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Large-scale climate teleconnections with South Korean streamflow variability
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ABSTRACT
Leading patterns of observed seasonal extreme and mean streamflow on the Korean peninsula were
estimated using an empirical orthogonal teleconnection (EOT) technique. In addition, statistical correla-
tions on a seasonal basis were calculated using correlation and regression analyses between the leading
streamflow patterns and various climate indices based on atmospheric–ocean circulation. The spatio-
temporal patterns of the leading EOT modes for extreme and mean streamflow indicate an upstream
mode for the Han River, with increasing trends in summer, and a downstream mode for the Nakdong
River, with oscillations mainly on inter-decadal time scales in winter. The tropical ENSO (El Niño
Southern Oscillation) forcing for both extreme and mean streamflow is coherently associated with
summer to winter streamflow patterns. The western North Pacific monsoon has a negative correlation
with winter streamflow variability, and tropical cyclone indices also exhibit significant positive correla-
tion with autumn streamflow. Leading patterns of autumn and winter streamflow time series show
predictability up to two seasons in advance from the Pacific sea-surface temperatures.
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Introduction

Overall, the river basins in the Korean peninsula experience
spatial and temporal streamflow variability. Streamflow varia-
tion is related to fluctuations of various climate indices (CIs)
representing large-scale climate phenomena, including El
Niño, La Niña, Southern Oscillation, tropical cyclone and
monsoon activity. These large-scale climate signals have
been widely studied on global and regional scales, since the
climatic impacts are associated with hydro-climatic extreme
events, i.e. floods, droughts or abnormal heat wave, through-
out the world. At various scales, significant findings have been
investigated for teleconnections of the large-scale CIs and
hydro-meteorological variables, including streamflow, preci-
pitation and temperature (Douglas and Englehart 1981,
Ropelewski and Halpert 1986, 1989, Kiladis and Diaz 1989,
Kahya and Dracup 1994, Karabörk and Kahya 2003, Jin et al.
2005, Lee et al. 2005, Chandimala and Zubair 2007, Maity and
Kashid 2010).

The El Niño Southern Oscillation (ENSO) index has been
widely reported as a climatic indicator having an effect on
hydro-meteorological variability at both regional and global
scales. Since the first studies on the climatic relationship
between the Southern Oscillation (SO) and the Indian mon-
soon rainfall variability (Walker 1923, Walker and Bliss
1932), many global-scale investigations into ENSO remote
forcing have revealed notable teleconnection between various
hydro-climatic parameters and the extreme phases of ENSO
in many areas throughout the globe. Ropelewski and Halpert
(1986, 1989) showed statistically significant ENSO-related
climate signals by detecting the spatio-temporal scopes having

a consistent and coherent impact of the extreme phases of the
ENSO phenomenon on the precipitation and temperature
pattern in various areas worldwide. A considerable body of
the regional-scale study correlating the ENSO phases to
hydro-climatology over low and middle latitudes provided
notable evidence of statistically significant ENSO-related pre-
cipitation signals (Douglas and Englehart 1981, Schonher and
Nicholson 1989, Grimm et al. 1998, Price et al. 1998,
Karabörk and Kahya 2003, Lanckriet et al. 2014). In the mid-
latitude regions, the ENSO–streamflow teleconnection has
been investigated by Cayan and Peterson (1989) and Diaz
and Kiladis (1993). They emphasized the impacts of the
atmospheric variability over the North Pacific on streamflow
in the western USA. Also, for extra-tropical teleconnections
with Pacific sea-surface temperatures (SSTs), Kahya and
Dracup (1994) carried out diagnostic investigations for the
response of streamflow variability over the USA to extreme
ENSO events. Kahya and Karabörk (2001) analysed remote
forcing of the ENSO phenomenon to mid-latitude streamflow
patterns in Turkey using harmonic and composite analyses,
and Chiew et al. (1994) identified consistent seasons and
coherent regions in southeast Australia, in which streamflow
patterns were statistically correlated with the warm/cold
phases of ENSO events. Furthermore, Chandimala and
Zubair (2007) predicted seasonal streamflow variability over
the Kelani River, Sri Lanka, using empirical and statistical
approaches including principal component analysis. Zhang
et al. (2007) demonstrated teleconnections between extreme
ENSO phenomena and maximum streamflows of the Yangtze
River basin in China using cross-wavelet analysis, while
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Kashid et al. (2010) and Maity and Kashid (2010, 2011) used
artificial intelligence (AI) tools with statistical techniques to
investigate the climatic response of streamflow in the
Mahanadi River, India, to large-scale atmospheric circulation.

In the Indian-Pacific rim countries, monsoon circulation
could be considered as a climate indicator for hydro-
meteorological variability. Wang et al. (2008) suggested
a new index for monsoon activity using principal component
analysis based on a comparative analysis of the various exist-
ing monsoon indices in East Asia. From the perspective of
inter-annual variation of atmospheric circulation and preci-
pitation, they emphasized that the Mei-Yu (Plum Rain) pre-
cipitation plays an essential role in quantifying monsoon
intensity over East Asia. Using observational analyses and
numerical climate modelling through an atmospheric general
circulation model, ECHAM (v4.6), and a coupled model,
POEM, Wang et al. (2013) revealed that a positive Western
Pacific Subtropical High (WPSH)–ocean relationship can be
used as a potential source of prediction skill for climate
predictability; they emphasized the critical role of subtropical
circulation for predicting the monsoon and tropical storm
activity.

