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Abstract: The amplification of supercritical waves in steep channels is examined analytically using a one-dimensional dynamic solution
of the Saint-Venant equations. Existing methods were modified to describe the amplification of surface waves over a normalized channel
length rather than over a single wavelength. The results are strikingly different, and a generalized graph shows that short waves amplify
the most over a fixed channel length. The maximum amplification parameter over a normalized channel length is 0.53 when F=3.44.
Applications to the flood drainage channel F1 in Las Vegas indicate that the amplitude of waves shorter than 100 m would increase by
65% over a channel length of 543 m. These theoretical results await field verification. Supercritical waves could be dampened by
increasing channel roughness to reduce the Froude number below 1.5.
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Introduction

The hydraulic characteristics of unsteady flow in open channels
have been analyzed extensively �Ferrick 2005; Field et al. 1998;
Onizuka and Odai 1998; Wu et al. 1999; Odai et al. 2006; Ridolfi
et al. 2006�. Most studies are theoretical and very few relate to
experimental or field flow conditions. Laboratory research on the
formation of roll waves by Julien and Hartley �1986� showed
experimental measurements on the amplification properties of
surface waves in laminar sheet flow. Short surface waves ampli-
fied and resulted in roll waves in these laboratory experiments.

In turbulent flows, the Saint-Venant equations �Graf 1998;
Julien 2002� are usually simplified and solved analytically to ob-
tain kinematic, diffusive, quasi-steady dynamic, and full dynamic
wave approximations �Ponce and Simons 1977; Tsai and Yen
2001; Yen and Tsai 2001; Tsai 2003�. These simplified wave mod-
els are valid for specific flow conditions, typically subcritical flow
�Mishra and Seth 1996; Tsai 2003; Chung and Kang 2006�. Ad-
ditional research has focused on the effects of downstream back-
water �Chung et al. 1993; Tsai 2005�, unsteady flow-rating curves
�Schmidt and Yen 2001; Perumal et al. 2004�, irrigation canals
�Ponce et al. 1999�, and the propagation of dam-break floods
�Ponce et al. 2003�.
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Simplified wave models present advantages over the dynamic
wave model due to lower computational requirements and less
detailed input data �Singh et al. 1998; Tsai 2003�. Numerical
schemes have been developed to solve the Saint-Venant equations
�Mishra and Seth 1996; Moussa and Bocquillon 1996�. These
numerical models can produce quick and accurate results. There
is still interest in searching analytical solutions, however, both as
a means to evaluate the accuracy of the numerical models and to
define asymptotic conditions to describe simplified unsteady flow
dynamics �Ferrick and Goodman 1998; Lai et al. 2002�.

There is a need to further investigate unsteady supercritical
flow, specifically for waves that are significantly longer than the
normal flow depth. This would improve the analysis of surface
wave and flood wave propagation in steep channels. For instance,
the Clark County Regional Flood Control District �CCRFCD
1999� operates flood control channels in the Las Vegas Valley.
Designed and built on steep alluvial fans at slopes up to 3.5%,
these channels convey supercritical flow at Froude numbers typi-
cally between 2–4, at their design flow discharge �Duan and Chen
2003�. The hydrograph of a typical urban flood in the Las Vegas
area shows a very short duration and a high peak. Better under-
standing of the hydraulic properties of supercritical flows is
needed to design channels with sufficient freeboard to ensure the
safe passage of flood surges.

