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A B S T R A C T   

South Korea experiences numerous local sedimentation problems, such as landslides, upland erosion, aggrada-
tion and degradation, and flood plain sediment deposition. This has necessitated the development of a reliable 
and consistent approach for modeling sediment processes in the country. In this study, samples obtained from 35 
gauging stations at five alluvial river basins in South Korea were used together with the modified Einstein 
procedure and series expansion of the modified Einstein procedure to determine the total sediment load at the 
sampling locations. Using two different methods, the total sediment load of majority of the 35 considered rivers 
were found to be typically 50–300 ton/km2⋅yr. A model tree data mining technique was used to develop a model 
for estimating the specific degradation based on certain meaningful parameters, namely, the 1) elevation at the 
middle relative area of the hypsometric curve [m], 2) percentage of wetland and water, 3) percentage of urban 
land, 4) mean annual precipitation [mm], 5) main stream length [km], and 6) watershed form factor [km2/km2]. 
The root mean square error of the predictions of the proposed model was found to be 55 ton/km2⋅yr less than 
those of existing statistical models. Erosion loss maps obtained by the revised universal soil loss equation 
(RUSLE), satellite images, and aerial photographs were also used to represent the geospatial features affecting 
erosion and sedimentation. The results of the geospatial analysis indicated that the transport of sediment into the 
alluvial rivers was affected by the wetlands located near the rivers, and also enabled clear delineation of the 
unique erosion features of construction sites in the urban areas. In addition, the watershed morphometric 
characteristics could be used to accurately represent the sediment transport. The proposed data mining meth-
odology promises to facilitate the solution of various erosion and sedimentation problems in South Korea. The 
geospatial analysis procedure would also enable the understanding of spatially varied erosion and sedimentation 
processes under different conditions.   

1. Introduction 

South Korea has unique climatic and topographic characteristics 
with steep mountainous areas and valleys containing wide alluvial 
plains. Approximately two-thirds of the annual precipitation in the 
country primarily occurs during the summer season between June and 
September. The many mountainous areas account for 70% of the total 
land of the country and the wide alluvial plains between the mountains 
are used as paddy fields, which account for 13% of the total land area 
(Lee et al., 2018; Kang et al., 2019; Yoon and Woo, 2000). Thus, the 
country contains numerous agricultural reservoirs (~17,000) for water 
resource management. These distinctive conditions complicate 

sedimentation, resulting in problems, such as upland erosion during 
typhoons, flood plain sediment deposition, and aggradation and 
degradation. Additionally, South Korea has experienced rapid urbani-
zation over the last few decades, and some researchers have proposed 
that human activities affect sediment yield (Knox, 1977; Wessels et al., 
2007; Boix-Fayos et al., 2008; Shi et al., 2019;). Hence, there is a need 
for a reliable and consistent method for predicting sediment yield under 
the consideration of local conditions (Yoon and Woo, 2000; Kang et al., 
2019). 

Estimation of the total sediment flux and prediction of the sediment 
yield are some of the most challenging concerns in the field of erosion 
and sedimentation. Several methods have been developed for estimating 
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the total sediment flux. Einstein (1950) proposed the use of a bed load 
function for estimating the bed material load in sand beds, and various 
other studies have been conducted to develop a method to calculate the 
total sediment load. Colby and Hembree (1955) proposed the modified 
Einstein procedure (MEP), which can be used to calculate the total 
sediment bed load through depth-integrated sediment measurements. 
The Bureau of Reclamation Automated Modified Einstein Procedure 
(BORAMEP) is a computer program for MEP calculation (Holmquist--
johnson, 2006). In 2009, Shah-Fairbank (2009) proposed the series 
expansion of the modified Einstein procedure (SEMEP) for calculating 
the total sediment load using depth integration (Yang, 2019; Yang and 
Julien, 2019). This method produces reasonable results, revealing that 
the total sediment load is always greater than the suspended sediment 
load (Julien, 2010). The present study utilized two total sediment 
discharge values estimated by SEMEP and an MEP-based sediment 
discharge computation system. 

Furthermore, many researchers have developed simulation model 
for erosion and sedimentation. In particular, various empirical and 
statistical models have been developed to estimate sediment yield 
(Langbein and Schumm, 1958; Ryu and Min, 1975; Ryu and Kim, 1976; 
Allen, 1986; MOC, 1992; Verstraeten and Poesen, 2001; Kane and 
Julien, 2007; Faran Ali and De Boer, 2008; MLTMA, 2011; Kang et al., 
2019). Statistical models generally aim to determine the relationship 
between the eclectic watershed characteristics and observed sediment 
(Wheater et al., 1993). Additionally, the universal soil loss equation 
(USLE), which is an empirical erosion regression equation based on 
observation, is used worldwide to estimate the average soil loss equation 
yield (Kim, 2006; Merritt et al., 2003; Shrestha et al., 2004; Gayen et al., 
2019). The USLE has been continuously enhanced during the past 50 
years by various researchers. Williams (1975) developed the modified 
universal soil loss equation (MUSLE), which replaced the rainfall factor 
with a runoff factor in 778 storm runoff events in 18 watersheds. The 

Fig. 1. (a) South Korea and DEM, (b) distribution map of validation and calibration data stations, and (c) precipitation gauging station and kriging result.  

