ALLUVIAL CHANNEL GEOMETRY:
THEORY AND APPLICATIONS®

Discussion by Willi H. Hager,’ Fellow, ASCE

The discusser would like to congratulate the authors for
their interesting approach to the generalized regime formulas.
The purpose of this discussion is (1) to generalize the authors’
findings; and (2) to give an explicit approach for the flow
depth A.

Egs. (28)—(31) are used as the basis of this discussion. The
common denominator of all exponents is y = 5 + 6m, and
one may show that
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where g° = Q%/(gSd?) is the square of a sediment Froude num-
ber. The scaling length of both the flow depth A and the river
width W is thus the mean sediment diameter d,. For the av-
erage velocity, the expression is somewhat more difficult be-
cause the dimensional coefficient g™***~"! should vanish in
a correct system of equations, that is, m = —1. The dimen-
sionless Shields number should be scaled with the bottom
slope S, such that the dominant parameter is 7§ = Khp/[(p, —
P)dso).

Eq. (32) can be further simplified because <y is a function
of h/d, only, that is, from (4)

v =5 + 6/[In(12.2h/d,)] (36)

Using for g = 9.81 m/s® gives ¢ = fi(h/d,). Table 2 lists this
function and one may note that g increases very rapidly with
hld,.

The function under consideration may be approximated to
*20% in the interval of Table 2 and to *5% for 1 < h/d; <
10% as

log(h/d;) = 0.375 log(q/123) 37
or
hid, = (g/123)**" (38)

Accordingly, the highly implicit function f, is explicit, and one
has not to follow the authors’ computational procedure. From
(38) it can be seen that h is mainly influenced by the grain
diameter, slightly by the discharge and only to a small extent
by the bottom slope.

With the example of the author, for instance, one knows
O =104 m'fs, d, = 0.056 m, and S = 2.87 X 107%, based on
the value of t¥. Therefore, g = 8.352 X 10°. The ‘‘exact so-
lution’’ obtains h/d, = 26.75, and h/d, = 27.35 (+2%) results
according to (37). Therefore, vy = 6.03 and W/d, = 966, or W
= 54.1 m; and U = 1.28 m/s.
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TABLE 2. Variation of g with h/d, according to (32) and (36)

h/d, q

(1) )

10° 1.23 x 10?
10! 6.5 X 10*
10? 2.46 x 10’
10° 8.53 x 10°
10* 2.85 x 10"

It is necessary to add here that in the authors’ example, the
numbers for the width and the average velocity are wrong.
The correct equations should read

W=1 '33Q(2+4m)/(5+6m)d —4m/(5+6m)s (1 +2mN(5+6m) (29)

and

U = 3'76Q(l+2m)l(5+6m)d:2m/(5+6m)s(2+2m)/(5+6m) (30)

Discussion by H. Q. Huang*

In an excellent review of the existing methods for the de-
termination of alluvial channel geometry, the authors identify
the limitations of simplified one-dimensional analyses of flow
and sediment transport in alluvial channels. They then proceed
to develop an alternative method by introducing a two-dimen-
sional flow equation, using the secondary flow equation, (11),
and the Shields number 7§ as the mobility index of nonco-
hesive particles. The exponents of flow discharge in the de-
rived hydraulic geometry equations vary well in the ranges of
those empirically established relationships, and an acceptable
agreement between a very large set of field and laboratory
measurements and the corresponding calculations from the de-
rived equations is achieved.

Of the derived channel geometry relations developed by the
authors, their (28)—(30) are of particular interest to the writer.
Because exponent m has a varying value of 0.0-0.5, these
equations can then be written in the following numerical
forms:

W = k, Q04034 ©00-029g-02-029 (39)
h = k, Q0402500-0375g ~02-0.125) (40)
U = k,Q03023g(00-0129g04-0375 1)

where coefficients k,,, k,, and ky were found by the authors
to hold average values of 1.33, 0.2, and 3.76, respectively.

