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Abstract

Examining the physical mechanisms through which large-scale climate indicators, e.g., El Nifio—Southern Oscillation and Indian
Ocean Dipole, affect hydroclimatic variables in the tropics and extratropics is a forefront scientific challenge. We examined
climatic teleconnections between large-scale climate indices and temperature variability over South Korea. To do this, we
calculated not only leading patterns of observed monthly mean and extreme temperature through an empirical orthogonal
teleconnection (EOT) decomposition technique but also statistical correlations on a monthly basis using cross-correlation and
lag regression analyses for the leading modes and global atmospheric circulation dataset. As a result, the spatial pattern of the
leading EOT modes for mean (extreme high) temperature represents an eastern (southern) coastal mode for boreal summer and a
northern (middle) inland mode in boreal winter, while extreme low EOTs exhibit a northern inland mode in summer and a
western coastal mode in winter. The temporal evolution of the leading EOT modes exhibits a mostly increasing trend and an
interdecadal oscillation. The leading EOT modes of mean temperature explain more variance than those of extreme temperature
during warm and cold seasons. The findings from this study illustrate that tropical ENSO forcing has a coherent association with
August and December temperature patterns, while the Indian Ocean Dipole is identified as a driver for temperature variability
during fall season. The monsoon circulation over the western North Pacific also exhibits a significant negative correlation with
the December temperature EOTs. The leading EOTs for October temperature exhibit the positive correlation with the tropical
cyclone variability, while the leading EOTs for mean and extreme high temperature exhibit significant negative correlations with
the snow depth over northeastern Eurasia in November. The leading patterns of the August and December mean temperature time
series are predictable at up to 5-month lead time from the tropical Pacific sea surface temperatures (SSTs), while a predictable
response from Indian Ocean SSTs was detected at up to 4-month lead time.

1 Introduction indicators can produce major extremes such as unusually severe

cold weather and abnormal heat waves in many regions of the

South Korea experiences spatiotemporal variability of temper-
ature. Temperature varies with fluctuations of various global-
regional-scale climate indices (CIs), such as the El Nifio—
Southern Oscillation, Indian Ocean Dipole, and western North
Pacific monsoon activity. These large-scale climate indicators
have been widely studied because the extreme phases of these
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globe. In global- and regional-scale studies, significant relation-
ships have been reported between the large-scale Cls and hy-
drometeorological variables such as temperature, precipitation,
and streamflow in the tropics and extratropics.

The effects of the El Nifio—Southern Oscillation (ENSO)
on temperature variability on a global and regional scale have
been previously documented. Since the first investigation of
Walker (1923) on the influence of the Southern Oscillation
(SO) on rainfall fluctuations in the Indian monsoon, many
recent global-scale studies have documented climatic links
between ENSO tropical ocean sea surface temperature vari-
ability and global temperature and precipitation anomaly pat-
terns (e.g., Bradley et al. 1987; Kiladis and Diaz 1989; Halpert
and Ropelewski 1992). In addition, regional-scale studies in
low and middle latitudes (e.g., van Loon and Madden 1981;
Ropelewski and Halpert 1986; Redmond and Koch 1991;
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Kiladis and van Loon 1988) have revealed statistically signif-
icant correlations between regional temperature and ENSO
forcing. For example, Ropelewski and Halpert (1986) and
Kiladis and Diaz (1989) revealed that North American tem-
perature has a tendency for significant winter temperature
anomalies during the ENSO years.

Meanwhile, the Indian Ocean Dipole (IOD) has been con-
sidered as one of the key ClIs of climate variability for the Indian
and Pacific Rim countries. Some studies of the IOD have noted
the distinct behavior of the IOD-related temperature anomalies
relative to ENSO and other phenomena. Saji and Yamagata
(2003) described the significant impact of 10D thermal
forcing on large-scale climate anomalies through regres-
sion and correlation analyses and revealed that the western
tropical Indian Ocean regions show a clear pattern of
warm temperature anomalies, while the eastern regions
of equatorial Indian Ocean exhibit cool anomalies. The
IOD influence on temperature also extends to other re-
gions. For example, Ziao et al. (2002) conducted a diag-
nostic study using correlation analysis between an 10D
index and the temperature data of 160 observation stations
in China and showed a significant correlation of Indian
Ocean SST with winter temperature in South China.

Several recent studies for the Korean peninsula have also
suggested statistically significant responses of temperature
variability to large-scale Cls. In an investigation of Korean
climate variations for ENSO years, Cha et al. (1999) examined
climate variations on the Korean peninsula during extreme
phases of ENSO using synoptic data and ECMWF (ERA-
15) grid data, and showed that the temperature over Korea in
El Nino (La Nina) year is lower (higher) than normal in sum-
mer and higher (lower) than normal in winter. Lee and Julien
(2015) revealed that cold and warm ENSO phases are the
dominant drivers of temperature fluctuations over South
Korea based on harmonic and lag correlation analysis. Ha
(1995) applied correlation analysis to interannual variability
of Seoul wintertime air temperature patterns and documented
a prominent teleconnection with tropical sea surface tempera-
tures (SSTs). Ahn et al. (1997) investigated the climatic link
between the winter and summer air temperature over five
metropolises in South Korea and fluctuations of western-
central Pacific SST, and provided evidence of teleconnections
between SST anomalies in a particular region of the equatorial
Pacific Ocean and regional climate variables. Kang (1998) in-
vestigated the correlation of ENSO with Korean climate vari-
ability using multichannel singular spectrum analysis and
demonstrated significant influences of El Nifio and La Nifia
on winter climate in Korea. In a diagnostic investigation
using harmonic analysis on the teleconnection between South
Korean temperature and extreme phases of the SO, Lee (1998)
revealed that the temperature patterns are significantly correlat-
ed with SST anomalies on a monthly basis. Cha (2007) inves-
tigated the relationship between ENSO and IOD mode events
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and climate variations on the Korean peninsula, and indicated
that monthly mean temperature in 11 stations in Korea was
higher in winter during EI Nifio years.

As described above, almost all aforementioned regional
and global approaches concentrate on seasonally based tem-
perature variations, and relatively little attention has been giv-
en to the far-reaching effects of climate indicators on monthly
mean and extreme temperature variability. Also, these studies
have focused mostly on the global-scale remote influences of
large-scale modes of climate variability through perturbations
to the large-scale ocean-atmospheric circulations, and less on
the influence of both global and regional Cls on regional- and
local-scale temperature. Hence, there has been less focus in
the literature concerning the climate impacts of both global
and regional CIs on temperature variability. However, the in-
fluence of CIs on the East Asian climatology is not limited to
the global-scale remote Cls, highlighting a gap in knowledge
that requires the need for more information about the overall
features of the thermodynamic impacts modulated by various
CIs. Thus, it is necessary to investigate systematically how
both global and regional CIs affect mean and extreme temper-
ature variability in East Asian regions. In a global-scale study,
Halpert and Ropelewski (1992) revealed a consistent climatic
link between ENSO forcing and temperature patterns in re-
gions across the world, with indication of a negative signal
over the East Asia. From visual inspection of the station loca-
tion map in their paper, a significant CI-temperature relation-
ship over East Asia cannot be completely discerned because
of station coverage limitations. In the present study, we are
motivated to expand on previous work by diagnosing the in-
fluences of global and regional CIs on temperature variability
over South Korea using an expanded surface dataset that can
resolve local and regional features.

