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On predicting upland erosion losses
from rainfall depth

Part 1: Probabilistic approach
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Abstract: Point rainfall triggers the complex processes of overland flow and surface erosion. The
probability density functions of rainfall duration and intensity are coupled with a physically based
dynamic formulation of rainfall-runoff-sediment transport relationships for upland areas. When con-
sidering a single storm, rainfall depth alone is a poor predictor of sediment transport because of the
dispersion introduced by the effect of rainfall intensity. On a long terms basis, however, the total
amount of rainfall can be used to predict total erosion losses.
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1 Introduction

It has long been recognized that rainfall induced runoff has the ability to detach
and transport considerable amounts of sediments from upland areas. Raindrop
impact on the earth surface loosens soil particles for downslope transport into the
fluvial system. Soil erosion deteriorates soil structure and increase nutrient loss,
which decreases the potential productivity of agricultural land. The amount of
material transported is a function of the soil erodibility and the sediment transport
capacity of surface runoff. Upland erosion losses depend on the size of sediment
particles, infiltration rate, surface sealing, vegetation cover, resistance to flow and
soil conservation practices.

Earlier investigations have been undertaken to quantify upland erosion losses.
Musgrave’s (1947) contribution has been cast into the well-known Universal Soil-
Loss Equation (Wischmeier and Smith 1978). Mathematical models have been
developed with increasing interest since the early sixties with contributions of
Meyer and Wischmeier (1969), Foster and Meyer (1972), Simons et al. (1975), and
Knisel (1980). In these computer models, the complex physical processes of pre-
cipitation over soil surface for a single storm are replaced by idealized determinis-
tic configurations of physical elements that preserve the essential characteristics of
a drainage area. The relationships derived from the realm of physics are used to
simulate the response of watershed systems to the input variables.

When considering the variability of rainfall-runoff relationships, Eagleson (1978)
showed that the probability distributions of input variables such as rainfall could
be transformed into probability distributions of the output variables using deter-
ministic physical processes. This approach has been extended to the analysis of soil
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erosion from upland areas by Julien and Frenette (1985). The probability density
functions (pdf) of both rainfall duration and intensity serve as inputs to calculate
the expected value of rainfall erosion losses from upland areas. This method has
been applied to several large watersheds in Canada (Julien and Frenette 1985).
This approach, however, requires detailed knowledge of both rainfall duration and
intensity which limits its applicability to locations where sufficient meteorological
data are available. The purpose of the present investigation is to combine the
effects of both duration and intensity into a single variable, namely rainfall depth,
and then examine the relationship between erosion losses and rainfall depth. Previ-
ous studies of the probability distribution of rainfall duration and intensity serve as
a basis for this theoretical investigation. The relationship between erosion losses
and rainfall depth is first examined for a single storm and then for a large number
oi storms.

2 Problem Formulation

2.1 Rainfall precipitation

Point rainfall precipitation has been treated successfully as a random process by
Todorovic (1968) and by Eagleson (1978). A dimensionless rainfall depth parame-
ter ¢, has been defined after dividing the rainfall depth of a single storm by the
average rainfall depth of a large number of storms. The exponential probability
density function (pdf) of the dimensionless rainfall depth can be written:

fgp) = e . (1)

Similarly, Grayman and Eagleson (1969), Eagleson (1978) and Julien (1982)
showed that both the rainfall duration and intensity can be represented by exponen-
tial pdf’s that are independent of each other. After normalizing rainfall duration
and intensity of a single event with average values, the pdf of the dimensionless
rainfall duration ¢, and that of intensity ¢,; can be written:

f@)=e* and f(o) =e *. (2a,b)

The rainfall depth being equal to the product of storm duration and intensity, the
following relation also holds true in dimensionless form:

op = ¢, 0;. 3)

As the rainfall intensity exceeds the rate of infiltration in the soil, the excess rain-
fall intensity generates surface runoff.

2.2 Soil erosion losses

The principal variables involved in the unit sediment transport g, are the surface
slope S, the rainfall intensity i, the runoff length L, the mass density p, and the
kinematic viscosity v of the fluid. The method of dimensional analysis reduces the
number of parameters. The dimensionless sediment transport rate per unit width
¢, can be written (Julien 1982) as:

0, = A=) sPoy @

in which ¢, = g,/v; 7 is the long term average rainfall intensity; and the empiri-
cal parameters @, B, and y have been determined by Julien and Simons (1985) for:
(1) several empirical equations derived from field data; (2) theoretical relation-
ships; and (3) several bed-load formulas describing sediment transport in laboratory
flumes and streams. The analysis showed that the exponent § varied between 1.2
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and 1.9 whereas the exponent of the sediment rating curve, 7, typically ranged
from 1.4 to 2.4 for upland erosion losses.

A single storm of given duration and uniform rainfall intensity, over an impervi-
ous rectangular plane of width W, and runoff length L yields the following dimen-
sionless soil loss, ¢, after using Egs. (3) and (4):

o5 = O, o, = ndpd, ! )

where © = aSh(— L )YK and ¢y = —%

It is noted that Eq. (5) neglects the effects of the rising and falling limbs of the
runoff hydrographs. Julien and Frenette (1985) demonstrated that this is a suffi-
ciently good first-order approximation for field applications.

