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Macroscale analysis of upland erosion
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ABSTRACT Scale effects in computing sheet and rill
erosion losses from large basins have been studied for
grid sizes ranging from 0.03 to 4 km? over drainage areas
up to 3000 km?. As a result of the analysis conducted
on the Chaudiére basin (5830 kmz), the mean characteris-
tics of the basin can be used to estimate the mean annual
upland erosion losses after a correction factor for the
influence of grid size is introduced into the calcula-
tion. The use of fine-meshed grids can be justified when
information on the areal distribution of soil erosion is
desired.

Analyse macroscopigue de 1'érosion superficielles

RESUME Une méthode de predétermination d'érosion super-
ficielle sur les grands bassins versants a été mise au
point & partir d'une étude détaillée du bassin de la
riviére Chaudiére (A = 5830 kmz). Plusieurs grilles dont
la taille varie de 0.03 & 4 km® ont été superposées au
bassin pour calculer 1'érosion pluviale sur des super-
ficies atteignant 3000 km’. Un facteur de correction
fonction de la superficie drainée est introduit dans les
équations, Il en résulte que 1'érosion totale des grands
bassins est estimée a partir des caractéristiques
moyennes du bassin. L'utilisation de quadrillages
devient justifiable pour définir la distribution spatiale
de 1'érosion superficielle.

drainage area of cells

drainage area

area-weighted value of the crop management factor
crop management factor

coefficient of variation for the sum of erosion losses
from N independent units

estimate of the annual soil erosion loss per unit area
annual soil erosion loss per unit area

minimum elevation on an infinitesimal unit

maximum elevation on an infinitesimal unit

maximum elevation on one unit
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hpin minimum elevation on one unit
size of a grid

N number of units

Qe correction factor for the grid size

Qe mean value of the correction factor

QX relative correction factor

Qes expected value of the correction factor for small grid
sizes

63 mean value of the relative correction factor

Qe95 confidence interval at 95 percent of the correction
factor

So slope on infinitesimal grids

S slope estimator

B exponent of slope in the soil loss equation

6 angle between contour lines and the side of infinitesimal
grid sizes

0) standard deviation of log-transformed correction factors

Og standard deviation of the sum of N independent log-

transformed correction factors

INTRODUCTION

Rainfall-induced overland flow has the ability to detach and
transport large amounts of sediment from upland areas. Sheet and
rill erosion losses are complex processes related to landform
geometry, surface slope, overland runoff length, rainfall intensity,
s0oil infiltration rate, interception, storage, ground cover, canopy
cover, evaporation, evapotranspiration, land use and conservation
practices. The fundamentals of soil erosion and conservation are
detailed in Hudson (1981), Zachar (1982), Jansson (1981), and
Schwab et al. (198l). Methodologies to quantify erosion losses
include the widely used Universal Soil-Loss Equation (USLE) which
has been derived for data from small experimental plots.

Because soil-loss equations were developed for small upland
areas (about one hectare), small basins are preferably discretized
into small homogeneous areas to evaluate soil erosion losses from
the drainage area. Square grids can be superimposed onto drainage
basins with the mesh size conditioned by the applicability of the
soil-loss equation. This method has been successfully applied to
drainage areas up to 50 km? and soil erosion maps can be plotted
with the aid of computers. The inherent limitations of this method
are the data requirements which become prohibitive as the size of
the drainage area increases beyond 100 km?,

It seems interesting to examine whether larger grid sizes beyond
the limit of applicability of soil-loss equations could provide
sufficient accuracy in predicting upland erosion losses. The
investigation reported here discusses the applicability of upland
erosion equations to large drainage areas. Detailed information
from the Chaudiére basin in Canada is scrutinized to determine the
scale effects associated with various grid sizes in the calculation
of s0il erosion losses. The development of simple methodologies to
estimate on-site erosion losses over large basins with minimum data
requirements also figures among the research objectives of foremost
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importance.

FIELD SITE AND DATA SOURCES

The Chaudiére basin shown in Fig.1l was selected for this study.
This Appalachian basin covers an area of 5830 km®’ to St-Lambert-de-
Lévis where the downstream gauging station is located.

St. Lawrence
River

Quebec City

' St.Lombert-
xDe-Levis

ASIN

Scoler
0O 10 20

* Meteorological Station

s Gauging Station

-\ ® Sediment Gauging
[ Station

Yoa, ', -~ Basin Limit

Fig. 1 Location of the Chaudiére basin.

