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Modified log-wake law for turbulent flow in smooth pipes
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ABSTRACT
A modified log-wake law for turbulent flow in smooth pipes is developed and tested with laboratory data. The law consists of three terms: a log term,
a sine-square term and a cubic term. The log term reflects the restriction of the wall, the sine-square term expresses the contribution of the pressure
gradient, and the cubic term makes the standard log-wake law satisfy the axial symmetrical condition. The last two terms define the modified wake
law. The proposed velocity profile model not only improves the standard log-wake law near the pipe axis but also provides a better eddy viscosity
model for turbulent mixing studies. An explicit friction factor is also presented for practical applications. The velocity profile model and the friction
factor equation agree very well with Nikuradse’ and other recent data. The eddy viscosity model is consistent with Laufer’s, Nunner’s and Reichardt’s
experimental data. Finally, an equivalent polynomial version of the modified log-wake law is presented.

RÉSUMÉ
Une loi log-traînée modifiée est développée pour décrire les écoulements turbulents dans les conduites à parois lisses. La loi modifiée consiste en trois
termes: un terme logarithmique, un terme de traînée, et un terme cubique de condition limite axiale. Le terme logarithmique représente les conditions
de la paroi, le terme de traînée définit le gradient de pression de l’écoulement, et le dernier terme satisfait la condition limite au centre de la conduite.
Le terme de traînée décrit physiquement les conditions de mélange turbulent causées par le gradient de pression. Le coefficient de frottement et le
coefficient de viscosité tourbillonnaire sont décrits de façon analytique. Les équations de profils de vitesse et de coefficient de frottement sont en
accord avec les données expérimentales de Nikuradse et autres données récentes. Le modèle de viscosité tourbillonnaire est consistent avec les données
expérimentales de Laufer, Nunner et Reichardt. Finalement, une version polynomiale de la loi log-traînée modifiée est également présentée.

Keywords: Pipe flow; turbulence; logarithmic matching; log law; log-wake law; velocity profile; velocity distribution; eddy viscosity;
friction factor.

1 Introduction

Fully developed turbulent flow in circular pipes has been inves-
tigated extensively not only because of its practical importance,
but also for the extension of the results to open-channel flows and
boundary layer flows. The first systematic study of the velocity
profile in turbulent pipe flows may be credited to Darcy in 1855
(Schlichting, 1979, p. 608) who deduced a 3/2-nd-power velocity
defect law from his careful laboratory measurements, i.e.

umax − u

u∗
= 5.08

(
1 − y

R

)3/2
(1)

in which umax = the maximum velocity at the pipe axis,u =
the time-averaged velocity at a distancey from the pipe wall,
u∗ = the shear velocity, andR = the pipe radius. Equation (1)
is seldom used because it is invalid near the pipe wall withξ =
y/R < 0.25. Near the wall or in the inner region, Spalding’s law
(White, 1991, p. 415) or O’Connor’s law (1995) may be applied.
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This study emphasizes the velocity profile away from the pipe
wall whereyu∗/ν > 30 givenν = fluid kinematic viscosity. The
law of the wall or the logarithmic law proposed by von Karman
and Prandtl (Schlichting, 1979, p. 603) is widely used in this
region. For smooth pipe flow, it is written as

u

u∗
= 1

κ
ln

yu∗
ν

+ A (2a)

whereν = the von Karman constant. Nikuradse (1932) has
verified (2a) with his classical experiments. When (2a) was
first proposed, the value ofκ was suggested to be 0.4. Most
researchers subsequently preferred the value of 0.41 (Nezu and
Nakagawa, 1993, p. 51). Recently, Barenblatt (1996, p. 278)
showed that for very large Reynolds number, the value of von
Karman constant tends to

κ = 2√
3e

≈ 0.42 (2b)
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Figure 1 The law of the wall or the logarithmic law.

The value ofA varies in literature; it is about 5.29±0.47 accord-
ing to Nezu and Nakagawa (1993, p. 51). Equation (2b) will be
examined later in this paper.

