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SUMMARY

The formation of a series of roll waves in laminar sheet flows in a smooth channel is examined both theoretic-
ally and experimentally. Roll waves were observed in subcritical flows at a Froude number as low as 0.74.
The recommended theoretical relationship for the celerity of roll waves is a function of the momentum
correction factor. This relationship is in good agreement with measured celerities of roll waves. The period of
roll waves remained fairly constant throughout these experiments. Previous derivations of the length
required for the formation of roll wave were modified because experimental evidence demonstrates that the
simplified relationship for the celerity of roll waves does not hold true for laminar sheet flows. Using the
modified relationship, the dimensionless distance displays an hyperbolic variation with the Froude number
and good agreement is obtained with experimental data. This analysis also demonstrates that for supercritical
flows the distance is proportional to the ratio of flow depth and slope. Alternatively an equivalent function of
Reynolds number and slope can be used.

RESUME

La formation d’un train d’ondes dans les écoulements superficiels sur surface lisse est étudiée analytique-
ment et expérimentalement. Des trains d’ondes ont été observés dans des écoulements fluviaux a des
nombre de Froude aussi faibles que 0,74. Une expression analytique fonction du coefficient de Boussinesq
est recommandée pour décrire la vitesse de propagation des ondes. La période des ondes demeure constante
sous les diverses conditions hydrauliques de cette étude. Les équations existantes décrivant la distance de
développement des ondes ont d{i &tre modifiées puisque cette étude expérimentale démontre que certaines
hypothéses relatives a la vitesse de propagation des ondes ne sont pas valables pour les écoulements
laminaires. Les modifications apportées aux équations donnent des résultats en accord avec les résultats
expérimentaux. De plus, I'analyse démontre que pour les écoulements torrentiels, la distance est propor-
tionelle au rapport de la profondeur d’écoulement sur la pente. Une expression équivalente en termes de
pente et du nombre de Reynolds peut également étre utilisée.

1 Introduction

Sheet flows in steep channels often exhibit surface instabilities which grow until a series of
breaking or roll waves are formed. In this study the formation of roll waves under laminar
conditions is discussed. Previous treatments of the laminar case have neglected the minimum
channel length necessary for roll wave development. Theoretical derivations for turbulent flow
[Montuori, 1963 and Liggett, 1975] indicate that simple criteria based on the Froude numniber are
necessary though insufficient since the length required for the formation of roll waves is not
considered. In the first part of this study, previous theories on the formation of roll waves are
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examined and modified in the light of laminar sheet flow characteristics. The experimental part
of this study has been conducted in order to provide information regarding the validity of the
derived theoretical relationships.

2 Steady uniform laminar sheet flow characteristics

The analysis of the free surface stability of laminar sheet flows assumes that steady uniform flow
conditions exist prior to the occurrence of a small perturbation of the water surface. Two non-
linear partial differential equations were derived by Saint-Venant to describe gradually varied
unsteady flows. These are respectively the continuity and the momentum relationships. For
steady uniform sheet flows, the continuity equation can be written as:

q=1uh 1
in which

g = unit discharge
7= mean velocity
h=flow depth

The momentum equation reduces to the so-called kinematic wave approximation for which the
bed slope S is equal to the friction slope St. The friction slope is given by the Darcy-Weisbach
equation:

Ko\ u
Si=|—)—
: (Sg) 2 @
in which

g = gravitational acceleration
» = kinematic viscosity
K =the friction coefficient

After combining equations (1) and (2), the mean velocity and flow depth are:

_ 8g 1/3

(%) s ®
Ko 1/3

i=() s @

The relationships are valid for uniform or gradually varied laminar sheet flows only. The velocity
distribution with the distance y from the water surface is given by:

12¢g
u:TDSf(h2—y2) ®)

This velocity profile decreases parabolically from a maximum of 1.5 times the mean velocity at
the free surface to zero at the boundary.
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3 Theory on the stability of laminar sheet flow

In deriving a fundamental stability criteria for the water surface, several approaches were used
by different researchers. Early investigations by Thomas (1939) and Stoker (1957) suggested that
the flow is unstable when S > 4g/C 2inwhich Cisthe Chézy coefficient. The foremost criterion for
instability published in the Russian literature was derived by Vedernikov (1945, 1946). For
laminar flows, the Vedernikov number Ve can be written as:
ap)