This study analyzes the celerity and amplification of super-
critical surface waves in steep channels. The full dynamic wave
model is employed in the present study because of its general
applicability to various flow scenarios in rectangular channels.
The main objective is to determine the propagation of supercriti-
cal surface waves over a finite channel length rather than over a
single wavelength. The main contribution is that the results of
surface wave amplification over a fixed channel length may have
practical implications in the design of supercritical conveyance
channels. The flood drainage channels in the Las Vegas area also
provide an opportunity to look at a real-world application. The F1
channel serves as an example to demonstrate the applicability of
the dynamic wave model, and to provide guidelines for improved

design of lined flood drainage channels.
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Wave Amplification as a Function of Wave Number

The analysis of the amplification of surface waves is governed by
the one-dimensional Saint-Venant equations �Graf 1998�. These
equations have been solved analytically using the small perturba-
tion method. The approach used for this analysis is based on the
recent theoretical developments by Tsai and Yen �2004�. A modi-
fication thereof is proposed to present the wave amplification re-
sults over a fixed channel length in comparison with wave
amplification results over a single wavelength.

General Solution to Wave Amplification as a Function
of Wave Number

In such derivations the basic hydraulic parameters, as sketched in
Fig. 1, include the channel bed slope S0, the normal depth h �m�,
the base flow depth hb �m�, the depth-averaged flow velocity V
�m/s�, and the wave celerity c �m/s�. The main characteristics of
the surface wave include the wavelength � �m�, the period � �s�,
and the wave amplitude y �m�. A normalized channel length
2�L0=2�h /S0 �m� is defined, while x �m� is the downstream
distance along the channel. Results are typically presented in di-
mensionless form including the dimensionless celerity c�=c /V,
the dimensionless baseflow depth hb

�=hb /h, the dimensionless
channel location x�=x /L0, the dimensionless time t�= tV /L0,
the dimensionless period ��=�V /L0, the Froude number F
=V / �gh�0.5, and the dimensionless wave number ��=2�L0 /�.
The wave number is thus inversely proportional to wavelength,
such that short waves have large wave numbers. The wave am-
plification parameter �� represents the natural logarithm of the
change in wave amplitude over one period, or one wavelength,
and is defined as ��=ln�y�x , t+�� /y�x , t��. Values of ���0 de-
scribe wave amplification and ���0 denote wave attenuation.

Recent studies �Tsai and Yen 2001, 2004; Tsai 2003, 2005�
have analyzed wave propagation in accelerating and decelerating
flows, as well as backwater areas in reservoirs. In these studies,
waves in channels having M1 and M2 profiles were examined,
and the dynamic wave model was also compared with other sim-
plified wave models �e.g., inertia and gravity waves�. Previous
studies were essentially limited to subcritical flows at Froude
numbers less than 0.7. These equations are valid for supercritical
flows as well as subcritical flows. The dimensionless wave celer-
ity and amplification parameter are respectively given here with-
out derivation from Eqs. �47� and �48� of Tsai and Yen �2004� as

c� = �hb
��−1 +

1
� 2 �A2 + B2�1/4sin�� + 2��j − 1�� �1�

Fig. 1. Definition sketch for surface waves
� F 2
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�� = 2�	F2�hb
��−2dhb

�

dx�
− �hb

��−1−	 + �A2 + B2�1/4cos
� + 2��j − 1�

2


�A2 + B2�1/4sin
� + 2��j − 1�

2
+ ��F2�hb

��−1
 �
�2�

where j=1 for a primary wave or j=2 for a secondary wave, and

A = hb
�−2−2	 + F2�− ��2hb

� − 	hb
�−3−	�dhb

�/dx���

B = F2����dhb
�/dx�� − 	��hb

�−2−	�

� = cos−1�A/�A2 + B2�1/2�

In this article, the base flow depth and normal depth are iden-
tical hb

�=1, and only the primary wave is considered j=1.

Wave Amplification over a Single Wavelength for hb
� =1

The solution of interest for field applications considers a base
flow depth equal to the normal depth �hb

�=1� without a gradient in
base flow depth �dhb

� /dx�=0�. Simulations will include subcritical
and supercritical flows at Froude numbers ranging from 0.1–10.
Flows with a Froude number between 2 and 4 are of particular
interest with regard to field applications to the flood conveyance
channels in the Las Vegas area. In the foregoing analysis, only the
primary wave �j=1� is of practical interest and resistance to flow
is described by Manning equation �	=4 /3�. Accordingly, Eqs. �1�
and �2� are reduced to the following:

c� = 1 + �1/��F2��A2 + B2�1/4sin��/2� �3�

�� = 2���− 1� + �A2 + B2�1/4cos��/2�/

��A2 + B2�1/4sin��/2� + ��F2�� �4�

where A=1− ���2F2�; B=−�4 /3���F2; and �=cos−1�A / �A2

+B2�1/2�.

