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Similarity and Length Scale for Spatially Varied Overland Flow

PiERRE Y. JULIEN AND GLENN E. MOGLEN
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One-dimensional finite element models enable physically based investigations of overland flow
generated under spatially varied surface slope, width, roughness, and excess rainfall intensity.
Simulated results of 8400 dimensionless hydrographs under spatially varied input parameters indicate
that runoff discharge variations depend primarily on the ratio of rainfall duration ¢, to the time to
equilibrium ¢,. Peak discharge distributions change drastically as the dimensionless rainfall duration
t,/t, ‘approaches unity. Similarity conditions exist for all four parameters regardless of whether the
spatial variability is correlated or uncorrelated. A length scale function of not only the spatially
averaged values of surface parameters but also depending on rainstorm duration and intensity
delineates similarity conditions for spatially varied surface runoff. For surface runoff lengths much
shorter than this length scale, the rainfall-runoff relationship becomes nearly independent of the spatial
variability in hydrologic parameters. Conversely, for surface runoff lengths exceeding the length scale,
the rainfall-runoff relationship is sensitive to spatial variability. This length scale can serve as a basis
for the determination of grid sizes in hydrologic models.

INTRODUCTION

The influence of the spatial variability of rainfall precipi-
tation, infiltration, surface roughness and surface topogra-
phy on surface runoff characteristics has been widely recog-
nized in hydrology. Rainfall precipitation has received
considerable attention in the recent literature, Amorocho
and Wu [1977] simulated spatially distributed precipitation
fields using a randomization process to generate clusters of
short-lived and high intensity rain cells within a storm band.
Gupta and Waymire [1979] investigated the stochastic struc-
ture of space-time rainfall fields. Woolhiser and Osborn
[1985] examined the temporal features of accumulated point
rainfall precipitation in dimensionless form while Valdes et
al. [1985] considered three one-dimensional models of point
rainfall precipitation. More recently, Rodriguez-Iturbe and
Eagleson [1987] demonstrated the feasibility of modeling the
spatial and temporal structure of rainfall events through
mathematical multidimensional point process techniques.

The spatial variability of infiltration characteristics has
also been examined by Smith and Hebbert [1979], in which
Monte Carlo simulations of the random distribution of soil
properties lead to the conclusion that gradual S-shaped
infiltration curves result from randomly nonuniform soil
surfaces. Maller and Sharma [1981] extended previous in-
vestigations in light of Philip’s infiltration equation. Sivapa-
lan and Wood [1986] derived quasi-analytical expressions for
the ponding time and infiltration rate under two conditions:
(1) spatially variable soils and uniform rainfall, and (2)
constant soil properties and spatially variable rainfall. They
concluded that rainfall is expected to play a more critical role
in rainfall-runoff modeling since the correlation length of
rainfall is usually larger than that of soil hydraulic conduc-
tivity. It has also been suggested that biased mean areal
infiltration responses result from spatially variable soil and
rainfall when average soil properties and rainfall intensity
are used. Comprehensive treatments of runoff prediction
errors and bias in parameter estimation induced by spatially
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varied precipitation together with a Green-Ampt infiltration
equation have been pursued by Troutman [1983, 19854, b).

Routing surface runoff exhibits several intricacies. For
instance, Wilson et al. [1979] stated that nobody will dispute
the effect of spatial distribution of rainfall on the amount of
surface runoff. They also pointed out that their experiments
do not support the argument made in the past that errors in
the rainfall input will be dampened when routed through a
basin. They concluded that not only the spatial distribution
of rainfall has a marked influence on the behavior of the
runoff hydrograph from a small catchment, but the applica-
tion of rainfall-runoff models without an appropriate descrip-
tion of the spatial character of the input may lead to
unacceptable errors. If linear models for the simulation of
rainfall-runoff relationships are widely used in regard of their
simplified mathematical structure, it remains that surface
runoff routing is highly nonlinear as recognized by Diaz-
Granados et al. [1986]. It has long been known that the
response time of a basin tends to decrease as storm intensity
increases. Dawdy [1982] states that kinematic wave models
constitute one step away from the linear storage assumption
toward the use of a dynamic routing equation. He added that
the kinematic wave equation tends to overcome the short-
coming that linear techniques, such as instantaneous unit
hydrographs, are not identical for small and large storms.
Major advantages of kinematic wave models are that param-
eters relate to the physical world, and these models are
perfectly suited for use in distributed parameter models. He
explains the disadvantage of distributed models in that they
require more data and much more computer time to run
when compared with lumped-parameter models. As comput-
ers get larger, faster and cheaper, however, this disadvan-
tage decreases in importance. He finally concluded that the
trend in rainfall-runoff modeling is toward physically based
distributed-parameter models.

Spatially varied overland flow has been investigated ex-
tensively by a number of researchers using both physical and
analytical models. Kibler and Woolhiser [1970] used a kine-
matic cascade of planes and a converging conical surface to
examine the effects of varying slope and width on computed
discharge. Machado and O’Donnell [1977] analyzed the
influence of spatial and temporal variability of model param-
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eters and rainfall input with given probability distributions
on overland flow treated as a stochastic variable. Their
analysis permits calculations of the variance of the outflow in
terms of the sampling variance of the parameters. Wu et al.
[1978] used a physical model to examine several different
spatial distributions of roughness elements in an effort to
develop criteria for the valid use of lumped parameters.