Fig. 2. (a) Flood duration curve and (b) sediment rating curves (MEP and SEMEP) for station H5.  
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revised universal soil loss equation (RUSLE) upgraded the USLE by 
focusing on better parameter estimation (Renard et al., 1997). However, 
because the empirical and statistical models are based on different 
conditions, they often produce highly variable results. To predict the 
sediment yield using statistical and empirical models, priority should be 
given to careful selection of the considered factors and proper under-
standing of their influence mechanisms. The reliability of the model 
output should also be carefully investigated (Vente et al., 2011). 

Recently, several data-based methods have been proposed for sys-
tematically and automatically deriving statistical rules and patterns 
from big data composed of various variables. The most representative 
prediction and classification analysis techniques for data mining include 
artificial neural network (ANN), regression analysis, logistic regression 
analysis (LRA), and decision tree. Data mining techniques have also 
been used to determine the correlations between input and output 

variables, as well as in identifying rules or trends based on the charac-
teristics of the data. Several studies have adopted data mining to develop 
calculation methods that consider various variables, derive new 
empirical equations, and make predictions based on the correlations 
between data (Chen et al., 2017). Additionally, several attempts have 
been made to model hydraulic sediment transport using machine 
learning (Bhattacharya et al., 2007), genetic programming (Iovine et al., 
2005; Aytek and Kişi, 2008), gene expression programming (Ebtehaj 
et al., 2015; Ghani and Azamathulla, 2011), ANNs (Jain, 2001; Lin and 
Namin, 2005; Nagy et al., 2002; Zhu et al., 2007), and adaptive neural 
fuzzy technology (Cobaner et al., 2009; Ostovari et al., 2016; Viloria 
et al., 2016). Therefore, data mining may be considered as a suitable 
method for estimating sediment discharge based on the strong correla-
tions between several physical quantities. In this study, data mining 
model tree techniques were used to develop models for predicting the 
mean annual specific degradation. The developed models were vali-
dated using additional data and the predictions were compared with 
those of existing models. Additionally, geospatial analysis using erosion 
maps obtained by RUSLE, satellite images, and aerial photographs was 
used to evaluate the reliability of the meaningful parameters employed 
in the proposed models. 

2. Materials and methods 

As mentioned in the introduction, South Korea has distinctive cli-
matic and topographic characteristics. The mountainous Korean 
Peninsula includes an eastern region of high mountain ranges and a 
narrow coastal plain, and western and southern regions containing 
coastal plains, relatively wide alluvial river basins, and rolling hills 
(Fig. 1a). There are five main rivers in South Korea (Han, Nakdong, 
Geum, Yeongsan, and Seomjin rivers), with all of them flowing from east 
to west, except the Nakdong river (Fig. 1b). Because the Korean Penin-
sula is affected by the East Asia monsoon, rainfall occurs mainly in 
summer during the rainy season. Fig. 1b illustrates the distribution of 
mean annual precipitation over 30 years. The large variation in the river 
flow under climatic and topographic conditions causes sediment prob-
lems in river management. This study considered 35 gauging stations in 
five major rivers in the alluvial river basin and analyzed the daily 
discharge data over 10 years. Most rivers in South Korea are alluvial 
sand bed rivers, and the gauging stations used for calibration in this 
study were almost within the transfer zone, which is relatively stable 
(Woo et al., 2015). In this zone, streams merge and flow down mild 
slopes, transporting water and sediment along the river bed. Because 
most of the sediment measurements in this study were performed during 
flooding, the sediments were predominantly suspended in transport. A 
total of 2084 suspended sediment measurements were performed at the 
stations, as depicted in Fig. 1a and b. Among these measurements, 2036 
measurements were conducted using a depth-integrating method with a 
D-74 sampler. The remaining measurements were conducted using a 
surface sampler or a P-61 sampler. The total sediment discharge was 
calculated using MEP and SEMEP, respectively. As the sediment mea-
surement does not cover the entire water column, the accurate estima-
tion of the total sediment discharge is dependent on the measured 
concentration and the samples may be representative of concentrations 
near the bed. The Rouse (1937) suggested an equilibrium concentration 
profile and the original Einstein procedure assumed that the Rouse 
number (R0) varied empirically. The MEP used in this study is similar 
with the BORAMEP and the R0 should be determined based on the power 
relation R0 = αωβ, in this method (where, ω is the settling velocity; α 
and β are determined by calibration). This method requires at least two 
overlapping bins between the bed load and the suspended load to 
calculate the vertical distribution of the sediment (Shah-Fairbank, 
2009). In the SEMEP, R0 was directly calculated from the median grain 
size of the suspended material to avoid unrealistic results and significant 
errors as in the overlapping bin approach. In this study, a total of 1962 

Table 1 
Variables considered in empirical model.  

