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ARTICLE INFO ABSTRACT

Rainfall Erosivity Index (REI) defined as the product of rainfall kinetic energy and rainfall intensity is a well-
known hydrologic indicator of the potential risk of soil erosion. Global and regional scale climatic teleconnec-
tions with REI variability over South Korea are examined. We calculate leading patterns of observed monthly
REIs using the Empirical Orthogonal Teleconnection (EOT) and Function (EOF) decomposition techniques. Also
we used monthly statistical analyses using cross-correlation and lag regression for the leading modes and global
atmospheric circulation measurement in the Pacific and Indian Ocean. As a result, the northern inland mode is
applicable during summer season and the southern coastal mode applies to fall-winter season. The temporal
evolution of REI exhibits mostly increasing and depends on interdecadal oscillation patterns. The leading EOT
modes explain more variance in REI than the EOF modes during warm and cold seasons. The findings from this
study illustrate that the tropical ENSO forcing has the coherent association with fall and winter REI patterns, and
the Indian Ocean dipole is identified as a driver for REI variability in November. The monsoon circulations over
western North Pacific also exhibit significant negative correlation with the December modes. The September
leading modes also show a positive correlation with the tropical cyclone activity. Leading patterns in September
and November have predictability up to five month lead time from the tropical Pacific Sea Surface Temperatures
(SSTs). In addition, predictability from the Pacific SSTs for above normal extreme value of REI is greater than
that for below normal value in winter. In conclusion, South Korea experiences climatic teleconnection between
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the large scale climate indices and mid-latitude hydrologic variables.

1. Introduction

South Korea experiences spatial and temporal variability of climatic
and hydrologic variables to a large degree. This spatiotemporal varia-
bility is in association with fluctuations of various global-regional scale
climate indices (CIs), such as the El Nifio-Southern Oscillation, Indian
Ocean dipole, western North Pacific monsoon, and tropical cyclone
activity. Classically, a climate index is defined as a diagnostic quantity
used to characterize the state and change in the climate system with
average state of the atmosphere over a long period, i.e., months and
years, and to describe an aspect of a geophysical system such as a cir-
culation pattern. These large scale climate indicators have been one of
the most widely studied topics due to the fact that the extreme phases of
the climatic impacts are usually related to major hydrologic extremes of
floods and droughts in many regions all over the globe. In the global
and regional scale studies, significant relationships have been reported
between the large scale CIs and hydrologic parameters such as pre-
cipitation, streamflow, and rainfall erosivity in the tropics and extra-
tropics.
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The effects of the El Nifo-Southern Oscillation (ENSO) on hydro-
climatic variability on a global and regional scale are previously
documented. Since the first investigation of Walker (1923) on the in-
fluence of the Southern Oscillation (SO) on rainfall fluctuations by In-
dian monsoon, recently many global scale studies focused on the evo-
lution of ENSO cycle indicated noticeable climatic links between
hydroclimatic parameters and the tropical ocean-atmospheric thermal
forcing throughout the world. Bradley et al. (1987), Kiladis and Diaz
(1989), and Ropelewski and Halpert (1989) pointed out notable ENSO-
related signals with the identification of spatial structures and temporal
cycles showing a statistically significant correlations between the tro-
pical ENSO phenomena and precipitation variability throughout the
various parts of the world. In addition, the regional scale works for low
and middle latitude relating the remote ENSO cycle to hydroclimatic
variations by Douglas and Englehart (1981), Shukla and Paolino
(1983), Kahya and Dracup (1994), Rasmusson and Wallace (1983),
Redmond and Koch (1991) and Price et al. (1998), revealed statistically
significant correlation between regional precipitation and ENSO for-
cing. For midlatitude regions, the importance of the ENSO-streamflow
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Fig. 1. Stations used for the REI indices.

relationships is emphasized in several studies. Cayan and Peterson
(1989), Redmond and Koch (1991), Cayan and Webb (1992), and Diaz
and Kiladis (1993) investigated the influence of North Pacific atmo-
spheric circulation on streamflow in the western United States, and
Kahya and Dracup (1994) diagnosed the impacts of ENSO on U.S.
streamflow patterns from the perspective of extratropical teleconnec-
tions triggered by tropical sea surface temperature (SST) variation. In
Asian regions, Chandimala and Zubair (2007) investigated the pre-
dictability of seasonal streamflow for the Kelani river basin in Sri Lanka
associated with ENSO and SST anomalies using a correlation analysis
and a principal component analysis.

Meanwhile, Indian Ocean dipole (IOD) has been considered as one
of the key ClIs of hydroclimatic variability in the Indian and Pacific rim
countries. Some studies for IOD pointed out the distinct behavior of the
I0OD-related precipitation anomalies. Since Saji et al. (1999) reported a
dipole mode of the Indian Ocean influencing on precipitation fluctua-
tions, Ashok et al. (2001, 2003) revealed that notable climatic re-
lationship exist between the IOD time series and the Indian monsoon
precipitation variability as well as examined the remote response of
Australian precipitation anomalies in winter to the IOD through an
atmospheric general circulation model (AGCM). The monsoon and
tropical cyclone activity could also be considered as a CI for
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hydroclimatic variability in the Indian and Pacific rim countries. Wang
et al. (2008) performed a comparative analysis on pros and cons of 25
existing East Asian monsoon indicators from a viewpoint of interannual
variabilities of precipitation and circulation, suggested a new index
extracted by principal component analysis, and then stressed the im-
portant role of the mei-yu precipitation in quantifying the intensity of
the East Asian monsoon activity.

Rainfall erosivity calculated by product of rainfall kinetic energy
and rainfall intensity can be used a feasible hydrologic indicator of the
potential risk of soil erosion due to climate change. Degradation of soil
by water has been an important issue related agricultural productivity,
forest and ecological conservation, and environmental problems in the
world. The amount of rainfall has been used one of explainable para-
meters to predict the extent of degradation of soil, however, there have
been limitations in explaining the reason why the strength of rainfall
energy in two storms could be different if the amounts of rainfall are
equal. Rainfall erosivity, which is known as input parameter of em-
pirical models such as USLE or RUSLE for predicting long-term annual
mean soil loss for arable land, is a numerical value which represents the
erosion potential of soil erosion by water (Wischmeier and Smith, 1978;
Renard et al., 1997). The result of soil loss using USLE model depends
on the value of rainfall erosivity since the rainfall erosivity factor is
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Fig. 2. Map of climate indices boundary.

directly correlated with the amounts of soil loss in USLE. Rainfall ero-
sivity is a more accountable parameter to predict the amount of soil
erosion than the amount of rainfall itself. Increasing of severe storms
with high rainfall intensity accelerate soil erosion due to the fact that
heavier rainfall have more energy to erode soil than lighter rain.