Self-similarity and scale problems have more recently
been looked into. The investigation of Sharma et al. [1983}
implies the definition of a zone of influence, or a spatial scale
beyond which the spatial correlation for a given property
could be neglected. Milly and Eagleson [1987] inferred that
the problem of spatial integration to the catchment scale is
not trivial because the analysis of small-scale physical pro-
cesses in catchments suggest that the local response is a
nonlinear function of these variables. They examined the
extent to which the spatial variability of soil and vegetation
affect the temporal-spatial averages of the major hydrologic
fluxes. They sought the existence of an equivalent homoge-
neous soil capable of reproducing the average behavior of an
inhomogeneous area. Caroni et al. [1986] dealt with the
problem of detecting nonlinearity and time-variance at the
basin scale. The analysis has been performed where spatial
variability of rainfall patterns, soil properties and vegetation
cover would not appreciably affect the rainfall-runoff pro-
cess. The integrating effects of variability should not domi-
nate at such a drainage basin scale. Sivapalan et al. [1987]
described a simple conceptual model of runoff production
based on catchment topography and the spatial variability of
rainfall and soil properties. They formulated five similarity
parameters and three dimensionless variables representing
initial conditions and storm characteristics. Wood et al.
[1988] reported results of a preliminary investigation into the
existence of a representative elementary area (REA). They
believe that at a small scale, actual patterns of topography,
soil and rainfall characteristics are important in governing
runoff production. Differences in actual patterns of variabil-
ity between areas at this scale will produce different re-
sponses. However, as scale increases, all areas will yield
almost identical responses for the case of stationary distri-
butions. They consider that the hydrologic variables at every
location within each catchment are related to its average
value through some probability distribution. Each mathe-
matical point in the continuum is associated with the area
over which the average values are taken. The REA is defined
as the averaging area acting as the smallest discernible point
which is representative of the continuum. They concluded
that the REA is strongly influenced by the topography.

As mentioned by Amorocho [1982], the simulation of
spatially varied precipitation fields should not be considered
as a necessary prescription for all catchments and all appli-
cations. Depending on the catchment response to storm field
variabilities, these simulations may not be justified from
practical and economical standpoints; to omit the simula-
tions in other cases may lead to gross inaccuracies in
hydrological applications. We concur with his conclusion
that research on objective methods to make this determina-
tion is urgently needed. Not only is research needed for
spatially varied precipitation fields, but it should be extended
to the analysis of topography, infiltration and excess rainfall,
vegetation and surface roughness.

The specific objective of this study is to quantify the
influence of spatial variability in slope, surface roughness,
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Fig. 1. Overland flow parameters.

surface width, and excess rainfall intensity on surface runoff
characteristics. Reference systems are modeled with spa-
tially averaged values of the hydrologic parameters. The
differences between computed surface runoff hydrographs
for reference systems versus spatially varied systems are
examined in dimensionless form for complete and partial
equilibrium hydrographs. The analysis of the rainfall-runoff
response under spatially varied hydrologic conditions serves
to define a length scale describing similar surface runoff
conditions.

The methodology proposed for this analysis of spatially
varied conditions differs from the above cited studies. Nu-
merical models are called for because analytical solutions to
spatially varied nonlinear systems cannot be derived even
for the most simple case. The selected one-dimensional finite
element model solves the kinematic wave approximation of
the St-Venant equations. The results are expressed in dimen-
sionless form after considering that the time to equilibrium
serves as an important physical characteristic. Similarities
are preserved by keeping the same spatially averaged input
parameters for each system. Also, the same excess rainfall
volume is maintained in each system in order to avoid the
error and bias problems discussed in the recent literature.

FUNDAMENTALS OF OVERLAND FLoOwW

The overland flow system shown in Figure 1 illustrates the
following overland flow parameters: L is the length of the
horizontal projection of the overland flow plane, & is the flow
depth, v is the average flow velocity, Sy is the average slope
gradient, { is the excess rainfall intensity, and ¢ is the
discharge per unit width. Note that excess rainfall intensity
obtained by subtracting the rate of infiltration from rainfall
intensity is considered in the analysis. Infiltration combines
both the conventional Hortonian infiltration excess mecha-
nism with Dunne’s saturation excess runoff production
mechanism. In the following the interaction between surface
and subsurface flow is not being separately considered but
treated as excess rainfall intensity. Four additional parame-
ters are the plane width w, the gravitational acceleration g,
the Manning roughness coefficient #, and the total discharge
Q= wq.

The governing equations for overland flow are the St-
Venant momentum and continuity equations. Derivations of
these equations may be found in the works by Henderson
and Wooding [1964], Woolhiser and Liggett [1967], Eagle-
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Fig. 2. Complete and partial equilibrium hydrographs.

son [1970] and Overton and Meadows [1976]. The St-Venant
equations which account for unsteady nonuniform flow may
be simplified to the kinematic wave approximation which is
applicable under most overland flow conditions.