The basin geometry, vegetation and land use were accurately
determined from topographical maps (1:50 000), land use and soil
classification maps (1:200 000), forest maps (1:125 000), aerial
photographs and Landsat imagery. Data from a network of 22 meteoro-
logical stations, 16 gauging stations and nine sediment gauging
stations were available on a daily basis. Approximately 65% of the
basin is still forested whereas 35% is used for agriculture and
pasture lands. All the parameters related to soil erosion have
been carefully documented (Julien, 1979, 1982; Frenette & Julien,
1986) . Data analysis shows a relative uniformity of rainfall
erosivity, soil erodibility and conservation practice on the
drainage basin,

The annual soil erosion loss per unit area, eg, in kt km~2 is a
function of the slope, Sy, inm m~! and the crop-management factor,
Co, of the USLE. For the Chaudiére basin the following relationship
is applicable for predicting rainfall erosion losses:

e = 226 SB C (1)
o o o
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Detailed investigations (Julien, 1979; Julien & Frenette, 1986a)
showed that the results obtained with Kilinc and Richardson's method
(B = 1.46) are in close agreement with those of the USLE. Julien &
Simons (1985) showed similarities between several sediment transport
relationships for overland flow, including the USLE, and the values
of the exponent, 8, using different methods are given.

GRID SIZE ANALYSIS

When an infinitesimal square grid is superimposed onto the drainage
basin, the slope and crop-management factors become uniform for

each unit. The actual slope, S, in m m~! on the unit is calculated
from the minimum and maximum elevations hy and hg, located on

opposite corners of a square unit of size, %, and angle, f, sketched
in Fig.2:

hy -1y

So = % (cosf + sinb)

(2)

Contour Lines

Fig. 2 Infinitesimal grid.

With increasing grid size, the slope varies within each unit and
the extreme elevations are not found on opposite corners. The
following estimate of slope, S, inm n~! is defined as a function of
the maximum elevation bhpygx, in m, the minimum elevation, hpin, in m,
and the drainage area, A, in m":

s = : (3

Similarly, the area-weighted value of the crop management factor,
C, is employed for large areas. Substituting S and C for 8o and Co
in equation (1) yields the soil loss estimator, e. The ratio,
e/ey, defines the correction factor, Qg, which is to be used with
the soil loss estimator, e, to determine the actual erosion losses,
eg-
For infinitesimal grids, equations (1), (2) and (3) yield the
following relationship for Qe as a function of O and B, given that
C=Cy, and A = 22
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Q = (cosO + sine)B 4)
i e
5 The gradual increase in Qe with 6 and B is illustrated in
Fig.3(a). Obviously Q, reduces to unity when B = O, or when 6 = O.
(a) | (b)
2r B=20 2t
B=1.5 _
Qe B=1.0 Q
| B-05 1
d
d 1 1 ) 1 — )
10 20 30 40 10 20
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Fig. 3 (a) Variation of Qg with 0 and § for infinitesimal grids; (b} expected value of
the correction factor, Q,, for infinitesimal grids.

When the angle, O, is unknown, the following procedure has been
developed. Considering the random variability of the angle 0, the
analytical expression of the expected value of the correction
factor, ées» is:

1 _4 /4 a0

i

5
B 5

Ol

s (cosf + sinB)

The results of the numerical integration of equation (5), plotted
in Fig.3(b), indicate a gradual increase in Qeg with B.
| For larger drainage areas, the following grid size analysis has
been conducted. Square areas were randomly selected from the

£ Chaudiére basin as shown in Fig.4. The square areas were subdivided
into matrices of 12 x 12 cells and classified in Table 1 into three
sets according to the area of the cells. The surface area of cells
in Data Sets A, B and C is respectively 2.8 ha, 25 ha and 4 km?. In
addition, Data Set D combines 4 km? cells into large square matrices
with surface areas ranging from 4 to 3000 km? over the entire basin.

For each of the areas of the four Data Sets, a relative correc-
tion factor, Q; (an asterisk is used to denote relative correction
factors), has been defined as the ratio of soil erosion from the
total area, A, over the sum of individual losses from each cell;
this is schematized in Fig.5 for a small 2 x 2 matrix. The calcula-
tion procedure is repeated for larger matrices (3 x 3; 4 x 4;
6 x 6...) and details of the computerized data analysis are presen-
ted in Julien (1979).

Several thousand values of the relative correction factor were
computed; Qz depends on the number of cells, N, and the size Ay, of
the cells. For given values of A, and N, the first three moments
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Set D

Fig. 4 Random selection of square areas for the grid size analysis.