Numerical investigations on the impact of climate change on soil
erosion through rainfall erosivity have been applied to sites all over the
world (Panagos et al.,, 2017), including the USA (Nearing, 2001;
Nearing et al., 2004; Biasutti and Seager, 2015; Hoomebhr et al., 2015),
China (Zhang et al., 2005), Japan (Shiono et al., 2013), Thailand
(Plangoen et al., 2013; Plangoen and Babel, 2014), Australia (Yang
et al., 2015), India (Mondal et al., 2016) and Iran (Mohammadi, 2015)
and so on. Recent study by Panagos et al. (2017) used a regression
approach to derive the distribution of rainfall erosivity in the future
from climatic variables. Nearing (2001) reported that climate change
can be expected to bring about the increase of soil loss by analyzing the
variability of rainfall erosivity. Yang et al. (2003) insisted that climate
change might significantly increase the potential risk of soil erosion in
the future. Nearing et al. (2004) presented that rainfall erosivity was
one of the important parameters to assess the potential climate change
impacts on soil loss. Zhang et al. (2005) investigated the change of long-
term annual mean rainfall erosivity and annual precipitation data ac-
cording to two different climate change scenarios to predict the ex-
pected risk of soil erosion in the Yellow River Basin of China. Their
result showed that the magnitude of rainfall erosivity increased sig-
nificantly by climate change and the variability of rainfall erosivity
included rainfall intensity was more sensitive than the variability of
precipitation amount.

Several recent studies for South Korea have suggested statistically
significant responses of hydroclimatic variables to the large scale Cls.
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Cha (2007) investigated the relationship between ENSO and 10D mode
events and the impacts of these two phenomena on the precipitation of
the Korean peninsula, and clearly indicated that the distribution of the
Indian Ocean SST represents the Southern and Northern Oscillation in
ENSO year, and Eastern and Western in IOD year with above normal
precipitation departure in both summer and winter seasons. Lee and
Julien (2017) revealed that two phases of the remote ENSO forcing are
the dominant drivers of streamflow fluctuations over the Korean pe-
ninsula based on harmonic and lag correlation analysis. In the study on
prediction of Korean precipitation variability using the downscaling
super ensemble method, Kim et al. (2004) suggested that during winter
the precipitation variability is correlated with the second EOF (Em-
pirical Orthogonal Function) mode of sea lever pressure (SLP) over East
Asia modulating moist flow from the WNP (Western North Pacific), and
highlighted enhanced climatic response of the East Asian monsoon
activity to precipitation anomalies in winter. Lee and Heo (2011) as-
sumed that the outliers of rainfall erosivity in a particular year could be
associated with severe storms under the influence of El Niflo.

Many previous studies reported that they detected the spatial and
temporal variability of rainfall erosivity by climate change, however,
there have been limitations in explaining the cause of variability of
rainfall erosivity related to various climatic parameters. In addition,
despite these studies, the majority of studies with regional and global
approaches concentrate on seasonal precipitation or streamflow,
therefore there has been relatively little attention to the far reaching
effects of climate indicators on hydrologic parameters such as Rainfall
Erosivity Indices (REIs). Also, these studies have focused on mostly the
global scale remote CIs such as El Nifio-Southern Oscillation (ENSO)
and Indian Ocean dipole (I0OD) based on remote sources of large scale
coupled ocean-atmospheric circulation on a global basis due to the fact
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Fig. 3. Flowchart of the methodology.

that the regional scale local CIs, e.g., monsoon variability and tropical
cyclone activity based on local synoptic-scale circulation patterns on a
regional basis, are less distinct and influence less hydrologic extremes,
e.g., floods and droughts, than the global scale CIs. Hence, there is no
study in the literature concerning the climate impacts of both global
and regional CIs on the REIs. However, the influence of climate in-
dicators on the East Asian climatology is not limited to the global scale
remote Cls, as well as, increasingly the potential researches of climatic
teleconnections are asking for more information about the overall fea-
tures of the hydrologic impacts modulated by various ClIs. Thus, it is
necessary to investigate systematically how both CIs affect the REI
variability in the East Asian regions.

The present study mainly aims: (1) to investigate the spatial outlook
and temporal cycle of REI anomalies over South Korea by means of
Empirical Orthogonal Teleconnection (EOT) and Function (EOF) de-
composition methods; (2) to identify significant climatic teleconnection
between the previously extracted leading modes of REI variability and
climate indicators with respect to the large scale climate fluctuations
and regional synoptic circulation; and (3) to demonstrate predictability
for REI patterns by sea surface temperature (SST), through the regres-
sion of the SST data on to the leading modes with varying lead times in
order for the comparative interpretation of two opposite phases pre-
dictability, i.e., above and below normal conditions, in terms of mag-
nitude and sign of the correlations.
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2. Data and methods
2.1. Rainfall erosivity

Rainfall erosivity index is defined as the product of the total rainfall
energy of heavy storms and the maximum 30 min of rainfall intensity
(Wischmeier and Smith, 1978; Renard et al., 1997). The equation of REI
is defined as:

E = E eAv,

where E means total rainfall energy, e is rainfall kinetic energy, Av is
rainfall amount in individual storm events, I3 is maximum 30 min
rainfall intensity, m is the number of the effective storm events, and REI
is rainfall erosivity index. Several researchers attempted to calculate
REIs using available precipitation data on a national scale in South
Korea (Jung et al., 1998; Park et al., 2000). National Institute of
Agricultural Sciences (NIAS) (2005) reported that the official value of
annual average rainfall erosivity in South Korea was 4274 MJ mm/ha/
h/yr as a follow-up to the studies by Jung et al. (1998) and Park et al.
(2000) based on data before 1997. National Institute of Agricultural
Sciences in South Korea developed the REI calculation program based
on Visual Basic program (Park et al., 2011). This program adopted the
rainfall kinetic equation by Wischmeier and Smith (1978) such as:

m

REI = ) (E) (o)

k=1

e =210.3 + 89log,,I for I <7.6cm/h, e=289 forI>76cm/h
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where e means rainfall kinetic energy (Metric tonf/m/ha/cm), I in-
dicates rainfall intensity (cm/h). If rainfall intensity is > 7.6 cm/h, the
value of rainfall kinetic energy is 289 (Metric tonf/m/ha/cm). The
calculated values were multiplied by 9.8 in order to match units in MJ
mm/ha/h/yr. More recently, Risal et al. (2016) developed a web-based
Erosivity estimation system (Web Erosivity Module, WERM) to compute
rainfall erosivity factor using 10 min interval rainfall data (1997-2015)
which have been used to determine yearly, monthly and event-based
erosivity indices and such erosivity index values have been published
for various weather stations in South Korea. WERM adopted RUSLE
kinetic equation (Renard et al., 1997) as follows:

e = 0.119 + 0.0873log,, I for I < 76mm/h,
/h

e =0.283 for I > 76mm

where e means rainfall kinetic energy (MJ mm/ha), I indicates rainfall
intensity (mm/h). If rainfall intensity is > 76 mm/h, the value of
rainfall kinetic energy is 0.283 (MJ mm/ha).

In this study, NIAS program based on hourly precipitation data
transformed into I3, and Web Erosivity Module (WERM) were used over
58 stations for 1973-2015 in consideration of the temporal and spatial
persistency as shown in Fig. 1. Based on the results from the correlation
analyses for NIAS and WERM timeseries (2001-2008) showing good
correlation coefficients up to 0.93, each monthly REI dataset was con-
verted into Standardized Rainfall Erosivity Index (SRI) with respect to
each month and station. Then, the combined SRI timeseries were de-
composed into empirical orthogonal teleconnection (EOT) and function
(EOF) modes.

2.2. Climate indices

For comparative analysis between large scale climate indicators and
REI patterns, several CIs were applied in this present study. Taking into
account both atmospheric and oceanic fluctuation, we employed the
Oceanic Nifio Index and the Multivariate ENSO Index as indicators for
the tropical ENSO forcing, in addition to the Southern Oscillation Index
which is widely used in atmospheric circulation analysis. The Oceanic
Nifio Index (ONI) is one of the main indicators for monitoring the
tropical ENSO phenomena. The positive phase of extreme ENSO phe-
nomena represents the condition that the ONI index exceeds +0.5,
while the negative phase of ENSO events indicates the condition that
the ONI index is lower than —0.5. The ONI is extracted by calculating
the moving average values for consecutive 3-month SSTs (Sea Surface
Temperatures) over the east-central Pacific Ocean, also known as Nifo
3.4 index area of 120°~170°W and 5°S-5°N. The source of monthly ONI
time series applied in this analysis is the dataset obtained from the
National Oceanic Atmospheric Administration (NOAA)-Climate
Prediction Center (CPC). The Multivariate ENSO Index (MEI) is derived
from the leading modes calculated by unrotated decomposition tech-
nique for several air-sea variables over the tropical Pacific Ocean, such
as SST, SLP (Sea Level Pressure), surface air temperature, total clou-
diness fraction of the sky, and zonal-meridional surface wind. From the
viewpoint of considering various factors associated with atmospheric
and oceanic variation, the MEI may be considered as a better indicator
representing relatively more information than other CIs. In this ana-
lysis, we employed the standardized bimonthly MEI values regularly
updated by the Climate Diagnostic Center (CDC) since December
1949-January 1950. The Southern Oscillation Index (SOI), as an at-
mospheric pressure based climate indicator, is usually computed using
Darwin-Tahiti mean sea lever pressure (MSLP) difference based on
standardized index with zero mean and unit standard deviation. In the
present analysis, we used the dataset of SOI calculated by the NOAA-
Climate Prediction Center. Unlike the ONI and MEI, the positive phase
of the SOI represents the La Nifna-like conditions.

To examine the climatic relationship between the previously in-
troduced CIs and the EOT/EOF modes for REI patterns, we employed
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Explained variance (VE) for the two leading modes of the monthly REI time series with the center of the leading mode, which is listed in parentheses: EC (east-coast
mode), SC (south-coast mode), NL (north-inland mode), and ML (middle-inland mode). Triangles, inverted triangles, and circles indicate increasing trend, decreasing

trend, and interdecadal patterns respectively.

Mode JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

EOT modes

EOT-1 0.43 0.67 0.62 0.66 0.63 0.48 0.45 0.30 0.43 0.36 0.64 0.60
SO e [CoX ] (SO e SO e (SCO) (SC)a (NL)A (NL) (SO) (EQ) (SCO) (SO)

EOT-2 0.31 0.10 0.17 0.10 0.12 0.13 0.15 0.22 0.14 0.32 0.09 0.24
(SC) (6(9) 4 (ML) (SC) @ SC) @ (SC) (ML) (EC) (EC) ® (sC) (NL) (SC)

EOF modes

EOF-1 0.42 0.64 0.58 0.54 0.63 0.34 0.34 0.31 0.41 0.40 0.63 0.60
SC) @ SO @ (SC) @ (SC) (SC) (SC) (NL)A (NL)A (SC)a (EQ) (SC) (SC)

EOF-2 0.29 0.10 0.20 0.14 0.11 0.18 0.13 0.20 0.16 0.29 0.09 0.24
(SO) (SCOa (SO) @ (sQv (SC) @ (ML) ® (ML) ® (NL) ® SO e SO e (NL) (SO)

reconstructed SST and atmospheric circulation reanalysis field. As re-
constructed SST data, the Extended Reconstructed SST (ERSST.v4) da-
tasets (Huang et al., 2014) are used in this study. The ERSST is a global
monthly SST dataset calculated based on the International Compre-
hensive Ocean and Atmosphere Dataset (ICOADS), which is widely used
in global and regional scale studies. It is provided with global coverage
on 2.0° X 2.0° grids through statistical analysis with the latest updated
data and spans from January 1854 to the present. The global atmo-
spheric circulation reanalysis dataset is based on the joint project of the
National Centers for Environmental Prediction-National Center for At-
mospheric Research (NCEP-NCAR). This dataset is a continually up-
dated globally gridded dataset on 2.5° x 2.5° grids basis using state-of-
the-art numerical modeling system for prediction and data assimilation
with constantly updated observations. The monthly NCEP-NCAR re-
analysis dataset is available for the period from 1948 to present.