Equation (2a) is applicable away from the wall whereyu∗/ν >

30, as shown in Fig. 1. It is not only valid for steady flow, but
is also frequently used as a reference condition in unsteady flow
simulations (Ferziger and Peric, 1997, p. 277). This is because
even in unsteady flows, the wall shear stress predominates in the
near-wall flow, and the influence of inertial forces and pressure
gradient are vanishingly small.

Laufer (1954) found that the logarithmic law (2a) actually
deviates from experimental data whenξ = y/R > 0.1 ∼ 0.2.
Coles (1956) further confirmed this finding and claimed that
the deviation has a wake-like shape when viewed from the
freestream. Thus, he called the deviation the law of the wake.
Based on Coles’ digital data, Hinze (1975, p. 98) proposed the
following expression for the wake function, i.e.

W(ξ) = 2�

κ
sin2 πξ

2
(3)

in which � is Coles wake strength. Finally, one can modify the
logarithmic law by adding the wake function, i.e.

u

u∗
=

(
1

κ
ln

yu∗
ν

+ A

)
+ 2�

κ
sin2 πξ

2
(4)

This is called the log-wake law. When applied to pipe flows,
the reader can easily show that the log-wake law (4) does not
satisfy the axial symmetrical condition, i.e., the velocity gradient
is nonzero at the pipe axis. Besides, the physical interpretation
of the wake function is not clear in pipe flows.

Similar to flows in narrow open-channels (Guo and Julien,
2001), to correct the velocity gradient at the pipe axis, Guo (1998)
proposed the following velocity profile model for pipe flows,

u

u∗
= 1

κ
ln

yu∗
ν

+ A︸ ︷︷ ︸
The law of the wall

+ 2�

κ
sin2 πξ

2
− ξ

κ︸ ︷︷ ︸
Law of the wake

(5a)

or
umax − u

u∗
= − 1

κ
(ln ξ + 1 − ξ) + 2�

κ
cos2

πξ

2
(5b)

in which the Coles wake strength� is due to the pressure-
gradient. The log term in (5a) expresses the restriction of the
wall, the sine-square term indicates the effect of the pressure-
gradient, and the last term reflects the axial boundary correction.
According to Coles, the last two terms in (5a), which are the

deviation from the log law, define a law of the wake. It is noted
that although (5a) or (5b) satisfies the axial symmetrical condi-
tion, the constant derivative of the linear correction term brings
an additional shear stress in the near wall region, which slightly
perturbs the law of the wall. It is therefore concluded that the
linear function is not the best axial boundary correction.

The purpose of this paper is to develop a physically-based
velocity profile model for turbulent pipe flows called the modified
log-wake law. It is proposed to improve upon Eq. (5b) in the light
of a better physical interpretation of the wake law. The proposed
modified log-wake law is also tested with experimental velocity
measurements in pipes. Analytical relationships for the turbulent
eddy viscosity and for the friction factor are then compared with
experimental data.

2 Development of the modified log-wake law

This section formulates the modified log-wake law in smooth
pipes. First a theoretical analysis is considered. Section 2.2
proposes the basic structure of the modified log-wake law.
Section 2.3 defines the axial boundary correction function. The
final formulation of the modified log-wake law is written in
velocity-defect form in Section 2.4.

2.1 Theoretical analysis

Consider fully developed turbulent flow with homogeneous den-
sity through a pipe of radiusR. For convenience, cylindrical
coordinates are used with thex-axis coinciding with the axis of
the pipe, as shown in Fig. 2(a). One can show that the continuity
equation is automatically satisfied and none of the flow variables
depend onθ . The momentum equation in ther-direction gives
that the pressurep is a function ofx alone, i.e.