Eqs. (39)—(41) are very similar to those obtained by Huang
and Warner (1995) in their investigation (from a very large set
of field observations) of the applicability of an experimental
relationship between channel shape and boundary shear dis-
tribution. The downstream hydraulic geometry relations estab-
lished by Huang and Warner are

W= k:v Q0.5n0.3555 —0.156 (42)
h - k’l' Q0.3n04383s —0.206 (43)
U = kaO.Zn—O.73ﬂso.362 (44)

where coefficients k., k;, and k/, have average values of 4.059,
0.427, and 0.576, respectively, but are related well to bank
material (Huang and Nanson 1995).

It is interesting to note that the above two sets of hydraulic
geometry relationships are highly consistent in describing the
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effects of flow discharge and channel slope. Since the Man-
ning’s roughness » is in direct proportion to d)® in certain
circumstances [e.g., Chow (1959)], the above two sets of re-
lationships are also consistent in interpreting the effects of
channel roughness or sediment size on channel depth and ve-
locity. The inverse effect of channel roughness or sediment
size on channel width can be accounted for by the use of
different flow resistance relations and a different additional
flow regime relationship, such as the secondary flow equation,
(11), used by the authors, but a relationship between channel
shape and boundary shear distribution is used by Huang and
Warner (1995).

Furthermore, it can also be found that the coefficients in the
above two sets of hydraulic geometry relations actually pos-
sess consistent physical meanings. This is due to the finding
by the authors that the coefficients C,, C,,, and Cy defined by
(20)—-(22) vary in the comparatively small ranges. According
to (20)—-(22), and considering the effects of only major vari-
ables, the following relations can be derived:

F4 1/2+m+p)
T
d/) w

Cox G Cyx Cy (46)

Furthermore, because the coefficients C,, C,, and Cy exhibit
very little variation, factor { varies in a limited range, where

{ is defined by
nY h
(= (Z) v — @n

Eq. (47) can also be written in the following form:

Wll(l +p)
h

- c-—l/(l+p)_d’—pl(l+p) - gr (48)
For p = 2m and 0 < m < 0.5, as suggested by the authors, (48)

can then be expressed as

wioe-os
- ¢ (49)

Eq. (49) is a very commonly observed relationship and fac-
tor {’ can be related to channel sediment composition, bank
vegetation, and, hence, bank strength. Typical examples of this
aspect are the studies of Schumm (1969) and Hey and Thorne
(1986).

Concerning the influence of sediment composition on chan-
nel geometry, Schumm (1969) obtained

0.38

wW=23 h = 0.60°¥M"* (50)

>
where M = average percentage of silt-clay in the channel
boundary.

Hey and Thorne (1986) considered the effect of bank veg-
etation on channel geometry and found

W= k,,,sgo.so; h = 0.220°d; 2" 1)

where k.., has values of 4.33, 3.33, 2.73, and 2.34 for grassy
banks with no trees or bushes and the banks covered with 1—
5%, 5—50%, and >50% tree/shrub, respectively.

Eliminating discharge Q from (50) and (51) results in

.763

= 3.147TM ~°%® (52)

WO
h

= (k%240.22)d%" (53)

In terms of (45)—(49) and (52)~(53), it can be inferred
Ch(CU) ~ (Ma kveg)+; Cw -~ (M! kveg)_ (54)

According to the authors’ method, k,,, k,, and ky in (39)—
(41) have the relationships with C,,, C,, and Cy as

- - 1Y(6m+5
kh o C:m/(6m+5); kw o Ch (2m+|)(3m+|)/(6m+5); kt‘/ o« CLm(sm D+ )

(55

Hence, for 0 < m < 0.5 as suggested by the authors, it can be
inferred from (54) and (55)

kh (kU) -~ (M9 kveg)+; kw -~ (M’ kvag)_ (56)

Eq. (56) means that channels with a high silt-clay content
or with banks covered with trees or shrubs and hence having
a high bank strength have a smaller k, but a larger k, and
ky, and vice versa. Obviously, the physical meanings of %,
ky, and ky in (39)—(41) are consistent with those of k,,, k;,
and ky in (42)—(44) as studied by Huang and Warner (1995)
and by Huang and Nanson (1995).