The present study aims to (1) investigate the spatial pattern
and temporal behavior of mean and extreme temperature
anomalies over South Korea through an empirical orthogonal
teleconnection (EOT) decomposition method, (2) identify sig-
nificant teleconnections between these leading EOT modes of
Korean temperature variability and climate indicators that rep-
resent large-scale climate fluctuations and regional synoptic
circulations, and (3) demonstrate the predictability of mean
and extreme temperature patterns through knowledge of sea
surface temperature (SST) anomalies, using regression of the
EOT modes onto the SST fields at varying lead times.

2 Temperature data and climate indices

The monthly temperature gridded dataset was derived from
station-based observed temperature data covering the entire
Korean peninsula. The observational data were obtained from
the Korea Meteorological Administration (KMA), an affiliat-
ed organization of the Ministry of Environment (MOE). The
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total temperature time series cover more than 20 ENSO events
spanning the time period 1904 through 2015. The observa-
tional records are selected only if they have less than a month
of missing data, and each monthly temperature data record is
required to cover at least 43 years of observation between the
years 1973 and 2015, thus spanning at least ten ENSO epi-
sodes. Using these criteria, 60 stations were used in our anal-
ysis as shown in Fig. 1. In order to estimate high-resolution
temperature data with a regular-spaced grid, Parameter-
elevation Regression on Independent Slope Model (PRISM)
developed by Daly et al. (1994) was employed for the obser-
vational temperature data. This model is an independent mod-
el for each target grid which can estimate target grid value by
weighting each station differently based on the similarity in
elevation, distance, topographic facet, and coastal proximity
between observational station and target grid. Using this

method, we produced grid data (0.25° x 0.25°) of mean and
extreme temperature on a monthly basis from 1973 to 2015.
For comparative analysis between large-scale climate indi-
cators and temperature EOT patterns, several Cls were applied
in this present study. Taking into account both atmospheric
and oceanic fluctuations, we employed the Multivariate
ENSO Index (MEI) as an indicator for tropical ENSO forcing.
The MEI is derived from the leading modes calculated by an
EOF decomposition technique for several air-sea variables
over the tropical Pacific Ocean, including SST, SLP, surface
air temperature, cloudiness fraction, and zonal-meridional sur-
face wind (NOAA-Earth System Research Laboratory,
Physical Sciences Division). Because it integrated both atmo-
spheric and oceanic factors related to ENSO, the MEI may be
considered as a better indicator of ENSO relative to other
single-variable ClIs (Karabork and Kahya 2007). In this
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analysis, we employed the standardized bimonthly MEI
values regularly updated by the Climate Diagnostic Center
(CDC) that start in December 1949—January 1950. As an in-
dicator of the IOD, we employ the Dipole Mode Index (DMI)
similar to the empirical approach by Saji et al. (1999). This
index that we obtain from the NOAA Climate Prediction
Center represents the magnitude of the anomalous SST gradi-
ent from the southeastern (90° E-110° E, 10° S—0°) to the
western (50° E-70° E, 10° S—10° N) near-equatorial Indian
Ocean and is derived from the Hadley Centre Global Sea Ice
and SST (HadISST) dataset. In the current analysis, the DMI
index was employed in cross-correlation analysis as well as
partial correlation analysis with the EOT time series to remove
the linear influence of the ENSO forcing on temperature
variability.

To confirm the relationship between the large-scale climate
variation and the EOT modes for mean and extreme temper-
ature, we employ SST and atmospheric circulation datasets.
For SST data, the Extended Reconstructed SST (ERSST.v4)
datasets (Huang et al. 2014) are used in this study due to the
fact that the SST in ERSST.v4 exhibits a substantially more
realistic El Nifio/La Nifia behavior in the period of the record
when data are sparse and therefore a better estimate of long-
term variability in climate dataset (Huang et al. 2014). The
ERSST is a global monthly SST dataset calculated based on
the International Comprehensive Ocean and Atmosphere
Dataset (ICOADS), which is widely used in global- and
regional-scale studies. It is provided on a 2.0° x 2.0° grid that
uses statistical techniques to provide global coverage and
spans the period from January 1854 to the present. The global
atmospheric circulation fields are obtained from the reanalysis
derived from the joint project of the National Centers for
Environmental Prediction-National center for Atmospheric
Research (NCEP-NCAR), which are available on NOAA-
Earth System Research Laboratory, Physical Sciences
Division. This dataset is continually updating to produce
fields on a 2.5° x 2.5° grid using a state-of-the-art numerical
modeling system for prediction and data assimilation with
continuously entrained observations. The monthly NCEP-
NCAR reanalysis dataset is available for the period from
1948 to present.

Links between temperature EOTs and monsoon circulation
variability are investigated using the WNPMI index over
western North Pacific. Using the methodological approach
in Wang et al. (2013), the WNPMI index is calculated based
on the difference between 850-hPa zonal winds (U850) in the
region 5-15° N, 100-130° E and the region 20-30° N, 110-
140° E. The former region represents the intensity of the mon-
soon westerlies from Indochina Peninsula to the Philippines,
while the latter indicates the magnitude of the easterlies over
the southeastern part of the WNP subtropical anticyclone. The
monthly Tropical Cyclone Index (TCI) quantifying the tropi-
cal cyclone activity is calculated based on the tropical cyclone
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tracks recorded by the IBTrACS (Knapp et al. 2010) and the
National Typhoon Center (NTC) of KMA. For the period
from 1973 through 2015, the TCI is obtained from the fre-
quency of tropical cyclones passing through the index area as
shown in Fig. 2. The monthly Eastern Eurasian Snow Index
(EESI) is employed to examine the impact of the snow depth
over northeastern Eurasia on the temperature pattern of the
Korean peninsula. The EESI is derived from area-mean time
series of snow depth over Eastern Eurasian north of the Korea-
Japan (EENKIJ; 46°—60° N, 120°-140° E) as estimated by
Kripalani et al. (2010).

3 EOT and statistical analyses

The general methodology used in this present analysis, which
follows the comprehensive empirical approach by Van den
Dool et al. (2000), can be briefly summarized as follows and
is described in more detail below. The first step is to convert
the original data to a monthly time series for mean and ex-
treme temperatures. Then, empirical orthogonal
teleconnection (EOT) techniques are performed for identifica-
tion of the spatiotemporal variability of mean and extreme
temperatures over South Korea. The next step is to conduct
both cross-correlation analysis and linear regression analysis
to quantify the teleconnection between global and regional
CIs and principal temperature modes. The final step is to per-
form a lag regression analysis using the regression of SST data
onto EOT modes with varying lead times to examine the po-
tential predictability of mean and extreme Korean tempera-
tures relative to Pacific tropical thermal forcing.

In this present analysis, extreme temperature time series are
generated following the recommendation of the Climatic
Variability and Predictability (CCI/CLIVAR) panel. The
monthly highest/lowest five consecutive day average temper-
ature is employed to define extreme high/low temperatures.
During the period from 1973 to 2015, the monthly mean and
extreme temperature time series are calculated for each sta-
tion. As mentioned above, only KMA gauging stations in
which the time series of the mean and extreme temperature
have less than a month of missing data and the monthly tem-
perature data cover at least 43 years of observations are used in
this study.