∂p

∂r
= 0 (6)

in which p = dynamic pressure. The only nonzero component
of velocity is the axial velocityu(r) or u(y) wherey = distance
from the wall, i.e.y = R − r. With reference to Fig. 2(b),
for steady and incompressible flow, the force balance in thex-
direction gives

− τ · 2π(R − y)dx + (τ + dτ) · 2π(R − y − dy)dx

− dp · π [(R − y)2 − (R − y − dy)2] = 0

in which τ = local shear stress. Neglecting the 2nd order terms,
the above equation reduces to

−τ · 2πdxdy + dτ · 2π(R − y)dx − dp · 2π(R − y)dy = 0

Dividing by 2πdxdy, the above becomes

−τ + dτ

dy
(R − y) − dp

dx
(R − y) = 0

This can be rearranged as

−dp

dx
(R − y) + d[(R − y)τ ]

dy
= 0 (7)
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Figure 2 Scheme of a developed turbulent pipe flow.

This is the momentum equation in thex-direction. Integrating
the above with respect toy and applying the wall shear stressτw

aty = 0 gives

τ = Rτw

R − y
+ R

2

dp

dx

(2R − y)y

(R − y)R
(8)

Although the relation

τw = −R

2

dp

dx
(9)

which can be found fromτ(ξ = 1) = 0, can further reduce (8)
to a linear function, the current form in (8) has a clear physical
interpretation. Its first term expresses the effect of the wall shear
stress, and the second term reflects the effect of the pressure-
gradient. Near the wall, the effect of the pressure gradient can be
neglected, and the fluid shear stress is balanced by the wall shear
stress.

Applying the eddy viscosity model,

τt = ρνt

du

dy
(10)

in which τt = turbulent shear stress,ρ = fluid density, and
νt = eddy viscosity, to (8) and neglecting the viscous shear
stress gives

ρνt

du

dy
= Rτw

R − y
+ R

2

dp

dx

(2R − y)y

(R − y)R
(11)

According to previous experience (Hinze, 1975, p. 730), one can
assume an eddy viscosity as

νt = R

√
τw

ρ
f

( y

R

)
(12)

in which f is an unknown function. Applying the definition of
the shear velocityu∗ = √

τw/ρ and the normalized distance
ξ = y/R into (11) and (12) leads to

1

u∗
du

dξ
= 1

(1 − ξ)f (ξ)
+ R

2

dp

dx

1

ρu2∗

ξ(2 − ξ)

(1 − ξ)f (ξ)
(13)

This shows that the pipe velocity profile is a result of the effects
of the wall shear stress (the first term) and the pressure-gradient
(the second term). After making clear the physical meaning of

the second term, one can apply (9) to (13) and eliminate the
pressure-gradient. Integrating (13) gives

u

u∗
=

∫
dξ

(1 − ξ)f (ξ)
+

∫
ξ(ξ − 2)dξ

(1 − ξ)f (ξ)
(14)

Clearly, the solution of the above equation requires the knowledge
of f (ξ) that is complicated and unknown. Therefore, this paper
tries to construct an approximate velocity profile model, based
on a physical and mathematical reasoning.

2.2 Approximation of the velocity profile model

The effect of the wall shear stress is often expressed by the law
of the wall (2a). This implies that the first integral of (14) must
reduce to the logarithmic law (2a) near the wall. It is then assumed
that the first integral can be approximated by∫

dξ

(1 − ξ)f (ξ)
=

(
1

κ
ln

yu∗
ν

+ A

)
+ F1(ξ) (15)

in which F1 is a correction function of the effect of the wall on
the core flow region. Obviously,F1 must satisfy

F1(ξ = 0) = 0 (16a)

and

F ′
1(ξ = 0) = 0 (16b)

Condition (16a) keepsF1 negligible near the wall, and condition
(16b) guaranteesF1 does not bring a shear stress to the near wall
region.

For simplicity, one can define the second integral of (14) as

F2(ξ) =
∫

ξ(ξ − 2)dξ

(1 − ξ)f (ξ)
(17)

Like F1, F2 must be negligible and not bring a shear stress near
the wall, i.e.

