2. Map of climate indices boundary.

Fig. 3. Flowchart of the methodology.
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process is repeated again, and so on until all of the domain variance in
the original data is explained. P (s, t)e grows at the expense of P (s, t)r ,
reordering the variance in the original data as EOT modes. The total
variance (TV) in the data is expressed by,

∑ ∑=
= =
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n n
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t s t

n

s

n

1 1

2
t s

where nt and ns is the numbers of points in time and space. The amount
of variance explained by a particular EOT is related to the fraction of its
explained variance (EV) to the total domain variance.
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In this analysis, we employ the revised EOT decomposition tech-
nique used by Smith (2004), who used a base point selection procedure
based on the explained variance for the entire domain-weighted dataset
instead of the highest sum in explained variance of all other points due
to the regional biases. The first two EOT modes were selected as leading
patterns of Rx5day and total precipitation variability since the sub-
sequent EOTs after the first two EOT calculations explain less than 5%
of the variance. Following the procedure above, EOT-1 and EOT-2 were
obtained for monthly Rx5day and total precipitation time series during
1973–2015 to investigate patterns of precipitation fluctuations across
the Korean peninsula. Due to the fact that EOT decomposition tech-
nique is orthogonal in one either space or time, while EOF is orthogonal
in both space and time, EOT method provides a potentially more in-
tuitive interpretation of the resulting patterns.

Following the approach by King et al. (2014), correlation coeffi-
cients between the precipitation EOT modes and six CIs are calculated
using Spearman’s correlation analysis with statistical significance as-
sessed at the 5% level taking into account the fact that WMPMI and TCI
time series do not exhibit a normal distribution. Although the correla-
tion analysis was performed by Spearman’s rank test, the resultant
correlation coefficients were in general agreement with those calcu-
lated by the commonly used Pearson’s correlation method (not shown
here). The overall findings from correlation and regression analyses
between precipitation EOT modes and various CIs are described using
correlation and regression maps.

4. Results

4.1. Spatiotemporal structures of EOTs

Correlation maps for each EOT associated with the highest value of
explained variance for the domain-weighted SPI were plotted for each
month. The values displayed in these maps are the correlation coeffi-
cients between the precipitation EOT time series at the base point and
the precipitation time series at all other points. Each leading EOT has
the most explained variance for Rx5day and total precipitation. The
spatial patterns of the leading EOT base points and highest correlation
values for each month reflect the climatological seasonal pattern of
precipitation combined with the influence of midlatitude weather sys-
tems on the Korean peninsula. The second EOT are also computed using
the procedures discussed above. Fig. 4 shows the resultant patterns for
the leading two EOTs of July and December Rx5day and total pre-
cipitation.

The base points of the first EOTs for Rx5day and total precipitation
show different locations with respect to months. The locations of base
points for Rx5day precipitation are similar to those for total pre-
cipitation during the summer months, in northern inland of the Korean
peninsula. In the winter months, the base points of leading EOTs for
Rx5day precipitation have a tendency to shift southward, but more so
for the total precipitation time series that shifts to the southernmost
island. In addition, for entire months as shown in Table 1, we cate-
gorized total EOTs into inland (north/south) and coastal (south/east)

modes that take into account the locations of the base points. The
centers of the Rx5day and total leading EOT modes are located in
coastal area (38 modes) and inland area (10 modes). Overall, the lower-
order EOT modes show more variability in the locations of the base
points.

Locations of the base points indicate that out of twenty four Rx5day
(total) precipitation EOTs consisting of the leading two EOTs for each of
twelve months, 20 (18) are identified as coastal modes and 4 (6) are
identified as inland modes as shown in Table 1. Breaking this into more
detail, the coastal mode consists of an east-coast mode 8 (8) and south-
coast mode 12 (10) defined on the basis of the center of leading mode.
Also, the inland mode consists of the north-inland mode 3 (3) and
south-inland mode 1 (3). Consistent with the patterns shown in Fig. 4,
Table 1 indicates that the leading EOT modes for Rx5day and total
precipitation represent a northern inland mode for boreal summer
season and a southern coastal mode in winter season. In addition, more
spatial homogeneity exists in both leading Rx5day and total precipita-
tion modes during the summer than in other seasons. Summer patterns
are characterized by more widespread, coherent precipitation, while in
the winter season, the only leading mode of Rx5day precipitation shows
nationwide spatial homogeneity.