Prior to the EOT analysis to examine the Cl-temperature
teleconnection, we converted the temperature data to a
Standardized Temperature Index (STI) formulated for effec-
tive assessment of wet and dry condition as described by
McKee et al. (1993) and Lee and Julien (2016, 2017). The
STI is calculated as follows. First, the monthly temperature
data are transformed into a time series fitted to a particular
probability distribution function for each month. Then, the
fitted frequency distribution function is converted to a cumu-
lative distribution function (CDF) using a standard normal
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distribution based on an equal-probability condition. Finally,
the STI dataset which is used in the EOT process is processed
to have zero mean and unit variance using the above CDF. The
STl is very straightforward to estimate because one variable is
used as input data, and is easy to compare from a spatial
and temporal viewpoint since the index is presented as
dimensionless.

For the purpose of investigating spatiotemporal patterns of
mean and extreme temperature over South Korea, we employ
the empirical orthogonal teleconnection (EOT) decomposition
technique reported by Van den Dool et al. (2000), rather than a
classical empirical orthogonal function (EOF) analysis. Due to
the fact that EOT decomposition technique is orthogonal in
one either space or time, while EOF is orthogonal in both
space and time, EOT method provides a potentially more
intuitive interpretation of the resulting patterns. King et al.
(2014) examined Australian monthly precipitation variability
through EOT decomposition analysis and found that the first
December EOT mode shows notable predictability up to sev-
eral month (1 year) in advance given knowledge of tropical
Pacific Ocean (Indian Ocean) SST. Also, in a diagnostic study
to understand the physical mechanisms behind the effects of
large-scale climate indices on precipitation patterns in

Queensland, Australia, Klingaman et al. (2013) used EOT
decomposition to identify remote and local drivers affecting
the interannual and decadal variability of seasonal
precipitation patterns. Stephan et al. (2018a, b) employed the
EOT analysis in order to identify regions in China showing
coherent interannual/intraseasonal variabilities in precipitation
and to understand the precipitation-related local- and large-
scale atmospheric and coupled atmosphere—ocean processes.
EOT analysis decomposes a temperature dataset with spa-
tiotemporal variability into a set of orthogonal components,
namely EOT patterns. The first EOT spatial modes are obtain-
ed by finding the point that explains the most of the variance at
all other points, which is designated as a base point by Van
Den Dool et al. (2000). Then, the temperature time series of
the base point is defined as the first temporal mode of the
temperature pattern. The second EOT spatial modes are ex-
tracted by removing the influence of the base point on all other
points using regression analysis for temperature time series of
the base point and all other points. From this modified tem-
perature dataset, the second base point is identified by detect-
ing the point explaining the most variance of the residual
temperature record. This procedure is repeated for subsequent
modes until the desired number of modes is derived. Following
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<« Fig. 3 Maps of the locations of each EOT and the correlations between
EOT time series (i.e., base point time series) and time series at all other
grid points for the first and second EOTs of July and December mean
(left), extreme high (middle), and extreme low (right) temperatures.
Triangles indicate the base points

the procedure above, EOT-1 and EOT-2 were obtained for
monthly mean and extreme temperature time series during
1973-2015 to investigate patterns of temperature fluctuations
across South Korea.

Following the approach by King et al. (2014), correlation
coefficients between the temperature EOT modes and various
ClIs are calculated using Spearman’s correlation analysis with
statistical significance assessed at the 5% level taking into
account the fact that some CI time series may not exhibit a
normal distribution. Although the correlation analysis was
performed by Spearman’s rank test, the resultant correlation
coefficients were in general agreement with those calculated
by the commonly used Pearson’s correlation method (not
shown here). The overall findings from correlation and regres-
sion analyses between temperature EOT modes and various
ClIs are described using correlation and regression maps.

4 Spatial and temporal structures of EOTs

The EOT modes for mean and extreme temperatures were
extracted from the mean and extreme temperature time series
for the period of 1973-2015. Correlation maps for each EOT
associated with the highest value of explained variance were
plotted for each month. The values displayed in these maps
are the correlation coefficients between the temperature EOT

Table 1 Explained variance (VE) for the two leading EOTs of monthly
mean and extreme temperatures with the center of the leading mode,
which is listed in parentheses: EC (east-coast mode), SC (south-coast
mode), WC (west-coast mode), NL (north-inland mode), ML (middle-

time series at the base point and the temperature time series at
all other points. Each leading EOT has the most explained
variance for mean and extreme temperatures. The spatial pat-
terns of the leading EOT base points and highest correlation
values for each month reflect the climatological seasonal pat-
tern of temperature combined with the influence of midlati-
tude weather systems on the Korean peninsula. The second
EOT is also computed using the procedures discussed above.
Figure 3 shows the resultant patterns for the leading two EOTs
of July and December mean (Tm), extreme high (Tx5), and
extreme low (Tn5) temperatures (hereinafter referred to as
Tm, Tx5, and Tn5).

The base points of the first EOTs for mean and extreme
temperatures show different locations with respect to season.
The locations of base points for mean temperature are differ-
ent from those for extreme temperatures during the summer
months. The base point for Tm-EOT is located in the east
coastal area of South Korea, whereas those for Tx5-EOT and
Tn5-EOT are located in the southern and northern inland. In
the winter months, the base points of leading Tm-EOTs have a
tendency to shift northward, but less so for the extreme tem-
perature time series that shifts to central South Korea. In ad-
dition, for entire months as shown in Table 1, we categorized
total EOTs into coastal (west/south/cast) and inland (north/
middle/south) modes that take into account the locations of
the base points. The centers of the total leading EOT modes
are categorized into coastal area (28 modes) and inland area
(44 modes). Overall, the lower-order EOT modes show more
variability in the locations of the base points.

Locations of the base points indicate that out of 24 Tm/
Tx5/Tn5 EOTs consisting of the leading two EOTs for each

inland mode), and SL (south-inland mode). Underlined indicates the
nationwide spatial patterns. Triangles, inverted triangles, and circles
indicate increasing, decreasing, and interdecadal temporal patterns
respectively

Mode Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Mean temperature (Tm)

EOT-1 0.64 0.69 0.63 0.59 0.46 0.51 0.61 0.64 0.53 0.58 0.69 0.68
(NLye (NL)e (ML)A (NL) e ML)A (NL)A (EC) @ (EC) ® (ML) A (NL)A (NL) A (NL)

EOT-2  0.18 0.14 0.15 0.16 0.22 0.21 0.25 0.17 0.18 0.16 0.15 0.14
(SC) e (EC) o (EC) o (EC)A (EC) o (EC) o (SC) @ (SC)A SL)Y ML)V ML)VY (NL)A

Extreme high temperature (Tx5)

EOT-1  0.64 0.68 0.51 0.39 0.41 0.36 0.51 0.48 0.53 0.43 0.68 0.68
(SL) e (EC) o (NL) @ (WC)e (SL)e (EC) (SC) [€)9)] S A (NL) (ML) A (ML)

EOT-2 021 0.18 0.19 0.28 0.20 0.22 0.18 0.26 0.16 0.21 0.18 0.19
(NL) (SL) e (EC) @ (EC)A (WC) (NL) (EC) o (NL)A (EC) (EC) (NL) (NL) @

Extreme low temperature (Tn5)

EOT-1 058 0.65 0.50 0.48 0.47 0.48 0.60 0.52 0.52 0.54 0.52 0.48
(NL)ye (NL)A (SO) (ML)A  (SL) e (NL) (NL) (NL) (NL)A (SC)A (NL)A (WC)

EOT-2 021 0.19 0.17 0.15 0.25 0.25 0.22 0.24 0.23 0.18 0.17 0.29
(SL) e (WC) (NL) (NL) (EC)A (SC)A (NL) A (ML) (SC) e SOV (SL) (NL)
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of 12 months, 10/10/8 are identified as coastal modes and 14/
14/16 are identified as inland modes as shown in Table 1.
Breaking this into more detail, the coastal mode consists of
an east-coast mode 7/7/1, south-coast mode 3/1/5, and west-
coast mode 0/2/2 defined on the basis of the center of leading
mode. Also, the inland mode consists of the north-inland
mode 8/7/11, middle-inland mode 5/2/2, and south-inland
mode 1/5/3. Consistent with the patterns shown in Fig. 3,
Table 1 indicates that the leading Tm-EOT (Tx5-EOT) modes
represent an eastern (southeast) coastal mode for boreal sum-
mer season and a northern (middle) inland mode in winter
season, while the leading Tn5-EOT mode exhibits a northern
inland mode in summer and a western coastal mode in winter.