Category Variables 

Watershed 
morphometric 

Line: total, main, tributary stream length, three stream 
orders 
Area: watershed area, drainage density, length factor, shape 
factor 
Relief: average watershed slope, river slope, middle relative 
height at middle relative area, elevation at middle relative 
area, lowest elevation, middle elevation, and hypsometric 
index 

Precipitation Precipitation at gauging station and in basin area, rainfall 
erosivities at gauging station in basin area 

Land cover Percentages of urban land, agricultural land, forest, pastoral 
land, bare land, wetland, water area, and wetland and water 
area 

Soil type Sand, clay, silt, and rock at 0–10 cm effective soil depth 
Bed material Minimum and maximum size of bed material  

Fig. 3. Watershed length for aerial morphometric characteristics (shape and 
form factors) and watershed length, *MBG is minimum bounding geometry. 
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sediment measurements were used for the MEP and 1808 samples were 
used for the SEMEP. The detailed processes of the SEMEP method are 
available in Yang and Julien (2019). The annual total sediment load was 
estimated using the flow duration–sediment rating curve (FD-SRC) 
method. The flow duration curve was delineated by the Weibull method, 
which was used to estimate the exceedance probability from the 10-year 
daily discharge data. The results for station H5 (Cheongmi) are depicted 
in Fig. 2a, while the corresponding sediment rating curve is depicted in 
Fig. 2b. From the discrete values of the discharge (red points in Fig. 2, 
determined empirically based on Julien’s method) and the corre-
sponding total sediment loads on the sediment rating curve, the average 
annual sediment load was estimated. Because the discharge records are 
available for longer periods than sediment records, this method enables 
the expansion of a small amount of total sediment yield data to the 
longer period of flow (Sheppard 1965). The specific degradation was 
determined as the average annual sediment yield divided by the 
watershed area. Detailed descriptions of the data processing are pro-
vided by Julien (2010) and Kang et al. (2019). 

Thirty-two parameters were considered as explanatory variables and 
classified into five categories, as detailed in Table 1. 

These parameters are often used for sediment yield and watershed 
hydrology modeling. The initial focus of the present study was the 
morphometric characteristics of the watershed. The relevant parameters 
were estimated during the watershed delineation using a 5-m discrete 
element model (DEM), provided by the National Geographic Informa-
tion Institute. The linear watershed parameters included those that 
defined the stream network and order. The stream network was delin-
eated using the Korea Reach File (KRF) version 3 as a polygon line, 
provided by the Ministry of Environment. After the delineation, the 
common two-dimensional watershed characteristics related to the 
watershed shape, such as the watershed area, drainage density, form 
factor, and shape factor, were determined. 

Shape factor = Watershed length2/Watershed area (1)  

Form factor = Watershed area/Watershed length2 (2) 

The form factor represents the ratio of the watershed area to the 
square of the watershed length. The watershed length can be defined in 
different ways (see Fig. 3). In this study, the watershed length was 
considered as the axial length, which is the length of the longest straight 
line between any two points on the watershed perimeter (red line in 
Fig. 3). Conversely, the main stream length (blue line in Fig. 3) was used 
to calculate the shape factor (Horton, 1932; Horton, 1945; Singh, 1994). 
The form and shape factors are commonly used to explain the surface 
runoff flow and effectively evaluate the shape of the watershed 
(perpendicular or circular). If a watershed is long and narrow, a longer 
time would be required for water and sediment to travel between its 
extremities. The relief factors of the watershed morphometry are the 
most important variables for describing the watershed topography. The 
basin hypsometry is particularly related to the flood response, soil 
erosion, and sedimentation process (Langbein, 1947; Strahler, 1952). A 
simple mathematical equation (middle elevation – lowest elevation)/ 
(highest elevation – middle elevation) is often used to express the inte-
gral of the hypsometric curve (Özkaymak and Sözbilir, 2012). In this 
study, a 5-m DEM was used for reclassification at every 100 m, and the 
reclassification raster was then normalized to draw the hypsometric 
curve. With the aid of the hypsometric curve, the relative height and 
elevation at the middle relative area were used to explain the specific 
degradation. Raindrops were observed to affect the soil detachment, and 
the surface flow of the precipitation contributed to sediment trans-
portation. The raster result of the kriging was applied to 60 points of 
daily precipitation and the rainfall erosivity data obtained from the 
Korea Meteorological Administration (KMA). The rainfall erosivity was 
calculated by 

R =
∑

E∙I30,E =
∑

e∙ΔP, e = 0.29[1 − 0.72exp( − 0.05∙I)] (3)  

where R is the rainfall erosivity factor (107 J/ha▪mm▪h), I30 is the 
maximum 30-min rainfall intensity (mm/h), E is the total storm kinetic 
energy (107 J/ha), ΔP is the increase in rainfall in the duration of rainfall 
interval (mm), e is the estimated unit rainfall kinetic energy (MJ/ 
ha▪mm), and I is the rainfall intensity (mm/h). The first step of kriging is 

Table 2 
Existing statistical models for predicting sediment yield.  