The total spatiotemporal variance related to the two leading EOTs
varies as a function of months. Table 1 shows that the spatiotemporal
variance related to each Rx5day (Total) EOT mode ranges from 0.42 to
0.62 (0.49–0.68) for each first EOT mode, while that for EOT2 de-
creases on average to 0.14 at each month. Explained variance for the
leading EOTs for total precipitation is higher than that associated with
the first Rx5day precipitation EOTs in all months due to the fact that
total variables are more likely to be characterized by spatially homo-
geneous features as opposed to Rx5day variables having more spatial
incoherence (King et al., 2014).

Temporal behavior is now diagnosed for each of the EOT modes of
Rx5day and total precipitation using moving average line employed by
Kim et al. (2004) who defined temporal evolution of decomposed
precipitation time series as increasing trend, decreasing trend, and
decadal variability based on 5-year running mean plots. Also, in order
to investigate the statistically significant trends in the precipitation EOT
time series data, the non-parametric Mann-Kendall (MK) test and linear
regression analysis are employed for the leading EOT modes con-
sidering the tests are simple and robust and can cope with missing
values and values below a detection limit. Fig. 4 (lower panels) in-
dicates time series for the leading two modes, and Table 1 summarizes
behavior for all modes. For the Rx5day precipitation EOT modes, the
temporal cycle showed four increasing trends, one decreasing trends,
and eight decadal variabilities. The total precipitation EOT time series
show eleven notable temporal patterns, including two increasing
trends, two decreasing trends and seven decadal variabilities. The
temporal evolution of the leading EOT modes indicates increasing
trends during summer season and primarily a decadal oscillation for
winter season. Specifically, the MK test statistic and p-value of summer
Rx5day EOT time series are 7.43 and 0.037at the 0.05 significance level
and the regression coefficient of the best fitted linear model and R-
squared value are 0.036 and 0.89. Also, the MK test statistic and p-value
of summer total EOT time series are 5.25 and 0.041at the 0.05 sig-
nificance level and the regression coefficient and R-squared value are
0.027 and 0.65.

4.2. Teleconnections between EOTs and CIs

EOT modes were correlated with six climate indices representing
spatially and temporally significant variability. We mainly discuss
outcomes involving Rx5day precipitation EOTs, except where total
precipitation EOTs show noticeably different results compared to those
of Rx5day precipitation EOTs. The correlation coefficients of each EOT
with six CIs are shown for Rx5day and total precipitation in Table 2. In
addition, regression maps for NCEP-NCAR reanalysis MSLP and
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ERSST.v4 SST are shown in Fig. 5 for EOT-1 during December, and
maps for other modes are also discussed. Many regression maps in-
dicate notable signals consistent with the large-scale spatial patterns
reported in other studies.

The correlation coefficients for EOT-1 and EOT-2 versus the ONI,
MEI, and SOI are shown in Table 2 and Fig. 6. The ONI time series has
significant negative correlations with the leading EOTs for Rx5day
precipitation in June and September, whereas the leading EOTs for
November and December exhibit positive correlations with the tropical
Pacific SST. The MEI correlations are similar to the results of ONI-re-
lated EOT signals. The SOI exhibits positive correlations with the
leading Rx5day EOTs during summer season (June), while in the winter
season (December) the first EOT shows significant negative correlations
with the SOI. Also, the correlations are weaker in warm season than in