F2(ξ = 0) = 0 (18a)

and

F ′
2(ξ = 0) = 0 (18b)

This is equivalent to removing the wall restriction in the flow
direction. Therefore, the effect of the pressure gradient can be
considered a wall-free shear, like a jet, except that the pressure
gradient is the driving force in pipe flows while the inertia is
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the driving force in a developed jet. Furthermore, the pipe flow
can be considered a superposition of a wall-bounded shear and a
wall-free shear. Because of the symmetrical condition,F2 must
reach its maximum value at the pipe axis and satisfy

F ′
2(ξ = 1) = 0 (18c)

According to (18b) and (18c), one can approximate the derivative
of F2 as

F ′
2(ξ) ∝ sinπξ (19)

The integration of (19) with the boundary condition (18a) gives

F2(ξ) = 2�

κ
sin2 πξ

2
(20a)

or∫
ξ(ξ − 2)dξ

(1 − ξ)f (ξ)
= 2�

κ
sin2 πξ

2
(20b)

in which the constant 2/π gets buried in� in the integration
and � is introduced as per Coles wake function. Clearly, the
sine-square function in pipe flows is due to the effect of pressure-
gradient. The value of� might vary with a Reynolds number
slightly, but a universal constant might be good enough for large
Reynolds number flows.

Substituting (15) and (20b) into (14) gives

u

u∗
=

(
1

κ
ln

yu∗
ν

+ A

)
+ 2�

κ
sin2 πξ

2
+ F1(ξ) (21)

The last two terms disappear near the wall, thus the values ofκ

andA should be the same as those in the law of the wall. It is
then suggestedκ = 2/(

√
3e) ≈ 0.42. The value ofA will be

replaced with the maximum velocityumax by using the velocity
defect formulation in Section 2.4. Besides, it is shown later that
the value of� = κ fits the modified log-wake law well with
experimental data. Therefore, this paper assumes

κ = � = 2√
3e

≈ 0.42 (22)

2.3 The axial boundary correction

Because of the axial symmetry, the velocity gradient must be zero
at ξ = 1. From (21), one has

1

u∗
du

dξ

∣∣∣∣
ξ=1

= 1

κ
+ F ′

1(1) = 0

which gives

F ′
1(1) = − 1

κ
(23)

From (16b) and (23), one can assume

F ′
1(ξ) = −ξn−1

κ
(24)

in which n > 1. Integrating the above equation and applying
(16a) gives

F1(ξ) = − ξn

nκ
(25)

Since pipe flows are completely symmetrical about the axis,
mathematically, the pipe velocity profile is an even function about

the axisξ = 1. In terms of Taylor series, all odd derivatives at
ξ = 1 must be zero, i.e.

u = umax + 1

2!
d2u

dξ2

∣∣∣∣
ξ=1

(1 − ξ)2 + 1

4!
d4u

dξ4

∣∣∣∣
ξ=1

(1 − ξ)4 + · · ·

To correct the modified log-wake law to the third order term,
letting

d3u

dξ3

∣∣∣∣
ξ=1

= 0

in (21) where (25) gets applied, one can show that

n = 3 (26)

2.4 The modified log-wake law and its defect form

Combining (21), (22), (25) and (26) leads to the following
modified log-wake law:

u

u∗
=

√
3e

2
ln

yu∗
ν

+ A︸ ︷︷ ︸
the law of the wall

+ 2 sin2 πξ

2
−

√
3e

2

ξ3

3︸ ︷︷ ︸
the modified law of the wake

(27)

Since the last two terms in the above equation express the devia-
tion from the law of the wall, following Coles (1956), they define
the law of the wake in this paper, i.e.

W(ξ) = 2 sin2 πξ

2
−

√
3e

2

ξ3

3
(28)

To distinguish it from the standard sine-square wake law, this
paper calls (28) the modified wake law. Furthermore, (27) is
called the modified log-wake law that is graphically represented
by Fig. 3. Equation (27) has at least two advantages over the
standard log-wake law. It shows that the law of the wake in pipes
results from the pressure-gradient and the axial symmetrical con-
dition. It meets the symmetrical condition at the pipe axis where
the standard log-wake law fails.