Conservation of mass for one-dimensional overland flow
with variable surface width yields the following form of the
continuity equation:

oh  aQ
w—+——wi=0 n
at  dx
Notice that under spatially varied width, a two-dimensional
system is actually considered.
Resistance to flow is expressed in terms of a stage-
discharge relationship:

Q= ahf )

Several resistance equations describe the various types of
overland flow conditions depending on whether the flow is
laminar or turbulent, and whether the boundary is smooth or
rough. These conditions have been examined by Julien and
Simons [1985], and the Manning resistance equation has
been arbitrarily selected for the purpose of this study.
Preliminary investigations by Julien et al. [1988] and Moglen
[1989] showed comparable results with other resistance
equations. After combining the Manning resistance equation
with the kinematic wave approximation, the following ex-
pressions for « and 8 are obtained:

SalPw
a= 3
n
B=3 @

It can be noted that the kinematic wave approximation
requires that slopes cannot be negative or zero.

An important physical characteristic of overland flow
planes with constant slope, width, roughness and rainfall
intensity is the time to equilibrium ¢, given by the relation-

ship:
wL \ VB S
te=|—35—
e=| =7 ©)

As shown in Figure 2, a complete equilibrium hydrograph
(hydrograph A), is obtained when the rainfall duration ¢,,
exceeds the time to equilibrium ¢,. For rainfall durations ¢, ;
shorter than the time to equilibrium ¢, the resulting partial
equilibrium hydrograph is sketched as hydrograph B.

In terms of the linearity of the rainfall-runoff response, the
hydrographs in Figure 2 indicate that partial equilibrium
hydrographs are nonlinear because the magnitude of the
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peak discharge depends on both the duration and intensity of
rainfall. Similarly, the duration of peak discharge for partial
equilibrinum hydrographs ¢, — ¢, | also depends on a complex
function of rainfall duration and intensity. On the other
hand, as the rainfall duration ¢, becomes much larger than
the time to equilibrium ¢,, the response of complete hydro-
graphs becomes asymptotically linear, because the magni-
tude of peak discharge increases linearly with rainfall inten-
sity. Also, the duration of complete equilibrium peak
discharge t, — ¢, becomes asymptotically equal to rainfall
duration ¢, when ¢, > f¢,.

In the following analysis, excess rainfall intensity is al-
lowed to vary in space but not in time. The additional effects
of spatial variability in slope, width, and surface roughness
are accounted for after substituting (2) into (1):

dh dh da
w—+aBhf ' —+ P ——wi=0 6)
at ax dx
where the second and third terms from the left account for
the spatial variation in discharge. From (6) and (3) the spatial
variability of both slope S, and surface roughness n is
refiected in the second and third terms of (6). On the other
hand, the spatial variability of excess rainfall intensity i is
accounted for in the last term of (6), while surface width w is
included in all terms of (6). Equation (6) is solved for flow
depth as a function of space and time, then converted into
runoff discharge from (2).

FINITE ELEMENT FORMULATION

Numerical modeling of overland flow has evolved consid-
erably as digital computers have become faster and more
common. Originally, the method of characteristics was used
to find ‘‘the space-time locus of discontinuity in the partial
derivatives’’ [Eagleson, 1970). In recent years, finite differ-
ence and finite element schemes have been used to solve the
equations of motion for overland flow. These techniques are
very flexible, allowing for a wider range of conditions while
avoiding problems incurred by kinematic shocks as de-
scribed by Lighthill and Whitham [1955]. A finite element
scheme has been arbitrarily preferred for the following
analysis. It is acknowledged that similar conclusions should
be obtained from equivalent finite difference schemes. The
comparison between finite difference and finite element
schemes is, however, beyond the scope of this paper.

The one-dimensional finite element model CASC, briefly
described here, provides numerical solutions to (6) from the
Galerkin weighted residual method:

oh oh
(8h) —wdx+ | (Sh)aBhP ! — dx
I ot L ax

Ja
+ J (8WhP — dx — f Shwidx=0 (7
L dx L

where 8A is a small variation from the flow depth A. Making
use of the Jacobian determinant |J], the shape function N,
and the derivative of the shape function aN/3¢ with respect
to the local coordinate £, the following discretized form of (7)
is obtained:
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Note that braces indicate a column vector, while angle
brackets indicate a row vector. Using Gaussian quadrature
for each element, (8) is integrated and assembled into two
global matrices [C] and [K], and one vector {F}:

[C] = {NJ(NXwIKN)LJ | ©

oN aN
[K]= {N}[(N>{h" B 1}<<a_§>{“}<N> + <N){aB}<5g>>]

(10
{F} = {NKN){wi}|J| amn

The resulting matrix formulation is
[C]{éA—l:} +[KKh} - {F}=0 (12)

The initial boundary condition imposes no flow depth at all
nodes for the first time step, and the upstream boundary is
held fixed at zero flow depth at subsequent time steps. The
following implicit numerical scheme [Dhatt and Touzot,
1984] is solved iteratively:

{Ah] | o} = (C]+ AKD U((F} — [KKh, o DA
+[Cldh} — {0, , ) (13)
where the depth vector {h} is incremented by an amount {Ah}
using
{b/ . ot =1{n}

WA=, a3 +{AN,

j=0 (14

ji>0 (15)
Calculations at iteration j are performed between (13) and
(15) until the vector {Ah} becomes negligible.