cold season because the ENSO phenomena are generally not yet in their
mature phase or are already in their decay phase. In addition to the
leading EOTs, the other lower-order EOTs show relatively significant
correlations in some months with ENSO indices in eastern and southern
coastal areas of the Korean peninsula. The findings from the above
correlation analysis suggest that the El Niño (La Niña) events make
conditions more favorable for above (below) normal Rx5day pre-
cipitation in northern inland and southern coastal areas of the Korean
peninsula. The total precipitation EOTs also have significant correla-
tions with ENSO indicators. The ONI, MEI, and SOI show slightly higher
correlation coefficients with the Rx5day precipitation EOTs compared
with the EOT modes for total precipitation, but both correlation results
show a similar seasonal cycle.

The linkages between the precipitation EOT modes and the ENSO

Fig. 4. Maps of the locations of base-point of each EOT and the correlations between EOT time series (i.e., base-point time series) and time series at all other points
for the first-second leading EOTs of Rx5day (upper) and total (lower) precipitation. Annual time series (bars) and their 7-year running means (thick lines) for the July
EOT with increasing trends (a, c), the December EOT with decadal oscillations (b, d).
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indicators can also be identified through regression analysis, as shown
in Fig. 5. Positive EOT precipitation modes exhibit an SST anomaly
pattern consistent with a typical ENSO SST warm event, consisting of
warmer SST anomalies over the central-eastern tropical Pacific and
cooler SST anomalies in the western equatorial Pacific Ocean (Fig. 5a,
and b). Above normal signals in many Rx5day and total precipitation
EOTs are closely related to ENSO–like SST patterns. In addition to the
tropical Pacific SST Pattern, regressing MSLP onto the first EOT modes
for Rx5day and total precipitation (Fig. 5c and d) describes similar
ENSO-like SLP patterns with higher pressure in the western North Pa-
cific and lower pressure in the eastern North Pacific region. This pattern
reflects the Pacific-East Asian teleconnection (PEA) pattern which re-
presents a damping of the East Asian winter monsoon induced by a
western North pacific anticyclone and ENSO warm phases over the
eastern equatorial Pacific Ocean (Wang et al., 2000). This phase of the
PEA teleconnection preferentially modulates Rx5day and total pre-
cipitation over the Korean peninsula during ENSO events.

The IOD is also associated with Rx5day and total precipitation
variability in the Korean peninsula. As shown in Table 2, the leading
Rx5day precipitation EOT modes are significantly correlated with the
IOD as quantified by the DMI index representing the anomalous SST
gradient between the western and eastern tropical Indian Ocean. The
IOD time series has significant negative correlations with the leading
EOTs for Rx5day precipitation in September, while the leading EOTs for
November exhibit positive correlations with the tropical Indian Ocean
SST. The total precipitation EOT modes also demonstrate a similar

correlation with the DMI in September and November. The partial
correlation of the DMI index against the EOT modes was also examined
to rule out that the IOD was influencing Korean precipitation only be-
cause of its covariability with ENSO. However, the resultant numbers of
significant relationships are similar to the above result, providing
confidence that the IOD influences Korean precipitation in a manner
independent of ENSO as reported by Saji et al. (1999).

The correlation coefficient of monsoon circulation activity with
each EOT was calculated using the WNPMI index. From the results of
correlation analysis in Table 2, the leading EOTs for Rx5day and total
precipitation exhibit significant negative correlations with the monsoon
variability over the WNP region during November and December. In the
positive WNPMI phase, anomalous cyclones are reinforced in the WNP
area due to the intensification of WNP monsoon trough, which is caused
by the strengthening of westerlies over the U850 (1) region in Fig. 2
from the Philippine Sea to the Indochina peninsula and the enhance-
ment of easterlies in the U850 (2) region over the southern flank of the
WNP subtropical high. This positive WNPMI phase has an effect on
drier than average precipitation anomaly in Korean peninsula. On the
contrary, the negative WNPMI phase is associated with the reinforced
anomalous anticyclones in the WNP area due to the suppression of the
monsoon trough, which is caused by the weakening of westerlies over
the U850 (1) region and easterlies in the U850 (2) region. The wetter
than average precipitation anomaly in November and December is at-
tributed to the negative WNPMI phase. The leading EOTs for total
precipitation also show similarly significant correlation with the