The total spatiotemporal variance related to the two leading
EOTs varies as a function of months. Table 1 shows that the
spatiotemporal variance related to Tm/Tx5/Tn5 EOT modes
ranges from 0.46 to 0.69/0.39 to 0.68/0.47 to 0.65 for each
first EOT mode, while that for EOT-2 decreases on average to
0.17/0.20/0.21 at each month. Explained variance for the lead-
ing Tm-EOTs is higher than that associated with the first Tx5-
and Tn5-EOTs in all months due to the fact that mean
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variables are more likely to be characterized by spatially ho-
mogeneous features as opposed to extreme variables having
more spatial incoherence (King et al. 2014).

Temporal behavior is now diagnosed for each of the EOT
modes of mean and extreme temperatures using moving aver-
age line employed by Kim et al. (2004) who defined temporal
evolution of decomposed precipitation time series as increas-
ing, decreasing, and interdecadal patterns based on 5-year
running mean plots. Figure 4 indicates time series for the
leading two modes for 2 months (January and September),
and Table 1 summarizes characteristics for all the months.
For the Tm-EOT modes, 9 exhibit an increasing trend, 3 a
decreasing trend, and 11 an interdecadal variability
(Table 1). The Tx5/Tn5 EOT time series show 13/13 signifi-
cant trends, including 4/8 having increasing trends and 9/4
with interdecadal fluctuations. The temporal evolution of the
leading EOT modes indicates increasing trends during fall
season and primarily an interdecadal oscillation for winter
season. Jung et al. (2002) investigated temperature changes
over South Korea since 1954, both in terms of means and
extreme events, using observational station data, and indicated
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that climatic extremes have increased during recent decades.
The frequent occurrence of extreme maximum temperature
events shows an increasing trend, with higher values in recent
decades. Thus, it is plausible that the frequency of extreme
temperature events plays an important role in the long-term
temporal increasing trends of temperature.

5 Teleconnections between EOTs and Cls

For the purpose of investigating the teleconnected effects of
various climate indices on mean and extreme temperature var-
iability across South Korea, the temperature EOT modes were
correlated with several climate indices representing spatially
and temporally significant variability. We mainly discuss out-
comes involving mean temperature EOTs, except where ex-
treme temperature EOTs show noticeably different results
compared to those of mean temperature EOTs. The correlation
coefficients of each EOT with various Cls are shown for mean
and extreme temperature in Table 2. In addition, regression
maps for NCEP-NCAR reanalysis MSLP and ERSST.v4 SST
are shown in Fig. 5 for EOT-1 during December, and maps for
other modes are also discussed. Many regression maps indi-
cate notable signals consistent with the large-scale spatial pat-
terns reported in other studies.

The correlation coefficients for EOT-1 and EOT-2 versus
the MEI are shown in Table 2. The MEI time series has sig-
nificant negative correlations with the leading EOTs for mean
temperature in August and September, whereas the leading
EOT for December exhibits a positive correlation with the

Table 2 Correlation coefficients of the two leading EOTs of monthly
mean and extreme temperature with climate indicators: MEI (Multivariate
ENSO Index), IOD (Indian Ocean Dipole), WNPMI (Western North
Pacific Monsoon Index), TCI (Tropical Cyclone Index), and EESI

ENSO forcing. In spring and summer months, the SST-
related signal associated with ENSO is weaker and not signif-
icant (not shown here). In addition to the leading EOTs, the
other lower-order EOTs show relatively significant correla-
tions in some months with ENSO indices in eastern and south-
ern coastal areas of South Korea (not shown here). The find-
ings from the above correlation analysis suggest that the El
Nifio (La Nina) events make conditions more favorable for
above (below) normal mean temperatures in eastern coastal
and northern inland areas of South Korea. The extreme tem-
perature EOTs also have significant correlations with ENSO
indicators. The MEI shows higher correlation coefficients
with the extreme temperature EOTs in October and
December than other times of the year.

The linkages between the temperature EOT modes and the
ENSO indicators can also be identified through regression
analysis, as shown in Fig. 5. Positive EOT temperature modes
exhibit an SST anomaly pattern consistent with a typical
ENSO SST warm event, consisting of warmer SST anomalies
over the central-eastern tropical Pacific and cooler SST anom-
alies in the western equatorial Pacific Ocean (Fig. 5a, c, e).
Above-normal signals in many mean and extreme temperature
EOTs are closely related to ENSO-like SST patterns. In addi-
tion to the tropical Pacific SST pattern, regressing MSLP onto
the first EOT modes for mean and extreme temperature
(Fig. 5b, d, e) describes similar ENSO-like SLP patterns with
higher pressure in the western North Pacific and lower pres-
sure in the eastern North Pacific region. This pattern reflects
the Pacific-East Asian teleconnection (PEA) pattern which
represents a damping of the East Asian winter monsoon

(Eastern Eurasia Snow Index). The bold, single underlined bold, and
double underlined bold indicate correlations that are statistically
significant at the 0.10, 0.05, and 0.01 levels

Mode  Mean temperature Extreme high temperature Extreme low temperature

(Tm) (Tx5) (Tn5)

MEI 10D WNP  TCI EESI MEI 10D WNP  TCI EESI MEI 10D WNP  TCI EESI
EOT-1
Aug —042 0.11 0.29 0.09 0.14 -0.08 0.09 0.27 0.11 0.08 -0.26 0.17 0.18 0.08 0.04
Sep ﬂ 0.13 0.13 0.12 0.09 -0.07 031 0.20 0.14 0.11 -0.09 033 0.17 0.11 0.10
Oct 0.03 0.33 0.02 0.31 0.24 0.31 0.39 0.03 0.28 0.01 -0.11 0.02 0.19 0.14 0.09
Nov 0.26 0.36 -0.05 -0.03 -0.33 0.18 0.13 -0.01 -0.02 -028 0.12 0.31 -026 -012 -0.13
Dec 0.39 -005 -032 - 0.12 0.09 -011 -029 - 0.10 0.34 0.11 0.01 - 0.17
EOT:2
Aug 0.11 0.18 0.18 0.05 0.11 -0.12  0.29 -0.08 0.11 0.12 -0.29 0.02 -0.06 0.13 0.14
Sep —033 -030 0.07 0.09 0.01 -0.05 -0.02 -0.14 0.05 0.17 0.08 -0.19 -0.02 0.26 0.02
Oct -0.09 -027 0.18 0.18 0.14 0.11 0.17 0.02 0.16 0.26 -0.07 -0.17 0.04 0.12 0.24
Nov 0.02 -0.08 0.28 -0.29 0.29 0.04 0.18 0.05 0.28 0.02 0.01 0.21 0.01 0.16 0.08
Dec 0.21 0.26 0.02 - 0.08 0.01 -0.12 0.13 - 0.05 -0.03 -0.14 0.18 - 0.01
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Fig. 5 Maps of SST (left) and MSLP (right) regressed on to the leading EOT of mean (upper), extreme high (middle), and extreme low (lower)

temperature

induced by a western North pacific anticyclone and ENSO
warm phases over the eastern equatorial Pacific Ocean
(Wang et al. 2000). This phase of the PEA teleconnection
preferentially modulates mean and extreme temperatures over
South Korea during ENSO events.