Author 
*Abbreviation 

Model No. of sediment 
samples 

Location 

Langbein and Schumm 
(1958) 
*LS58 

SD = 10P2.3/1 + 0.0007P3.33(P in inch and SD in ton/mi2∙yr) 170 US (Global) 

Allen (1986) 
*A86 

SD = 2.81*D + 1.81; 17 

Kane and Julien 
(2007) 
*KJ07 

SD = 0.02P1.7e− 0.0017PSD = 410A− 0.009  488 

Verstraeten and 
Poesen (2001) 
*VP01 

SD = 25A− 0.4lnSD = 3.72 − 0.72lnA − 0.84lnHI + 0.11lnTL(A in ha and SD in ton/ha∙yr) 26 Belgium 
(Global) 

Faran Ali and De Boer 
(2008) 
*FD08 

SD = − 8867 + 9.72P; lower,monsoon subbasin  14 
3 

India 
(Global) 

Ryu and Kim (1976) 
*RK76 

Vr = 672.61P0.024Vr = 267.21S0.587  9 
9 
9  

KICT (1992) 
*KICT1992 

SD = 972D1.039M− 0.825; for200 < A < 2000 
SD = 8668A− 0.896;forA < 200  

8  

Yoon (2011) 
*Y2011 

Vr = 43,954×A0.464S− 2.00M− 0.855  10 

Kang et al., (2019) 
*K2019 

SD = 357.16A− 0.204SD = 3.35× 10− 7A− 0.16P2.864SD = 0.0003×A− 0.08P1.65U0.75SD = 1.75×

10− 7A− 0.05P1.89U0.89Sa1.931SD = 1.77× 10− 5A− 0.009P1.91U0.53Sa1.09S− 0.93SD = 2.45×

10− 7A− 0.04P1.94U0.61W− 0.64Sa1.51Hyp1.84  

29 

A: watershed area (km2), D: drainage density (km/km2), HI: hypsometric integral (Hmean - Hmin/Hmax -Hmin), M: bed material size (mm), P: mean annual precipitation, 
R: basin relief (Hmax - Hmin) (J/ha), S: average watershed slope (%), Sa: percentage of sand (%), SD: specific degradation (ton/km2⋅yr), Sl: river slope (%), Sf: watershed 
shape factor, TL: total stream length (m), Vr: specific sediment deposit (m3/km2⋅yr). 
* Abbreviation is used in Fig. 5 and Table 6. 
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model fitting and the next step is prediction. The ordinary kriging with 
the exponential semivariogram model is highly reliable for most data set 
and it was used for the fitting of rainfall data (ESRI, 2020). The 
continuous raster data at a 5-m resolution were created using the fitted 
model and spatial information (Fig. 1c). This geostatistical method can 
determine the spatial distribution of meteorological data (Ozturk and 
Kilic, 2016) 

A detailed soil map was generated from the 5-m raster data obtained 
from the National Institute of Agricultural Sciences and was used to 

estimate the soil type percentages. The specific information of the per-
centage of soil and rock was exported from the data of a semi distributed 
hydrologic model, SWAT-K, developed from the Korea Institute of 
Construction Technology (KICT, 2007). The soil types were classified as 
(1) clay (dclay ≤ 0.002 mm), (2) silt (0.002 < dsilt ≤ 0.05 mm), (3) sand 
(0.05 < dsand ≤ 2 mm), and (4) rock (2 mm < drock) at effective soil 
depths of 0–10 cm. Here, d denotes the grain size of each soil type for 
classification. Because land use also impacts soil erosion and sedimen-
tation, the land cover raster (5 m resolution) of the Ministry of 

Fig. 4. Flow chart of this study.  

W. Kang et al.                                                                                                                                                                                                                                   



Catena 200 (2021) 105142

6

Environment was used to estimate the land use ratios in the watershed. 
This raster includes medium scale classification (22 categories) for land 
cover at a 5 m resolution. The land cover was classified using the hybrid 
method, which is a combination of the unsupervised and supervised 
method, from the Landsat TM, IRS 1C, SPOT5, and Arirang satellite 
images (Me, 2002). The land cover raster was reclassified into seven 
simplified categories, namely, 1) urban land, 2) agricultural land, 3) 
forest, 4) wetland, 5) pastoral land, 6) bare land, and 7) water. The 
percentages of wetland and water were introduced as additional land 

use parameters. Other variables related to the bad material size were 
also employed, and were classified as minimum and maximum bad 
material sizes based on the d50 values before and after flood events. The 
detailed process and data information are available in Kang (2019). 