Ve:2F(1—Rha—A 6)

in which

Ry, =the hydraulic radius
P =the wetted perimeter
A =the cross-sectional area

The Froude number F defined as E/Jg_h represents the ratio of inertia to gravity forces. For an
infinitely wide channel, the Vedernikov number is equal to twice the Froude number and the flow
becomes unstable (Ve > 1) when the Froude number exceeds 0.5 for laminar flow as compared to
2.0 for turbulent flow. This critical Froude number was also reported by Robertson and Rouse
(1941) and Powell (1948). Mayer (1961) observed roll waves in subcritical laminar sheet flows but
mistakenly concluded that roll waves can form only when the slope is larger than 3%. Yih (1954,
1963, 1977) and Benjamin (1975) solved the problem of stability of sheet flows down an inclined
plane using the Orr-Sommerfeld equation. For very long waves the flow is unstable when:

5
Re g ™

in which Re= the Reynolds number

This criterion was also suggested by Taylor and Kennedy (1961). Ifequation (2) is substituted into
equation (7), uniform flow (S= St) and a K value of 24 are assumed, a critical Froude number of
F.=0.53 results which is close to the Vedernikov criteria for wide rectangular channels. Ishihara
et al. (1961) also suggested the critical value F, =0.577.

Unfortunately, these criteria based on the Froude number ignore the distance along the channel
required for the formation of roll waves. This factor becomes particularly important for subcritical
sheet flows since previous studies for turbulent flows [Montuori, 1963] demonstrate that the
distance at which the waves are fully developed increases to infinity as the Froude number
approaches the critical value.

3.1 Formation and celerity of roll waves

When the flow is unstable (Ve > 1) a minor perturbation of the water surface induces the forma-
tion of small waves. The amplitude of these waves increases gradually as they move downstream
until a bore is formed and the wave breaks. The distance travelled between the point at which the
perturbation is initiated and the breaking point of the wave defines the distance required for the
formation of roll waves. This distance, & o, is determined theoretically from the following proce-
dure using the celerity of roll waves.
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The total celerity, ¢, of a small gravity wave moving in a fluid with a uniform velocity distribution
along the vertical is:

c=l7+\/g_h ®)

In the more general case of a nonuniform vertical velocity distribution, the celerity can be
theoretically derived from the momentum equation. After the momentum correction factor f, is
used instead of an empirical coefficient, the equation for celerity suggested by Arsenishvili (1965)
can be written as:

c:L_l+coz,b’ml_l+\/gh+[3m(ﬁ’m—1)172 ©)
in which ¢ is the celerity of the wave relative to the mean velocity u; and

1
Bm=—5

= u?dy (10)

Oty T

When fn = 1, equation (9) reduces to equation (8). For sheet flows, however, the momentum cor-
rection factor ., = 1.2 is obtained from equations (5) and (10). The ratio of celerities c/‘/g_h is:

‘i—fﬂmm\/l +Brlfim— 1)F (an

Equations (9) or (11) can be used to compute the celerity of roll waves in laminar sheet flows.

3.2 Perturbation analysis

The following analysis of the channel length required for a small disturbance to become a break-
ing wave resembles the mathematical treatment used by Liggett (1975) and Dracos and Glenne
(1967). First, time is removed from the momentum and continuity equations written in terms of x
and ¢ by introducing a moving coordinate system in & and n which travels at the constant wave
speed, u + ¢p. The variable ¢ replaces the original space coordinate x and defines position with
respect to a fixed point, while the second coordinate, #, defines position relative to the moving
coordinate system and is written:

n=(u+co)t—¢ (12)

A small perturbation moving at the wave speed (1 + ¢o) is imposed at & =0 on an initially steady
uniform flow. This is mathematically simulated by writing the equations for conservation of mass
and momentum as follows:

- o oW an'\ (o ow
B (U+CO)W+UB (7:'—57*>+A <¥—5>_0 (13)
and

_ ou' _, [ou ou oh'  on’ ,

(u+co)%+u (%—%—)+g<¥—%)=g(5—5f) (14)
in which the variables ', u’, B', A’ and S} represent perturbations in the neighborhood of the
uniform flow values of flow depth A, velocity 4, top width B, cross-sectional area 4 and bed slope
S. The perturbed variables, denoted by primes, are defined as follows:
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S

%/
=h+(2};7,77+%%772+0(773) (15)
/ ﬁ’:ﬂ+%nn+;z > 72 +0(n?) (16)
B’=B+Z)Tl;:aa~};n+0(n2) (17)
A=A+ g;‘ %h'n +0(n?) (18)
Sf—S+Sn(i%Z i%’;) 0(r%) (19)