Table 1
Explained variance (VE) for the two leading EOT modes of monthly Rx5day and total precipitations with the center of the leading mode, which is listed in
parentheses: EC (east-coast mode), SC (south-coast mode), NL (north-inland mode), SL (south-inland mode). Underlined indicates the nationwide spatial patterns.
Triangles, inverted triangles, and circles indicate increasing trend, decreasing trend, and decadal variability respectively.

Mode JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Rx5day precipitation
EOT-1 0.46

(EC)
0.54
(SC)

0.63
(SC)

0.60
(SC)

0.54
(SC)

0.51
(SC)
●

0.57
(NL)

0.43
(NL)

0.48
(EC)
●

0.41
(EC)

0.60
(SC)

0.48
(SC)
●

EOT-2 0.22
(SC)
●

0.18
(EC)

0.17
(EC)

0.18
(SC)

0.21
(SC)
●

0.22
(NL)
●

0.19
(SL)

0.25
(SC)
●

0.23
(SC)

0.25
(EC)
●

0.15
(EC)

0.20
(EC)

Total precipitation
EOT-1 0.50

(EC)
0.58
(SC)

0.66
(SC)

0.67
(SC)

0.64
(SC)

0.62
(SC)

0.62
(NL)

0.52
(NL)

0.62
(SL)
●

0.46
(EC)

0.54
(SC)

0.48
(SC)
●

EOT-2 0.23
(EC)

0.16
(EC)

0.15
(EC)
●

0.17
(SL)

0.15
(SC)
●

0.19
(NL)

0.17
(SC)

0.22
(SL)
●

0.17
(EC)
●

0.24
(SC)
●

0.21
(EC)

0.23
(EC)

Table 2
Correlation coefficients of the two leading modes with climate indicators, ONI (Oceanic Niño Index), MEI (Multivariate ENSO Index), SOI (Southern Oscillation
Index), IOD (Indian Ocean Index), WNPMI (Western North Pacific Monsoon Index), and TCI (Tropical Cyclone Index). An underlined bold indicates correlations that
are statistically significant at the 5% level.

Mode CIs for Rx5day EOT modes CIs for Total EOT modes

ONI MEI SOI IOD WNPMI TCI ONI MEI SOI IOD WNPMI TCI

EOT-1
JUN −0.38 −0.35 0.35 −0.10 0.21 0.11 −0.24 −0.22 0.31 −0.14 0.23 0.20
SEP −0.34 −0.41 0.31 −0.28 −0.24 0.16 −0.41 −0.44 0.28 −0.27 −0.24 0.41
OCT −0.18 −0.15 0.02 −0.17 0.10 0.38 −0.19 −0.21 0.11 −0.10 −0.08 0.33
NOV 0.33 0.36 −0.30 0.32 −0.30 0.06 0.39 0.45 −0.32 0.31 −0.32 0.25
DEC 0.49 0.46 −0.41 0.09 −0.37 – 0.45 0.42 −0.49 −0.02 −0.45 –

EOT-2
JUN −0.34 0.13 −0.26 −0.04 0.34 −0.16 −0.33 −0.20 0.18 0.10 0.07 0.06
SEP 0.13 0.16 −0.04 0.34 0.01 −0.19 −0.13 −0.18 0.06 −0.18 0.15 0.15
OCT 0.41 0.40 −0.40 0.14 −0.21 0.10 −0.30 −0.31 0.10 0.01 −0.11 0.06
NOV −0.13 −0.15 0.28 −0.16 0.08 0.30 −0.06 −0.06 0.31 −0.08 0.12 0.31
DEC 0.06 0.08 −0.13 0.07 −0.10 – 0.02 0.02 0.06 0.01 0.35 –
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monsoon variability. The monsoon indices show somewhat lower cor-
relations with the leading EOT modes for Rx5day precipitation than
those for total precipitation but exhibit a similar temporal pattern.