Significant correlations between large-scale climate fluc-
tuations and hydro-meteorological variabilities over the
Korean peninsula have been reported. Cha et al. (1999)
carried out a diagnostic investigation on Korean climate
variability associated with the ENSO phenomenon using
large-scale gridded circulation data as well as synoptic
data. They described the evolving climate characteristics
over the Korean peninsula with respect to extreme ENSO
phases, and pointed out positive modulation of warm and
cold season precipitation by ENSO forcing. Lee and Julien
(2015, 2016) employed harmonic and composite analyses to
identify the dominant drivers of Korean climate fluctua-
tions, and showed an ENSO-related climate relationship.
Using correlation analysis between the tropical ENSO for-
cing over the Pacific Ocean and precipitation variability in
the Korean peninsula, Shin (2002) showed climatic impacts
of the tropical thermal forcing on hydrological extreme
events including floods and droughts. Jin et al. (2005) cate-
gorized the Southern Oscillation Index (SOI) into five
groups according to magnitude and transformed monthly
precipitation data at two stations in Korea and Japan into
non-exceedence probability and cubic root datasets. They
showed statistically significant correlation between the cate-
gorized SOI and converted monthly precipitation data using
Pearson and Kendall tests. In a study on the predictability of
precipitation over the Korean peninsula, Kim et al. (2004)
employed a downscaling super-ensemble technique based on
the empirical orthogonal function (EOF) method. They
showed that the winter precipitation pattern is significantly
correlated with the second EOF pattern of sea level pressure
(SLP) in East Asia, resulting in modulation of moist air
supply from the western north Pacific. They also empha-
sized the intensified climate impacts of the East Asian mon-
soon circulation on the winter precipitation anomaly. Kang
(1998) investigated the correlation of ENSO with Korean
precipitation variability through multi-channel singular
spectrum analysis, stressing significant correlation between

ENSO and summer monsoon on a 3-year cycle. Kim and
Jain (2011) quantified Korean precipitation intensity for the
five major river basins through a separation analysis, asso-
ciated with typhoon and non-typhoon moisture sources, and
showed that the typhoon activity modulates the increase in
precipitation in three of the major river basins. Also, Kim
et al. (2012) carried out an exploratory analysis on the
correlation of the Pacific Japan (PJ) pattern with typhoon
activity associated with extreme precipitation variability for
river basins throughout Korea; they revealed that the tropi-
cal cyclone (TC) activity is exhibited more frequently during
positive PJ phase years than negative phase years.

Previous studies have mostly focused on monthly or sea-
sonal mean precipitation. Thus, there has been less attention
paid to the climatic relationship between large-scale climate
fluctuations and extreme streamflow patterns. Also, the afore-
mentioned studies mostly placed emphasis on global-scale
remote CIs as a climate signal of large-scale atmospheric or
air–sea coupled circulations, except for the studies by King
et al. (2014), Klingaman et al. (2013) and Maity and Kashid
(2010, 2011). King et al. (2014) examined Australian precipi-
tation variability through EOT (empirical orthogonal telecon-
nection) decomposition analysis, and indicated that the first
EOT modes of December precipitation show notable predict-
ability up to several months in advance for the tropical Pacific
Ocean SST and one year in advance for the Indian Ocean
SST. Also, in a diagnostic study to understand the physical
mechanism of the climatic impacts of large-scale climate
indices on precipitation patterns in Queensland, Australia,
Klingaman et al. (2013) identified remote and local drivers
affecting the seasonal precipitation patterns using EOT
decomposition with inter-annual and decadal variability.
They classified large-scale climate indices into two categories:
remote and local CIs. Apart from these studies, there has been
little focus in the literature regarding the far-reaching climatic
effects of both remote and local CIs on streamflow variability
(Maity and Kashid 2010, 2011). However, climatic impacts on
hydro-meteorological variables are not restricted to global-
scale indices. Hence, it would be helpful to identify how both
remote and local CIs have an effect on the extreme and mean
streamflow patterns over East Asia. In a super-ensemble pre-
diction analysis, Kim et al. (2004) found a strong and con-
sistent climatic link between the East Asian monsoon activity
and Korean precipitation variability. Visual inspection of the
station location in their paper indicated that significant CI–
precipitation relationships are not sufficiently identified, due
to the limited station coverage (12 stations). Thus, this study
is motivated to expand on previous works through a sufficient
and adequate dataset.

The objectives of this study are to investigate the spatial and
temporal variability of extreme and mean streamflow anomalies
over the Korean peninsula using the empirical orthogonal tele-
connection (EOT) technique and to identify significant climatic
impacts of remote and local climate indicators on mid-latitude
streamflow variability. In addition, predictability of extreme and
mean streamflow patterns is examined through regression of
sea-surface temperature (SST) gridded data on to the leading
EOT patterns with varying lead times in terms of above- and
below-normal streamflow conditions.

2 J. H. LEE ET AL.



Data
The observational streamflow time series for this study were
obtained from the Korea Annual Hydrological Report. It is
important to obtain unimpaired streamflow records because
dams and reservoirs often control the amount of seasonal
streamflow, resulting in biased relationships with climate
indices. In order to eliminate the impact of anthropogenic
activities, such as regulation and diversion, only gauging sta-
tions located upstream of dams and reservoirs, or tributaries
without regulation, were selected in this study. The total
streamflow time series include 26 extreme events of ENSO
phenomena in the period from 1962 to 2014. Stations without
missing data for each season, as well as stations with more than
53 years of data, were selected for analysis. Accordingly, 60
stations out of a total of 478 stations were used, taking into
account the spatio-temporal persistency, as shown in Fig. 1. In
addition, extreme streamflow time series were generated as
a follow-up to the recommendation of the Climate and
Ocean – Variability, Predictability, and Change report.1 The

seasonal highest five consecutive daily streamflows define the
extreme streamflow dataset. The seasonal extreme and mean
streamflow time series were calculated for each station for the
period 1962–2014. The extreme streamflow time series showed
higher values than those of mean time series for northeastern
and southern coastal areas in the summer. These noticeable
streamflow values reflect the historical severe floods over the
Korean peninsula, such as those caused by Typhoons Rusa and
Maemi in 2002 and 2003, respectively, which devastated the
northeastern and southern coastal areas.