In summary, the two sets of downstream hydraulic geometry
relations proposed by the authors and by Huang and Warner
(1995) are essentially consistent, although two different ap-
proaches were followed in each study. Since the two studies
each involves a very large set of field observations from dif-
ferent sources, both sets of hydraulic geometry relations are
of general applicability and of practical use.

However, in investigating the applicability of their dejrived
hydraulic geometry relations, the authors actually used equa-
tion (47) without giving a physical explanation of why their
proposed secondary flow equation, (11), can be simplified into
(47). Although this discussion has provided a physical rational
basis for the use of (47), it is based on purely empirical ob-
servations; hence, the physical mechanisms that result in this
simplification need to be justified.

Furthermore, the authors used the Einstein-Chien flow re-
sistance equation, even though it only emphasizes the influ-
ence of the relative submergence of bed sediment on flow
resistance. In reality, the flow resistance of alluvial channels
is determined by many factors, such as channel irregularity,
channel boundary sediment composition, vegetation, and the
conditions of sediment transport [e.g., Chow (1959)]. Because
of this, the discusser prefers to use Manning’s flow resistance
equation, for this procedure for evaluating Manning’s coeffi-
cient has been well established for many practical circum-
stances [e.g., Barnes (1967)]. In addition, use of Manning’s
flow resistance equation means a constant m, and thus leaves
only exponent p in (11) to be determined. This can be easily
solved by applying a multivariate regression technique to the
large set of field observations collected by the authors.
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Closure by Pierre Y. Julien,” Member, ASCE,
and Jayamurni Wargadalam®

It is with delight that the interesting contributions of dis-
cussers Hager and Huang were received. Their content is sub-
stantial, and careful consideration called for a lengthy closure.
Both lend considerable support to the proposed downstream
hydraulic geometry relationships, and progress has certainly
been achieved in better understanding alluvial river mechanics
in support of empirical regime equations. Originating from an-
tipodes, -Hager emphasizes theoretical and computational as-
pects while Huang stresses field observations and practical use.
We may have generated slight confusion in presenting two sets
of equations in the paper. It is judged appropriate to explicitly
outline our calculation procedure prior to formulating re-
sponses to individual discussions.

RECOMMENDED PROCEDURE

Our recommended procedure for the calculation of the
downstream hydraulic geometry starts with the user selection
of three independent variables. To include the effects of sed-
iment transport, the user may want to calculate four dependent
variables: average flow depth A, surface width W, average flow
velocity U, and equilibrium slope S as a function of three
known independent variables in discharge Q in m’/s, median
grain size d, in m, and dimensionless Shields number 7¥. The
equations (24)—(27) in the paper are solved with the five-step
procedure outlined on pp. 321 and 322 of the paper. The cal-
culation example in the paper is indeed correct. Values of the
coefficients and exponents for values of 0 < m < 0.5 are sum-
marized in Table 3.

Another example of the procedure is given here for calcu-
lating the downstream hydraulic geometry given Q = 104 m?s,
dss = 0.056 m, and 1§ = 0.047 at the beginning of motion:

1. Roughly estimate the flow depth; e.g., h = 1 m.
2. From the flow depth and grain size, calculate m from m
= 1/In(12.2h/d,) = 0.186.

*Assoc. Prof., Dept. of Civ. Engrg., Engrg. Res. Ctr., Colorado State
Univ., Ft. Collins, CO 80523.

$Grad. Student, Dept. of Civ. Engrg., Colorado State Univ., Fort Col-
lins, CO.

3. Calculate the exponents b, ¢, and d for flow depth from
Table 3, given m = 0.186: h = aQ’dr*¢ = 0.133(104)°*
(0.056)°%* (0.047)™"° = 1.38 m.

4. Repeat steps 2 and 3 with calculated flow depth until
convergence: m = 0.175 gives & = 0.149 m, and m =
0.172 gives A = 1.51 m.