The truncated series are valid for small values of 7 and the solution is examined in the neighbor-
hood of # ==0. An analysis of equations (13) and (14) using the perturbation defined by equations
(15) through (19) as presented in Julien and Hartley (1985) results in the following relationship

o°n’ on’\* o'
sz () +75 -1 .
in which for rectangular channels (B= B’ and dB’[dh’ = 0), the coefficients § and y are respect-
ively:
3g
= 21
b c§+2ﬁc0+gh @D
and,
2e0F° 1
185120 @
ZANE R P
u C0F2

This derivation improves the one given by Liggett (1975) since the wave celerity defined by
equation (9) accounts for the velocity distribution present in laminar sheet flow. If a uniform
velocity distributionris assumed (i.e. ¢y = ‘/g_h ), equations (21) and (22) reduce to the relationship
proposed by Liggett.
The solution of equation (20) is:

oh’ £

an ﬂa (23)

+y~f
Y

in which ¢ is a constant of integration along the longitudinal distance &.

3.3 Distance for the formation of roll waves
The critical distance &, at which the wave breaks is assumed to occur when the water surface is

vertical. Mathematically, this condition is obtained when the denominator of equation (23) is set
equal to zero, or when:
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Liggett (1975) derived a relationship between ¢ and the variables p,y and the value of 9h/d7 at the
origin. Unfortunately this latter quantity is an unknown which is practically impossible
to measure. The following approach which avoids the necessity of directly evaluating ¢ is
recommended.

After combining equations (21), (22) and (24), the distance ¢, can be written as follows:

h S
é‘c=§(¥’[¢+ln (ﬂ)“ (25)
in which,
F2 Co u
=l |2+=+—= 26
2C0F2 ( + l_l+C()F2> ( )
==
and, -
F
D=1In (260_—2—5_0> @n
u u

From equation (11), ¢/# can be written as a function of the Froude number for a given value
of fm. Taking ., = 1.2 for laminar sheet flows, the variable ¥ and @ from equations (26) and

16
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Fig. 1. Dimensionless variables @ and ¥ as a function of Froude number.
Variables adimensionnelles @ et ¥ en fonction du nombre de Froude.
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(27) are dimensionless and unique functions of the Froude number as plotted in Fig. 1. For
supercritical flows, ¥ has a nearly constant value of 2.0 while @ increases gradually with the
Froude number. It can also be demonstrated that over a fairly wide range of slopes the expression
In (S/3¢) will be substantially constant. If @ is small compared to In (S/3¢) then the following
approximate relationship for &, can be written:

h
chng (28)

in which D is equivalent to the factor in braces in equation (25) and is approximately constant.
Equations (24) is general while equation (28) represents a simplified expression applicable only
to supercritical flows. The ability of equations (24) and (28) to predict the distance & is evaluated
with laboratory data described in the following section.

Table 1. Data summary

S Re c T & F ga";c D E
m/s S m u mm
(H (2) (3) 4) (5) 6) @) 3 ®
0.040 335 0.46 1.33 0.91 2.11 6.03 26.6 1.80
0.040 400 0.50 1.61 091 231 4.74 254 1.71
0.040 500 0.57 1.96 0.91 2.58 3.53 23.5 1.59
0.035 68 0.22 1.27 2.74 0.89 147.30 - -
0.035 95 0.26 1.28 1.52 1.05 51.20 56.6 3.81
0.035 141 0.34 1.45 1.52 1.28 30.50 49.7 3.35
0.035 188 0.34 1.32 2.13 1.48 28.70 62.6 4.26
0.035 265 0.42 1.37 2.13 1.76 18.40 56.9 3.81
0.035 380 0.43 1.19 2.74 2.11 14.40 64.4 433
0.030 90 0.24 1.35 2.13 0.95 72.70 - -
0.030 122 0.25 1.43 2.13 1.10 49.60 59.7 4,02
0.030 200 0.36 1.47 2.74 1.41 33.10 65.8 4.36
0.030 260 0.41 1.25 2.13 1.61 23.10 46.6 3.99
0.030 340 0.42 1.37 2.13 1.84 16.30 429 3.66
0.030 360 0.48 1.35 1.52 2.15 5.90 271 1.83
0.030 550 - - 1.52 2.35 4.68 25.8 1.74
0.025 65 - - 7.62 0.74 380.00 - -
0.025 71 - - 7.62 0.77 340.00 - -
0.025 85 0.22 1.52 3.35 0.84 118.00 - -
0.025 104 0.24 1.52 3.35 0.93 91.00 - -
0.025 130 0.33 1.54 2.74 1.04 54.70 59.1 3.96
0.025 200 0.34 1.61 2.74 1.29 30.70 51.1 3.44
0.025 246 0.38 1.75 2.13 1.43 18.20 37.2 2.50
0.025 320 0.44 1.52 1.52 1.63 9.20 245 1.62
0.025 420 0.47 1.19 0.91 1.87 3.83 13.3 0.88
0.025 530 0.50 1.15 1.52 2.10 4.65 20.4 1.37
0.015 140 0.26 1.72 2.74 0.84 41.60 - -
0.015 173 0.27 1.33 2.13 0.93 24.30 - -
0.015 260 0.33 1.43 2.13 1.14 14.20 18.4 1.25
0.015 320 0.40 1.23 2.13 1.26 10.80 17.2 1.16
0.015 450 0.43 1.08 1.52 1.50 590 11.0 0.88
mean 1.41 38.5 2.67
standard deviation 0.20 18.5 1.28
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4 Experimental investigation