Links between the leading modes and seasonal monsoon activity are
investigated using the monsoon indices over western North Pacific,
namely the western North Pacific monsoon index (WNPMI) (Fig. 2).
From the methodological approach by Wang and Fan (1999), the
WNPMI is calculated based on the difference between southern 850 hPa
zonal winds designated as U850 (1) covering 5-15°N, 100-130°E and
northern 850 hPa zonal winds designated as U850 (2) over 20-30°N,
110-140°E. The formal represents the intensity of the monsoon wes-
terlies from Indochina Peninsula to the Philippines, while the latter
indicates the magnitude of the easterlies over the southeastern part of
the WNP subtropical anticyclone. The monthly Tropical Cyclone Index
(TCI) quantifying the tropical cyclone activity is calculated based on the
tropical cyclone tracks recorded by the IBTrACS (Knapp et al., 2010)
and the National Typhoon Center (NTC) of Korea Meteorological Ad-
ministration (KMA). For the period from 1973 through 2008, the TCI is
obtained from the frequency of tropical cyclones passing through the
index area as shown in Fig. 2.

2.3. Analysis

The method used in this analysis follows the empirical approach by
Van den Dool et al. (2000) as outlined in schematic description of
Fig. 3. The detailed procedures of the analysis method can be briefly
summarized as follows. The first step is to convert the original data to
monthly based time series, i.e., transformation of REI data into Stan-
dardized Rainfall Erosivity Index (SRI) with respect to each month and
station. Then, the Empirical Orthogonal Teleconnection (EOT) and
Function (EOF) decomposition techniques are performed for identifi-
cation of spatiotemporal variability of REIs over South Korea. Finally,
the cross correlation and linear regression analyses examine tele-
connections between global and regional CIs and the leading modes.
And the final step is to perform lag correlation approach using the re-
gression of the SST data onto EOT/EOF modes with varying lead times
in order for the comparative interpretation of two opposite phases
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predictability, i.e., above and below normal conditions, in terms of
magnitude and sign of the correlations.

Prior to the EOT/EOF analyses to examine the CI-REI teleconnec-
tion, we converted the original data to the SRI formulated for effective
assessment of wet and dry condition by McKee et al. (1993). The SRI
calculating procedures following the approach of McKee et al. (1993)
and Lee and Julien (2015) are outlined as follows: (1) The monthly
observational data of 59 stations are transformed into the time series
fitted to gamma distribution for each month; (2) The fitted frequency
distribution is converted to cumulative distribution function (CDF) of
the standard normal distribution based on equal-probability condition;
(3) The final SRI dataset, which is subjected to the EOT/EOF processes,
can be computed by means of the standard deviations obtained from the
above CDF with zero mean and unit variance. The SRI is very
straightforward to estimate due to the fact that the one variable is used
as input data, as well as very easy to compare from a spatial and
temporal viewpoint since the index is presented as dimensionless va-
lues. Furthermore, Guttman (1998) indicated that the above index is
useful and conducive to statistical data process.

To investigate spatiotemporal patterns of REIs over South Korea, we
employ the EOT decomposition technique reported by Van den Dool
et al. (2000) with the classical analysis of the EOF. The EOT decom-
position approach is similar to that of the EOF in terms of representing
an objective method of selecting patterns that explain the maximum
amount of variance in a data set. The difference between the two ap-
proaches is that the former is orthogonal in one direction of space or
time, while the latter is orthogonal in two directions of space and time.
The EOT spatiotemporal analysis decomposes the dataset into a set of
orthogonal components, called EOT patterns. Due to the fact that the
EOT decomposition technique is orthogonal in one direction of space or
time, the EOT method provides more intuitive interpretation for re-
sulting patterns. The first EOT spatial modes are obtained by finding the
point with the highest sum in explained variance of all other points,
which is designated as a base point by Van den Dool et al. (2000). Then,
the time series of the base point is the first temporal modes of the REI
patterns. The second EOT spatial modes are extracted by removing the
influence of the base point on all other points using regression analysis
for the dataset of the base point and all other points. From the reduced
dataset, the second base point is identified by detecting the point ex-
plaining the most variance over the residual domain. For further modes,
the successive data reduction is repeated for the residual domain de-
composed by the preceding modes until the desired number of modes is
detected. For example of the time series (SRI) of January over the entire
period, we have a discrete space-time (s, t) dataset SRI(s, t),
1 <t < tmna and 1 < s <s;,4x, Where SRI denotes the monthly time
series of Standardized Rainfall Erosivity Index (SRI) transformed from
REI data with respect to each month and station. A stepwise linear
regression is employed to extract EOT values, where both the pre-
dictands and predictors are SRI(s, t). We can search all s for that point
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Correlation coefficients of the two leading modes with climate indicators, ONI (Oceanic Nifio Index), MEI (Multivariate ENSO Index), SOI (Southern Oscillation
Index), IOD (Indian Ocean Index), WNPMI (Western North Pacific Monsoon Index), and TCI (Tropical Cyclone Index). An underlined bold indicates correlations that

are statistically significant at the 5% level.