For a given field site the dimensionless group of constants 7 remains invariant,
thus the dimensionless soil loss ¢, is proportional to the dimensionless amount of
rainfall ¢, and the dimensionless rainfall intensity ¢; whenever ¥y > 1. The issue
to be clarified relates to the influence of ¢; on &, in Eq. (5). If ¢, could be
demonstrated to be insensitive to changes in ¢;, then Eq. (5) would indicate a
linear relationship between ¢, and ¢p.

3 Soil erosion losses during single storms given the rainfall depth

The influence of rainfall intersity ¢; on soil loss ¢, given a constant rainfall depth
¢p is examined through the concept of conditional probability schematized in Fig.
1. The expected value, E(d, | ¢p), and the variability of ¢, around the expected
value are calculated after the joint probability density function is defined. Consid-
ering the independence of rainfall duration and rainfall intensity, the joint probabil-
ity density function equals the product of the individual exponential distributions
from Eqs. (2a) and (2b). The conditional probability density function (cpdf) of
rainfall intensity ¢; for a given rainfall depth (¢, constant) is obtained from
®; = ¢p/¢;. Thus the cpdf is:
e ¥ e O/
S(o; |¢D) = > . (6)

f e_¢ie_¢0/¢i do;
0

The denominator in Eq. (6) is a constant normalizing the distribution. The result
of integrating Eq. (6) is the conditional cumulative distribution function (ccdf)
denoted by F(¢; | ¢p) and written as:
b
F(@;19p) = [ £(9; 1 0p) do; . (7)
[i

Interestingly, the function F(¢; | p) also serves to describe the ccdf of ¢, because
from Eq. (5), with ® and ¢, constant, ¢; is directly related to ¢, as

=1 qr-1 8
Tl eyl ®)
Figure 2 shows the ccdf of soil erosion for different values of ¢D ranging from 0.1
to 10 as calculated from numerical integration of Eq. (7) It is seen from this fig-
ure that for a given ¢;, F(; | ¢p) decreases with increasing ¢p.

The first two moments of the ccdf are calculated to yield insight on the variabil-
ity of ¢, around the expected value of ¢ as a function of .
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Figure 1. Soil loss ¢, given constant values of ¢p
Figure 2. Conditional cumulative distribution function of ¢; given ¢, constant

3.1 Expected value of soil erosion

The first moment of the distribution corresponds to the expected value E(d; | ¢p)
of the soil loss for one rainstorm event, given the rainfall depth ¢,. This is
expressed mathematically by the following integral:

E(0 | ¢p) = [ ¢,/ (@ | 6p) dd; . ©9)
0
From Eq. (5), ¢, can be replaced by a function of ¢;, thus:

[e o]
nq)Df ¢i’y—1e_¢ie_¢0/¢i dq)l
0

E(, |9p) = —2 (10)
J' e_¢ie"¢n/¢r do;
0

in which the denominator and ¢ are constant. Both integrals in Eq. (10) can be
expressed in terms of modified Bessel functions, KY(Z ¢p), of order y defined in
Gradshteyn and Ryzhik (1965):

LT pv—1,—0,— 00/t
K,(2\/¢p) = J 7 e e % qg, . (11)
! 2(9p)" 0 " ’
After substituting Bessel functions of order ¥ (numerator) and of order 1 (denomi-
nator), the expected value of soil erosion losses from Eq. (10) can be written as:

E@l6p) _ 9GP K,2\/6p) 12
nop b K2 \ép)

Solution of the Modified Bessel functions is possible with the aid of mathematical
tables (Abramowitz and Stegun 1972) for integer values of y. Asymptotic series
expansions or numerical integrations of Eq. (12) can also be used for non-integer
values of y. Dawod (1986) verified numerical solutions with mathematical tables
for integer values of y. The numerical method was then used for non-integer values
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of y. The results for the expected value of soil losses conditional to a given ¢, are
shown in Fig. 3 as a function of y (1.5<<y<<3.5) for ¢, held fixed between 0.1 and
10. The expected value E(d; | ¢p) is found to increase both with ¢, and y.

3.2 Second moment and coefficient of variation
The second central moment M, or variance has been determined from:

Mydp) = [ (o — E(d, | p)1%f (9; | &p) d; (13)
0

with ¢, given from Eq. (5). It is noted that M,(¢p) is a random variable. This
integral has been solved numerically (Dawod 1986) and is shown to increase with y
and ¢;,. The results are presented in the form of a coefficient of variation.

N($p) = VMy(¢p)/E(®s | ¢p) . (14)

The coefficient of variation is shown in Fig. 4 to decrease with increasing ¢,. For
example, the standard deviation reaches twice the expected value of soil losses
when ¥ = 3 and ¢, = 0.1. This indicates that for a single storm, if calculations
of soil erosion are to be based on rainfall depth only, the influence of rainfall inten-
sity cannot be neglected because the variability introduced by the rainfall intensity
is excessive. The results shown in Fig. 4 reveal that the influence of rainfall inten-
“sity decreases as ¢ increases and as y decreases.