Wave Amplification over a Fixed Channel Length

The application of Eqs. �3� and �4� to field conditions is problem-
atic because results are expressed per single wavelength while
conveyance channels are designed with a fixed channel length.
Specifically, �� is a logarithmic amplitude increment/decrement
that will occur as the wave travels over one wavelength. The
actual amplification or attenuation that a wave will experience
within a fixed channel length does not depend solely on ��. For
instance, a wave with a large amplification parameter that also has
a very long wavelength may amplify less in an absolute sense
than a shorter wave with a smaller amplification parameter. There
is thus a need to analyze wave amplification over a fixed channel
length.

From Fig. 2, the amplification of shorter wavelengths over the
same fixed distance depends on the number of wavelengths such
that m��=ln�yt+m�

� /yt
��, where m=number of periods that have

passed since time t. Effectively, the wave number �� is a measure
of the number of wavelengths within a fixed channel length equal
to 2�L0=2�h /S0. The product ���� is thus a measure of the total
amplification/attenuation over a normalized length of 2�L0. A
convenient way to express the wave amplification over a fixed

channel length is simply obtained from
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�L = ���� = ln�yd
�/yu

�� �5�

where yd
�=downstream wave height and yu

�=upstream wave
height. The parameter �L determines the level of amplification
��L�0� or attenuation ��L�0� of surface waves.

Wave Amplification Results

Calculation results from Eqs. �3� and �4� with Froude numbers
varying from 0.1–10 are plotted for a wide range of wave num-
bers on Fig. 3. Fig. 3�a� shows that the dimensionless celerity
increases with wave number at low Froude numbers, as expected
from Tsai �2005�. However, the dimensionless celerity decreases
with wave number when the Froude number is greater than 1.5.
When the Froude number reaches F=1.5, the dimensionless ce-
lerity remains a constant at 1.67 for all wavelengths. This is in
agreement with the Kleitz-Seddon law for long waves with Man-
ning resistance equation. It is also observed that the celerity of
short waves decreases with the Froude number. Indeed, for very
short waves, the dimensionless celerity asymptotically approaches
c�=1+1 /F, which is obtained as the limit of Eq. �3� as �� ap-
proaches 
. As a limit, the dimensionless celerity of short waves
thus approaches unity as the Froude number becomes infinitely
large.

Figs. 3�b and c�, respectively, show the amplification param-
eters over a single wavelength and over a normalized channel
length 2�L0. Fig. 3�b� shows that surface waves with F�1.5
always attenuate. When the Froude number equals 1.5, the ampli-
fication parameter remains 0 for any wave number or wavelength.
The amplification of surface waves is a concern in the design of
supercritical flow channels. As the Froude number increases
above 1.5, the amplification increases, and the peak of the wave
amplification over a single wavelength moves toward smaller
wave numbers, thus longer wavelengths. The results in Fig. 3�b�
imply that a relatively narrow range of wavelengths could be
defined for maximum wave amplification at a given Froude
number. Fig. 3�b� also indicates that the wave amplification
over single wavelengths becomes negligible for short waves �high
wave numbers�.