The monthly TCI indices were calculated for the index area to the
south part of the Korean peninsula (Fig. 2). Each TCI is correlated with
the EOT modes for Rx5day and total precipitation from May to No-
vember. As shown in Table 2, five EOTs show the significant correlation
with the TCI time series, indicating that increased and decreased fre-
quency of tropical cyclones passing through the index area is associated
with enhanced and suppressed precipitation. The leading EOTs for
September and October precipitation exhibit the strongest positive

correlation with the tropical cyclone variability. This indicates that the
leading EOT in fall season, located in eastern coastal area over the
Korea peninsula, show significant positive correlation with the TCI. The
general results from the above analysis are consistent with the findings
investigated by Cha (2007), resulting in the significant correlation be-
tween tropical cyclones and seasonal precipitation patterns over the
Korean peninsula.

4.3. Predictability of precipitation patterns

In addition to expanding our understanding of how CIs affect
Korean precipitation variability, it is also of great importance to im-
prove prediction capability of this variability. The previous correlation
analysis did not take into account any time lag between the EOT time
series for Rx5day and total precipitation and various CIs. If the CIs
applied here have a significant impact on the precipitation anomaly
over the Korean peninsula, then it is worthwhile to quantify the degree
of this influence by a time-dependent cross-correlation analysis be-
tween the two time series that would be useful for forecasting purposes.
To do this, we correlated the monthly EOTs for the Rx5day and total
precipitation with CIs at monthly time lags of lag-0 month to lag-
17months, where the EOTs are lagging the CIs. The motivation to focus
on the monthly time lag, e.g., a time interval of 0 to 17months, is based
on the fact that the climate signals used here are slowly evolving and
this low-frequency behavior may provide substantial value as a long
range predictor. The results of this analysis are presented in Table 3 as
the cross-correlation coefficient values. The overall correlation coeffi-
cients are calculated at 0.01, 0.05 and 0.10 significance levels for better
comparison.

The cross-correlation coefficient between ENSO and each EOT was
computed for the ONI, the MEI, and the SOI. As shown in Table 3, the
December EOT-1 exhibits significant positive correlations with the ONI
time series up to the preceding June, while the September EOT-1 ex-
hibits the negative correlations with the ONI up to the preceding June.
The cross-correlation coefficient for the MEI time series provides qua-
litatively consistent behavior. Consistent with the above results, the
December EOT-1 exhibits significant negative correlations with the SOI
time series up to the preceding August, whereas the first EOT in

Fig. 5. Maps of SST (a), (b) and MSLP (c), (d) regressed on to December EOT of Rx5day (left) and total (right) precipitation.

Fig. 6. Cross-correlation between climate indices and the leading monthly EOT.
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September shows a positive correlation with the SOI up to the pre-
ceding July. No significant correlation for the ENSO signal was detected
during January to July reflecting the fact that relationships between the
ENSO indicators and each EOT mode are generally not prominent at
this time of year. The outcomes from the cross-correlation analysis
above indicate that the teleconnected effects of the ENSO phenomena
on the leading modes of Rx5day precipitation in the Korean peninsula
are detectable at up to six-month lead time. Additionally, the leading
EOTs for total precipitation also show significant lagged correlation
with ENSO remote forcing as shown in Table 3. The ONI, MEI, and SOI
from June to September (August to December) have significant negative
(positive) correlations with the leading EOT for total precipitation in
September (December). These CIs show slightly higher correlation
coefficients with the Rx5day precipitation EOTs compared with the
EOT modes for total precipitation, but both correlation results show a
similar seasonal cycle. The above findings are consistent with the re-
sults reported by Lee and Julien (2017) who showed that the ENSO-
related teleconnections to Korea resulted in drier than normal condi-
tions during fall and wetter than normal conditions in winter season.
Also, the non-linear precipitation response to ENSO in this study is si-
milar to that found in Australia as described in King et al. (2014), Power
et al. (2006), and Cai et al (2011).