This algorithm enables the simulation of stationary storms
(this paper) or moving storms [Richardson, 1989]. The
interested reader is referred to Julien et al. [1988] for more
details regarding the mathematical formulation, code de-
scription, simulation examples for stationary and moving
rainstorms, and comparison with observed data.

In the following sections, two sets of conditions are
considered for the spatially varied analysis in slope, width,
surface roughness and excess rainfall precipitation: (1) in the
next section, each parameter is examined separately under
spatially uncorrelated random fields; and (2) the effects of
spatially varied slope are then examined separately under
correlated conditions given from field spectral density data.
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UNCORRELATED SPATIAL VARIABILITY

The effects of each parameter variation on the discharge
hydrograph are investigated separately for uncorrelated spa-
tially varied slope, Manning n, width, and excess rainfall
intensity. The terminology ‘‘uncorrelated’’ spatial variability
refers to the selection of nodal parameter values which are
independent of the values at adjacent nodes. The use of
excess rainfall intensity instead of rainfall intensity accom-
modates the following two situations: (1) spatially varied
rainfall precipitation and constant infiltration; and (2) con-
stant rainfall precipitation and spatially varied infiltration.
Infiltration here refers to both the Hortonian infiltration
mechanism with Dunne’s saturation excess runoff produc-
tion mechanism treated jointly as excess rainfall. One may
appropriately notice that the model CASC cannot simulate
negative values of excess rainfall intensity. Dimensionless
hydrographs are obtained from dimensionless discharge g/iL
and dimensionless time #/f,. The dimensionless rainfall du-
ration t,/t, defines the ratio of rainfall duration ¢, to the time
to equilibrium ¢,. When this parameter is less than 1, the
hydrograph is said to reach partial equilibrium. Complete
equilibrium hydrographs corresponds to ¢,/t, > 1.

Similar systems are simulated with identical time steps,
number of nodes, and probability density functions of the
spatially varied parameter. Preliminary investigations by
Julien et al. [1988] and Moglen [1989] showed that (1) a
constant time step equal to one-fourth of the time to equi-
librium ¢, is more than adequate to define a discharge
hydrograph; (2) runoff discharge is relatively unaffected by
the number of nodes, provided there is a minimum of seven
nodes; and (3) the results of the forthcoming analysis are not
sensitive to the probability density function selected for the
variability of each parameter. Accordingly, the model CASC
is applied with a spatial resolution of 11 equidistant nodes
and a time resolution equal to one-tenth of the time to
equilibrium.

Spatial perturbations are introduced when the nodal val-
ues X} of one of the four spatially varied parameters are
randomly selected based on a uniform distribution around
the reference value p,. The magnitude of the spatial vari-
ability of each parameter is defined by the perturbation
scaling factor ¢ which describes the maximum allowable
nodal value Xj from

o1\ _ ¢-1
Mx<1_¢+1>5&—”x<1+¢+1>

The perturbation scaling factor ¢ controls the magnitude of
the spatial variability. From (16) the transformation imposes
that all values of plane width, surface slope, Manning #, and
rainfall intensity are nonzero and positive, computer simu-
lations being impossible otherwise. Notice that the quantity
(¢ — D/(¢ + 1) reduces to zero when ¢ = 1, which defines
a nonperturbed system. For very large ¢ values the same
ratio approaches unity and the maximum variation from the
mean is therefore 2u,. For systems discretized with 11

(16)

‘nodes the spatially averaged values of each parameter X are

set equal to their respective constant reference value u,
from the following modification of the previously assigned
values of Xj:

1p,
X = X/
X1+ X+ X3+ + Xy

an
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Fig. 3. Spatially varied and nonperturbed overland flow hydro-
graphs.

Consequently, the spatially averaged properties of each
parameter are preserved in order to compare systems which
are strictly equivalent in terms of average properties, but
variable only in terms of spatial distribution.

Consider the simulation of a single perturbed system as
shown in Figure 3. While the nonperturbed system produces
smooth rising and falling limbs, the spatially varied system
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0.8 - ¢ =6H
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X o8- 45'-’ 2H
-] ®72L
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creates fluctuations in discharge about the nonperturbed
hydrograph.