To eliminateA from the modified log-wake law (27), one can
introduce the maximum velocityumax at the axisξ = 1 to the
modified log-wake law. From (27), one obtains

umax

u∗
=

√
3e

2

(
ln

Ru∗
ν

− 1

3

)
+ A + 2 (29)

Furthermore, eliminatingA from (27) and (29) gives the velocity
defect form of the modified log-wake law

umax − u

u∗
= −

√
3e

2

(
ln ξ + 1 − ξ3

3

)
+ 2 cos2

πξ

2
(30)

This is the most important result of this study.

3 Determination of the maximum velocity and comparison
with recent experiments

3.1 Determination of the maximum velocity

The maximum velocity in (30) plays the role of wall friction that
will be discussed in Section 5. This section directly correlates the
maximum velocityumax with Reynolds numberRu∗/ν. A plot of
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Figure 3 Components of the modified log-wake law.

 
Figure 4 The relation ofumax/u∗ versusRu∗/ν in loglog coordinates.

Nikurasde’s (1932) classical data and the recent Princeton Uni-
versity experiments (Zagarola, 1996) is shown in Fig. 4. One can
see that forRu∗/ν < 2000, the data follows the following power
law,

umax

u∗
= 9.9

(
Ru∗
ν

)1/8

(31a)

and forRu∗/ν > 2 × 104, the data fits the following power law
well,

umax

u∗
= 16.55

(
Ru∗
ν

)1/16

(31b)

According to Guo’s (2002) logarithmic matching, an accurate
curve-fitting equation is then obtained for any Reynolds number,

umax

u∗
= 9.9

(
Ru∗
ν

)1/8 (
1 + 1

3720

Ru∗
ν

)−1/16

(31c)

where the shape transition parameterβ = 1 in Guo’s (2002)
method provides excellent agreement with experimental data, as
shown in Fig. 4.

3.2 Comparison with recent experiments

This section first examines the applicability of (30) to describe
individual velocity profiles. The universality of the parameters
is then tested by plotting all data points according to the defect
form (30). Zagarola (1996) at Princeton University measured 26
mean velocity profiles with different Reynolds numbers between
3.1 × 104 and 3.5 × 107. The test pipe was smooth and had a
nominal diameter of 129 mm. The complete descriptions of the
experimental apparatus and experimental data can be found on
the web site http://www.princeton.edu/∼gasdyn/ or in Zagarola
(1996).

To illustrate the procedures of analysis, take Run 16 for an
example whereR = 6.47 cm, u∗ = 0.7 m/s andν = 1.07 ×
10−6 m2/s. One can calculate that

Ru∗
ν

= 45290

and from (31c) one gets

umax

u∗
= 31.2

The velocity profile, according to (30), is then

u

u∗
= 31.2 +

√
3e

2

(
ln ξ + 1 − ξ2

3

)
− 2 cos2

πξ

2
(32)

Using the above procedures, all 26 profiles are obtained and plot-
ted in Fig. 5. One can conclude that: (i) the basic structure of the
modified log-wake law is correct; (ii) Eq. (30) can replicate the
experimental data very well; (iii) the empirical Eq. (31c) for the
maximum velocity works very well; (iv) the modified log-wake
law tends to a straight line in the semilog plot near the wall and
then coincides with the log law there; and (v) the zero velocity
gradient at the pipe axis can be clearly seen from all the experi-
mental profiles which show that the axial boundary correction is
necessary.

Besides, according to the defect form, all 26 profiles including
1040 data points are also plotted in Fig. 6 where all data points
fall in a narrow band. This shows that the model parametersκ,
� andn are universal constants.
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Figure 5 Comparison of the modified log-wake law (30) with Zagarola’s (1996) experimental data through individual profiles.