Laboratory experiments were conducted to determine laminar flow conditions which produced
roll waves. The measurements of roll waves included the length required for their formation,
wave frequency and wave celerity.

A0.21 mwide by 9.75 mlong rectangular flume was utilized for these experiments. The slope was
adjusted between 1.5 and 4%and the unit discharge varied between 6.5 x 10 ~>t05.5 x 10 ~* m%/s.
The water temperature was measured and the theoretical friction factor K= 24 was verified. Inlet
conditions were shown by Brock (1965) to be important in the evaluation of the distance ¢ Inour
experiments a honeycomb flow straightener was placed at the entrance of the channel to break
up any large eddies. The initial perturbation triggering the formation of roll waves was assumed to
occur immediately downstream of the straightener. The distance ¢ was measured from this
point to the location where a well-defined breaking wave was observed. All the data collected in
this experimental investigation were reported by Julien and Hartley (1985). A summary of the
experimental data is presented in Table 1. The first five columns read as follows: slope, Reynolds
number, wave celerity, wave period and distance for roll wave formation. In column six the
Froude number was computed from the Reynolds number and slope.

5.0
[od
——=|2F +/1+ 0,04 F?
o) %R
* J
4.0F /
B L —,
L _c1+F
° Vgh
3.01 4 Co =Vgh
"S:=4 9%
- *S=35%
A S = 3 °/o
2.0F // v S=25% %
~ e S=15%
i 3.0
< =2+{i7/A+oza 110
1 L ) O
0 1.0 2.0 30

FROUDE NUMBER, F

Fig. 2. Dimensionless celerity as a function of Froude number.
Vitesse de propagation adimensionnelle en fonction du nombre de Froude.
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Fig. 3. Dimensionless critical distance as a function of Froude number.
Distance critique adimensionnelle en fonction du nombre de Froude.

4.1  Analysis of wavelength, period and celerity

The wavelength can be evaluated from the wave celerity and the period. The observed values of
the ratio c/,/g_h have been plotted against the Froude number on Fig. 2a along with solid and
dashed lines representing equation (11) with 3, = 1.2 and equation (8) for which 8, = 1.0. The
superiority of equation (11) is well supported by the data. Equation (11) can also be written as the
ratio of the wave celerity to the mean flow velocity # as follows:

1
=PBm+ Fﬁ”ﬂm(ﬁm_l) 29)

Lo

For unstable flows (F> 0.5), the ratio ¢fu calculated from equation (29) (8 = 1.2) decreases from
3.26 to a minimum of 1.69 as shown in Fig. 2b.

The measured wave periods 7 shown in Table 1 (Col. 4) were fairly constant with a mean value of
T=1.41 seconds and a standard deviation of 0.20 seconds.

The wavelength L can be obtained from equation (29) in which ¢ is replaced by LiT:

L 1
=) V— 24 0

For a given mean velocity, the wavelength increases with decreasing Froude number and a first
approximation of the wavelength is obtained from the mean value of wave period T= 1.41s.

JOURNAL OF HYDRAULIC RESEARCH, VOL. 24, 1986, NO. | 13



4.2 Critical distance for the formation of roll waves

Two relationships (equations (24) and (28)) for the distance required for the formation of roll
waves are examined in the light of experimental data for laminar sheet flows. In equation (24), the
distance & is a function of 3, , and ¢. The parameters § and y are computed from equations (21)
and (22). The values of In ¢ calculated from equation (24) using measured values of &, ranged
from — 61 to —9.4 with a mean value of —25.7. As suggested by Montuori (1963) and Liggett
(1975), the values of In ( — fe/y) or y& . were computed. Measured values of & were converted to
the dimensionless parameter gS& ./ 1% in Table 1 (Col. T)and plotted againt the Froude number in
Fig. 3. This figure clearly defines a region where roll waves were observed (¢>—35/y)and a
region where roll waves were not completely developed (¢ < — 5 [7). Between these limits exists a
zone of uncertainty defined by —35/y > ¢.> —5/y. This figure can be used to estimate the
distance for the formation of roll waves from the parameter y. The evaluation of y from equation
(22) is possible provided the variables S, 7, ¢y and F are known.