Strikingly different results are shown on Fig. 3�c� when con-
sidering the wave amplification parameter �L over a normalized
channel length 2�L0. The plot of �L illustrates that when growth
is examined over a fixed channel length, short waves that were

Fig. 2. Amplification over a fixed channel length for different wave-
lengths
previously noted to have a negligible amplification over a single
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wavelength will have a greater amplification than long waves.
This is perhaps the most important finding in this article. Con-
versely, for long waves �low wave numbers� that showed consid-
erable growth in Fig. 3�b�, the amplification over a normalized
channel length will remain close to 0. In the design of super-
critical flow channels, the wave amplification results shown in
Fig. 3�c� should be used. Accordingly, the amplification of super-
critical waves from Fig. 3�c� gradually increases with the wave
number �� and asymptotically reach a constant value for short
waves �large wave numbers�. This asymptotic value of �L can be
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Fig. 3. �a� Dimensionless celerity c�; �b� amplification parameter
over a single wavelength ��; and �c� amplification parameter �L over
a normalized channel length as a function of wave number �� and
Froude number F
obtained from the limit of Eq. �4� as � − �
 which yields
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�L = 2��− 1 + �2/3�F�/�F + F2� �6�

As expected, the numerator indicates that there is no amplifi-
cation when F=1.5 and surface waves attenuate ��L�0� when
F�1.5. On the other hand, waves amplify when F�1.5 and the
amplification reaches a maximum value at F=3.44 obtained from
the first derivative of Eq. �6�. This maximum wave amplification
parameter is �L max=0.53.

Field Applications for the F1 Flood Channel
in Las Vegas

The F1 flood channel is a concrete-lined open channel designed
for conveying a 100-year design flood in the Las Vegas Valley
�Duan and Chen 2003�. The cross section is rectangular with a
bottom width of 4.0 m and a downstream slope of 0.025. The
Manning roughness coefficient n is 0.014 and the design dis-
charge is 93.4 m3 /s. This corresponds to a normal flow depth of
2.0 m and normal flow velocity of 11.3 m/s, and a Froude number
F=2.55. The equations for calculating the dimensionless amplifi-
cation parameters were employed with flow discharge varying
from 20 to 100 m3 /s to encompass a range of discharges around
the design flood discharge. Base flow was assumed uniform and
equal to the normal depth, thus hb

�=1, and the Froude number for
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Fig. 4. Dimensionless amplification parameter �a� over a single
wavelength ��; �b� over a fixed channel length �L for different wave-
lengths � and flow discharges Q0 in m3 /s for the F1 channel
all flow rates was between 2.5 and 2.8 with an average of 2.66. A
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large range of wavelengths from 1–10,000 m was investigated by
Friesen �2007�.

In Fig. 4�a�, the amplification parameter over a single wave-
length reaches a maximum value for wavelengths of about 800 m.
The amplification parameter slightly shifts toward longer wave-
lengths at higher discharges. This diagram indicates that longer
waves tend to amplify more over a single wavelength than shorter
wavelengths. When considering wave amplification over the nor-
malized channel length 2�L0=2�h /S0=543 m, however, the re-
sults in Fig. 4�b� are strikingly different. Indeed, all wavelengths
shorter than about 100 m will have the maximum amplification
over the reach length. The maximum amplification is about 0.5,
which corresponds to e0.5=1.64 or a 64% increase in wave am-
plitude over this 543-m reach length. The amplification parameter
over the fixed channel length is not very sensitive to flow dis-
charge.

The F1 channel is designed at a Froude number F=2.55 which
is relatively close to the flow condition �F=3.44� for the maxi-
mum amplification of surface waves. For a channel designed at
a flow depth of 2 m plus freeboard �1 m�, waves of small ampli-
tude could overtop the channel at the design discharge. In prac-
tice, the possibility of increasing channel roughness in order to
lower the Froude number below 1.5 could be considered. Fig. 5
shows the amplification over the normalized channel length as a
function of the Froude number for a range of wavelengths. This
figure definitely shows that the amplification of supercritical sur-

σ* = 0.05
σ* = 0.1

σ* = 0.5

σ* = 1.0
σ* = 2.0

σ* = 10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10

Froude Number Fr

A
m
pl
ifi
ca
tio
n
Pa
ra
m
et
er

δ L

a)