Mode Monthly CIs for EOT modes Monthly CIs for EOF modes

ONI MEI SOI 10D WNPMI TCI ONI MEI SOI 10D WNPMI TCI
The 1-st mode
AUG 0.18 0.24 —-0.19 0.08 0.10 0.02 —-0.07 —0.08 0.07 —0.08 0.10 0.01
SEP -0.35 -0.35 0.26 —0.24 —-0.14 0.39 —-0.25 —-0.25 0.25 —-0.25 —0.02 0.29
OCT -0.14 -0.17 0.05 -0.13 0.10 0.24 0.10 0.06 —-0.08 0.06 0.24 0.05
Nov 0.40 0.50 —0.51 0.48 -0.09 —-0.02 0.45 0.51 —0.52 0.51 -0.16 -0.10
DEC 0.34 0.37 —-0.40 0.23 -0.29 - 0.25 0.25 -0.29 0.25 -0.26 -
The 2-nd mode
AUG —0.22 -0.22 0.22 —0.03 0.25 -0.27 0.25 0.19 —-0.20 0.19 0.30 0.28
SEP 0.10 0.12 0.00 —0.09 -0.18 —-0.36 —-0.22 -0.18 0.16 -0.18 -0.17 0.08
OCT —-0.41 —0.40 0.32 -0.30 -0.17 0.26 —0.41 -0.30 0.12 —-0.30 -0.09 0.51
NOV —0.02 0.04 0.03 —0.05 0.15 -0.12 -0.15 —-0.11 —-0.07 —-0.10 0.29 —0.06
DEC 0.25 0.21 -0.22 -0.17 -0.23 - 0.16 0.10 —-0.06 0.12 —-0.09 -

in space, namely a base point (sb), that explains the most of the var-
iance at all other points including itself combined. What is explained by
SRI(sb, t) is removed from SRI(s, t) by standard regression, and we can
search the reduced data for the next most important point in space
based on explained variance. Eventually we can obtain SRI(s,
t) = Za,(t) e (s), where the a,(t) are time series and the e,(s) are
spatial patterns, and the summation is over mode m = 1, ..., Spax. In
this analysis, we also employed the revised EOT decomposition tech-
nique modified by Smith (2004), who demonstrated the base point
selection based on the explained variance for the entire domain-
weighted dataset instead of the highest sum in explained variance of all
other points. Following the above procedure, the first and the second
modes were obtained for monthly dataset in the period of 1973-2008 to
investigate various REI fluctuations in different area of South Korea.

Following the approach by King et al. (2014), all correlation coef-
ficients between the EOT/EOF modes and various Cls are calculated
using Spearman's correlation analysis at the 5% significant level taking
into account the fact that some CI time series may not feature normal
distribution. Although the correlation analysis was performed by
Spearman's rank test, the resultant correlation coefficients were in
general agreement with those calculated by the commonly used Pear-
son's product method. The overall findings from correlation and re-
gression analyses between all EOT/EOF modes and various Cls are
described with correlation maps and regression maps.

3. Results and discussions
3.1. Spatio-temporal patterns of EOT/EOF

EOT/EOF modes were extracted from the REI time series for the
period of 1973-2008. For spatial outlook of the REI patterns, correla-
tion maps for each mode showing the highest value of explained var-
iance for the entire domain-weighted REIs were plotted on a monthly
basis. Values displayed in these maps are the correlation coefficients
between the EOT/EQF time series in the base point with all other point
time series. Each monthly leading mode has the most explained var-
iance for the REIs and shows unipolar spatial patterns across South
Korea. The spatial patterns of the base points and highest correlation
values for each month reflect the climatological seasonal patterns in
association with the influence of midlatitude weather systems around
the Korean peninsula. Once the leading modes are identified, the next
step is to remove their influence on the dataset, prior to repeating the
whole procedure. This is done by using the results of linear regression
of previously detected leading EOT/EOF time series onto each in-
dividual point value, and subtracting out that proportion of the REI
signal explained by the first modes. Having removed the influence of
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the leading EOT/EOFs from the data, the analysis continues by finding
that the point whose time series most closely matches the resultant
residual time series. Fig. 4 show the resultant patterns for the EOT/EOF
of July and December REI from the above analyses.

The base points of the first EOT/EOF modes show different locations
with respect to months. The locations of base points for EOT modes are
similar to those for EOF modes during the summer months, in the north
and inland of South Korea. In the fall-winter months, the base points of
leading EOTs have a tendency to shift southward but more so for those
of EOF modes to the southernmost island. This is particularly clear in
July (Fig. 4a, e) and November (Fig. 4c, g), where the base points of the
leading EOT modes are located in northern central and southern coastal
area, respectively. For all months, the centers of the leading modes are
located in coastal area (37 modes) and inland area (11 modes). Since
the overall lower-order EOT/EOF modes such as the third, forth, etc.,
modes show more variability in the locations of the base points, the
results of the lower-order decomposition analyses were excluded. Lo-
cations of the base points represent that out of twenty four EOT/EOF
modes, i.e., two modes for each of twelve months, 19/18 are identified
as coastal mode and 5/6, inland mode as shown in Table 1. In detail, the
coastal mode consists of south-coast mode (16/17) and east-coast mode
(3/1) based on the center of leading mode, while inland mode com-
prises north-inland mode (3/4) and middle-inland mode (2/2). From
the spatial findings of the above analyses, the spatial outlook of the
leading modes represents northern inland mode for boreal summer
season and southern coastal mode in winter season. In general, there is
no consistent spatial homogeneity in both leading modes during the
summer and winter seasons except for July EOF-2 mode with more
widespread coherent patterns showing nationwide spatial homo-
geneity.

The total spatiotemporal variance related to the two leading modes
varies with months and modes. Table 1 shows that the spatiotemporal
variance related to each EOT/EOF mode is 0.30/0.31 to 0.67/0.64 for
each first mode, while that for lower-order modes decreases to around
0.09 at the second modes for each month. Explained variance by the
leading EOT modes is slightly larger than that by the first EOF modes in
most months due to the fact that the former is more likely to feature
homogeneities as opposed to the latter having less coherent variability
(Van den Dool et al., 2000). Temporal cycles were identified for the two
leading modes of EOT/EOQF time series (Fig. 5). From the temporal
findings of the above analyses, fifteen out of twenty four leading EOT
modes exhibits noticeable pattern, which are 4 increasing trend, 1 de-
creasing trend, and 10 interdecadal patterns as shown in Table 1. The
temporal cycles of the EOF time series show 10 noticeable trends, e.g., 2
increasing trend, 1 decreasing trend, and 7 interdecadal fluctuations.
The temporal trends of leading modes in January and February are in
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Fig. 6. Maps of SST (a)—(b) and MSLP (c)—(d) regressed on to November leading modes of EOT (upper) and EOF (lower) respectively. The values of each grid of the
maps (a)—(b) are calculated using regression coefficients for Sea Surface Temperature (SST) of ERSST. v4 reconstructed field on the leading modes of EOT and EOF,
and the values of the maps (c)-(d) are calculated using regression coefficients for Mean Sea Level Pressure (MSLP) of NCEP-NCAR reanalysis on the leading modes of
EOT and EOF. The dashed lines indicated ENSO-like SST patterns which exhibits warmer SST anomalies over the central-eastern tropical Pacific (a)-(b) and ENSO-

like SLP patterns of higher pressure in the western North Pacific (c)-(d).