Table 1 Scope of grid size analysis

— e —

Data Cell area Matrix area Number of
Set (km?) Matrix size {km?) matrices
A 0.028 144 (12x 12) 4 12

B 0.25 144 (12x 12) 36 4

Cc 4.0 144 (12x 12) 576 5

D 4.0 up to 1600 3000 N/A

N/A Not Applicable.

-Unit

» withN=4

T Cells

Fig.5 Definition sketch for the relative correction factor, Q;.

of the distribution of log Q: give very low values of the skewness
coefficient. Therefore, it was hypothesized and verified that Qg

is lognormally distributed; the results of the analysis for Data
Set B are shown in Fig.6 as an example. The mean value and the
confidence intervals at 95% are obtained from the following analysis
of the first two moments.
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I A,0.25 km?

F(x) N = 4 cells
0.8+ A= | km?
0.6+ 8-1, B-2,
B-3, B-4
0.4 </ OATA SET B
S OBSERVED
FITTED LOG
0.2+ NORMAL
. DISTRIBUTION
[ }—= +— } 4
-0.6 -0.4 -0.2 0 log, Qe

Fig. 6 Observed and fitted distribution function of Q, for the Data Set B.
Mean value of the correction factor

The mean value of the log-transformed relative correction factor,

Qe, shown in Fig.7 gradually decreases as N increases for all sets.
The only exception to this general trend is that values of Qe remain
constant for N < 9 on the smallest drainage areas (Data Set A).
Interestlngly, this corresponds to the expected correct1on factor,
Qes, discussed previously (Fig.3(b)). The value of Qes = 1.13 has
been obtained for drainage areas smaller than 0.125 km? on the
Chaudiére basin when the USLE was used for the calculation of soil
erosion. For larger areas, regre551on analysis glves the following
relative correction factor, Qe, as a function of Qes» A and A,

log 6: = +0.0061 - 0.137 log A + 0.083 log A_ (6)

A correction factor, ée» is defined by the following change of
variables:

log @ = log Q* - 0.083 log A_ - 0.129 + log Q &P
g Q. g Q g A, g Qg
* QF Remains Constant for the
1.0F Smallest Drainage Areas.
0.8+
0.61 A, =0.028 km?
— -
Q, log @% = 00061 - 0.137 log N-0054 log AN Ag = 0.25 km?
Ag = 4 km?
0.4k .
® Dota set A Ay =0.028 km’
02t A Data set B Ag = 0.25 km?
B Data set C Ag = 4 km?
—— Regression Curves
[¢] L —

| 10

100
_ NUMBER OF CELLS N
Fig. 7 Mean value of log Oe* vs. the number of cells, N.
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Thus subgtituting equation (7) into equation (6), the correction
factor, Q, becomes independent of A, with the following relation-
ship:

Qe = 0.75 desA'°-137 A > 0.125 km? (8)

As a result, with aes = 1.13, a correction factor, Qe, which is
a function of the drainage area only is obtained and all the data
from Fig.6 collapse onto a single curve shown in Fig.8. Two
governing laws for the correction factor, ae, are identified. First,
for A< 0.125 kmz, the correction factor, ae: remains constant
(Qg = Qeg) which indicates that the soil loss equation can be
applied to these areas without bias. As the drainage area increases
beyond the threshold value A > 0.125 kmz, the correction factor, Qe
decreases gradually as shown in Fig.8.

e Mean Vaiue ]

Confidence Intervals at 95%

5 ~0.437
G, =0854

(R%*=097)

CORRECTION FACTOR Qg
5

0.1 s 1 ' s L 1
10° 10 10 10

DRAINAGE AREA A ,kmt

Fig.8 Mean value and confidence intervals at 95% of the correction factor, Qg vs.
drainage area, A.

confidence intervals of the correction factor

The standard deviations, O, of the log-transformed relative correc-
tion factor, Q;, for Data Sets A, B and C are shown in Fig.9. All
three Data Sets have similar shapes with an increase in 0 for N <9,
a peak around 9 < N < 36 and then a gradual decrease for N > 36.

As a second interesting feature, the magnitude of the peak decreases
as A, increases. Regression analysis provides a quantitative
relationship for the standard deviation, O. After substituting Ag
with A/N, the following regression relationship has been obtained.