The IOD is also associated with mean and extreme temper-
ature variability in South Korea. As shown in Table 2, the first
and second mean temperature EOT modes are significantly
correlated with the IOD as quantified by the DMI index
representing the anomalous SST gradient between the western
and eastern tropical Indian Ocean. Both October and
November EOT-1 for mean temperature exhibits a northern
inland mode exhibiting a positive correlation with the DMI.
The extreme temperature EOT modes also demonstrate a pos-
itive significant correlation with the DMI in fall season. The
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partial correlation of the DMI index against the EOT modes
was also examined to rule out that the IOD was influencing
Korean temperature only because of its covariability with
ENSO. However, the resultant number of significant relation-
ships was the same as the above result, providing confidence
that the IOD influences Korean temperature in a manner in-
dependent of ENSO. However, it should be noted that there
might be a non-linear dependence as oppose to the linear
effect of ENSO on the IOD and Korean temperature.

The correlation coefficient of monsoon circulation activity
with each EOT was calculated using the WNPMI index. From
the results of correlation analysis in Table 2, the leading EOTs
for mean and extreme temperatures exhibit significant nega-
tive (positive) correlations with the monsoon variability over
the WNP region in December (August). In the negative
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WNPMI phase, the atmospheric circulation of the WNP
trough is weakened accompanied by a suppression of west-
erlies over the Philippine Sea. The corresponding weakened
atmospheric circulation prevails from Philippine Sea all the
way to Japan along the flank of the WNP subtropical high.
These circulation anomalies favor warmer than normal tem-
perature along the East Asia including the Korean peninsula
(Wang et al. 2000).

The monthly TCI indices were calculated for the index area
to the south part of the Korean peninsula (Fig. 2). Each TCI is
correlated with the EOT modes for Tm/Tx5/Tn5 from May to
November. As shown in Table 2, several EOTs show the sig-
nificant correlation with the TCI time series, indicating that
increased and decreased frequency of tropical cyclones pass-
ing through the index area is associated with enhanced and
suppressed temperature. The leading EOTs for October tem-
perature exhibit the positive correlation with the tropical cy-
clone variability. This indicates that the leading EOT in fall
season, located in eastern coastal area over the Korea penin-
sula, shows significant positive correlation with the TCI. The
physical link between the tropical cyclone activity and
October temperature variability is difficult to construct. Over
the western North Pacific, genesis and development of tropi-
cal cyclones play a role in Korean climate fluctuation during
the fall season. KMA (2018) indicated that the warmer than
normal temperature in October is attributed to the frontal
warm air mass that the tropical cyclone drives. The frontal
air mass by the tropical cyclone brings warm air from the
equator to the Korean peninsula leading to warmer than nor-
mal temperature activity. The correlation coefficient of snow
depth variability with each EOT was calculated using the
EESI. From the results of correlation analysis in Table 2, the
leading Tm-EOT and Tx5-EOT exhibit significant negative
correlations with the EESI in November. This implies that
the leading EOT in November, located in northern inland area
over the Korean peninsula, shows significant negative corre-
lation with the snow depth over the northeastern Eurasia re-
gion. Min and Yang (1998) showed that the temperature gra-
dient by the snow depth is conducive to transport cold and dry
air from the north toward south over the East Asia during the
fall season.

As shown in Tables 1 and 2, the MEI and WNPMI indices
exhibit significant correlation with both inland and coastal
modes for mean temperature, while the IOD, TCI, and EESI
indices correlate with only the inland modes of Tm-EOT. All
climate indices for extreme high temperature (Tx5) show sig-
nificant correlation with the inland modes. The MEI time se-
ries correlate with both inland and coastal modes for Tn5-
EOTs, while the IOD and WNPMI indices exhibit
significant correlation with only the inland modes for
extreme low temperature. The results from this analysis
across all climate indices are generally consistent with the
previous findings by Cha (2007) that indicate a significant

correlation between tropical climate circulations and
seasonal temperature patterns over South Korea. Cha (2007)
investigated the relationship between ENSO/IOD indices and
climate variations on the Korean peninsula using composite
analysis with Nino 3.4 SSTs of Japanese Meteorological
Agency and 10D data from U.K. Met Office. Although Cha
(2007) used different data and methods, the findings are gen-
erally consistent with our results in terms of negative response
in summer and positive response in winter.

6 Predictability of temperature patterns

In addition to expanding our understanding of how Cls affect
Korean temperature variability, it is also of great importance to
improve prediction capability of this variability. The previous
correlation analysis did not take into account any time lag
between the EOT time series for mean and extreme tempera-
tures and various ClIs. If the various Cls applied here have a
significant impact on the temperature anomaly over South
Korea, then it is worthwhile to quantify the degree of this
influence by a time-dependent cross-correlation analysis be-
tween the two time series that would be useful for forecasting
purposes. To do this, we correlated the monthly EOTs for the
mean and extreme temperature with Cls at monthly time lags
of'lag-0 months to lag-17 months, where the EOTs are lagging
the CIs. The motivation to focus on the monthly time lag, e.g.,
a time interval of 0 to 17 months, is based on the fact that the
climate signals used here are slowly evolving and this low-
frequency behavior may provide substantial value as a long-
range predictor. The results of this analysis are presented in
Table 3 as the cross-correlation coefficient values. The overall
correlation coefficients are calculated at 0.10, 0.05, and 0.01
significance levels for better comparison.

The cross-correlation coefficient between ENSO and each
EOT was computed for the MEI. As shown in Table 3, the
December EOT-1 exhibits significant positive correlations
with the MEI time series up to the preceding July, while the
August EOT-1 exhibits the negative correlations with the MEI
up to the preceding June. No significant correlation for the
ENSO signal was detected during January to July reflecting
the fact that relationships between the ENSO indicators and
each EOT mode are generally not prominent at this time of
year (not shown here). The outcomes from the cross-
correlation analysis above indicate that the teleconnected ef-
fects of the ENSO phenomena on the leading modes of mean
temperature in South Korea are detectable at up to 5-month
lead time. Additionally, the leading EOTs for extreme temper-
ature also show significant lagged correlations with ENSO
remote forcing as shown in Table 3. The MEI from June to
October (August to December) has significant positive corre-
lations with the leading Tx5-EOT (Tn5-EOT) in October
(December), but EOT extreme temperature modes derived
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for other months do not exhibit any significant correlations
with the ENSO indices except possibly the November EOT-
1 with ENSO signals in June, although this correlation could
be spurious. The lagged responses of the leading EOTs for
extreme temperature to the MEI indices are different from
those for mean temperature. The IOD is also associated with
mean and extreme temperature variability in South Korea. In
Table 3, the leading EOT for mean temperature in October
(November) has positive correlations with the DMI time series
up to the preceding June (August). The leading Tx5-EOT

APR Regression Coefficients

75 / x
; /47] o O Vb,

MAY Regression Coefficients

(TnS-EOT) in September shows positive lagged correlations
with the July (August) to September DMI time series, while
the 10D index from June to October (September to
November) exhibits significant positive correlations with the
leading October Tx5-EOT (November Tn5-EOT).