Table 3

Cross-correlation coefficients of the leading modes with climate indicators. The bold, single underlined bold, and double underlined bold indicate correlations that

are statistically significant at the 0.15, 0.10, and 0.05 level.

Monthly ClIs for EOT modes

Monthly CIs for EOF modes

Mode JUN JUL AUG SEP OCT NOV DEC JUN JUL AUG SEP OCT NOV DEC
Lag modes for Oceanic Nino Index (ONI)

AUG 022 0.18 0.18 -0.01 -0.06 -0.07

SEP 2031 -036 -0.36 :0.35 -0.21 -0.27 -0.26 -0.25

OCT -0.17 -0.22 -0.23 -0.21 -0.14 0.00 -0.01 0.06 006 0.10

NOV 040 044 040 038 039 040 044 051 048 048 047 045

DEC 034 039 039 038 036 032 034 027 032 032 032 028 023 025
Lag modes for Multivariate ENSO Index (MEI)

AUG 026 0.23 0.24 0.03 -0.03 -0.08

SEP 0.30 -0.34 -0.34 -0.35 -0.19 -0.24 -0.24 -0.25

OCT -0.19 -0.18 -0.18 -0.18 -0.17 -0.06 -0.03 0.05 0.05 0.06

NOV 028 034 033 041 050 050 034 041 039 042 051 051

DEC 028 034 041 038 035 037 037 023 030 036 030 026 026 0.25
Lag modes for Southern Oscillation Index (SOI)

AUG -0.27 -0.16 -0.19 0.01  0.09 0.07

SEP 022 031 038 0.26 026 025 036 025

OCT 0.27 -0.01 0.00 0.03 0.05 0.16 0.01 -0.20 -0.07 -0.08

Nov 045 -035 033 -045 053 =051 0.56 -044 -044 =056 =052 -0.52

DEC -022 =040 -049 -037 -035 -0.27 -0.40 -0.17 =035 -039 -0.29 -0.27 -0.20 -0.29
Lag modes for Indian Ocean Dipole Index (I0D)

AUG 0.01 -0.05 0.08 -0.23 -033 0.08

SEP -0.27 -0.29 -0.26 -0.24 -0.23 035 -0.26 -0.25

OCT -0.14 -0.16 -0.14 -0.05 -0.13 -0.02 -0.03 0.02 0.08 0.06

NOV -0.28 -0.07 -0.01 0.06 0.12 048 -0.21 001 0.04 020 024 051

DEC 0.03 0.16 021 035 026 0.2 0.23 006 0.14 0.14 028 020 021 025

agreement with the findings of the previous study by Kim et al. (2004)
where the temporal cycles of the first mode over the Korean peninsula
are observed to exhibit significant interdecadal trends in winter. The
temporal evolution of the leading modes indicates increasing trends
during summer season (July) and oscillation on mainly inter-decadal
timescales for winter season (January and February). For the period of
study, many leading modes have significant signals to a great extent
throughout overall spatial domain of South Korea with large scale in-
fluence coverage. This implies that the hydrologic regimes associated
with a common large scale circulation process dominate and drive
spatiotemporal REI variability over South Korea.

3.2. Teleconnections between EOT/EOFs and Cls

For the purpose of investigating the far reaching effects of various
CIs on REI variability across South Korea, the leading modes were
correlated with several climate indices representing spatially and tem-
porally significant variability such as ENSO and IOD. Table 2 shows the
correlation coefficients between various CIs and EOT/EOF modes,
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where only EOT/EOF modes showing significant correlation were in-
cluded. In addition, as shown in Fig. 6 regression maps for NCEP-NCAR
reanalysis and ERSST. v4 reconstructed field were described depending
on each mode. Many regression maps indicate notable signals con-
sistent with the spatial patterns commonly reported in the hydrocli-
matic signals studies examined.

The correlation coefficients for each mode and ENSO indicator were
calculated using the ONI, the MEI, and the SOL As shown in Table 2, the
ONI time series has the significant negative correlations with the
leading EOTs in September, whereas the leading EOTs for November
and December exhibit the positive correlation with the tropical Pacific
SST. The MEI correlations similarly reflect the results of ONI-related
EOT signals with mostly significant correlations showing transitional
pattern from negative to positive. The SOI exhibits significant positive
correlations with the leading EOTs during early fall season (September),
while in the winter season (December) the first EOT shows the negative
correlation with the SOI In Table 2, the SST-related signal in associa-
tion with ENSO is weaker in spring and early summer reflecting the fact
that climatic links between the EOT modes and ENSO indices are not
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Fig. 7. Maps of SSTs of Lag-8 (January) to Lag-O (September) regressed on to September leading mode. The values of each grid of the maps are calculated using
regression coefficients for Sea Surface Temperature (SST) of ERSST. v4 reconstructed field on the leading modes.

significant at this time of year since the extreme ENSO phenomena are
generally not yet fully mature phase or are already decay phase. In
addition to the leading EOTs, the other lower-order EOT in some re-
gions show relatively significant correlations in October. The findings
from the above correlation analysis suggest that the El Nifo (La Nifia)
events exert a controlling impact over above (below) normal REI in
southern and inland of South Korean in general. The EOF modes also
have significant correlations with ENSO indicators. The ONI, MEI, and
SOI index show slightly lower correlation coefficients with the EOFs
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compared with the EOT modes, but both correlation results show a
similar seasonal cycle.