The IOD is also associated with Rx5day and total precipitation

variability in the Korean peninsula. In Table 3, the IOD from June to
September has the negative correlations with the leading EOT for
Rx5day and total precipitation in September, while the leading EOT
modes for November precipitation show the positive correlation with
September to November DMI indices. These findings show lower po-
tential for predictability of the Rx5day and total precipitation in asso-
ciation with the IOD indicators compared to those of ENSO indices,
reflecting the fact that the far reaching effects of the Indian Ocean SSTs
on the East Asian climate variability are not strong compared to that of
the Pacific Ocean SST due to their locations farther west over South
Asia.

In addition to the cross-correlation analysis, the Pacific Ocean SSTs
based on the ERSST.v4 dataset are regressed onto the EOTs with
varying lead times to identify potential sources of predictability for
monthly Rx5day and total precipitation. As shown in the Figs. 7 and 8,
the above lag regressions of the Pacific Ocean SSTs onto September and
December EOT-1 modes for Rx5day and total precipitation demonstrate
that the leading EOTs show notable lagged and concurrent regression
with strong ENSO signals over the equatorial Pacific. The December lag
regression suggests noticeable predictability from the tropical Pacific
Ocean SST with positive regression coefficients decreasing as the lag
increases. The lagged regression signals continue until months prior to
June at lag-6, and then the Pacific SST-related precipitation signals

Table 3
Cross-correlation coefficients of the leading modes with climate indicators. The bold, single underlined bold, and double underlined bold indicate correlations that
are statistically significant at the 0.10, 0.05, and 0.01 level. The plus indicates the following year.
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diminish. The September lag-0 to lag-3 regression representing regres-
sion June to September SSTs onto September EOT-1, indicates a nega-
tive correlation with tropical Pacific cold tongue SSTs. The negative
signals extend to months prior to June at lag-3, and then do not exhibit

substantial amplitude during January to May. Lag regression maps in-
dicate coherent Pacific Ocean SST variability related to EOTs of Korean
precipitation. Despite noise in the SST-precipitation relationship, the
sources identified above may provide promise to improve prediction of

Fig. 7. Maps of SSTs of January to December regressed on to December Rx5day EOT1.

J.H. Lee et al. Journal of Hydrology 568 (2019) 12–25

21



monthly precipitation variations over the Korean peninsula.
In December for extreme high and low precipitation, there is a

different tendency in the ENSO-precipitation relationship. The lagged
and concurrent SST regression onto the leading EOT-1 for extreme high
and low precipitation anomalies in December account for the afore-
mentioned different tendency as shown in Figs. 9 and 10. These lag-
regression maps show that the regression coefficients of very wet ex-
tremes in December from Pacific SSTs are more evident than that of
very dry December extremes. The lower predictability of January-April
leading EOTs is attributed to weaker SST-precipitation relationships in
this time of year. Consequently these findings of the potential sources of
climate predictability indicate important implications for the seasonal
forecasting the major hydrologic extremes such as flood and drought
events.

5. Discussion

5.1. Spatiotemporal variability of precipitation

The spatiotemporal evolution of the leading EOT modes exhibits
increasing trends during summer season and decadal variability for

winter season. Ho et al. (2003) investigated long-term temporal change
in the Korean peninsula by examining daily precipitation data over a
period of 48 years from 1954 to 2001, and showed gradual increasing
trend with time due to more frequent occurrences of extreme pre-
cipitation and increased cumulative precipitation. Also, in the super-
ensemble prediction analysis, Kim et al. (2004) revealed that the time
coefficients of the first two leading modes over the Korean peninsula
exhibit significant decadal temporal cycles in winter precipitation
patterns. These results are consistent with the outcomes of the current
study that shows similar responses in Korean precipitation associated
with tropical ENSO forcing. However, visual inspection of the station
location maps in previous papers indicates that the significant re-
lationships over the Korean peninsula were not sufficiently resolved due
to the data coverage limitations. Our study resolves these issues
through use of a high quality, high resolution Korean surface dataset,
and also provides additional information on the CI-precipitation linkage
over East Asia which was not identified in previous studies.