Model tree is a representative and simple prediction and classifica-
tion method in data mining, and is known to be the best approach for 
interpreting results obtained for an enormous amount of various types of 
data. In particular, model tree is a simple yet excellent technique that 
can effectively derive explicit formulas, such as empirical formulas. This 

Table 3 
Annual sediment load and specific degradation determined by MEP and SEMEP, respectively.  

Station no. Station name Area MEP SEMEP 

Annual sediment load Specific degradation Annual sediment load Specific degradation 

[km2] [ton/yr] [ton/km2⋅yr] [ton/yr] [ton/km2⋅yr] 

H1 Yeoju 11,047 1,295,000 117 755,000 68 
H2 Heungcheon 284 114,000 404 126,000 443 
*H3 Munmak 1346 1,543,000 1147 317,000 236 
H4 Yulgeuk 173 35,000 203 47,000 271 
H5 Cheongmi 519 214,000 412 94,000 182 
H6 Namhanriver 8823 207,000 24 192,000 22 
H7 Heukcheon 307 23,000 75 30,000 97 
N1 Seonsan 979 69,000 71 44,000 45 
N2 Dongchon 1541 67,000 43 46,000 30 
N3 Gumi 10,913 229,000 21 201,000 18 
N4 Nakdong 9407 413,000 44 387,000 41 
N5 Waegwan 11,101 622,000 56 518,000 47 
N6 Ilseon bridge 9533 39,000 4 45,000 5 
N7 Jindong 20,381 2,087,000 102 1,031,000 51 
N8 Jeongam 2999 100,000 33 88,000 29 
N9 Hyangseok 1512 127,000 84 84,000 56 
N10 Dongmun 175 13,000 75 7,000 40 
N11 Jeomchon 615 24,000 39 22,000 36 
N12 Yonggok 1318 61,000 46 35,000 27 
N13 Jukgo 1239 46,000 37 64,000 52 
N14 Gaejin2 750 39,000 52 31,000 42 
G1 Hoedeok 606 72,000 119 60,000 98 
G2 Gongju 6275 682,000 109 499,000 80 
G3 Hapgang 1850 247,000 134 211,000 114 
G4 Useong 258 16,000 61 13,000 49 
G5 Guryong 208 12,000 60 14,000 67 
Y1 Hakgyo 190 19,000 97 16,000 82 
Y2 Naju 2039 233,000 114 190,000 93 
Y3 Mareuk 668 111,000 166 97,000 145 
Y4 Nampyeong 580 27,000 47 22,000 38 
Y5 Seonam 552 22,000 40 17,000 30 
S1 Jukgok 1269 41,000 32 42,000 33 
S2 Gokseong 1788 80,000 45 84,000 47 
S3 Gurye2 3818 172,000 71 138,000 36 
S4 Yongseo 128 4000 28 4000 29 

* Station is not used for calibration. 

Table 4 
Specific degradation models developed by MEP and SEMEP.  

Conditions Model (MEP) 

Hyp [m] Main [km] WW [%] U [%] 

≤187 – – – M1 = 661× U0.55 × WW− 0.34 × hyp− 0.44  

> 187 ≤265 ≤2.63 ≤3.11 M2 = 109× U0.63 × WW− 0.26 × hyp− 0.23  

> 3.11 M3 = 112× U0.64 × WW− 0.26 × hyp− 0.23  

> 2.63 – M4 = 113× U0.58 × WW− 0.27 × hyp− 0.23  

> 265 – – M5 = 101× U0.56 × WW− 0.18 × hyp− 0.23  

Conditions Model (SEMEP) 
Hyp [m] P [mm] FF [–] U [%] 
≤187 – – – M1 = 4.9× 10− 4 × P1.89 × U0.38 × hyp− 0.39  

> 187 ≤1133 – – M2 = 3.2× 10− 5 × P2.05 × U0.39 × hyp− 0.21  

>1133 ≤0.33 – M3 = 8.3× 10− 4 × P1.61 × U0.41 × hyp− 0.21  

> 0.33 ≤2.61 M4 = 8.5× 10− 4 × P1.61 × U0.43 × hyp− 0.21  

>2.61 M5 = 8.7× 10− 4 × P1.61 × U0.43 × hyp− 0.21   
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Fig. 5. Validation of existing specific degradation models: (a) US models, (b) global models, (c) Korean model based on reservoir, (d) Korean model with 1 and 2 
variables, and (e) Korean model with many variables, * MT_MEP is the suggested model using the model tree and MEP and MT_SEMEP is the proposed model using 
the model tree and SEMEP. 

Table 5 
Validation dataset.  