Several sets of 100 perturbed systems are generated.
Identical volumes of water are routed through each of the
100 systems in order to provide comparisons of similar
systems. The input parameter envelopes describe the maxi-
mum and minimum of those 100 parameter perturbations at
each node. They are nondimensionalized after dividing by
the reference value. Thus x*, z*, n*, w*, and i*, respec-
tively, denote dimensionless space, elevation, Manning co-
efficient, surface width, and excess rainfall intensity. Figures
4a-4d show the input parameter envelopes as a function of
dimensionless space from upstream x* = 0 to downstream
x* = 1. For instance, when ¢ = 2, the highest and lowest
value of the perturbed parameéter at each node defines the
input parameter envelope denoted with ¢ = 2H for the
highest and ¢ = 2L for the lowest values. Similarly, the lines
¢ = 4H and ¢ = 4L define the input parameter envelopes
when ¢ = 4. These figures illustrate the effects of the
parameter ¢; envelopes are small when ¢ = 2 and large when
$=6. ,

In order to investigate all possible permutations of the
single parameter variability, it is important to recognize that
there are three types of input parameters: (1) the duration of
rainfall (partial or complete equilibrium), (2) the magnitude
of parameter perturbation ¢, and (3) the overland flow
parameter to be varied (slope, Manning n, surface width, and
excess rainfall intensity). Three different rainfall durations
covering the range from partial to complete equilibrium

(b)
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o 0.2 0.4 * 0.6 08 1
X

Fig. 4. Input Envelopes for (a) slope, (b)) Manning n, (c) surface width, and (d) rainfall intensity.
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hydrographs are selected: t,/t, = 0.4, 1.0, and 5.0. Simula-
tions are repeated for three different values of ¢: 2, 4, and 6.
The individual effects of the four overland flow parameters
are investigated. For each permutation (4 parameters X 3
values of ¢ X 3 values of ¢,/t,), 100 simulations are per-
formed, thus totaling 3600 simulated hydrographs. Given the
large amount of data generated from these 3600 hydro-
graphs, the pertinent hydrologic data have been reduced into
an interpretable form. First, hydrograph envelopes are con-
sidered, followed by deviation hydrographs, relative spatial
sensitivity, and finally, distribution of peak discharge.

Hydrograph Envelopes

For each set of 100 equivalent hydrographs a hydrograph
envelope is determined from the highest and lowest simu-
lated discharges at each time step. These envelopes, in
Figures 5a-5l, show the maximum variation in discharge as
a function of time along the hydrograph. For instance, when
¢ = 2, all the 100 simulated hydrographs were comprised
between the curves 2L and 2H. It is observed that the
general shape of these envelopes is primarily a function of
the dimensionless ratio ¢,/t,. The degree of variation within
a set of hydrographs is quite large for #,/z, = 0.4, but very
small when ¢,/t, = 5.0. Interesting results include the follow-
ing:

1. Figures 5a-5d show partial equilibrium hydrograph
results with the highest simulated discharge occurring at the
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Fig. 5. Hydrograph envelopes for (a) slope at ¢,/t, = 0.4, (b) Manning » at ¢,/t, = 0.4, (c) surface width at tlt, =
0.4, (d) rainfall intensity at #,/t, = 0.4, (e) slope at t,/t, = 1.0, (f) Manning n at #,/t, = 1.0, (g) surface width at ¢,/¢,
= 1.0, (k) rainfall intensity at ¢,/z, = 1.0, (i) slope at #,/t, = 5.0, (j) Manning n at ¢,/t, = 5.0, (k) surface width at ¢,/t,
= 5.0, and (!) rainfall intensity at ¢,/¢, = 5.0.

last time interval experiencing rainfall. The region enclose
by the envelopes is much larger than that for ¢,/t, = 1.0
5.0 (Figures Se-51).

2. Whent,/t, = 1.0 (see Figures Se—5h), a particular cas
of complete hydrograph is obtained. Notice that these h
drographs exhibit peak discharges near unity at #/t, = t,/t,
1.0 and then begin to recede. In essence, these hydrograpt
are like the complete hydrographs without an equilibriut
plateau and like the partial hydrographs in that the pea
discharge occurs during the last time interval with rainfall

3. When t,/t, > 1 (i.e., t,/t, = 5.0; see Figures 55l
complete hydrographs are characterized by an equilibriu
plateau region where the dimensionless discharge is unil
from t/t, = 1.0 to t/t, = t,/t,. These Figures 5i-5! demo
strate that the numerical model reproduces the expecte
results that the dimensionless equilibrium discharge equa
unity regardless of the spatial variability of the hydrolog
parameters. The runoff variability during the tising an
falling limbs can be better analyzed through deviation h
drographs.

Deviation Hydrographs

With reference to Figure 3, the discharge from a nonpe
turbed system at any time may be considered as a referen
value about which the discharge from a perturbed systel
varies. When considering a set of 100 simulated hydre
graphs, the deviation hydrograph measures the standar
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Fig. 6. Deviation hydrographs for (a) slope at #,/t, = 0.4, (b) Manning n at ¢,/t, = 0.4, (c) surface width at ¢./¢, =
0.4, (d) rainfall intensity at ¢,/t, = 0.4, (e) slope at ¢,/t, = 1.0, (f) Manning n at ¢,/t, = 1.0, (g) surface width at ¢,/¢,
= 1.0, (h) rainfall intensity at z,/t, = 1.0, (i) slope at ¢,/t, = 5.0, (j) Manning n at ¢,/t, = 5.0, (k) surface width at ¢, /¢,
= 5.0, and ({) rainfall intensity at ¢,/t, = 5.0.

deviation of the calculated values of discharge about the
nonperturbed discharge at each time step:

‘/_ 2 Gr,: — an,t)z

where o, describes the deviation in output discharge at time
t; m is the number of simulated hydrographs (100 in this
case); gy, is the kth perturbed discharge at time 7; and g,,,,,
is the nonperturbed discharge at time #. The curve traced out
by the deviation hydrograph indicates the magnitude of
discharge variation as a function of time.