5.2. Teleconnection and predictability of EOTs and CIs

The EOT decomposition and cross-correlation analyses described in

Fig. 8. Maps of SSTs of January to September regressed on to September Rx5day EOT1.
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Fig. 9. Maps of SSTs from each calendar month (a)–(l) from January to December regressed on to December extreme EOT1for wetter-than-average December Rx5day
values only.

Fig. 10. As in Fig. 9, but for drier-than-average December Rx5day values only.
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the previous section demonstrate that leading mode of September
precipitation has a negative correlation with the tropical thermal for-
cing over the Pacific Ocean, while that of December precipitation shows
a positive correlation with the tropical Pacific SST variability. In other
words, during the warm ENSO years below normal precipitation
anomalies are observed in September, while above normal precipitation
departures are observed in December. For the cold ENSO years, the
opposite is true. Fig. 11 illustrates the comparison of standardized in-
dices for below (above) normal precipitation in September and above
(below) normal precipitation in December during the warm (cold)
event years using the monthly precipitation data for both northern in-
land mode and southern coastal mode. The scatterplots for the warm
phase are mostly distributed in the upper left part of the plot, while
those for the cold phase are oppositely distributed in lower right part.
These notable patterns for monthly precipitation data suggest that
September and December are characterized by opposite signed ten-
dency for an ENSO event of a given sign.

What causes the anomalous precipitation over the Korean Peninsula
is explained by circulation anomalies associated with ENSO forcing
based on composite difference of circulation fields. Northerly wind cut
off the moisture supply from equator towards the Korean peninsula
resulting in below-normal precipitation activity. In addition, the decline
in September precipitation is caused by the depression of the second
rainy period by reduction of the tropical storms and typhoons over East
Asia during the warm phase years, while increase of precipitation in
September of the cold phase years is in association with the in-
tensification of the second rainy period resulting from more frequent
occurrences of tropical cyclones. On the other hand, in November and
December anomalous southwesterly wind prevails over the Korean
peninsula and the northwestern part of the Philippine Sea anticyclone,
reflecting damping phases of East Asia winter monsoon or a warmer
than normal in winter. The anomalous southerly wind transports moist
and warm air toward the Korean peninsula. This northward transport is
attributed to a wetter than normal climate over the Korean peninsula.

The positive dipole mode of Indian Ocean favor heavy snow and
lower surface temperature over the northern part of the Korean pe-
ninsula in Eastern Eurasia (Kripalani et al., 2010). The northerly winds
are anomalously strong over that region and bring dry and cold air from
the high latitudes to the Korean peninsula. Thus, the weak anomalous
southerlies and the strong anomalous northerlies cut off the warm

moisture supply towards the Korean peninsula causing below-normal
precipitation activity. In contrast, the north Pacific subtropical high is
slightly displaced north-westward in November southerly wind brings
warm and wet air from the equator to the Korean peninsula. Thus, the
strong anomalous southerlies will modulate the moisture supply to-
wards the Korean peninsula leading to above-normal precipitation ac-
tivity.