Name Main P FF U WW Hyp [m] SD Reference 
[km] [mm] [%] [%] [%] [tons/km2▪yr] 

Cheongsong 99 1074 5.32 1.40 1.83 455 24  
Geochang1 71 1309 2.69 1.94 0.48 639 99 
Oesong 401 1523 4.30 2.84 1.66 530 104 
Hotan 394 1267 9.25 2.21 2.31 417 18 
Gwanchon 162 1335 4.99 2.54 2.34 413 120 
Gyeombaek 118 1434 6.11 3.04 1.97 265 56 
Hwajeon Bridge 27 1407 0.45 3.46 0.19 516 136 KICT (1992) 
Daeso Bridge 67 1279 0.22 2.51 0.32 348 107  

Table 6 
Results of the statistical validation of existing models (MT: model tree).   

FD08 VP01-1 YC11 K2019 − 5 K2019 − 6 MT MEP MT SEMEP 

MEP RMSE 3797 112 1242 80 76 67 69 
MAPE 7645 83 1087 113 54 50 52 
NSE − 2066 − 0.80 − 220 0.09 0.17 0.32 0.31 

SEMEP RMSE 3809 96 1245 73 62 55 53 
MAPE 8283 81 1336 128 63 43 41 
NSE − 2541 − 0.63 − 230 0.07 0.33 0.47 0.48  
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technique is considered the most suitable for calculating the SD wherein 
several sediment physical quantities are transported in complicated 
connections with each other. The model tree is based on the separation 
of data into subtrees, which become more homogeneous in terms of the 
dependent variables, resulting in good predictions or classification rules. 
The model tree process consists of growing, pruning, and smoothing 
when the standard deviation reduction of Eq. (4) reaches its maximum 
value, and is then transferred from a large branch to a small branch 
(Quinlan, 1992; Wang and Witten, 1996). 

Standard deviation
reduction = σ(T) −

∑

i

|Ti|

|T|
× σ(Ti) (4)  

where T is the set of total samples of the dependent variable, Ti is the set 
of subsamples of the dependent variable divided by the sub-intervals, σ 
is the standard deviation, and |T| and ⌈Ti⌉ are the sets expressed by the 
number of elements. Each independent variable’s grouping is deter-
mined by the standard deviation reduction rate of the dependent vari-
able. After calculating the standard deviation σ(T) from the entire 
sample set T, including unnecessary branches, it is divided into arbitrary 
sub-sections according to the random intervals for each independent 
variable. Among the randomly divided sub-sections, the section with the 
most considerable standard deviation reduction rate is selected and 
replaced, after which the lower tree is established. The growth of the 
tree is terminated when the standard deviation reduction rate reaches 
the desired value, or when the number of data remaining after grouping 
becomes smaller than the selected criteria. In this study, the minimum 
data under the model tree classification conditions were set to four. The 
standard deviation reduction was set to 5% because an excessively small 
value would lead to unnecessarily numerous trees, resulting in reduced 
stability of the new formula. In other words, if the standard deviation 
reduction does not decrease by more than 5% even after classification, 

the growth of the tree would be terminated. After the completion of all 
classification processes, a representative formula of data belonging to 
the same group is presented through multiple regression analysis. In this 
study, a model tree that affected sediment formation and transport and 
watershed characteristic factors were applied to analyze a large amount 
of sediment data measured in the field, and an SD calculation model for 
each watershed was attempted. One of this technique’s advantages is 
that it creates a homogeneous data group through subgroups within a 
group of data without specific rules or uniformity and presents an 
optimal multiple regression equation through this process (Jang, 2017). 

Table 2 enumerates various existing empirical equations of the 
sediment yield and specific degradation. The existing models are refer-
enced for the selection of appropriate variables. Additionally, the pro-
posed models using the model tree were determined to compare their 
prediction accuracies with those of the existing models. 

The root mean square errors (RMSEs), mean absolute percent errors 
(MAPEs), and Nash–Sutcliffe efficiency (NSE) coefficients of the models 
were determined using eight additional validation data to evaluate their 
prediction accuracies. The NSE varies from –∞ to 1, and it indicates that 
the model predictions well match the observations when it is close to 1. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(xi − yi)

2

√

(5)  

MAPE =
1
n
∑n

i=1

⌊xi − yi⌋

xi
× 100 (6)  