1

o = 0.00235 + [N ; ] (0.148 - 0.0226 log A) 9)

Note that under this form the standard deviation, T, depends on
the drainage area, A, and the number of cells, N. The standard
deviation decreases to zero as N approaches unity. As N increases,
the term in brackets reduces to unity and O becomes solely a
function of A.

The confidence intervals of the correction factor, Qe, are
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0.8} N-1
o = 000235+ [T] (0.148 - 0.0226 logN - 0.0226 log Ag)
0.l6f
0.14f 2
Ay =0.028 ki
o2
Ay =0.25 km?
0.0}
2
o008l Ao =4 km
0.06f ® Dato Set A, A, =0.028 km'
o0ak A Data Set B, A, =0.25 km®
® DotaSet C, A, =4 km? A
0.0y —— Regression Curves
o < \ \ -

i 10 100
NUMBER OF CELLS N

Fig. 9 Standard deviation, o, of fog 6: vs. the number of cells, N.

obtained after combining equations (8) and (9) using the properties
of lognormal distributions for Qe' The confidence interval at 95%
can be written:

=0 $1.960
Qe95 Qe x 10 (10)

Agreement between equation (10) and the Data Set D is shown in
Fig.10. Confidence intervals at 66% are given after replacing 1.96
in equation (10) with unity. As N becomes large, the expression for
the confidence intervals reduces to a function of Qo and A which has
been plotted in Fig.8. These results can be used for design
purposes as discussed below.

The foremost conclusion of this analysis is drawn from the

2.0r Data Set D
. 1.8r —— Mean Value of the Correction
o |.6t Factor from Regression Analysis
g 1.4} ~—= Confidence Intervals at
§ L2l 66% and 95%
w
- 1.0t
o
+ 08
b
u 0.6
x
o 0.4
O

0.2

10° 10! 102 10® 104

DRAINAGE AREA (km?)

Fig. 10 Mean value and confidence intervals at 66% and 95% of the correction factor,
Q,. for Data Set D.
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gradual decrease of the standard deviation with increase in drainage
area. This property enables the development of a reasonably
accurate method to estimate the total upland erosion losses for
large drainage basins. Indeed the results shown in Fig.8 indicate
that for drainage basins as large as 1000 kmz, the variability of
the correction factor ranged from 0.17 to 0.49 (from equation (10))
with a mean value of 0,33 (from equation (8)). Therefore, a first
estimate of the total annual upland erosion losses can be obtained
from the soil loss estimator, e, and the average correction factor,
Qe- Examples are given in Frenette & Julien (1980) and Julien &
Frenette (1986b).

When the erosion loss from a large basin is calculated from the
sum of N independent calculation units, the standard deviation of
the sum, Og, is obtained after considering the lognormal distribu-
tion of the log-transformed correction factors, thus:

(11

As could be expected, Oy decreases as the number of calculation
units, N, increases. The coefficient of variation, C;, of the sum
is therefore given by:

c =10° -1 (12)
v

After combining equations (9), (11), and (12), the coefficient of
variation is illustrated in Fig.ll as a function of A and N. For
example, when a drainage basin covering an area of 1000 km® is
subdivided into N = 1000 units for the calculation of soil erosion,
the coefficient of variation of the sum (Fig.11) is less than 1%,
as compared to Cy = 6% when the same drainage area is subdivided
into N = 10 units.

10000

1 000

100

NUMBER OF UNITS N

00l Ol + 10 100 000 0000
DRAINAGE AREA, km?

Fig. 11 Coefficient of variation of the sum of N independent upland erosion losses.

This conclusion remains valid when a large number of independent
units from the same population is considered., The validity of the
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method depends mostly on the applicability of the sediment transport
relationship, equation (1). The method should preferably be used on
morphologically homogeneous basins since the same soil loss equation
is applied to the entire watershed.

CONCLUSION

A substantial analysis of the influence of grid size in calculating
sheet and rill erosion losses from upland areas has been presented.
Using grid sizes ranging from 0.03 to 3000 km®> in the Chaudiére
basin, a correction factor, Qe, which is a function of the grid
size, has been defined and shown in Fig.8. The mean value of Q¢
and the confidence intervals at 95% decrease gradually when
A>0.125 km®>. A simplified method has been developed to provide
estimates of the total soil erosion losses from the mean charac-
teristics of a large drainage basin. Fine-meshed grids are best
used to define the spatial distribution of soil erosion, and for
peiier accuracy 1in prediciing the total upland erosion losses from
arge basins. Quantitative evaluation can be made from Fig.11l as a
ction of drainage area and number of units.
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