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Introduction

The Einstein bed load function is a landmark of modern sediment
transport mechanics. It provides the first theoretical framework
for sediment transport calculation, which guided many of the fol-
lowing researchers. Nevertheless, the computation of Einstein bed
load function requires an estimation of two integrals J1 and J2,
which cannot be integrated in closed form for most cases and are
very slowly convergent for direct numerical integration because
of singularity of the integrands near the bed (Nakato 1984). Ein-
stein (1950) provided a numerical table and graphs to facilitate
the calculation. Some mathematical software, such as MatLab and
Maple can also be used to integrate them numerically. However,
both methods cannot be easily implemented in professional soft-
ware. For example, the widely used HEC-RAS and HEC-6 do not
include Einstein bed load function (U.S. Army Corps of Engi-
neers 1993, 2003) probably because of the complexity. The pur-
pose of this article is to provide a fast-converging algorithm to
estimate Einstein integrals J1 and J2.

Einstein Integrals

In his bed load function, Einstein (1950) defined
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where E=relative bed-layer thickness to water depth. Eq. (1)
originates from Rouse’s sediment concentration distribution; and
z=Rouse number that expresses the ratio of the sediment proper-
ties to the hydraulic characteristics of the flow (Julien 1995, p.
185). Eq. (2) comes from the product of the logarithmic velocity
profile and Rouse sediment concentration distribution. For the
purpose of manipulation, the above two integrals can be rear-
ranged as

J1�z� =�
0

1 �1 − �

�
�z

d� −�
0

E �1 − �

�
�z

d� �3�

and

J2�z� =�
0

1 �1 − �

�
�z

ln �d� −�
0

E �1 − �

�
�z

ln �d� �4�

Integral J1

After using Beta function, Guo and Hui (1991) and Guo and
Wood (1995) found that for z�1,
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On the other hand, the second term on the right-hand side of Eq.
(3) is defined as

F1�z� =�
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It can be solved using integration by parts as

F1�z� = E�1 − E

E
�z

+ zF1�z� + zF1�z − 1� �7a�

or
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Multiple applications of the above recurrence formula results in
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Thus, from Eqs. (3), (5), (6), and (8), one can get J1 for z�1
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Similar to Eq. (7b), applying integration by parts to Eq. (1), one
gets
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Therefore, for 1�z�2, one obtains
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which is identical to Eq. (9). Furthermore, one can recognize the
self similarity of Eq. (9) for any noninteger value of z.

For any integer z=n, a closed solution can be obtained by
applying the binomial theorem to the integrand
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For example, when n=3, it gives
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To avoid computational overflow, it is suggested to apply Eq. (9)
to any noninteger z value, and use Eq. (12) for any integer z
value. In practice, an integer z can be considered z=n±10−3. For
example, if z=2.998, Eq. (9) is used; if z=2.999, it can be con-
sidered z	3 and Eq. (12) is then applied. Besides, from Fig. 1,
one can see that Eq. (9) converges to Eq. (12) when z tends to an
integer n. In fact, this convergence can also be analytically dem-
onstrated, the proof being beyond the scope of this note.

Integral J2

Guo and Wood (1995) and Guo (2002) also showed that for z�1,
one has
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where �=0.577 215. . . =Euler constant; and ��z�=psi function, a
special function (Andrews 1985). Defining
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in Eq. (4) and applying integration by parts gives
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or

Fig. 1. Plot of integral J1 �z ,E�, Eq. (9)
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This result is similar to Eq. (7b). After a complicated derivation,
one can show that
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in which F1�z� is estimated by Eq. (8). Finally, Eq. (4) becomes
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Like Eq. (9), Eq. (18) is valid for any noninteger z although it is
derived for z�1. For integer z=n, the following closed solution
exists
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For the interest of application, the convergence of Eq. (18) to Eq.
(19) is only shown in Fig. 2.

Proposed Algorithm and Convergence

Eqs. (9) and (18) include three infinite series. Series (8) and (17)
are rapidly convergent as soon as k−z	1, because Ek−z quickly
tends to zero. In practice, taking the first 10 terms in Eqs. (8) and
(17) is accurate enough since there is no sediment transport under
z	10. The convergence of the first series in Eq. (18) is compara-
tively slower. For calculation, the following approximation can be
used in a program
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6

z
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which is shown in Fig. 3 where the maximum relative error is
0.26% for 0
z
6.