NSE = 1 −
∑n

t=1(xi − yi)
2

∑n
t=1(xi − x)2 (7)  

where xi is the observation value, yi is the forecast value and x is average 

Fig. 6. Results of the geospatial analysis of the urban land at station N1: (a) erosion map, (b) satellite image, and (c) aerial photograph.  
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of the observation values. 
Finally, the geospatial analysis for upland erosion was conducted 

with erosion maps using the revised universal soil loss equation, satellite 
image, and aerial photo. The RUSLE model for the estimation of the 
average annual soil loss (A) was developed based on five factors: (1) 
rainfall erosivity factor (R); (2) soil erodibility factor (K); (3) slope 
length and steepness factor (LS); (4) cover management factor (C); (5) 
conservation practice factor (P). In this study, the erosion map at a 5-m 
resolution was created as below. Wischmeier’s equation was used for 
calculating the soil erodilibility factor for each great soil group 
(Wischmeier et al., 1971). The most sensitive factor in the RUSLE is the 
slope length and steepness factor, which was estimated using Van 
Remortel, Hamilton and Hickey’s method (Van Remortel et al., 2001). 
This method could avoid overextensions under the consideration of the 
downhill slope angle and non-cumulative slope length. The cropping 
management factor and conservation practice factor were referenced 
from the Ministry of Environment’s regulation (ME, 2012). The gener-
ated erosion map had a 5-m resolution. The erosion mapping using the 
RUSLE was conducted to estimate the overall sediment budget and 
identify meaningful erosional and sediment features. Then, a geospatial 
analysis was performed through a comparison of the proposed model 
calculation with satellite images and aerial photos. A flowchart of the 
entire process in this study is illustrated in Fig. 4. The results of the 
specific degradation calculation and the development of models for 
specific degradation are presented in the third section. Furthermore, the 
evaluation of the proposed model using geospatial analysis and 

physiographical analysis is discussed in the Discussion section. 

3. Results 

The annual sediment load estimated by MEP and SEMEP for the 
different gauging stations are shown in Fig. 1 and the specific degra-
dation determined by MEP and SEMEP are presented in Table 3. The 
specific degradations estimated by MEP were slightly higher than those 
obtained by SEMEP and this is similar with the results reported in 
another paper (Julien, 2010). Because H3 has the highest difference and 
the result is unreasonable, H3 stations were discarded from the model 
tree analysis. 

The mean annual specific degradation determined by MEP and 
SEMEP were adopted as response variables and the model tree data 
mining process was used to develop a sediment yield model using the 
above-mentioned 32 parameters as the dependent variables (Table 4). 

Each of the two developed models had five versions, all of which 
incorporated the elevation in the middle relative area and the percent-
age of urban land. Other meaningful parameters suggested for the MEP 
model were the main stream length and percentages of wetland and 
water, while those suggested for the SEMEP model were the mean 
annual precipitation and form factor. In Fig. 5, the existing models are 
classified into Global and Korea model based on their study area and 
they are validated with 8 additional validation data (Table 5). 

When the models include bed material size, two results are provided 
with the minimum and maximum of bed material size. Other regression 

(b) Satellite image of agricultural reservoirs 

(c) Erosion map of the agricultural 
reservoirs  

(a) DEM of station N1  
(wetland + water) (d) Aerial photo of a wetland 

Fig. 7. Locations and geospatial analyses at station N1: (a) DEM and location of a wetland and water area, (b) satellite image of agricultural reservoirs, (c) erosion 
map of the agricultural reservoirs, and (d) aerial photo of a wetland. 
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models were validated with eight additional validation data (Table 6) 
and models based on small areas in South Korea were also found to be 
incapable of representing the sediment yield in other regions. 

The results presented in Table 6 reveal low prediction accuracies of 
the existing models, which are based on different conditions and simple 
linear equations. Additionally, the models with more reliable variables 

Fig. 8. (a) Erosion map of station N1 and (b) DEM and locations of wetlands and water areas.  

Fig. 9. Physiographical analyses (hypsometric curves) of stations Y4 and H4: (a) Y4, Nampyeong and (b) H4, Yulgeuk.  
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produce more reasonable results. The model developed with model tree 
and SEMEP provides the lowest RMSE (53 ton/km2⋅yr) and highest NSE 
(0.48), which suggests good agreement between the model results and 
the measured specific degradation on these watersheds and the model 
well predicts the sediment yield than observed mean. The SEMEP-based 
model was found to produce better predictions for sand bed rivers with 
fine suspended materials. Yang and Julien (2019) also reported that 
SEMEP outperformed MEP, and their results were comparable with 
those of the present study. 