For comparative analysis on the CI-related streamflow tele-
connection, various CIs were used in this study. The Oceanic
Niño Index (ONI), the Multivariate ENSO Index (MEI) and the
Southern Oscillation Index (SOI), were employed as indicators
of the extreme phase of the ENSO phenomenon considering
atmospheric and oceanic fluctuations. The ONI time series are
estimated using SST values in the Niño 3.4 index area (120°W to
170°W). In this study, the ONI dataset was obtained from the
Climate Prediction Center (CPC) of the National Oceanic and
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Figure 1. Stations used for streamflow indices. HU: Han River upstream; HD: Han River downstream; NU: Nakdong River upstream; ND: Nakdong River downstream;
YU: Youngsan River upstream; YD: Youngsan River downstream.

1http://www.clivar.org/node/318.
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Atmospheric Administration (NOAA).2 The MEI is calculated
using six atmospheric–ocean variables over the tropical Pacific
Ocean, i.e. surface air temperature, sea-surface temperature,
cloudiness fraction, zonal and meridional surface winds, and
sea-level pressure. The source of the standardized bimonthly
MEI time series used was the Climate Diagnostic Center
(CDC).3 The SOI, a standardized index, is estimated using
mean sea-level pressure (MSLP) values between Darwin and
Tahiti. In this study, the SOI time series were obtained from
the NOAA-CPC.

A gridded dataset of reconstructed SSTs and a re-analysis
field of atmospheric circulation were employed to investigate
the teleconnection between streamflow EOT patterns and the
aforementioned CIs. The Extended Reconstructed SST
(ERSST.v4) was used as the reconstructed SST dataset
(Huang et al. 2014). The ERSST time series are provided on
2.0° × 2.0° grids from 1854 to the present. The re-analysis
time series of atmospheric circulation were obtained from the
National Centers for Environmental Prediction – National
Center for Atmospheric Research (NCEP-NCAR).4 These
time series are provided on a 2.5° × 2.5° grid basis from
1948 to the present.

As shown in Fig. 2, the western North Pacific monsoon index
(WNPMI) was selected as an indicator of monsoon activity for
investigating teleconnection with streamflow EOT patterns.
Wang and Fan (1999) estimated WNPMI values using the
difference in 850-hPa zonal winds between southern and north-
ern index areas. In Fig. 2, U850(1) indicates themagnitude of the
monsoon westerly in the area of the Indochina peninsula and
the Philippines and U850(2) represents the intensity of easterly
winds across the southeastern region of subtropical anticyclone
over the western North Pacific. The other climate index for

tropical cyclone activity, TCI, was estimated using the tracks of
tropical cyclones based on the observational dataset of the
IBTrACS (Knapp et al. 2010). These TCI time series were
calculated using the number of typhoons passing through an
index region near the Korean peninsula (Fig. 2).

Analysis

Figure 3 outlines the overall methodology used in this study.
The first step is to generate seasonal-based streamflow time
series with respect to extreme and mean streamflow.
The second step is to identify the spatial and temporal pat-
terns of the extreme and mean streamflow over the Korean
peninsula using the EOT method. Step 3 is to implement
correlation analysis to investigate the CI-related streamflow
teleconnection. Finally, Step 4 is to carry out lag-regression
analysis for leading EOT streamflow patterns and tropical
Pacific SST gridded data with various lag seasons for com-
parative interpretation of the opposite phase streamflow
predictability.

EOT analysis

For the purpose of investigating spatio-temporal patterns of
extreme and mean streamflow over South Korea, the empiri-
cal orthogonal teleconnection (EOT) approach was employed
rather than the conventional analysis by empirical orthogonal
function (EOF). The EOT method decomposes the stream-
flow dataset with spatio-temporal variability to a set of ortho-
gonal components (Van den Dool et al. 2000). That is, the
EOT technique detects a set of spatial patterns, extracts the
temporal cycles, and gives an index of the importance of each
pattern. The EOT approach is orthogonal in either space or
time, as opposed to the empirical orthogonal function (EOF),
which is orthogonal in both space and time. Thus, the advan-
tage of using the EOT technique is that it allows the estimated
patterns to be more intuitively interpreted.

The EOT-1 spatial pattern of the streamflow time series is
estimated by detecting a point showing the largest sum of
explained variance for all other points. Van den Dool et al.
(2000) designated this point as the “base point (BP)”. The
corresponding streamflow time series of the first BP is
assigned as the EOT-1 temporal pattern. The second spatial
pattern of streamflow EOT time series is obtained by per-
forming regression analysis for streamflow time series of the
first BP on to the residual points to remove the impacts of the
BP upon the streamflow dataset. For the reduced streamflow
time series, the next BP is extracted by identifying the second
point having the greatest amount of variance across the
residual domain. To extract more EOT patterns in the resi-
dual domain reduced by the previous decomposition process,
the reduction process is successively repeated until the opti-
mum number of spatial and temporal patterns of
a streamflow dataset is found. The following mathematical
expressions of the EOT procedure are based on Van den Dool

U850(1)

U850(2)

TCI

90 100 110 120 130 140 150

90 100 110 120 130 140 150

-10

0

10

20

30

40

50

-10

0

10

20

30

40

50

0km 500km 1000km 1500km 2000km

Figure 2. Map of boundaries of climate indices.