In addition to the cross-correlation analysis, the Pacific
Ocean SSTs based on the ERSST.v4 dataset are regressed onto
the EOTs at varying lead times to identify potential sources of
predictability for monthly mean and extreme Korean temper-
ature. As shown in Figs. 6 and 7, the above lag regressions of
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Fig. 6 Maps of SSTs of April to December regressed on to December mean EOT-1
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Fig. 7 Maps of SSTs of January to August regressed on to August mean EOT-1

the Pacific Ocean SSTs onto August and December EOT-1
modes for mean temperature demonstrate that the leading
EOTs show notable lagged and concurrent regression with
strong ENSO signals over the equatorial Pacific. The
December lag regression suggests noticeable predictability
from tropical Pacific Ocean SST with positive regression co-
efficients decreasing as the lag increases. The lagged regres-
sion signals were detected from July to December, and then

@ Springer

the Pacific SST-related temperature signals strongly diminish.
The August lag-0 to lag-4 regression representing regression
April to August SSTs onto August EOT-1 indicates a negative
correlation with tropical Pacific cold tongue SSTs. The nega-
tive signals extend to months prior to May at lag-3 and then do
not exhibit substantial amplitude during January to April. Lag
regression maps indicate coherent Pacific Ocean SST variabil-
ity related to EOTs of Korean temperature. Despite noise in
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the SST-temperature relationship, the sources identified above
may provide promise to improve prediction of South Korea
monthly mean temperature variations.
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In October and December for extreme high and low temper-
ature, there is a different tendency in the ENSO-temperature
relationship. The lagged and concurrent SST regression onto
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Fig. 8 Maps of lag-0 to lag-7 SSTs regressed on to October EOT-1 of extreme high temperature (left eight panels) and December EOT-1 of extreme low

temperature (right eight panels)
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the leading EOT-1 for extreme high-temperature anomaly in
October and extreme low-temperature anomaly in December
account for the aforementioned different tendency as shown in
Fig. 8. These lag regression maps show that the regression
coefficients of very warm extremes in October from Pacific
SSTs are more evident than that of very cold December ex-
tremes. The lower predictability of January—April leading
EOTs is attributed to weaker SST-temperature relationships in
this time of year. Consequently, these findings of the potential
sources of climate predictability indicate important implications
for the seasonal forecasting the major thermodynamic extremes
of unusually severe cold weather and abnormal heat wave.

7 Discussion

The main focus of this analysis is to expand upon findings
from the previous studies such as Halpert and Ropelewski
(1992) and Lee and Julien (2015) that documented
teleconnections between the tropical ENSO forcing and the
midlatitude temperature variability. In the global-scale study
that employed harmonic analysis, Halpert and Ropelewski
(1992) noted consistent relationships between East Asian tem-
perature patterns and both warm and cold phases of ENSO. In
more regionally focused analysis, Halpert and Ropelewski
(1992) also documented that northwest North America and
Japan exhibit negative temperature anomalies during ENSO
cold events during northern Hemisphere winter. These results
are consistent with the outcomes of the current study that
shows similar responses in Korean temperature associated
with tropical ENSO forcing. However, visual inspection of
the station location maps in previous papers indicates that
the significant ENSO-temperature relationships over South
Korea we identify were not sufficiently resolved due to the
data coverage limitations. Our study resolves these issues
through use of a high-quality, high-resolution Korean surface
dataset and also provides additional information on the CI-
temperature linkage over East Asia which was not identified
in previous studies.

The EOT decomposition and cross-correlation analysis de-
scribed in the previous section demonstrate that the leading
mode of August South Korean temperature has a negative
correlation with SST over the equatorial Pacific Ocean, while
that of December temperature shows a positive correlation
with tropical Pacific SST variability. In other words, during
warm ENSO years below-normal Korean temperature anom-
alies are observed in August, while above-normal temperature
departures are observed in December. For ENSO cold phase
years, the opposite is true. Figure 9 illustrates a comparison of
standardized temperature anomalies for mean temperatures in
August and December during the warm and cold event years
using the monthly temperature data for the entire stations over
South Korea. The scatterplots for the warm ENSO phase are
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mostly distributed in the upper left part of the plot, while those
for the cold phase are distributed in lower right part. These
notable patterns for monthly mean temperature data suggest
that August and December are characterized by opposite
signed tendency for an ENSO event of a given sign.

The correlation pattern between the Korean temperature
EOT and the Pacific Ocean (PO)-Indian Ocean (I0) SST
shows noticeable differences from summer to winter. In fall
and winter, the Korean temperature variability shows a signif-
icant positive correlation with the PO-IO SST, while negative
correlation is true in August. These opposite correlation pat-
terns are very similar to the positive and negative phases of
ENSO and IOD episodes, implying that both extreme events
have a close relationship with the Korean temperature vari-
ability. Why does the IO-PO SST pattern positively correlate
with the Korean temperature in fall-winter but negatively cor-
relate with the Korean temperature in August? The tropical
PO-IO sea surface temperature can cause large anomalous
circulation over the WNP (Wu et al. 2000). Hence, one way
by which the SST variation over the tropical PO-IO has an
effect on the Korean temperature is through the atmospheric
circulation over the WNP. For these seasons, the different
responses of atmospheric circulation over East Asia to distinct
tropical PO-IO SST variation may play a critical role in the
different correlation patterns. Thus, we focus on the influences
of different PO-IO SST patterns on the atmospheric circula-
tion anomalies over East Asia.

3 \ \
+ Warm phase
X Cold Phase

N

=N

\
AN
PP

'
N

December standardized temperature anomaly
o

]
w

-2 -1 0 1 2 3
August standardized temperature anomaly

]
w

Fig. 9 The comparison of standardized temperature anomalies for below
(above) normal temperature in August and above (below) normal
temperature in December during the warm (cold) phase of ENSO
events using the monthly temperature time series. The dashed circles
indicate the location and pattern of the distribution densities of the
symbols based on each center of the warm and cold phases
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To examine what causes the anomalous temperature over
the Korean peninsula, circulation anomalies associated with
ENSO forcing is investigated using composite difference of
circulation fields, e.g., the 500-hPa geopotential height and
850-hPa vector winds, between high and low ENSO years
as shown in Fig. 10. Following the criteria suggested by Lee
and Julien (2016), the years 1982, 1987, 1991, 1997, 2009,
and 2015 are identified as extreme positive events, while
1973, 1975, 1988, 1999, 2007, and 2011 are designated as
extreme negative events. In August, there is a cyclonic circu-
lation over the subtropical North Pacific as shown in Fig. 10a.
The cyclonic flow can be interpreted as Rossby wave response
to the equatorial Pacific heating. The northerlies prevailing
over the Korean peninsula (Fig. 10b) is part of the anomalous
cyclonic circulation over the subtropical North Pacific. This
figure clearly describes the Korean peninsula under the influ-
ence of dominant northerly wind. Son et al. (2014) suggested
that the anomalous cyclonic circulation over the subtropical
North Pacific is a principal driver in teleconnection between
ENSO forcing and the Korean climatic variation. The corre-
sponding northerly wind cut-off the warm air supply from

Fig. 10 Composite differences of 60°N

equator towards the Korean peninsula resulting in below-
normal temperature activity.