5. Calculate the channel width W, flow velocity U, and
slope S using the last value of m and the exponents of
0, d,, and 7§ in Table 3; e.g., with m = 0.172

W = 0.512(104)°%34(0.056)~%3%3(0.047)°*" = 36.4 m
U = 14.7(104)*°#(0.056)*3%°(0.047)*4¢ = 1.87 m/s
S = 12.4(104)°*7(0.056)*%%4(0.047)"'*° = 2.86 X 107>

The user may prefer to use a different set of known inde-
pendent variables. Eqs. (24)—(27) must then be rearranged
through algebraic transformation isolating each dependent var-
iable on the left-hand side as a function of power functions of
the three user-selected independent variables. For instance, ge-
omorphologists may prefer to calculate flow depth h, width W,
mean velocity U, and Shields number 7¥ as explicit functions
of discharge Q in m*/s, median grain size d, in m, and channel
slope S. Notice that the exponents of discharge and grain size
in Table 4 for values of 0 < m < 0.5 are not identical to those
in Table 3 because exponents depend on the arbitrary selection
of the third independent variable, The recalibrated (28)—-(31)
can be solved with the following procedure. To calculate the
downstream hydraulic geometry given Q = 104 m%/s, dy =
0.056 m, and S = 2.87 X 107°

1. Roughly estimate the flow depth, e.g., A = 1 m.

2. From the flow depth and grain size calculate m from
m = 1/In(12.2h/d,) = 0.186.

3. Calculate the exponents b, ¢, and d for flow depth from
Table 4, given m = 0.186: kA = 0.2(104)°*?7(0.056)>'*
(0.00287)™%'%* = 1.40 m.

4. Repeat steps 2 and 3 with calculated flow depth until
convergence: m = 0.175 gives h = 1.48 m, and m = 0.173
gives h = 1.50 m. _

5. Calculate the channel width W, flow velocity U, and
Shields number 7§ using the last value of m and the
exponents of Q, dsy,, and S in Table 4; e.g., with m =
0.173

TABLE 3. Downstream Hydraulic Geometry as Function of Q (m*/s), d, (m), and 7,

Coefficient a Discharge exponent b Grain size exponent ¢ Shields number exponent d
(1) ] (3) “ (5)
Flow depth h (m) 0.133 1/(2 + 3m) (-1 + 6)/(4 + 6m) —1/(4 + 6m)
028 <b <05 —-0.25 < ¢c < 0.28 —025<d < —0.14
Top width W (m) 0.512 1+ 2m)(2 + 3m) (—1 - 4m)/(4 + 6m) (=1 —2m)/(4 + 6m)
0.5 < b <057 —042 <c < —0.25 —028 <d < —0.25
Mean flow velocity U (m/s) 14.7 m/(2 + 3m) (2 — 2m)/(4 + 6m) 2 + 2m)i(4 + 6m)
0<b <014 0.14<c<0.5 043 <d <05
Slope § 124 ~-1/(2 + 3m) 5/(4 + 6m) (5 + 6m)/(4 + 6m)
—05<b<—028 071 <c< 1.25 1.14 <d < 1.25

TABLE 4. Downstream Hydraulic Geometry as Function of Q (m%/s), d, (m), and Siope S

Coefficient a Discharge exponent b Grain size exponent ¢ Slope exponent d
(1 (2) (3) 4) (5
Flow depth h (m) 0.2 2/(5 + 6m) 6m/(5 + 6m) —1/(5 + 6m)
025<b<04 0<c<0375 -02 <d< ~—-0.125
Top width W (m) 1.33 2+ Am)I(5 + 6m) —4m/(5 + 6m) (=1 — 2m)/(5 + 6m)
04<b<05 —-025<c<0 -025<d< —0.2
Mean flow velocity U (m/s) 3.76 (1 + 2m)/(5 + 6m) —2m/(5 + 6m) 2+ 2m/(5 + 6m)
020<b <025 -0.125<c <0 0375<d <04
Shields number =+ 0.121 2/(5 + 6m) —5/(5 + 6m) 4 + 6m)/I(5 + 6m)
025<b<04 -1 <c<—0.625 08 <d < 0.875
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W = 1.33(104)°%4(0.056)°113(0.00287) *** = 54.2 m
U =3.76(104)°*2%(0.056)*"(0.00287)*** = 1.29 m/s
7¥ = 0.121(104)°%1(0.056)**%(0.00287)"%** = 0.047