5.3. Comparison with previous studies

The overall results of the analyses presented here are in general
agreement with those of other recent studies from the viewpoint of
positive (negative) response during winter (fall) season, regarding the
climatic impacts of the extreme phase of ENSO on hydroclimatic vari-
ables over the Korean peninsula. Cha (2007) examined the tele-
connection between the remote ENSO forcing and Korean climate such
as precipitation, atmospheric circulation, temperature, and so on, and
revealed that the tropical ENSO forcing has a dominant impact on
fluctuation of seasonal precipitation over South Korea modulating en-
hancement (suppression) of its magnitude. In addition, from a view-
point of ENSO-precipitation signal seasons illustrated in the cross-cor-
relation analysis for the leading modes of the Rx5day and total
precipitation, the drier period of September is fairly coincident with the
finding by Shin (2002) representing the suppression of early fall pre-
cipitation during the warm extreme event years. Therefore, it is ap-
parent that the findings from this study are considered as an additional
confirmation of aforementioned climatic far reaching effects of the
large scale CIs on Korean precipitation variability, which indicate drier
(wetter) conditions in early fall of the warm (cold) episode years and
wetter (drier) conditions in winter of the extreme event years. Conse-
quently, in the light of the preceding discussions, the overall outcomes
from the present analyses provide further confirmative evidence of the
significant climatic teleconnection between the large scale CIs and
hydroclimatic variability over midlatitude.

6. Conclusions

In the current study, we apply an empirical orthogonal tele-
connection (EOT) decomposition technique to Rx5day and total pre-
cipitation over the Korean peninsula to quantify the remote impacts of

Fig. 11. The comparison of standardized indices for below (above) normal precipitation in September and above (below) normal precipitation in December during
the warm (cold) phase of ENSO events using the monthly precipitation time series for north-inland (NL) mode (left) and south-coast (SC) mode (right).

J.H. Lee et al. Journal of Hydrology 568 (2019) 12–25

24



large scale modes of climate variability as quantified through climate
indices (CIs). We demonstrated the potential for prediction of these
precipitation patterns based on knowledge of monthly tropical SST
fields using cross-correlation and lag regression analyses for the leading
EOT modes and ENSO and IOD indicators.

The spatiotemporal features of Rx5day and total precipitation over
the Korean peninsula are dominated by a northern inland mode during
summer and southern coastal mode in winter. The temporal evolution
of the leading EOT modes exhibits an increasing trend during summer
and an interdecadal oscillation for winter season. Both leading Rx5day
and total precipitation modes show notable spatial homogeneity across
the Korean peninsula during the summer seasons with widespread co-
herent precipitation patterns, while in the winter season, the only
leading Rx5day EOT shows nationwide spatial homogeneity. The
leading total precipitation EOT modes explain more of the variance in
Korean precipitation variability than the leading Rx5day EOT modes.
The ONI and MEI time series that explain tropical Pacific ENSO varia-
bility have significant negative correlations with the leading EOTs of
Rx5day precipitation in June and September, whereas the leading EOTs
for November and December exhibit positive correlations with the ONI
and MEI time series. Consistent with these results, the SOI shows sig-
nificant positive (negative) correlations with the first EOT mode for
Rx5day precipitation during the boreal summer (winter). The three
ENSO indicators generally show slightly higher correlation coefficients
with the Rx5day precipitation EOTs compared with the EOT modes for
total precipitation, but both correlation results show a similar seasonal
cycle. The leading and second EOT modes of Rx5day and total pre-
cipitation are significantly positively correlated with the boreal fall IOD
as quantified by the DMI index, while the two modes show a negative
correlation with Indian Ocean SST anomalies in boreal winter. The
leading EOTs for Rx5day and total precipitation also exhibit a sig-
nificant positive correlation with an index of monsoon variability over
the WNP region during November to December. The leading EOTs for
September and October precipitation exhibit the strongest positive
correlation with the tropical cyclone variability. From the results of
cross-correlation and lag regression analyses, the leading EOTs for
September and December Rx5day precipitation have predictability up
to six months lead time from tropical Pacific SSTs, while a weak pre-
dictable response from Indian Ocean SSTs was detected at longer lead
time. Also, the regression coefficients of the tropical Pacific SSTs onto
very wet extremes in December are more evident than that for very dry
December extremes.
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