4 Implication for eddy viscosity

Eddy viscosity is important when studying turbulent mixing.
With the modified log-wake law, the eddy viscosity can now
be determined. First, applying (9) to (8) gives the shear stress
distribution:

τ = τw(1 − ξ) (33)

Neglecting the viscous shear stress, from (10) and (33), one can
show that the eddy viscosity can be expressed by

νt

Ru∗
= 1 − ξ

(1/u∗)(du/dξ)
(34)
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Figure 6 Verification of the model universal constants with the recent Princeton University experiments.
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Figure 7 Comparison of the eddy viscosity model with experimental
data (Data source: Ohmi and Usui, 1976).

The velocity gradient from the modified log-wake law (30) is

1

u∗
du

dξ
=

√
3e

2

(
1

ξ
− ξ2

)
+ π sinπξ

Substitution into (34) gives

νt

Ru∗
= 1 − ξ

(
√

3e/2)(1/ξ − ξ2) + π sinπξ

=
[√

3e

2

(
1

ξ
+ 1 + ξ

)
+ π sinπξ

1 − ξ

]−1

(35)

which is the eddy viscosity model corresponding to the modified
log-wake law. Figure 7 shows an excellent agreement between
(35) and several measured data sets (Ohmi and Usui, 1976). This
comparison not only indirectly shows that the modified log-wake
law (30) correctly describes the velocity gradients, but also it can
be used to study turbulent mixing in pipe flows.

Near the pipe wall,ξ → 0, (35) reduces to

νt

Ru∗
→ 2ξ√

3e
≈ 0.42ξ (36a)

which is consistent with the mixing length model. Near the pipe
axis,ξ → 1, one has

sinπξ

1 − ξ
= sinπ(1 − ξ)

1 − ξ
→ π

Substituting it into (35) yields

νt

Ru∗
→ 1

(3
√

3e/2) + π2
= 0.059 (36b)

The constant eddy viscosity near the axis corresponds to an
asymptote of a parabolic law (Hinze, 1975, p. 732).

Equation (35) may be the best result so far for the eddy vis-
cosity model in pipe flows. It may also be used to study some
complicated turbulent flows such as a wave turbulent boundary
layer flow. All previous velocity profile models, including the
log law, the log-wake law and the power law, cannot produce
the maximum eddy viscosity atξ ≈ 0.3 and the constant eddy
viscosity near the axis.

5 Friction factor

The friction factor is an essential parameter in pipe designs and
numerical simulations. It is defined as

τw = f

8
ρV 2 (37a)

in which V = cross-sectional average velocity. Applying the
definitionτw = ρu2∗ and rearranging the above gives

f = 8
(u∗

V

)2
(37b)

Upon integrating (30) over the cross-sectional area, one obtains

V

u∗
= umax

u∗
− 3.53

Substituting (31c) into the above equation and then into (37b)
gives

f = 8

[
9Re1/8

(
1 + Re

7440

)−1/16

− 3.53

]−2

(37c)

in whichR = d/2 and Re= V d/ν have been used andd = pipe
diameter. The constants in the above equation must be adjusted



500 Junke Guo and Pierre Y. Julien

since the viscous sublayer was neglected in the derivation. For
simplicity, as per (37c), one can assume the friction factor follows

f = a

Re1/4

(
1 + Re

b

)1/8

(38a)

For low Reynolds number say Re< 105, the above equation
should reduce to Blasius formula (Schlichting, 1979, p. 597), i.e.

f = 0.3164

Re1/4 (38b)

which gives

a = 0.3164 (38c)

A curve fitting process for high Reynolds number say Re> 2 ×
106 gives

b = 4.31× 105 (38d)

Finally the friction factor (38a) is written as

f = 0.3164

Re1/4

(
1 + Re

4.31× 105

)1/8

(38e)

This equation is compared with Nikuradse’s (1932) classical data
and the recent Princeton University data (Zagarola, 1996) in
Fig. 8.
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Figure 8 Friction factor for smooth pipe flows.
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Figure 9 Comparison of the cosine-square version with the polynomial version of the modified log-wake law.

For comparison, Prandtl’s universal friction law (Schlichting,
1979, p. 611) is also plotted in Fig. 8 (dashdot line), i.e.