Hydraulic geometry calculations from (28)—(31) will give
slightly different results from those of (24)-(27) simply be-
cause the coefficients in (28)—(31) were recalibrated to aver-
age values to avoid coefficients with variable exponents. The
results from both sets of equations differ within the variability
of the coefficients shown in Fig. 5.

RESPONSE TO HAGER’S DISCUSSION

Hager astutely abbreviates the original formulation of (28)—
(31) after defining a sediment Froude number. The formula-
tions of (32)-(35) offer dimensional homogeneity, and the
right-hand side of each equation nicely reduces to a single
repeating dimensionless parameter. This was expected from a
dimensional perspective because if the dependent variables on
the left-hand side of (28)~(31) can be normalized using a com-
bination of independent variables from the right-hand side of
the same equations, the remaining independent variables on
the right-hand side must combine into a single dimensionless
parameter. Perhaps the advantage of (32)—(35) pertains to the
identification of dimensionless terms on each side of the equa-
tion. In counterpart, each dependent variable is cluttered with
independent variables, coefficients, and exponents. For specific
evaluation of the unknown dependent variables, A, W, U, and
7¥, the dimensionless (32)—(35) must be rewritten in the di-
mensional form initially proposed in the paper, that is, (28)—-
(31). There is a false sense of generality in attributing any
physical significance to the sediment Froude number. The mat-
ter is that the sediment Froude number simply emerges be-
cause the variables Q, d,, and S were arbitrarily selected as
independent variables. It should be clearly understood that
a different combination of independent variables will yield a
different repeating dimensionless parameter. For instance,
when the independent variables are discharge Q, grain size
d,, and Shields parameter 7¥, the repeating dimensionless
parameter on the right-hand side of (24)—(27) corresponds to
Q%gv¥d?, which is different from the sediment Froude num-
ber. One should thus be careful in claiming generality because
the final dimensionless parameter depends on an arbitrary se-
lection of independent variables. Hager nevertheless found
equivalent dimensionless formulations to the explicit formu-
lations of (28)-(31).

Hager’s second comment relates to a direct evaluation of
flow depth. It is clear that the dimensionless form (32) does
not yield an explicit evaluation of flow depth because flow
depth 4 is found in both the argument and the exponent on
the left-hand side of (32). The approximate relationship in (38)
is interesting; however, one may guard against misleading in-
terpretations thereof. For instance, the discusser erroneously
concludes that ‘‘from (38) it can be seen that h is mainly
influenced by the grain diameter, slightly by the discharge and
only to a small extent by the bottom slope.”” Actually, one
must explicitly rewrite & as a function of the independent var-
iables, that is, & ~ d,(Q*gSd*)*'*”* from which one finds that
flow depth depends primarily on discharge # ~ Q%" then
slope h ~ S™%"*_ and depends very little on grain diameter
h ~ d?°%. This is in agreement with the authors’ results from
(28), also found in terms of the exponents of discharge, grain
size, and slope for flow depth in Table 4. The need for explicit
downstream hydraulic geometry relationships can be satisfied
with regression equations. For instance, the following approx-
imate equations have been obtained by simple regression with
the data from the original paper:

h = 0374053 d 0% ¥00 5D

W=0.761Q%d 0130 (58)
U = 6.012Q%'2°d 3% 3% (59
§=6.713Q 7" d ey (60)

where the discharge Q is in cubic meters per second; ds, is the
median grain diameter in meters; and 7§ is the Shields number.
These equations offer simplicity and rapid evaluations of the
dependent variables. Their drawback lies in the fixed values
of their exponents and their lack of theoretical support. They
are thus considered far inferior to the equations proposed in
the paper. They can nevertheless serve for rapid estimates as
wall as educated guesses to start the iterative procedure out-
lined in Tables 3 and 4.