4 Expected soil erosion losses from single storms of unknown rainfall depth

When the amount of rainfall from a given storm is unknown, the expected value of
soil erosion E(¢,) can still be determined after considering the pdf of rainfall depth
(Eq. (1)), thus:
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Figure 3. Expected value of soil loss ¢ as a function of ¢, and y

Figure 4. Coefficient of variation 1(¢p) as a function of ¢p and y
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Table 1. Expected values of first moment E(@;), second moment E {M,(¢p)}, and coefficient of
variation N{Mx(¢p)}, for different y values

Y E(d,) E{My($p)} N{M,(¢p)}
1.5 1.14 0.14 0.33
2.0 1.61 1.19 0.68
2.5 2.50 7.18 1.07
3.0 4.21 42,78 1.55
3.5 7.64 272.96 2.16

’ o)
E@,) = [ E(¢;|dp)e * dop . _ (15)
0

Simirlarly, the expected values of the variance, E{M,(¢p)}, and coefficient of
variation n{M,(¢p)} when the rainfall volume is unknown are:

E{Mx(¢p)}
E(¢;)

The results of the evaluation of Egs. (15), (16a), and (16b) are summarized in
Table 1. As 7y increases beyond unity, E(¢,) increases while the second moment
increases rapidly when y > 2.5. The coefficient of variation n{M,(dp)}, however,
increases steadily from O (when y = 1) to about 2.2 ( when y = 3.5). This demon-
strates the greater sensitivity of soil erosion calculations based on the rainfall inten-
sity as y becomes larger. It can be concluded that soil erosion losses from indivi-
dual storms cannot be estimated accurately from rainfall depth only, except when
the exponent ¥ approaches unity.

E{Mp)} = [ My(0p)e *dop , and n{M,(op)} = (16a,b)
]

5 Soil erosion losses from a large number of storms

A different perspective arises when the sum of individual erosion losses from a
large number of storms is considered. The central limit theorem states that the
distribution of sums of random variables tends toward a normal distribution when
the number of storms becomes large.

The expected value of the sum of n erosion losses resulting from the occurrence

n
of n storms, E(Y¢;), equals the sum of expected values from individual storms,

n
Y E(¢;). The coefficient of variation of this sum, however, decreases with the
number of storms as follows:

M E(n s) M
[1 - n{ \j(;q)D)} tl—a;n—l] < n Eq) < [1 + n{—\j(;n)ﬁ—tl_u;n—l] (17)

2E (%)

where n = number of storms, ¢ = student’s ¢-distribution, & = specified proba-
bility level, and n —1 = degrees of freedom. ‘

Hence, the expected value of the sum of n storms remains bounded at a proba-
bility level a. For example, the expected value of the sum of 100 storms at a 95%
probability level is calculated from Eq. (19) with the aid of Fig. 5 (¢4 05,99 = 1.66)
given N{M,(¢p)} = 0.68 when ¥y = 2 as obtained from Table 1:

E(S6,)

2E (%)

Consequently, as opposed to the previous conclusion regarding single storm events,

0.89 < [ ] <111 (18)
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Figure 5. Coefficient of variation of the expected value of erosion losses for »n storms

long term erosion losses can be related to the total amount of rainfall provided the
number of storms is sufficiently large.

6 Conclusion

On a single storm basis, soil erosion losses cannot be predicted accurately from the
rainfall depth only because of the dispersion induced by rainfall intensity. The
coefficient of variation increases rapidly with the exponent ¥ as shown in Table 1.

Total erosion losses from a large number of storms can be calculated from the
sum of individual erosion losses. The variance of the expected value of the total
erosion losses is shown to decrease as the number of rainstorms increases.

The importance of this conclusion can be seen as it enables the prediction of
long term upland erosion losses from long term rainfall amounts. The question as
to whether the number of storms is sufficiently large for monthly or annual predic-
tions can be answered from Eq. (17) with the aid of the results shown in Table 1,
and Fig. 5.
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Appendix A Notations

i average rainfall intensity of a large number of storms
K, Modified Bessel function of order y

L length of overland flow

My($p) second central moment conditional on given ¢p

n number of rainstorm events

qs unit sediment discharge

S surface slope

ty_gn—1 Student’s ¢-distribution at a probability level a and » —1 degrees of freedom
w width of a rectangular plane

o probability level

o8,y empirical coefficients of the sediment transport relationship
n group of variables which remain constant at a given field state
v kinematic viscosity of the fluid

n$p) coefficient of variation conditional on given ¢p

ép dimensionless rainfall depth during one storm

b; dimensionless average rainfall intensity during one storm
b, dimensionless sediment transport rate per unit width

o dimensionless soil loss

b, dimensionless rainfall duration of one storm

(3% ratio of plane width W to runoff length L
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