2https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php.
3http://www.cdc.noaa.gov/index.html.
4https://www.esrl.noaa.gov/.
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et al. (2000). After detecting the BP (sb1) in space that
explains the greatest amount of variance in the residual
domain, its associated spatial mode, e1 sð Þ, is defined as the
first EOT. The temporal mode, α1 tð Þ, associated with EOT-1
is simply the original time series for its base point:

E1 sð Þ ¼ COR s; sb1ð Þ STD sð Þ
STD sb1ð Þ (1)

α1 tð Þ ¼ Q sb1; tð Þ (2)

where COR s; sb1ð Þ is the temporal correlation coefficient
between streamflow time series Q sb1; tð Þ at the BP and
Q s; tð Þ at all other points. Also, STD sb1ð Þ and STD sð Þ stand
for the temporal standard deviation of Q sb1; tð Þ at the BP and
Q s; tð Þ at all other points, as follows:

COR s; sb1ð Þ ¼
1
nt

Pnt
t¼1 Q s; tð ÞQ sb1; tð Þ

STD sb1ð Þ � STD sð Þ (3)

STD sb1ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
nt

Xnt
t¼1

Q sb1; tð Þ2
s

(4)

STD sð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
nt

Xnt
t¼1

Q s; tð Þ2
s

(5)

After extracting EOT-1, the data are split into two portions,
in which variance is explained, Qe s; tð Þ and a residual, Qr s; tð Þ,
as follows:

Qe s; tð Þ ¼ α1 tð Þe1 sð Þ (6)

Qr s; tð Þ ¼ Q s; tð Þ � Qe s; tð Þ (7)

After dividing the data into explained and residual portions,
the procedure is repeated using the once reduced data. The
point in space that explains the most variance for all other
points in Qr s; tð Þ becomes the BP for EOT-2. The time series
connected with EOT-2 is represented by the series at its BP in
the once-reduced data. After removing the variance explained
by EOT-2 from the dataset, the process is repeated, until all of
the domain variance in the original data is explained. Thus
Qe s; tð Þ grows at the expense of Qr s; tð Þ, re-ordering the
variance in the original data as EOT modes. The total var-
iance (TV) in the data is expressed by:

TV ¼ 1
ntns

Xnt
t¼1

Xns
s¼1

Q s; tð Þ2 (8)

where nt and ns are the numbers of points in time and space,
respectively. The amount of variance explained by a particular
EOT is related to the proportion of its explained variance
(EV) to the total domain variance (TV):

EV ¼
1

ntns

Pnt
t¼1

Pns
s¼1 Qe s; tð Þ2

TV
(9)

In this analysis, we used the modified EOT method revised by
Smith (2004), who selected the base point using the value of
explained variance over the domain-averaged time series

Figure 3. Flowchart of the methodology.
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rather than the greatest amount of variance across all other
points. As a result of the above procedure, the EOT-1 and
EOT-2 were obtained for seasonal extreme and mean stream-
flow time series from 1962 to 2014 in order to investigate the
streamflow variability in different areas of the Korean
peninsula.

Correlation and regression analyses

To describe the results from the lead–lag correlation and
regression analyses between various CIs and streamflow EOT
patterns, correlation coefficients and regression maps were
employed. To identify the climatic impacts of various CIs on
extreme and mean streamflow variability across the Korean
peninsula, each streamflow EOT mode was correlated with
several CIs showing spatial and temporal fluctuation, e.g.
ENSO, WNPMI and TCI. In particular, as a follow-up to the
statistical method by King et al. (2014), the Spearman approach
was employed using the 95% confidence level. Even though
Spearman’s rank test was carried out for calculating correlation
coefficients, the resultant values were generally in agreement
with Pearson correlation coefficients. Also, in order to examine
the predictability of seasonal streamflow, the ERSST gridded
dataset over the tropical Pacific Ocean was regressed on to the
EOT time series with varying seasonal leads. The regression
maps were plotted on 2.0° × 2.0° grids by calculating regression
coefficients between leading EOT time series and all gridded
global SST datasets.

Results

Variability of streamflow EOTs

Correlation coefficients for each EOT associated with the
greatest amount of variance across the residual domain
streamflow were mapped for each season. The values are the
correlation coefficients between the streamflow EOTs at the
BPs and the streamflow dataset at all other points. Each
leading EOT has the largest explained variance for extreme
and mean streamflow. The spatial outlooks of the BPs of the
leading EOTs and correlations for each season reflect the
seasonal climatic cycles combined with the impacts of mid-
latitude weather systems on the Korean peninsula.
The second EOT was also computed using the procedures
discussed above. Figure 4 shows the resultant patterns for the
leading two EOTs of summer and winter extreme and mean
streamflow. Spatial patterns of the EOTs for extreme and
mean streamflow vary with the seasons (Fig. 4). The locations
of BPs for extreme streamflow are similar to those for mean
streamflow in summer, in the upstream of the Han River
basin. During winter, the BPs of extreme EOTs shift south-
ward, but more so for the mean streamflow to the southern-
most part of the Nakdong River basin. This is particularly
clear in summer, shown in Fig. 4(a) and (e), and winter, in
Fig. 4(c) and (g), in which the BPs of the EOTs for streamflow
are plotted for the upstream area of the Han River and the
downstream area of the Nakdong River, respectively. In other
seasons, such as spring and autumn (not shown), three out of

eight pairs of leading patterns are in the same locations for
the centre of the extreme and mean leading EOTs.