The climatic linkages between the leading EOT/EOF modes and the
ENSO indicators also can be identified through regression fields.
Enhanced EOT/EOF modes are also attributed to the typical ENSO SST
cycle which exhibits warmer SST anomalies over the central-eastern
tropical Pacific (Fig. 6a and b). Above normal signals in many EOT/EOF
modes are closely related to ENSO-like SST patterns. In addition to the
tropical Pacific SST Pattern, regressing MSLP onto the leading modes
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Fig. 8. As in Fig. 7, except for Lag-8 (March) to Lag-0 (November) regressed on to November leading mode.

(Fig. 6¢ and d) describes similar ENSO-like SLP patterns of higher
pressure in the western North Pacific and lower pressure in the eastern
North Pacific region. This reflects the Pacific-East Asian teleconnection
(PEA) which represents the damping phases of East Asian winter
monsoon induced by the western North pacific anticyclone and the
warm phases over the eastern equatorial Pacific Ocean (Wang et al.,
2000). This phase of the PEA teleconnection promotes variation of REI
over South Korea during ENSO winter in particular.

The correlation coefficient of monsoon variability with each EOT/
EOF mode was calculated for the WNPMI index. From the results of
correlation analysis in Table 2, the leading EOTs for December exhibit
the negative correlation with the monsoon variability over the WNP
region. In the positive WNPMI phase, anomalous cyclones are
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reinforced in the WNP area due to the intensification of WNP monsoon
trough, which is caused by the strengthening of westerlies over the
U850 (1) region in Fig. 2 from the Philippine Sea to the Indochina
peninsula and the enhancement of easterlies in the U850 (2) region
over the southern flank of the WNP subtropical high. This positive
WNPMI phase has an effect on lower than average REI anomaly in
South Korea. The EOF modes also show similarly significant correlation
with the monsoon variability. The monsoon indices show somewhat
lower correlations with the EOT modes than those for EOF modes but
exhibit a similar temporal pattern. The monthly TCI indices were cal-
culated for the index area to the south part of the Korean peninsula
(Fig. 2). Each TCI is correlated with the EOT/EOF modes for REI time
series from May to November. Seven out of thirty two modes show the
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Fig. 9. Maps of SSTs of March to November regressed on to November leading mode for above (left) and below (right) normal extreme values only. The values of each
grid of the maps are calculated using regression coefficients for Sea Surface Temperature (SST) of ERSST. v4 reconstructed field on the leading modes.

significant correlation with the TCI time series, indicating that in-
creased and decreased frequency of tropical cyclones passing through
the index area is associated with enhanced and suppressed REI varia-
tion as shown in Table 2. The leading modes in September exhibit the
significant positive correlation with the tropical cyclone variability.
This indicates that the leading modes in fall season, located in southern
coastal area over South Korea, show significant positive correlation
with the TCIL.

3.3. Predictability of REI pattern

The cross-correlation coefficient between ENSO and each EOT/EOF
mode was computed for the ONI, the MEI, and the SOI. As shown in
Table 3, the ONI time series from June to November has the significant
positive correlations with the leading EOT mode in November, while
September EOT-1 exhibits the negative correlations with the ONI of
June to September. The cross-correlation coefficient for the MEI time
series similarly reflect the teleconnection between the EOT modes and
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ONI indices with mostly significant lagged responses three (September)
to five (November) months in advance. The SOI has significant negative
correlations with the November leading EOT at the same lead times of
June to November, whereas the first EOT in September shows the po-
sitive correlation with SOI from the July to September. Generally, no
significant correlation for the ENSO signal was detected during January
to May reflecting the fact that relationships between the ENSO in-
dicators and each EOT mode are usually not significant at this time of
year. Also, the lagged responses are stronger in fall-winter season than
in summer season since ENSO events are usually fully developed in
boreal winter season. The outcomes from the above cross-correlation
analysis indicate that the far reaching effects of the ENSO phenomena
on the leading modes of REI in South Korea are detectable with up to
five months lead times. Additionally, the leading EOF modes also show
significant lagged correlation with ENSO remote forcing. The ONI, MEI,
and SOI index show slightly lower correlation coefficients with the EOF
modes compared with the EOT modes, but both correlation results show
a similar seasonal cycle. The IOD is also associated with EOT/EOF
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Fig. 10. The comparison of standardized indices for below (above) normal REI anomalies in September and above (below) normal REI in November-December

during the warm (cold) phase of ENSO events using the monthly time series.

modes of REI variability in South Korea. In Table 3, the IOD indicator
time series from June to September has the negative correlations with
the leading EOT modes in September, while December DMI indices
show the positive lagged correlation with September to December EOT
modes at shorter lead times of lag-3. Also, the cross-correlation coeffi-
cients for the EOF modes similarly reflect the teleconnection between
the EOT modes and IOD indices with mostly significant lagged re-
sponses two to three months in advance.

In addition to the cross-correlation analysis, the Pacific and Indian
Ocean SSTs based on the ERSST.v4 dataset are regressed onto the
leading modes with varying lead times to identify potential sources of
predictability for monthly REI patterns. As shown in Figs. 7 and 8, the
above lag regressions of the Pacific Ocean SSTs onto two leading modes,
e.g., September and November EOT-1, demonstrate that the leading
modes show notable lagged and concurrent regression with strong
ENSO signals over the equatorial Pacific. The September lag-1 regres-
sion, which regresses SSTs from previous months onto September EOT-
1, shows noticeable predictability from the Pacific Ocean SST with
negative regression coefficients decreasing as the lag increases. Sig-
nificant lagged regression signals continue until months prior to June at
lag-3, and then the Pacific SST-related REI signals tend to be disappear.
Also, the November lag-1 to lag-5 regression representing regression
June to October SSTs onto November EOT-1, shows potential predict-
ability by the tropical thermal forcing with positive regression coeffi-
cients. The significant positive signals extend to months prior to June at
lag-5, and then do not exhibit during January to May. The spatial
outlook of lag regression map indicates that the leading modes of the
fall and winter REI patterns in South Korea provide a source of pre-
dictability induced by fluctuation of the Pacific Ocean SST. Despite
noise in SST-REI relationship, the potential predictability sources ana-
lyzed above may provide a promising way for prediction of monthly REI
variation.
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In November, there is an asymmetric tendency in the ENSO-EOT
modes relationship. The lagged and concurrent SST regressions onto the
leading EOT-1 for above normal and below normal REI anomaly in
November account for the aforementioned asymmetric tendency as
shown in Fig. 9. These suggest that the potential predictability of very
high extremes in November from Pacific SSTs is higher than that of very
low November extremes. The lower predictability of January-May
leading EOTs is attributed to weaker SST-REI relationships in this time
of year. The potential sources of climate predictability extend to the
EOF modes and consequently these findings indicate important im-
plications for the seasonal forecasting the major hydrologic extremes.