If the flow is supercritical, the evaluation of &, from equation (28) involves only the flow depth,
slope and the coefficient D. From the experimental data, it was demonstrated that @ is small
compared to In (S/3¢) and therefore D is expected to be substantially constant. The values of D
presented in Table 1 (Col. 8) were computed from the experimental values of &, S and A using
equation (28). The mean value for D is 38.5 with a standard deviation equal to 18.5. Equation (28)
is therefore recommended to estimate &. for supercritical flows, when depth and slope are known.

The flow depth in equation (28) can also be replaced by a function of the slope (S= Sy) and the
Reynolds number from equation (4):

Re1/3
chEW (31)
in which, |
Kp2\1
E=D <8—g) 32)

These relationships indicate that for the same slope and Reynolds number, the constant E, and
therefore the critical distance &. increases with increasing viscosity and surface roughness K. The
parameter £ has dimensions of length. Values of E from the experiments are tabulated in Table 1
(Col. 9). This parameter has a mean value of 2.67 mm and a coefficient of variation of 48%.
Equation (31) is recommended for supercritical laminar sheet flows over smooth surfaces. It
should be noted that the mean values of the coefficients D= 38.5 and E=2.67 mm apply to the

range of conditions used in this experimental study. These values may not be applicable beyond
this range.

5 Applications
It is recognized that this study is mainly of theoretical interest. However, roll waves in highly

viscous mudflows have been observed in steep mountain channels. Investigations of these flows
should benefit from the analysis presented in this paper.

6 Summary and conclusions
The formation of roll waves in laminar sheet flows is examined using a theoretical analysis

supported by experimental data. Previous investigations indicate that roll waves are theoretically
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possible in laminar sheet flows at Froude numbers as low as 0.50 as compared with 2.0 in
turbulent flow. The existence of roll waves at Froude numbers near the lower limit is difficult to
verify experimentally because of the extreme channel lengths required. However, in this study,
roll waves were observed in laminar, subcritical flow at a Froude number as low as 0.74.

The parabolic velocity distribution in laminar sheet flows implies that the momentum correction
factor is larger than unity (8, = 1.2). This suggests that the relationship c= i ++/gh used in
previous studies is not applicable to laminar sheet flows and should be replaced by one which
uses fm. The proposed relationship (equation (11)) reduces to ¢y =+/gh when fm=1andisin
good agreement with the measured celerities of roll waves when f3, = 1.2 as shown in Fig. 2. The
measured periods of roll waves remained fairly constant in the experimental study at 7= 1.41
second. The wavelength is shown to vary between 1.694T < L < 3.26uT.

The linearized derivation by Liggett (1975) of the length, &, required for the formation of roll
waves has been modified to account for the parabolic velocity distribution of laminar sheet flows.
The modified derivation gives more general expressions for the coefficients p and y which reduce
to those proposed by Liggett when S, = 1. The results indicate that the length &, is a function of
several flow variables and a constant of integration ¢ which could be calculated from experiments.
Though the parameter In ¢ varies widely (—61<Ine<— 9.4), the dimensionless distance
shown in Fig. 3 displays a similar relationship to the Froude number as found by Montuori (1963)
for turbulent flows. For superecritical flows, &. is proportional to the ratio of flow depth and slope.
Alternatively, an equivalent function of Reynolds number and slope may be used.
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Notations

A cross-sectional area for uniform flow

A cross-sectional area for flow with a small perturbation
B top channel width for uniform flow

B’ top channel width for flow with a small perturbation
c wave celerity

o velotity of the wave relative to the mean velocity #

C Chézy coefficient
D,E  empirical constants in equations (28) and (32)

F Froude number

F. critical Froude number

g gravitational acceleration

h uniform flow depth

n flow depth for flow with a small perturbation
K friction parameter

L wavelength
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wetted perimeter

unit discharge

ratio of two functions of the Froude number
Re Reynolds number

oy R

Ry hydraulic radius

S channel slope

St friction slope

St friction slope for flow with a small perturbation
t time

T wave period

T mean wave period

u velocity

u mean velocity for uniform flow

u' mean velocity for flow with a small perturbation
Ve Vedernikov number

y distance from the water surface

B,y  functions of flow variables in equations (21) and (22)
B momentum correction factor

€ constant of integration

n transformed distance moving with the wave

) kinematic viscosity of water

& distance downslope

& critical distance at which roll waves are formed

@, ¥ functions of the Froude number
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