As shown in Table 1, the locations of the BPs indicate that
out of eight extreme streamflow EOTs, i.e. two EOTs for each
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Figure 4. Maps of the locations of each EOT and the correlations between EOT
time series (i.e. base point time series) and time series at all other grid points for
the first and second leading EOTs of (a)–(d) extreme streamflow and (e)–(h)
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of the four seasons, three are identified as Han River mode,
three as Nakdong River mode, and two as Youngsan River
mode. For the mean streamflow, the numbers are, respec-
tively, three, two and three. In detail, the Han River mode for
extreme EOTs consists of one upstream mode and two down-
stream modes, according to the BPs of the leading mode,
while for the mean EOTs there are two upstream modes
and one downstream mode. Also, for extreme EOTS, the
Nakdong River mode comprises two upstream modes and
one downstream mode, and the Youngsan River mode is
divided into one upstream mode and one downstream
mode. For mean EOTs, the Nakdon River mode has no
upstream modes and two downstream modes, and the
Youngsan River mode is divided into one upstream and two
downstream. The spatial structure of the EOTs for extreme
and mean streamflow thus indicates an upstream mode in
summer for the Han River and a downstream mode in winter
for the Nakdong River. In addition, there is nationwide spa-
tial homogeneity in leading extreme and mean streamflow
modes in the summer compared to other seasons with more
widespread nationwide patterns, while the only leading
extreme streamflow shows nationwide spatial homogeneity
in the winter. Total spatio-temporal variance associated with
the first and second EOTs varies with seasons, as shown in
Table 1. The values of explained variance for each extreme
(mean) EOT are between 45.3% (52.1%) and 55.2% (60.1%)
for leading EOTs (EOT-1), whereas those for the following
EOTs decrease to about 17.2% (18.2%) at the second EOTs
(EOT-2). The explained variance with the EOTs for extreme
streamflow is lower than that with the leading mean EOTs for
all seasons, since extreme streamflow is likely to show inho-
mogeneities as opposed to mean streamflow showing more
consistent variation (King et al. 2014).

Figure 5 shows the temporal patterns for the leading
EOTs of extreme and mean streamflow based on the
7-year running mean curve used by Klingaman et al.
(2013). As shown in Table 1, four out of eight streamflow
EOTs exhibit notable patterns such as increasing/decreas-
ing trends and inter-decadal oscillations, while temporal
cycles of the mean streamflow EOTs show three notable
trends. The decreasing trends of these EOTs are seen for

the spring (MAM), while inter-decadal variations of
streamflow EOTs occur in winter (DJF). The temporal
patterns of the leading EOTs represent increasing trends
in summer (JJA) and inter-decadal oscillation in winter. As
a general result, many EOTs have extreme and mean
streamflow signals throughout the Korean peninsula with
noticeable influence coverage. This indicates that the pro-
posed climate indices in relation to large-scale circulation
processes drive spatio-temporal variations of extreme and
mean streamflow throughout the Korean peninsula.

Teleconnections between EOTs and climate indices

Correlation coefficients for each EOT with various CIs are
shown for extreme and mean streamflow in Table 2.
Additionally, regression maps for the re-analysis field of
atmospheric circulation and the reconstructed SST dataset
were plotted depending on each EOT pattern, as shown in
Fig. 6. The regression analysis demonstrates noticeable cli-
matic links between the two datasets, which show consistent
patterns with the spatial structure commonly documented in
the climate impact papers investigated.

Correlation coefficients were computed for the previously
extracted EOTs and three ENSO indices (ONI, MEI, SOI).
Table 2 shows that the ONI is negatively correlated with
EOT-1 for extreme streamflow in summer and autumn
(SON), while the leading EOT modes for winter streamflow
are positively correlated with the tropical ENSO forcing. The
MEI-related EOT correlations are similar to the results of the
ONI time series. The SOI time series exhibit positive correla-
tions with EOT-1 for extreme streamflow in summer and
autumn, whereas the leading EOT modes for winter stream-
flow are negatively correlated with the ENSO indices. In
spring, the ENSO-related climate signals are weaker than
those for other seasons (Table 2). This reflects the fact that
the far-reaching effect of the warm and cold phases of ENSO
on regional climate variables is not significant in spring. Also,
the correlations are weaker in warm seasons than in cold
seasons because the ENSO is not in mature or decay phases.
Additionally, the second EOTs exhibit significant correlations
in the Han and Nakdong river basins. The results from the

Table 1. Explained variance (VE) for the two leading EOTs of seasonal extreme and mean streamflow, with the centre of the leading mode given in parentheses: HU
(Han River upstream mode), HD (Han River downstream mode), NU (Nakdong River upstream mode), ND (Nakdong River downstream mode), YU (Youngsan River
upstream mode), YD (Youngsan River downstream mode). IC, DC and ID denote increasing, decreasing and inter-decadal temporal cycles, respectively. NW:
nationwide spatial patterns. MAM: March–April–May (spring), JJA: June–July–August (summer); SON: September–October–November (autumn); DJF: December–
January–February (winter).

Mode EOT-1 EOT-2

VE (%) Spatial Temporal Remarks VE (%) Spatial Temporal Remarks

Extreme streamflow
MAM 45.3 HD - - 21.1 NU DC
JJA 55.2 HD IC NW 19.2 YD -
SON 52.1 HU - - 17.4 NU -
DJF 51.4 ND ID NW 17.2 YU ID

Mean streamflow
MAM 53.4 YD - - 20.2 HD DC
JJA 52.1 HU IC NW 22.4 ND -
SON 56.2 HU - NW 18.2 YD -
DJF 60.1 ND ID - 26.1 YU -

HYDROLOGICAL SCIENCES JOURNAL 7



above correlation analysis imply that the extreme phases of
ENSO forcing have an effect on the variability of the extreme
streamflow anomaly in the Han and Nakdong river basins.
The mean streamflow EOTs also are significantly correlated
with the tropical ENSO forcing. The three ENSO indices
exhibit slightly lower correlations with the mean streamflow
EOTs than with the EOT modes for extreme streamflow.

Climatic impacts of the ENSO forcing on the streamflow
EOTs were also detected in regression fields. As shown in Fig.