RESPONSE TO HUANG’S DISCUSSION

Huang’s contribution is also commendable as it can be seen
that after assuming the Manning-Strickler relationship, n ~
d!, the exponents of the regression equations are indeed quite
comparable to the range of values compiled in Table 4. The
system of equations proposed by Huang and coworkers should
yield satisfactory results as long as Manning’s equation is ap-
plicable. Like our empirical equations (57)—(60), they offer
simplicity and rapid calculations at the expense of a lack of
theoretical support. Since Huang highlights the importance of
additional effects such as channel irregularity, sediment com-
position, vegetation, and sediment transport, it is noteworthy
that both sediment transport and sediment diameter are in-
cluded in (24)-(27) in terms of grain size and Shields number.
The additional effects of bank vegetation and channel irregu-
larity are very difficult to quantify. The key aspect of Huang’s
presentation relates to (56), where coefficients for depth C,,
width Cy, and velocity Cp are described in terms of average
silt-clay percentage M and vegetation coefficient k.. Infer-
ences based on the work of Schumm, Hey, and Thorne are
useful and should guide further developments. Empirical re-
lationships like (50) and (51) are interesting but site specific,
and to quantify (56) remains speculative at this time. For in-
stance, the effects of root vegetation are quite difficult to for-
mulate mathematically, and it may always be difficult to assess
whether any given type of vegetation exerts the same influence
on small as well as large channels. Specifically, one could
perceive that grassy banks without trees or bushes, k.., = 4.33,
can be effective in reducing the width of small channels, but
the grass root zone may be ineffective against undercutting in
large streams. Attempts at better defining relationships or co-
efficients for vegetation and cohesive material are definitely
worth pursuing. Future refinements in the evaluation of the
coefficients of the hydraulic geometry relationships would cer-
tainly be most welcome.

Two particular issues requesting a response are raised at the
end of Huang’s discussion: (1) the use of channel width in-
stead of radius of curvature in (11); and (2) the use of Einstein-
Chien’s flow resistance instead of Manning’s. Regarding the
first point, our derivation in (11) is firmly based on the radius
of curvature, as cited in the literature. Notice below (16)—(19)
that the ratio R,, is defined as the ratio of radius of curvature
to channel width. This ratio implies that the radius of curvature
is carried throughout our derivation and included in the defi-
nition of the four coefficients in (20)—(23). The empirical var-
iability in R, is contained within the variability of Cy and
Cp shown in Fig. 5. Actually, it is not clear from Huang’s
discussion why the radius of curvature has been substituted by
the channel width in (47). Regarding the second point, our
preference for the Einstein-Chien resistance equation is based
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on the mathematical simplicity of power relationships. Using
the logarithmic relationship for the Darcy-Weisbach f would
have been counterproductive because one cannot extract sim-
ple explicit formulations for the hydraulic geometry from a
mixture of logarithmic and power functions. The reasons for
not using Manning n are twofold: (1) There are many instances
where Manning’s equation is not applicable in that Manning
n varies with flow depth, for example, in very steep and rough
channels as well as very large rivers; and (2) Manning’s re-
sistance equation is the particular case of the Einstein-Chien
power relationship where m = 1/6 and can thus be predicted
from our equations whenever Manning’s equation is applica-
ble. Moreover, our method also enables calculations using the
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Chezy or the Darcy-Weisbach resistance equation with m = 0
or calculations for very coarse-grained and steep channels with
m > 1/6.

In summary, both Hager and Huang should be commended
for their enlightening contributions to the theoretical and prac-
tical aspects of our system of equations for calculating down-
stream hydraulic geometry. Hager’s dimensionless form is to
be remembered because one can now determine the single re-
peating dimensionless parameter once the independent varia-
bles have been selected. Huang's search for improved methods
to account for bank material cohesion and vegetation will cer-
tainly yield refinements in the practical evaluation of the hy-
draulic geometry coefficients.
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