On the other hand, in December (Fig. 10c), a massive
anomalous anticyclone is found over the WNP with two cen-
ters, one located in the midlatitude region over the Kuroshio
extension and another located over the Philippine Sea. Wang
et al. (2000) suggested that the WNP anticyclone is an impor-
tant driver that links the East Asian winter monsoon and the
central-eastern Pacific warming. As shown in Figures 11b,
anomalous southwesterly wind prevails over the Korean pen-
insula and the northwestern part of the Philippine Sea anticy-
clone, reflecting damping phases of East Asia winter monsoon
or a warmer than normal in winter. The anomalous southerly
wind transports warm air toward the Korean peninsula. This
northward transport is attributed to a warmer than normal
temperature over the Korean peninsula.

To investigate the atmospheric circulation patterns associat-
ed with the tropical Indian Ocean SST, composite differences of
the 500-hPa geopotential height and 850-hPa vector winds be-
tween high and low IOD years are computed as shown in
Fig. 12. Following the criteria suggested by Saji et al. (1999),
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years in August DT

{\R(\
A7

20°N

o

10

o

-40 =32

N

2E 120°E

140°E 160°E 180° 160°W 140°W 120°W

-16 -8 0 8 16 24 32 40

=24
(@
Composite AUG Wind
60°N =
%nn\\\\\\' AN
=z ) RN
—

47
%

40°N y
1

1
{ ;////'/////
111177722225
1117772 00ke
1111157 mnm
NN\ 1117700
N -

S

i
/11
/11
i

ammn s NN A

NN 5
N i pami

4 ‘\\s\§\ W
NI Witreoen s
SR

120°€

140°E 160°E

20 m/s —

(b)

@ Springer



J.H. Lee et al.

the years 1982, 1983, 1994, 1997, 2006, and 2012 are identified
as extreme positive events, while 1975, 1989, 1992, 1996,
1998, and 2010 are designated as extreme negative events.
The North Pacific Subtropical High (NPSH) shifts slightly
north-westward from its normal position in October and
November (Fig. 11a, c¢). This shift of the NPSH induces the
intensification of the southerly winds at the western edge of the
NPSH. This results in the strengthening of the cross-equatorial
flow over the WNP region, which causes more warm air supply
from the tropical Pacific Ocean to the Korean peninsula. Hence,
the Korean peninsula could be under the influence of anoma-
lous southerlies transporting the warm air from equator. The
composite differences of 850-hPa vector wind between the high
and low IOD episodes are shown in Fig. 11b, d. Consistent with
the composite difference pattern for the geopotential field, an-
ticyclonic flow exists in the areas of positive geopotential
anomalies, while cyclonic flow is located in the areas of nega-
tive geopotential anomalies. The figure clearly describes the
Korean peninsula under the influence of distinct anomalous
southerly wind. The southerly winds are anomalously strong
and bring warm air from the lower latitudes to the Korean
peninsula. Thus, the strong anomalous southerlies modulate

Fig. 11 AsinFig. 10, but for [OD

the warm air supply towards the Korean peninsula causing
above-normal temperature (Fig. 12).

The contrast of the relationship between the extreme
ENSO-IOD phases and the anomalous circulation over the
WNP indicates the strengthened inter-link between the anom-
alous circulation over East Asian and the extreme phases of
the tropical PO-IO in summer to winter. The change in the
climatic linkage between the surface sea temperature over
tropical PO-IO and the anomalous circulation over the WNP
shows that the influence of the tropical PO-IO SST variation
on the Korean temperature through the anomalous WNP cir-
culation is different in August and October—December. These
patterns of PO-1O SST tend to modulate the intensification or
suppression of the WNP circulation anomalies and would lead
to a strong positive or negative temperature anomaly.

The overall results of the current analyses are in gen-
eral agreement with those of other recent studies regard-
ing the impacts of ENSO on thermodynamic variables
over the Korean peninsula. Cha et al. (1999) examined
the teleconnection between remote ENSO forcing and
Korean variables such as temperature, atmospheric
circulation, and precipitation, and revealed that tropical
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Fig. 12 AsinFig. 10, but for [OD
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ENSO forcing has an important impact on fluctuations of
seasonal temperature over South Korea resulting in
negative temperature anomalies in summer and positive
temperature anomalies in winter during ENSO warm
events. In addition, our analysis is also consistent with
the findings by Kang (1998) and Min and Yang (1998)
who demonstrated the tendency for negative and positive
Korean temperature responses to warm ENSO SSTs in
summer and winter, respectively. Although they nicely
demonstrated the statistical process of ENSO impacts
on South Korea, the study has a limitation in explaining
the impact on monthly basis. Their studies are based on
the seasonal mean data for only about a dozen stations
by assuming that the relation is nearly uniform within
one season. Even though the tropical sea surface temper-
ature (SST) forcing associated ENSO is quite steady
within a season, there is a strong seasonality in regional
climate variables. The present study demonstrated the
far-reaching effects of climate indicators on monthly
mean and extreme temperature variability based on a
high-quality, high-resolution Korean surface dataset.

Composite NOV Wind

20 m/s —

(d)

8 Summary and conclusions

In the current study, we apply an empirical orthogonal
teleconnection (EOT) decomposition technique to mean and
extreme South Korean temperatures to quantify the remote
impacts of large-scale modes of climate variability as quanti-
fied through climate indices (ClIs). We demonstrated the po-
tential for prediction of these temperature patterns based on
knowledge of monthly tropical SST fields using cross-
correlation and lag regression analysis for the leading EOT
modes and ENSO and IOD indicators.

The spatiotemporal features of mean (extreme high) tem-
peratures over South Korea are dominated by an eastern
(southern) coastal mode during summer and northern
(middle) inland mode in winter, while extreme low tempera-
ture exhibits a northern inland mode in summer and western
coastal mode in winter. The temporal evolution of the leading
EOT modes exhibits a mostly increasing trend and an
interdecadal oscillation. The leading mean temperature EOT
modes explain more of the variance in Korean temperature
variability than the leading extreme EOT modes. The MEI
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time series that explain tropical Pacific ENSO variability have
significant negative correlations with the leading EOTs of
mean temperature in August and September, whereas the lead-
ing EOTs for December exhibit positive correlations with the
METI time series. The leading EOT mode of mean Korean
temperature is significantly positively correlated with the bo-
real fall IOD as quantified by the DMI index, while the ex-
treme EOT-1 mode shows a positive correlation with Indian
Ocean SST anomalies in boreal fall. The leading EOTs for
mean and extreme temperatures also exhibit a significant neg-
ative correlation with an index of monsoon variability over the
WNP region in December. The leading EOTs for October
temperature exhibit the positive correlation with the tropical
cyclone variability, while the leading EOTs for mean and ex-
treme high temperature exhibit significant negative correla-
tions with the EESI in November. From the results of cross-
correlation and lag regression analyses, the leading EOTs for
August and December mean Korean temperatures have pre-
dictability up to 5 months of lead time from tropical Pacific
SSTs, while potentially predictable responses of fall season
temperature from Indian Ocean SSTs were detected up to
4 months in advance. Also, the regression coefficients of the
tropical Pacific SSTs onto very warm extremes in October are
more evident than that for very cold December extremes.

The methodological approaches described here do not take
into consideration the type of ENSO event, which is often
categorized into classical El Nifio and El Nifilo Modoki based
on the location of peak SST anomalies. Further investigation
of the teleconnected responses for the two types of ENSO
events on thermodynamic variables in the extratropics includ-
ing Korea needs to be performed in more detail.