Dimensionless deviation hydrographs are obtained by
dividing the deviation hydrograph o, by the partial or
complete equilibrium discharge («(it,)? when ¢,/t, < 1.0; or
iL when t,/t, = 1.0). The resulting dimensionless deviation
hydrographs in Figures 6a—-6/ reflect the percentage variation
in discharge relative to the nonperturbed equilibrium dis-
charge. For example, in Figure 6a where the slope is
spatially varied for a set of 100 equivalent systems, the
largest variation in discharge is approximately 0.12 at ¢/¢, =
0.4. This means that the standard deviation of discharges at
t/t, = 0.4 is approximately 12% of the peak discharge of the
partial equilibrium hydrograph.

Examination of Figures 6a-6/ indicates that the general
shape of dimensionless deviation hydrographs is primarily
dependent on the value of #,/t, regardless of which parame-

(18)
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Percent Deviation

Percent Deviation

T

o 2 4

t/te

ter is spatially varied. The following observations are rather
instructive:

1. Figures 6a-6d exhibit the largest variations in dis-
charge, and therefore the discharge from partial equilibrium
systems is highly sensitive to perturbations in any input
parameter.

2. The region t/t, < 1.0 in Figures 6e-6!/ exhibits a
maximum value around #/#, = 0.7. The deviation increases
for ¢ < 0.7t, because the discharges are getting larger. For
0.7t, <t < t,, the deviation decreases with time because the
system is approaching equilibrium discharge which, as
shown in Figures 5i-5/, is independent of deviations in the
system. Therefore at ¢+ = 0.7, a balance seems to exist
between the opposing trends of near equilibrium behavior
and time increasing discharge causing a maximum deviation
in discharge. Notice that for ¢z < 0.4¢,, the results in Figures
6a—6d are not directly comparable to those of Figures 6e—61.
This is because the deviation hydrograph is defined as
a,/a(it,)? whent, < t, and o/iL whent, > t,.

3. Figures 6i-6/ show the standard deviation in dis-
charge for varying input parameters and ¢,/t, = 5.0. Notice
again that the maximum deviations in discharge occur at
t/t, = 0.7 as was the case for ¢,/t, = 1.0. A similar peak is
observed for the recession limb, its magnitude in all cases
remains smaller than the peak during the rising limb. It can
be concluded that spatial variability will primarily affect the
rising limb of hydrographs.
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TABLE 1. Relative Spatial Sensitivity Ry
Parameter ¢ t/t,=04 t/t,=10 i, =350
Slope 2 0.05536 0.03163 0.01005
Slope 4 0.06145 0.03846 0.00948
Slope 6 0.07977 0.04561 0.01161
Manning n 2 0.11648 0.07270 0.02033
Manning n 4 0.11327 0.08260 0.02001
Manning n 6 0.12678 0.08447 0.02048
Surface width 2 0.10987 0.06707 0.01741
Surface width 4 0.11651 0.07523 0.01666
Surface width 6 0.11697 0.07787 0.01860
Rainfall intensity 2 0.19591 0.11301 0.02743
Rainfall intensity 4 0.18717 0.12124 0.02890
Rainfall intensity 6 0.19622 0.12834 0.02522

Relative Spatial Sensitivity

With an understanding of the general behavior of the
model response to input variation, the objective of this
section is to quantify the spatial sensitivity of the model
output to each parameter.

The spatial variability of an input parameter is defined in
terms of a coefficient of variation C, = o;/u x Where o; is the
standard deviation of the spatially varied input parameter for
a set of 100 equivalent systems, and uy is the reference
value of the same parameter.

The spatial variability of the output discharge is computed
with a technique similar in concept to that used by Wu et al.
[1978]. The hydrograph envelopes presented in Figure 6 can
be time-integrated to provide a hydrograph envelope volume
AV. When divided by the total excess rainfall volume V, the
resulting ratio V* = AV/V describes the spatial variability of
the output discharge.

Relative spatial sensitivity R, describes the ratio of
variation in output per unit variation in input as proposed by
McCuen and Snyder [1986}:
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The values of relative spatial sensitivity shown in Table 1
provide a quantitative evaluation of the four input parame-
ters under spatially varied conditions. It is found that excess
rainfall intensity shows the highest degree of sensitivity,
followed by Manning n, surface width, and finally slope.
This is in agreement with the observations of envelope
hydrographs in Figure 5 and of deviation hydrographs in
Figure 6. This relative spatial sensitivity analysis demon-
strates that relative spatial sensitivity values decrease with
dimensionless rainstorm duration but remain nearly constant
for various ¢ values.