6(a) and (b), highly regressed streamflow EOTs are modu-
lated by the typical ENSO phase showing warmer than nor-
mal SST across the tropical Pacific Ocean. Warmer than
normal signals for extreme and mean streamflow EOTs pre-
sent the typical SST patterns of ENSO phase. Additionally,
regression maps of MSLP on to the leading EOTs for winter
extreme and mean streamflow (Fig. 6(c) and (d)) describe
similar atmospheric circulation patterns to the tropical ENSO
forcing, where low and high pressures are located in eastern
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and western areas of the North Pacific, respectively. This
phase of the atmospheric circulation, which was defined as
the Pacific–East Asian teleconnection (PEA) by Wang et al.
(2000), promotes variability of extreme and mean streamflow
over the Korean peninsula during the winter season of ENSO
years.

Correlation coefficients for EOTs and monsoon activity
were computed using the WMPMI. As shown in Table 2,
the EOTs are negatively correlated with the WMPMI time
series. The positive phase of the WNPMI modulates a below-
normal streamflow anomaly over the Korean peninsula. In
contrast, the above-normal streamflow anomaly in winter is
attributed to the negative WNPMI phase (Wang et al. 2000).
Additionally some notable relationships between the mon-
soon variability and lower-order EOT time series were
found in some seasons. These overall results indicate that
the monsoon activity modulates the extreme streamflow
over the Korean peninsula by increasing or decreasing with
respect to the seasons. The mean streamflow EOTs also exhi-
bit similar results in the correlation analysis, except for addi-
tional strong correlation between the monsoon index and the
EOT-2 for mean streamflow in autumn. Monsoon variability

shows higher correlation coefficients with the leading EOTs
for mean streamflow than extreme streamflow EOTs.

For seasonal tropical cyclone variability, the TCI was esti-
mated for the index area, as shown in Fig. 2. Correlation
analysis was performed for the TCI time series and the lead-
ing EOTs for extreme and mean streamflow from spring to
autumn. Table 2 shows that the TCI has significant correla-
tion with two out of six extreme streamflow EOTs. This
indicates that both increases and decreases of tropical cyclone
events passing through the index area have an effect on the
enhancement and suppression of the extreme streamflow
anomaly. On the other hand, three out of six mean stream-
flow EOTs are significantly correlated with the TCI time
series. From the findings of the correlation analysis, there
are three significant positive correlations between TCI and
mean streamflow EOTs, two of which are seen in the
upstream area of the Han River basin. The leading EOTs for
autumn streamflow show the strongest positive correlation
with the TCI time series. That is, during autumn, the leading
EOTs in the upstream of the Han River basin are positively
correlated with tropical cyclone activity. The general findings
of the above analysis are consistent with the previous findings

Table 2. Correlation coefficients of the two leading EOTs of seasonal extreme and mean streamflow with climate indices. ONI: Oceanic Niño Index; MEI: Multivariate
ENSO Index; SOI: Southern Oscillation Index; WNPMI: Western North Pacific Monsoon Index; TCI: Tropical Cyclone Index. Bold indicates correlations that are
statistically significant at the 5% level.

Mode Extreme streamflow Mean streamflow

ONI MEI SOI WNP TCI ONI MEI SOI WNP TCI

EOT-1
MAM 0.07 0.14 –0.08 0.21 0.24 0.05 0.05 −0.12 0.25 0.21
JJA −0.31 −0.26 0.25 0.24 0.17 −0.27 −0.34 0.29 0.22 0.28
SON −0.27 −0.33 0.24 0.09 0.34 −0.26 −0.27 0.25 0.10 0.31
DJF 0.42 0.35 −0.41 −0.30 - 0.35 0.38 −0.26 −0.32 -

EOT-2
MAM −0.03 −0.04 −0.09 −0.05 0.11 −0.03 −0.04 −0.09 −0.14 0.06
JJA −0.15 −0.14 0.19 −0.28 −0.20 −0.15 −0.28 0.19 −0.23 −0.12
SON 0.29 0.28 −0.22 0.24 0.31 0.17 0.12 −0.22 0.37 0.30
DJF 0.21 0.15 −0.13 0.01 - 0.11 0.15 −0.03 0.14 -
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Figure 6. Maps of (a, b) SST and (c, d) MSLP regressed on to winter (DJF) EOT-1 of extreme (upper) and mean (lower) streamflow.
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of Cha et al. (1999), who reported a significant correlation
between tropical cyclones and seasonal climatic variabilities
over the Korean peninsula.

Predictability of streamflow

Despite the fact that it is worthwhile to extend the under-
standing of the potential CI effects for streamflow variabil-
ity, it is also important to improve predictability of this
variability. The previously performed correlation analysis
did not take into account any time lags between the EOT
time series for extreme and mean streamflow and various
CIs. If the various CIs applied here have a significant
impact on the streamflow anomalies over South Korea,
then it is worthwhile to quantify the degree of this influ-
ence by a cross-correlation analysis between the two time
series. To provide not only an improved predictability of
potential sources of prediction skill, but also further under-
standing of the far-reaching response of the CIs to the
mid-latitude streamflow variability, the lead–lag correlation
was quantified by correlating the seasonal EOTs for the
extreme and mean streamflow with different time lag CIs
that are set up from lag-0 to lag-5 on a seasonal basis. It
was attempted to capture a signal period showing signifi-
cant correlation of the streamflow EOTs with the CIs along
the entire preceding year of the events for which stream-
flow patterns, CIs and the time lag are substantially asso-
ciated with each other. The overall correlation coefficients
were calculated at 0.05, 0.10 and 0.15 significance levels for
station-based analysis for better comparison.

Cross-correlation analysis was carried out for the lead-
ing EOTs and the aforementioned three ENSO indices
(ONI, MEI, SOI) with varying lead times. The EOT-1 for
winter extreme streamflow has a positive correlation with
the ONI from summer to winter, whereas the summer to
autumn ONI time series are negatively correlated with the

leading EOTs for the autumn extreme streamflow anomaly.
The results of the MEI-related EOT cross-correlation ana-
lysis are similar to those of the ONI time series with the
lagged signals two seasons in advance. The SOI time series
from autumn to winter are negatively correlated with EOT-
1 for winter extreme streamflow, while the leading EOT
modes for autumn streamflow are positively correlated with
the SOI time series from summer to autumn.