4. Discussion 

The statistical evaluation indicated that the existing models based on 
South Korea provide better predictability than the models based on 
other countries. Moreover, the data mining approach offers better ac-
curacy than other methods. Conversely, it would be difficult to apply the 
model suggested in this study to other regions. However, this method-
ology could identify the important parameters affecting erosion and 
sediment. To evaluate the meaningful parameters of the proposed 
models, they were used to conduct geospatial analysis of upland erosion 
together with erosion maps with the revised soil loss equation (RUSLE), 
satellite images, and aerial photographs. Both models incorporate the 
elevation in the middle relative area determined from the hypsometric 
curve (Hyp) and the percentage of urban land (U). The results of the 
RUSLE for the urban land area at station N1 are shown in Fig. 6. The 
erosion map in Fig. 6 reveals that the urban land area is not a major 
erosional risk area (gross erosion of ~1 ton/km2⋅yr). However, there are 
many regions with high annual soil erosion risks (>50 ton/ km2⋅yr). The 
satellite image and aerial photograph reveal that most of these areas are 
construction sites, where the exposed soils are prone to erosion and large 
amounts of sediment can be easily transported into the river through 
surface runoff. In the case of the elevation in the middle relative area 
(Hyp), all the coefficients of determination were found to be negative. As 
shown in Fig. 7, the forested mountain regions are very far from the 
gauging stations. In addition, if the elevation in the middle relative area 
is low, the flat watershed would be more developed and provide a 
platform for sediment deposition. The MEP-based model incorporated 
the percentage of water and wetland. The erosion map of station N1 
obtained by this model in Fig. 8 reveals many wetlands (brown) near 
alluvial rivers. Wetlands typically trap sediment during flood events and 
agricultural reservoirs are major locations of sediment deposition. The 
water areas, which are colored purple in Fig. 8b, occur along the rivers 
and in scattered agricultural reservoirs represented by the small purple 
dots. The 5-m-resolution erosion map properly captures two agricultural 
reservoirs, and the aerial photograph reveals flood plains near the al-
luvial rivers, with sand being the main formation material of the flood 
plains (Fig. 7b and d). 

The mean annual precipitation in the SEMEP-based model is related 
to the raindrop impact and significantly supports the positive relation-
ship between the specific degradation and precipitation (Lee and Heo, 
2011). The proposed models incorporate two additional physical char-
acteristics of the watershed, namely, the 1) mainstream length and 2) 
form factor. The mainstream length can be used as a meaningful 
parameter similar to the drainage area, because a longer mainstream 
increases the possibility of sedimentation. Similarly, the form factor can 
also be used as a meaningful parameter. In the case of the form factor, a 
lower value implies a higher peak flow over a shorter duration. This 
means that the sinuosity and a long travel time along an alluvial river are 
relevant to the specific degradation. 

In the proposed models, the absolute value of the coefficient of 
determination for WW is the largest for a low elevation (M1 determined 
by MEP). From the result of physiographical analyses, more than 98% of 
the wetlands and waters were located below the middle relative area on 
the hypsometric curve for station Y4, which had the largest amount of 
water and wetland (WW = 9.49%). It suggests that upland erosion 
happens in the upstream part of the watersheds and sedimentation is 

observed on reservoirs and wetlands as the flood wave propagates 
downstream. The upland erosion in the urban lands also occurred in the 
lower part of the watershed (Fig. 9). However, the coefficient of deter-
mination for U was not dominant in M1 for both models. This is perhaps 
best explained by the fact that urban development is progressive in ur-
banized areas and spreads throughout the watershed. 

Since the results of specific degradation do not show apparent dif-
ferences and the data did not cover all watersheds in South Korea, 
additional research based on supplementary sediment measurement 
gauging stations in steep mountain watersheds could be helpful for 
improving the model’s prediction accuracy for watersheds in South 
Korea. Moreover, the proposed models could be updated with extended 
survey periods. In terms of geospatial analysis, erosion maps at a higher 
resolution could clearly delineate high-risk erosion areas and provide 
detailed features. 

5. Conclusion 

The specific degradations estimated by MEP were within 10–1000 
ton/km2⋅yr, while those estimated by SEMEP were as much as 500 ton/ 
km2⋅yr, with most of the stations (25 out of 35) having specific degra-
dations within 25% of each other. The results obtained by the two 
methods were respectively used in model tree analyses to develop 
empirical models. Existing statistical and regression models were also 
tested against the determined specific degradations. The predictabilities 
of the models were observed to depend on the type and characteristics of 
their catchments. The proposed SEMEP-based model was found to 
outperform all the other models (RMSE = 53 ton/km2⋅yr and NSE =
0.48). The proposed MEP-based model utilizes the percentage of urban 
land, percentage of wetland and water, and elevation in the middle 
relative area. The meaningful parameters of the SEMEP-based model are 
the mean annual precipitation, percentage of urban land, and elevation 
in the middle relative area. The watershed morphometric variables (i.e., 
the mainstream length and form factor) also provide a classification 
standard. Further, the results of physiographical analyses based on 
hypsometric curves and geospatial analyses utilizing the RUSLE, satel-
lite images, and aerial photographs revealed that wetland, water, and 
urban land were important indicators for predicting the specific degra-
dation of watersheds. This prediction methodology could provide ac-
curate prediction for the target area and can be useful for identifying 
watersheds, which require sustainable sediment management. Addi-
tionally, geospatial analysis using satellite images and aerial photo-
graphs enables evaluation of the prediction methodology. In conclusion, 
the sediment output (obtained by the SEMEP in this study) and the 
overall sediment budget of the catchment (the erosion map obtained by 
the RUSLE) considering the local conditions should both be incorporated 
in the development of a model of sediment transport and sediment yield. 
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