A total of 4800 additional computer simulations (100 runs
x 4 parameters X 12 values of 7,/t, = 0.6, 0.8, 1.1, 1.2, 1.3,
1.4, 1.5, 1.6, 1.8, 2.5, 3, 4) were performed to better define
the relationship between relative spatial sensitivity R, and
dimensionless rainstorm duration #,/¢, in the region of 0.4 =
t,/t, = 5.0. After rescaling the values of R,, with their
reference values at t,/t, = 1.0, Figure 7 shows the same
decrease in sensitivity for each parameter. For example, this
general curve shows that the relative spatial sensitivity when
t,/t, = 2 is about 50% of the relative sensitivity when ¢,/t, =
1.

Distribution of Peak Discharge

Considering the 100 hydrographs simulated under spatially
varied conditions, the values of the peak discharges for each
system are ranked and plotted against their nonexceedance
probability. Figures 8a-8d show the distribution of dimen-
sionless peak discharges for several values of ¢,/t, ranging
from 0.3 to 2 near the threshold conditions between com-
plete and partial equilibrium hydrographs. These figures
clearly illustrate the changes in distribution of peak dis-
charge for perturbed systems when the rainfail duration is
approaching time to equilibrium. When ¢,/t, < 1.0, peak
discharges vary over a wide range of values as indicated by
wide-spread distributions in Figures 84-8d. As rainfall du-
ration approaches and exceeds the time to equilibrium, the

v . - .
Ryj=— (19) system is forced to peak closer to or at unity as indicated by
C, the steep lines in Figures 8a—8d.
1.6
1.5
1.4
1.3 o slope
B +  Manning n
1.2 o width
1.1 a rainfall intensity
) A1 .01
~—0.97
v 0.8
o 0.7 -
0.6
0.5
0.4+
0.3
02 T ¥ T T
0.0 2.0 4.0
tr /te

Fig. 7. Relative spatial sensitivity versus dimensionless rainfall duration ,/t,.
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These figures clearly demonstrate that the distribution of
peak discharges changes completely as t,/t, approaches
unity. For this reason it is concluded that the time to
equilibrium under spatially varied conditions remains essen-
tially equal to the time to equilibrium calculated for the
nonperturbed system.

CORRELATED SPATIAL VARIABILITY

The above results for uncorrelated spatially varied hydro-
logic parameters highlight the primary importance of the
time to equilibrium to describe the physical characteristics of
a spatially perturbed system. The question of interest in this
section regards whether spatial correlation between the
perturbed parameters will change the results of the analysis
or not. A brief investigation of this problem is presented in
this section. The approach taken is based on the reconstitu-
tion of surface profiles from spectral density functions of
terrain elevation data. Since the results shown in Figure 7
are independent of the parameter selected for the analysis,
only surface slope has been selected here, the other param-
eters being expected to yield similar results.

A terrain height variance spectra is obtained from field
measurements of terrain elevations in Steamboat Springs,
Colorado. The data sources for this analysis include topo-
graphic maps and National Oceanic and Atmospheric Ad-
ministration/EDIS/NGSDC 30-s average elevation tapes.
Young and Pielke [1983] converted the data into spectral

form using a fast Fourier transform algorithm. Least squares
was used to fit the power law relationship:

S, =ar’ (20)

where S, is the terrain height variance in meters squared
kilometers, A is the wavelength of the landform in kilome-
ters, and a and b are the calibrated coefficient and exponent,
respectively. For Steamboat Springs, @ and b are equal to 2.1
and 0.9, respectively.

The major difference with the random generation scheme
described earlier is that spectral data creates spatially cor-
related slope profiles. By ‘‘spatially correlated’’ it is meant
that the slope at one node is somewhat influenced by the
slope of adjacent nodes. The result is that the spatially
correlated slope profiles have smooth, gradual changes in
slope when compared to the rugged randomly generated
profiles as shown in Figure 9. Series of 100 spatially corre-
lated slope profiles are generated from (20) for rainfall
durations of ¢,/z, = 0.4, 1.0, and 5.0. The simulated data are
analyzed with the same procedure developed for uncorre-
lated spatial variability.

A relative sensitivity analysis based on (19) is performed
on the spatially correlated profiles for comparison with the
spatially uncorrelated profiles. Table 2 shows, again, how R;
decreases as t,/t, increases. The absolute values of corre-
lated versus uncorrelated data are meaningless because a
larger value of ¢ could have been selected to match the
correlated values. Therefore after dividing the values in
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Fig. 9. Comparison of correlated and uncorrelated slope profiles.

Table 2 by the relative sensitivity at #,/t, = 1, the resulting
graph in Figure 10 shows the results practically identical to
those of Figure 7. From Figure 10 it may be inferred that the
decrease of R, as a function of #,/t, is independent of the
nature of the slope perturbations.

The primary conclusion is that uncorrelated systems show
the same behavior as spatially correlated systems in that the
time to equilibrium plays the dominant role in spatially
varied surface runoff.