3.4. Discussions

The EOT decomposition and cross-correlation analysis described in
the previous section demonstrate that leading mode in September has a
negative correlation with the tropical thermal forcing over Pacific
Ocean, while that of November-December shows a positive response to
the coupled ocean-atmosphere tropical SST variability. In other words,
during the warm ENSO years below normal REI anomalies are observed
in September, while above normal REI departures are observed in
November-December. For the cold phase years, contrastingly, the REI
anomalies in September show predominant positive departure in com-
parison with that of the non-event year, while negative anomalies are
shown in November-December. Fig. 10 illustrates the comparison of
standardized indices for below (above) normal REI in September and
above (below) normal REI in November-December during the warm
(cold) event years using the monthly data. The scatterplots for the
warm phase are mostly distributed in the upper left part, while those for
the cold phase are oppositely distributed in lower right part. These
noticeable distribution patterns for both extreme phases suggest the
opposite tendency of low and high anomalies in September and
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November-December with respect to each extreme event. Taking into
account that precipitation variability plays an important role in calcu-
lating the REI values, the findings from the above analyses are in
general agreement with those reported by Lee and Julien (2016) who
investigated the ENSO-precipitation teleconnection showing below
normal precipitation anomaly during early fall season and above
normal precipitation anomaly in late fall to winter season in association
with the extreme phase of ENSO forcing.

The physical mechanisms behind the far reaching effects of the
tropical ENSO forcing on the mid-latitude hydroclimatic variables are
difficult to construct in general. The Pacific-East Asia (PEA) tele-
connection, which was investigated by Wang et al. (2000), is a remote
climatic link system of the SST anomalies over the central equatorial
Pacific Ocean and the East Asian climatic variability during the ENSO
event years. From the perspective of the cyclone and anticyclone over
the WNP, the systematic configuration of the PEA teleconnection is
considered as the lower tropospheric vorticity wave generated over the
tropical Pacific Ocean with west-poleward shift against the westerly jet
stream. They indicated that the WNP anomalous winds predominantly
prevail and persist during late fall through ensuing winter of the ENSO
event years, modulating precipitation-based hydrologic variabilities
over East Asia by an enhanced or suppressed winter monsoon. These
features affect the amplification or depression of fall-winter hydrologic
variables in the ENSO event years. As a result, above or below normal
variable departures are observed during fall-winter season of the ex-
treme phase of ENSO phenomena throughout South Korea.

The overall results of these present analyses are in general agree-
ment with those of several recent studies regarding the climatic impacts
of the extreme phase of ENSO on hydroclimatic variables over South
Korea in terms of ENSO-related signals for hydrologic variable such as
precipitation and streamflow patterns. Cha et al. (1999) examined the
teleconnection between the remote ENSO forcing and Korean climate
such as precipitation, atmospheric circulation, temperature, and so on,
and revealed that the tropical ENSO forcing has a dominant impact on
fluctuation of seasonal precipitation over South Korea modulating en-
hancement of its magnitude in winter. In addition, from a viewpoint of
ENSO-REI signal seasons illustrated in the cross-correlation analysis for
the leading modes, the negative correlation in September is fairly co-
incident with the finding by Shin (2002) representing the suppression
of early fall precipitation during the warm extreme event years.
Therefore it is apparent that the findings from this presented study here
are considered as an additional confirmation of aforementioned cli-
matic far reaching effects of the large scale ClIs on hydrologic parameter
variability in South Korea. Consequently, in the light of the preceding
discussions, the overall outcomes from the present analyses provide
further confirmative evidence of the significant climatic teleconnection
between the large scale CIs and hydroclimatic variability over mid-
latitude.

4. Summary and conclusions

In the present study, we applied an empirical orthogonal tele-
connection (EOT) and function (EOF) decomposition techniques to
rainfall erosivity variability in order to examine remote impacts of large
scale climate indices on hydrologic variables over South Korea. Also, we
demonstrated predictability for hydrologic parameters by the tropical
SST data on a monthly basis using cross-correlation and lag regression
analysis for the leading modes and the ENSO and regional climate in-
dicators.

The findings form this analyses are outlined as follows: (1) As shown
in Fig. 4 based on the EOT/EOF analyses, the EOT leading modes ex-
plains more variance in REI variability than the leading EOF time series.
Also, the spatiotemporal features of the REI variability over South
Korea represent northern inland mode during summer and southern
coastal mode in winter with mostly increasing and interdecadal time-
scales; (2) According to the statistical correlation results, the ONI and
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MEI time series have the significant negative correlations with the
leading modes in September, whereas the leading modes in November
and December exhibit the positive correlation with the tropical Pacific
SST. The SOI shows significant positive (negative) correlations with the
first modes during September (November-December). The three ENSO
indicators generally show slightly higher correlation coefficients with
the EOTs modes compared with the EOF modes, but both correlation
results show a similar seasonal cycle. Also, the Indian Ocean dipole is
identified as a driver for REI variability in November with positive
correlation. As a result of correlation analysis between the leading
modes and the local atmospheric circulation climate indices, the
leading modes in December exhibit the negative correlation with the
monsoon variability over western North Pacific, while the September
leading modes show the positive correlation with the tropical cyclone
variability; (3) From the results of cross-correlation and lag regression
analyses, the leading modes in September and November have pre-
dictability up to five month lead time from the tropical Pacific SSTs.
Also, the potential predictability from the tropical Pacific SSTs for very
high extremes in November is higher than that of very low extremes.
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