λ=10m

λ = 100m

λ = 500m

λ = 1000m

λ = 5000m
0.0

0.1

0.2

0.3

0.4

0.5

0.6

1.5 2 2.5 3

Froude Number Fr

A
m
pl
ifi
ca
tio
n
Pa
ra
m
et
er
δ L b)

Fig. 5. Wave amplification parameter �L over a fixed channel length
versus Froude number F �a� as a function of wave number ��; �b� at
different wavelengths � for the F1 channel
face waves would be significantly reduced as the Froude number
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approaches 1.5. Decreasing the Froude number to a value of 1.5,
where no amplification occurs, would simply require an increase
in channel roughness from n=0.014 to 0.022.

These results of wave celerity and amplification in supercriti-
cal flows are the best that can be analytically derived at this time.
Experimental verification of these theoretical results is awaited.
Field and laboratory measurements will either confirm the results
or lead to substantial improvements of the underlying theory.
Meanwhile, field applications of these theoretical developments
should be used with those limitations in mind.

Summary and Conclusions

The hydraulic properties of surface waves are studied for a broad
range of Froude numbers from 0.1 to 10. This analysis specifi-
cally focuses on the celerity and amplification of supercritical
surface waves propagating in steep open channels. The small per-
turbation method of the Saint-Venant equations is modified to find
analytical solutions for wave growth over fixed channel lengths.
The results presented here are specifically focused on supercriti-
cal flows in open channels where Manning’s resistance equation
is applicable. The main conclusions are the following:
1. Surface waves attenuate at Froude numbers less than 1.5 and

amplify when the Froude number exceeds 1.5. Over a fixed
channel length, short wavelengths always amplify more than
long wavelengths. The celerity of short wavelengths reduces
to approximately c= �1+1 /F�V.

2. When considering the amplification over a single wave-
length, very long and very short waves will have an ampli-
fication parameter near 0. The modification to describe
surface wave amplification over a fixed channel length yields
completely different results. As shown in Fig. 3�c�, short
waves amplify the most over a fixed channel length. The
maximum amplification parameter over a normalized chan-
nel length 2�L0=2�h /S0 is 0.53. This is obtained when
F=3.44 as shown from Eq. �6�.

3. In terms of applicability to the F1 channel in Las Vegas,
all wavelengths shorter than 100 m would have a 65%
increase in wave amplitude over a normalized channel
length of 543 m. The possibility of increasing resistance
to flow to reduce the Froude number below 1.5 should be
considered. These theoretical results await verification with
field measurements.
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Notation

The following symbols are used in this technical note:
A � dummy variable used in Eqs. �1�–�4�;

B � dummy variable used in Eqs. �1�–�4�;
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c � surface wave celerity �L/T�;
c�=c /V � dimensionless wave celerity from the ratio of

celerity to mean velocity;
F=V /�gh � Froude number;

g � gravitational acceleration �L /T2�;
h � flow depth �L�;

hb � base flow depth �L�;
hb

�=hb /h � dimensionless base flow depth, hb
�=1 in this

paper;
j � indicator of primary or secondary waves,

j=1 in this paper;
L0=h /S0 � normalized channel length;

m � number of waves within a reach length;
n � Manning roughness coefficient;

S0 � channel bed slope;
t � time �T�;

t�= tV /L0 � dimensionless time;
V � depth-averaged flow velocity �L/T�;
x � downstream distance along the channel �L�;

x�=x /Lo � dimensionless location in the channel;
y � wave amplitude �L�;
	 � friction equation coefficient, 	=4 /3 for

Manning equation;
� � dummy variable used in Eqs. �1�–�4�;
� � wavelength �L�;

��=2�L0 /� � dimensionless wave number;
� � wave period �T�;

��=�V /L0 � dimensionless wave period;
�L � wave amplification/attenuation parameter over

a normalized channel length 2�L0; and
�� � wave amplification parameter �+� or

attenuation parameter ��� over a single
wavelength.
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