SIMILARITY AND SCALING PROBLEMS

Similarity conditions for surface runoff generated at dif-
ferent scales can be reassessed considering that spatially
varied hydrologic parameters exert little influence on the
computed discharge if the duration of rainfall exceeds the
time to equilibrium. The criteria used to calculate the time to
equilibrium may now be reversed and used to determine the
appropriate length scale describing similarity conditions for
surface runoff given the rainfall duration ¢,, the spatially
averaged excess rainfall intensity i, the average slope S, the
average surface roughness n, and the average surface width
w. The appropriate length scale L; is then calculated from (5)
after considering that L, = L when ¢, = ¢.:

aif (1, P
Ly=— @1
w

or, specifically for Manning equation,

tf/3sé/2i2/3
Ly=|——
n

where the length scale L, is in meters, the rainfall duration ¢,
is in seconds, and the rainfall intensity i is in meters per
second. Notice that the length scale does not depend solely
on the configuration of the catchment but also depends on
the characteristics of the storm to be investigated. Indeed,

(22

TABLE 2. Relative Spatial Sensitivity for Correlated and
Uncorrelated (¢ = 6) Slope Profiles

Distribution t,/t, = 0.4 t,/t, = 1.0 t,/t, = 5.0
Correlated 0.2046 0.1672 0.0432
Uncorrelated 0.0798 0.0456 0.0116

(0=6)
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Fig. 10. Relative spatial sensitivity for correlated and uncorre-
lated (¢ = 4) slope profiles.

both the rainfall duration 7, and the spatially averaged excess
rainfall intensity i are needed for the determination of the
length scale. Under these conditions the length scale L;
means that the spatial variability at a field runoff length
smaller than L, has a negligible influence on the computed
discharge. At this scale the runoff response to rainfall input
also becomes nearly linear as t,/t, — . Conversely, field
runoff lengths in excess of the length scale produce a
nonlinear rainfall-runoff relationship which is highly sensi-
tive to spatial variability of the hydrologic parameters.

The following practical example determines if the spatial
variability in topography and surface roughness will largely
influence calculations of surface runoff. The spatially aver-
aged values are given for the slope Sy = 0.03, runoff length
L = 500 m, Manning n = 0.02, rainfall duration 7, = 3600 s
(1 hour) and excess rainfall intensity i = 7.06 X 107% m/s (1
inch per hour). The length scale calculated from (22) exceeds
the runoff length (L, = 2690 m > L = 500 m) which indicates
that the spatial variability in topography and surface rough-
ness exerts little influence on the calculations of surface
runoff from spatially averaged values of the hydrologic
parameters. For this rainstorm the spatial variability effects
would be important at runoff lengths L > L, = 2690 m.

CONCLUSIONS

This study quantifies the influence of spatial variability in
slope, surface roughness, surface width, and excess rainfall
intensity on surface runoff characteristics. Comparisons of
similar one-dimensional systems involve finite element sur-
face runoff simulations for stationary rainstorms using the
kinematic wave approximation of the St-Venant equations
combined with Manning’s resistance formula. Similarities
between all input parameters are strictly preserved by keep-
ing identical spatially averaged values of all input parameters
for each run. Also, the same excess rainfall volume is
maintained in all runs in order to avoid the error and bias
problems discussed in the recent literature. The results of
both correlated and uncorrelated spatial variability are ex-
pressed in dimensionless form after considering that the time
to equilibrium serves as an important physical characteristic.
These similarities in rainfall-runoff response under spatially
varied hydrologic conditions serve to define a length scale
describing similar sensitivity to spatially varied surface
runoff conditions.
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This investigation demonstrates that the finite element
method is an extremely powerful tool for fundamental hy-
drologic investigations on overland flow generated under
spatially varied conditions. Not only does the finite element
method provide efficient solutions (8400 computer simula-
tions are summarized in this paper) to the kinematic wave
approximation of the governing surface runoff equations, but
it permits quantitative evaluations of the effects of spatial
variability in terms of physically based dimensionless param-
eters such as dimensionless discharge g/iL, dimensionless
time #/t,, and dimensionless rainfall duration ¢,/t,.

The primary conclusions reached from this investigation
can be listed as follows:

1. A length scale describing similarity in surface runoff
generated under spatially varied hydrologic conditions is
defined as a function of both the surface parameters and the
duration and excess rainfall intensity of rainstorms.

2. For field runoff lengths much shorter than the length
scale, the spatial variability exerts little influence on the
runoff hydrograph, and the rainfall-runoff relationship be-
comes nearly linear. Conversely, at field runoff lengths
exceeding the scale length, the spatial variability causes
variations in calculated runoff discharges and the rainfall-
runoff relationship becomes nonlinear.

3. The time to equilibrium of spatially varied systems
remains essentially equal to the time to equilibrium calcu-
lated from spatially averaged values of hydrologic parame-
ters.

4. The results of the relative spatial sensitivity in Figure
7 are identical for each of the four parameters considered.

5. The results of relative spatial sensitivity in Figure 10
are remarkably similar for both correlated and uncorrelated
spatial variability,

6. The deviation hydrographs in Figure 6 show that the
maximum variability in runoff discharge occurs during the
rising limb of the hydrograph.

7. The distribution of peak discharges in Figure 8
changes drastically as the dimensionless rainfall duration
approaches unity.

The length scale can serve as a basis for the determination
of grid size in hydrologic models. Extreme events with large
rainfall durations and intensity can be analyzed with coarser
grids than most common rainstorms.
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