1√
f

= 2 log(Re
√

f ) − 0.8 (39)

One can see from Fig. 8 that: (i) for Re< 3 × 106, the present
formula (38e) is equivalent to Prandtl’s equation (39); (ii) for
Re > 3 × 106, the present formula looks better than Prandtl’s
equation; and (iii) the present formula (38e) is explicit while
Prandtl’s formula (39) is implicit. Therefore, (38e) is convenient
in applications. In particular, it can save much computing time
by avoiding iterations in numerical simulations.

6 Polynomial version of the modified log-wake law

At the end of this paper, it is noteworthy that an equivalent
polynomial log-wake law exists if one replaces (19) by

F ′
2(ξ) ∝ ξ(1 − ξ) (40)

For simplicity, directly assuming that (White, 1991, p. 417)

sin2 πξ

2
≈ 3ξ2 − 2ξ3 (41a)

and

cos2
πξ

2
≈ 1 − 3ξ2 + 2ξ3 (41b)

(30) can be rewritten as

umax − u

u∗
= −

√
3e

2
ln ξ +

(
2 −

√
3e

6

)
− 6ξ2

+
(

4 +
√

3e

6

)
ξ3 (42)

Comparison of (42) with (30) is shown in Fig. 9 which shows that
the polynomial version (42) is indeed equivalent to the cosine-
square version (30). In practice, one may choose the version either
(30) or (42) based on convenience according to the problem.
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7 Conclusions

Using a theoretical analysis and a physical and mathematical
reasoning, smooth pipe turbulent flow is assumed to be a super-
position of two flow fields: a wall-bounded shear (the effect of the
wall) and a wall-free shear (the effect of the pressure-gradient).
The wall-bounded shear results in the logarithmic law and the
wall-free shear yields the sine-square function. To correct the
logarithmic law at the pipe axis, a cubic function is introduced
which is called the axial boundary correction. Finally, the veloc-
ity profile in smooth pipe flows is assumed to be a superposition of
three terms: a log term, a sine-square term, and a cubic correction
term, shown in (27).

The modified log-wake law includes three universal constants
κ = � ≈ 0.42 andn = 3. The maximum velocity can be accu-
rately determined by an empirical equation (31c). Comparison
with recent experiments shows that the modified log-wake law
fits the experimental velocity profiles extremely well as shown in
Figs. 5 and 6.

The eddy viscosity model (35) deduced from the modified
log-wake law not only agrees with the experimental data in the
literature very well, as shown in Fig. 7, but also reproduces a
maximum eddy viscosity atξ ≈ 0.3 and a constant eddy viscosity
near the axis.

An explicit friction factor (38e) is also proposed for
practical applications. This empirical formula agrees with
Nikuradse’s (1932) and Zagarola’s (1996) data very well
and is better than Prandtl’s classical equation. It may save
much computing time by avoiding iterations in numerical
simulations.

Finally, it is pointed out that a polynomial version of the
modified log-wake law (42) can be derived. The polynomial
version is practically equivalent to the cosine-square version,
shown in Fig. 9, and either (30) or (42) can be used in
practice.

Notations

A = integral constant in the law of the wall
a, b = fitting constants in (38b)

d = pipe diameter
F1, F2 = functional symbols

f = functional symbol or friction factor
n = boundary correction power
p = dynamic pressure
R = pipe radius

Re= global Reynolds number
r = distance from the pipe axis
u = time-averaged velocity at distancey from the wall

umax = maximum velocity
u∗ = shear velocity
V = cross-averaged velocity
W = wake function

x = axial direction in the pipe flow
y = distance from the wall
β = shape transition parameter in Guo’s logarithmic

matching
θ = angular coordinate in Fig. 2
κ = von Karman constant
ν = kinematic viscosity
νt = eddy viscosity
ξ = normalized distance from the wall,y/R

� = Coles wake strength or the pressure-gradient factor
ρ = fluid density
τ = local shear stress
τt = turbulent shear stress
τw = wall shear stress
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