As shown in Table 3, significant correlation was not found
in spring. This reflects that the ENSO-related streamflow
signals are not significant during spring. Also, lagged correla-
tion is stronger in the cold season than in the warm season
because the ENSO phase is mature or fully developed during
the cold season. The findings of the above analyses imply that
the teleconnection between the tropical ENSO forcing and
extreme streamflow variability over the Korean peninsula is
detectable with two seasonal lags. In addition, the mean
streamflow EOTs have significant lagged correlation with
ENSO indices. The three ENSO indices have slightly lower
correlation coefficient values with the extreme streamflow
EOTs than those with the mean streamflow EOTs, but the
two results indicate a similar seasonal pattern. The lagged
responses of the leading EOTs for mean streamflow to the
ONI, MEI and SOI indices similarly reflect those of the first
EOTs for extreme streamflow.

To investigate the potential sources of predictability of
the seasonal streamflow anomaly, the SST gridded dataset
of ERSST.v4 was regressed on to the previously extracted
EOT patterns with varying lead seasons. Figures 7 and 8
show that the winter lag-0 to lag-2 regression maps, regres-
sing summer to winter SSTs on to winter leading EOTs,
have potential predictability with positive signals, which
extend to seasons prior to summer. Also, the lag regression
of the SSTs on to the autumn and summer EOTs for
extreme streamflow indicates notable concurrent and
lagged signals. The autumn lag-1 regression, regressing

Table 3. Cross-correlation coefficients of the leading EOTs of seasonal extreme and mean streamflows with climate indices. The bold, single underlined bold, and
double underlined bold indicate correlations that are statistically significant at the 0.15, 0.10 and 0.05 levels. + indicates the following year.

Mode Seasonal CIs for extreme streamflow Seasonal CIs for mean streamflow

MAM JJA SON DJF MAM JJA SON DJF

Lag EOT for Oceanic Niño Index (ONI)
MAM 0.07 - - - 0.05 - - -
JJA 0.18 −0.31 - - 0.15 −0.27 - -
SON 0.14 −0.30 −0.27 - 0.10 −0.32 −0.26 -
DJF −0.07 0.26 0.41 0.42 −0.12 0.26 0.44 0.35
MAM+ 0.26 0.20 0.23 0.26 0.25 0.18 0.23 0.22
JJA+ 0.08 −0.12 0.28 −0.02 0.16 −0.24 0.20 −0.10

Lag EOT for Multivariate ENSO Index (MEI)
MAM 0.14 - - - 0.05 - - -
JJA 0.21 −0.26 - - 0.21 −0.34 - -
SON 0.10 −0.29 −0.33 - 0.10 −0.29 −0.27 -
DJF −0.04 0.25 0.26 0.35 −0.04 0.26 0.29 0.38
MAM+ 0.16 0.24 0.20 0.25 0.16 0.21 0.19 0.22
JJA+ −0.10 −0.20 0.18 −0.12 −0.25 −0.20 0.18 −0.12

Lag EOT for Southern Oscillation Index (SOI)
MAM −0.08 - - - −0.12 - - -
JJA 0.20 0.25 - - 0.18 0.29 - -
SON −0.08 0.29 0.24 - −0.12 0.33 0.25 -
DJF 0.16 −0.22 −0.38 −0.41 0.20 −0.24 −0.39 −0.26
MAM+ −0.15 −0.16 −0.23 −0.27 −0.19 −0.18 −0.22 −0.24
JJA+ 0.10 0.14 0.21 0.08 0.12 0.08 0.16 0.14
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SSTs from previous seasons on to autumn leading EOTs,
has a notable effect on the SST-related predictability, with
negative regression signals. The significant signals are
exhibited until seasons prior to summer, and then dimin-
ish. However, from a closer inspection of Fig. 7 and 8,

potential sources of predictability are not clearly detected
through spring–winter SST over the Indian Ocean.

In winter, there are asymmetric patterns in the ENSO-
related streamflow signals. Figure 9 describes the asym-
metric tendency using the concurrent and lagged SST
regression on to the winter EOTs for wetter and drier
than average streamflow anomalies. The result of com-
parative analysis suggests that the SST-related predictabil-
ities for above-normal streamflow are stronger than those
for below-normal streamflow in winter. The SST-related
predictable signals for the streamflow anomaly in spring
are lower due to the weaker relationship between the SST
anomaly and streamflow variability in this season.
Potential predictability based on lag regression analyses
extends to the EOTs for mean streamflow. The outcomes
of the potential predictability analysis above provide
important implications for seasonal forecasting for hydro-
logical extreme events such as floods and droughts.

 (a) MAM SST

 (b) JJA SST

(c) SON SST

 (d) DJF SST

Figure 7. Maps of SSTs for each season: (a) spring (MAM), (b) summer (JJA), (c)
autumn (SON) and (d) winter (DJF), regressed on to DJF extreme EOT-1.