References

Ahn JB, Ryu JH, Cho EH, Park JY (1997) A study of correlations be-
tween air-temperature and precipitation in Korean and SST over the
tropical Pacific. J Korean Meteor Soc. 33(3):487-495

Bradley RS, Diaz HF, Kiladis GN, Eischeid JK (1987) ENSO signal in
continental temperature and precipitation records. Nature 327:487—
501

Cha EJ (2007) El Nifio-Southern Oscillation, Indian Ocean Dipole mode,
a relationship between the two phenomena, and their impact on the
climate over the Korean Peninsula. J Korean Earth Sci Soc 28(1):
35-44

Cha EJ, Jhun JG, Chung HS (1999) A study on characteristics of climate
in South Korea for El Nifio/La Nifa years. J KMS 35(1):99-117

Daly C, Neilson PR, Phillips DL (1994) A statistical-topographic model
for mapping climatological precipitation over mountainous terrain. J
Appl Meteorol 33:140-158

Ha, K.J., 1995. Interannual variabilities of wintertime Seoul temperature
and the correlation with Pacific Sea surface temperature. J Korean
Meteorol Soc 31: 313-323 (in Korean)

Halpert MS, Ropelewski CF (1992) Surface temperature patterns associ-
ated with the Southern Oscillation. J Clim 5:557-593

@ Springer

Huang B, Banzon VF, Freeman E, Lawrimore J, Liu W, Peterson TC,
Smith TM, Thorne PW, Woodruff SD, Zhang HM (2014) Extended
Reconstructed Sea Surface Temperature version 4 (ERSST.v4): part
1. Upgrades and intercomparisons. J Clim. https://doi.org/10.1175/
JCLI-D-14-00006.1

Jung HS, Choi YE, Oh JH, Lim GH (2002) Recent Trends In
Temperature And Precipitation Over South Korea. Int J Climatol
22:1327-1337

Kang IS (1998) Relationship between El-Niflo and Korean climate vari-
ability. J Korean Meteor Soc 34(3):390-396

Karabork MC, Kahya E (2007) The links between the categorized
Southern Oscillation indicators and precipitation patterns over
Turkey. Hydrol Days 2007 87-89

Kiladis GN, Diaz HF (1989) Global climatic anomalies associated with
extremes in the Southern Oscillation. J Clim 2:1069—1090

Kiladis GN, van Loon H (1988) The Southern Oscillation. Part VII:
meteorological anomalies over the Indian and Pacific sectors asso-
ciated with the extremes of the oscillation. Mon Weather Rev 116:
120-136

Kim MK, Kang IS, Park CK, Kim KM (2004) Super ensemble prediction
of regional precipitation over Korea. Int J Climatol 24:777-790

King AD, Klingaman NP, Alexander LV, Donat MG, Jourdain NC,
Mabher P (2014) Extreme rainfall variability in Australia: patterns,
drivers, and predictability. J Clim 27:6035-6050

Klingaman NP, Woolnough SJ, Syktus J (2013) On the drivers of inter-
annual and decadal rainfall variability in Queensland, Australia. Int J
Climatol 33:2413-2430

Knapp KR, Kruk MC, Levinson DH, Diamond HJ, Neumann CJ (2010)
The international best track archive for climate stewardship (ibtracs):
Unifying tropical cyclone best track data. Bull Am Meteorol Soc 91:
363-376

Korea Meteorological Administration (KMA) (2018) Annual
Climatological Report. 13:11-12 (in Korean)

Kiripalani RH, Oh JH, Chaudhari HS (2010) Delayed influence of the
Indian Ocean Dipole mode on the East Asia—West Pacific monsoon:
possible mechanism. Int J Climatol 30:197-209

Lee DR (1998) Relationships of El Nifio and La Nifia with both temper-
ature and precipitation in South Korea. J Korea Water Resour Assoc
31(6):807-819 (in Korean)

Lee JH, Julien PY (2015) ENSO impacts on temperature over South
Korea. Int J Climatol 10:1002/4581

Lee JH, Julien PY (2016) Teleconnections of the ENSO and South
Korean precipitation patterns. J Hydrol 534:237-250

Lee JH, Julien PY (2017) Influence of the El Nino/Southern Oscillation
on South Korean streamflow variability. Hydrol Process 10. https://
doi.org/10.1002/hyp.11168

McKee, T.B., Doesken, N.J., Kleist, J., 1993. The relationship of drought
frequency and duration to time series. 8th Conference on Applied
Climatology, Anaheim, CA 1993 pp. 179-187

Min, W. K, Yang, J.S., 1998. A study on correlation between El-Nino and
winter temperature and precipitation in Korea. J Korean Assoc Reg
Geograph 4 (2): 151-164 (in Korean)

Redmond KT, Koch RW (1991) Surface climate and streamflow variabil-
ity in the western United States and their relationship to large circu-
lation indices. Water Resour Res 27(9):2381-2399

Ropelewski CF, Halpert MS (1986) North American precipitation and
temperature patterns associated with EI-Nifio Southern Oscillation
(ENSO). Mon Weather Rev 114:2165-2352

Saji NH, Yamagata T (2003) Possible impacts of Indian Ocean Dipole
Mode events on global climate. Clim Res 25:151-169

Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A di-
pole mode in the tropical Indian Ocean. Nature 401:360-363

Son HY, Park JY, Kug JS, Yoo J, Kim CH (2014) Winter precipitation
variability over Korean Peninsula associated with ENSO. Clim Dyn
42:3171-3186


http://www.jkms.org/
http://www.jkms.org/
https://doi.org/10.1175/JCLI-D-14-00006.1
https://doi.org/10.1175/JCLI-D-14-00006.1
https://doi.org/10.1002/hyp.11168
https://doi.org/10.1002/hyp.11168

The variability of South Korean temperature associated with climate indicators

Stephan CC, Klingaman NP, Vidale PL, Turner AG, Demory M-E, Guo L
(2018a) A comprehensive analysis of coherent rainfall patterns in
China and potential drivers. Part I: interannual variability. Clim Dyn
50:4405-4424

Stephan CC, Klingaman NP, Vidale PL, Turner AG, Demory M-E, Guo L
(2018b) A comprehensive analysis of coherent rainfall patterns in
China and potential drivers. Part II: Intraseasonal variability. Clim
Dyn 51:17-33

Van den Dool HM, Saha S, Johansson A (2000) Empirical orthogonal
teleconnections. J Clim 13:1421-1435

van Loon H, Madden R (1981) The Southern Oscillation. Part I: global
associations with pressure and temperature in northern winter. Mon
Weather Rev 109:1150-1162

Walker GT (1923) Correlation in seasonal variations of weather, VIIL: a
preliminary study of world weather. Mem Indian Meteorol Dep 24:
75-131

Wang B, Wu R, Fu X (2000) Pacific—East Asian teleconnection: How
does ENSO affect east Asian climate. J Clim 13:1517-1536

Wang B, Xiang B, Lee J (2013) Subtropical high predictability establishes
a promising way for monsoon and tropical storm predictions. Proc
Natl Acad Sci U S A 110:2718-2722

Wu R, Wang B (2002) A Contrast of the East Asian Summer Monsoon—
ENSO Relationship between 1962—77 and 1978-93. J Clim 15:
3266-3279

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

@ Springer



	The variability of South Korean temperature associated with �climate indicators
	Abstract
	Introduction
	Temperature data and climate indices
	EOT and statistical analyses
	Spatial and temporal structures of EOTs
	Teleconnections between EOTs and CIs
	Predictability of temperature patterns
	Discussion
	Summary and conclusions
	References