(a) MAM SST

 (b) JJA SST

(c) SON SST

Figure 8. Maps of SSTs for each season: (a) spring (MAM), (b) summer (JJA) and
(c) autumn (SON), regressed on to SON extreme EOT-1.
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Discussion

The previous sections described empirical and statistical
approaches for detecting a significant far-reaching effect
of seasonal SST fluctuations on leading EOT patterns for
extreme and mean streamflow, and showed that winter
streamflow EOTs are positively correlated with the tropi-
cal Pacific thermal forcing, whereas autumn streamflow
EOTs show a negative response to the air–sea coupled
circulation variability over the Pacific Ocean. That is,
wetter than average streamflow anomalies are observed
in the winter of warm ENSO event years, while drier

than average streamflow departures exhibit in the autumn.
In contrast, during cold ENSO event years, winter stream-
flow anomalies show negative signals, whereas autumn
streamflow exhibits a positive anomaly. Figure 10
describes the comparative interpretation for the opposite
patterns above using the seasonal streamflow time series
over the Korean peninsula. The symbols represent the
standardized indices for wetter (drier) than average
streamflow in winter and drier (wetter) than average
streamflow in autumn of the warm (cold) ENSO event
years. Distribution of the scatter plots for warm event
years is concentrated on the upper left part, whereas in
the cold event years, the points are distributed on the
lower right side. This shows the opposite tendency of
the above- and below-normal streamflow anomalies in
winter and autumn of extreme event years.

What causes the anomalous streamflow over the
Korean Peninsula can be explained by circulation anoma-
lies associated with the tropical thermal forcing based on
the composite difference of circulation fields. Northerly
winds cut off the moisture supply from the equator
towards the Korean peninsula, resulting in drier than
average streamflow activity. In addition, the drier than
average streamflow anomalies in autumn are attributed to
the suppression of the second rainy season by a decline
in typhoons and tropical storms over East Asia in the
warm phase years, while wetter than average streamflow
anomalies in autumn of the cold phase years are asso-
ciated with the strengthening of the second rainy season
caused by more frequent tropical cyclones. In contrast,
during the winter season, anomalous southwesterly winds
prevail over the Korean peninsula and the northwestern
part of the Philippine Sea anticyclone, reflecting damping

Figure 9. Maps of SSTs (from top to bottom) of spring (MAM) to winter (DJF)
regressed on to DJF extreme EOT-1for wetter-than-average (left) and drier-than-
average (right) extreme values only. -3 -2 -1 0 1 2 3
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Figure 10. Comparison of standardized indices for below (above) normal
streamflow in autumn and above (below) normal streamflow in winter during
the warm (cold) phase of ENSO using the streamflow time series (Fall
is autumn).
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phases of East Asia winter monsoon or a warmer than
normal winter. The anomalous southerly wind transports
moist and warm air towards the Korean peninsula.
A wetter than normal climate over the Korean peninsula
is attributed to this northward transport.

The present findings from the empirical and statistical
analyses are generally consistent with those from recent
investigations for the climatic impacts of large-scale CIs
on hydro-meteorological variables over the Korean penin-
sula. Cha et al. (1999) investigated climatic impacts of the
tropical thermal forcing on various climate variables over
the Korean peninsula, e.g. atmospheric circulation, preci-
pitation, temperature. They suggested that extreme phases
of the ENSO cycle have an effect on the seasonal varia-
bility of the precipitation anomaly with increase or
decrease of its magnitude. Also, Shin (2002) found below
normal precipitation anomalies in autumn during the
warm phase of ENSO event years. This finding is fairly
consistent with the present result of drier autumn with
the ENSO-related streamflow signal season identified by
the correlation and regression analyses for extreme and
mean streamflow anomalies. Thus, the outcomes of this
study provide additional confirmation for the previously
reported climatic links between large-scale CIs and cli-
mate variation in the Korean peninsula, which describe
a wetter (drier) winter in the warm (cold) event years and
a drier (wetter) autumn in the extreme event years.

Summary and conclusions

In this study, an empirical approach by the EOT decomposi-
tion technique was applied to extreme and mean streamflow
data to identify a climatic impact of large-scale CIs on stream-
flow over the Korean peninsula. In addition, potential pre-
dictability of streamflow patterns from the seasonal SST
anomalies was demonstrated using correlation and regression
analysis between the tropical thermal forcing and the leading
EOTs.

Through the EOT process, the spatio-temporal features
of extreme and mean streamflow over the Korean penin-
sula present an upstream mode with increasing trend
during summer for the Han River and a downstream
mode with inter-decadal time scales in winter for the
Nakdong River. In addition, both leading extreme and
mean streamflow modes show notable spatial homogene-
ity for the summer, with more widespread coherent
streamflow patterns, while only the leading extreme
EOTs show nationwide spatial homogeneity in winter.
However, the leading extreme EOTs explain less variance
in streamflow variability than those of mean streamflow.
From the correlation analysis, the leading EOTs for
extreme streamflow are negatively correlated with the
ONI and MEI time series in summer and autumn,
whereas the leading EOTs for winter are positively corre-
lated with the ENSO forcing. The SOI time series exhibit
positive correlations with EOT-1 for extreme streamflow
in summer and autumn, while the leading EOT modes
for winter streamflow are negatively correlated with the
ENSO indices. The three ENSO indices exhibit slightly

lower correlations with the mean streamflow EOTs than
those with the EOT modes for extreme streamflow.
Correlation coefficients between the leading EOTs and
monsoon and tropical cyclone activities suggest that the
leading EOTs for winter streamflow are negatively corre-
lated with the monsoon indices, and the leading EOTs for
autumn streamflow are positively correlated with the TCI
time series. As a general result from the empirical and
statistical analyses, the leading EOTs for autumn and
winter extreme streamflow show the SST-related stream-
flow predictability one to two seasons in advance. Also,
the SST-related predictability for above-normal stream-
flow is stronger than that for below-normal streamflow
in winter.

The methodological approaches described here do not
take into account the types of tropical ENSO phenomena,
which are categorized into classical El Niño and El Niño
Modoki according to the location of peak SST anomalies.
Further investigation of the climatic responses of the two
types of ENSO forcing on hydro-meteorological variables
in the tropics and extra-tropics needs to be performed in
more detail. The overall findings of this study stress the
importance of extending the remote climatic impacts of the
tropical thermal forcing to South Korean streamflow and
motivate additional comparative analysis on how the two
types of ENSO forcing may be influencing mid-latitude
streamflow variability.
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