The above analysis can be summarized in the form of a com-
putational algorithm. First, for an integer value z, i.e., 
z
−round�z�
�10−3, Eqs. (12) and (19) are directly applied. Other-
wise, the following algorithm is used.
• Step 1: Estimate F1�z� from Eq. (8) using a maximum of 10

terms, k=10.
• Step 2: Estimate J1�z� from Eq. (9).
• Step 3: Estimate the first series in Eq. (18) by using the ap-

proximation (20).
• Step 4: Estimate F2�z� from Eq. (17) using k=10 terms.
• Step 5: Estimate J2�z� from Eq. (18).

A Fortran subroutine or Excel spreadsheet can be downloaded
from http://courses.nus.edu.sg/course/cveguoj/ce5309/pierre.html
for the above algorithm. The results of applying this algorithm are
plotted in Figs. 1 and 2 where the symbol of a cross indicates the
exact values from Eqs. (12) and (19). In addition, the exact values
of J1 for z=n+1/2 can be found with Maple and are also plotted
in Fig. 1. For example,
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Fig. 2. Plot of integral J2 �z ,E�, Eq. (18) Fig. 3. Approximation of Eq. (20)
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One can see that Eqs. (9) and (18), respectively, converge to Eqs.
(12) and (19), the results for integer z values from Eq. (21) also
coincide with those from Eq. (9). Thus, one can consider that Eqs.
(9) and (18) correctly represent the accurate vales of J1 and J2,
respectively. The numerical calculation shows that the presented
approximations are computationally efficient and can avoid com-
putational overflow. Therefore, they can be incorporated into pro-
fessional software like HEC-RAS or HEC-6.

Conclusions

This note presents an effective approximation to Einstein integrals
J1 and J2 that are valid over the entire range of the Rouse number

z and the relative bed-layer thickness E. The approximations can
be readily implemented using widespread tools such as program-
mable calculators, spreadsheets, Fortran, or MatLab. In particu-
lar, it may provide a simple way to incorporate Einstein bed load
function into widely used hydraulic software. The numerical ex-
periment shows that the proposed algorithm rapidly converges to
the exact values of J1 and J2.
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The writers are congratulated for developing analytical approxi-
mations to Einstein integrals �herein INT1 and INT2�. It was stated
by the writers in their technical note that these algorithms can be
incorporated into professional hydraulic software, and the dis-
cussers agree on this. However, it is pointed out here that the
calculation of INT1 and INT2 can be easily incorporated more
directly by subroutines or functions for numerical integration �by
using any numerical library or by coding one� into any hydraulic
and sediment transport model �e.g., Abad 2002�. In terms of prac-
ticality, there is a need for more simple formulations than those
series-based ones presented by the writers. The present discussion
focuses on describing practical formulations for calculating the
Einstein integrals based on regression analysis. The development
of the methodology is derived for use in depth-averaged sediment
transport models.

Brief Background

Fig. 1 shows an open-channel configuration. Depending on the
vertical location �z�, sediment transport can be treated as bed-load
�z�zb� or suspended load �z�zb�, where zb is called the reference
level or the bed-layer thickness. Suspended sediment load at equi-

Fig. 1. Open-channel distribution
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librium conditions is calculated by using a Rousean profile, as
shown below:

c�z� = c�zb�� �H − z�/z
�H − zb�/zb

�ZR

�1�

where c�z�=concentration in the vertical direction;
c�zb�=concentration at the reference level �bed-layer thickness�;
ZR=ws /�u* is the Rouse number; H=water depth; ws=settling
velocity of the particle; �=Von Karman coefficient ��0.40 given
by experiments�; and u*=shear velocity. A depth-averaged sus-
pended concentration can be calculated by integrating Eq. �1�
along the vertical direction as shown in Eq. �2�:
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H
�

zb

H

c�z�dz =
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H
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Using �=z /H and �b=zb /H, Eq. �2� can be expressed as

C̄ = c�zb�INT1 = c�zb��
�b

1 � �1 − ��/�
�1 − �b�/�b

�ZR

d� �3�

Einstein �1950� proposed a relation for the depth-averaged sedi-

ment concentration as C̄=c�zb��bI1 /0.216, where I1 is given by
the well-known Einstein’s monographs �Einstein 1950; García
1999, 2005.� Assuming logarithmic velocity profile and identical
horizontal velocities for water and sediment, the suspended sedi-
ment load can be calculated by using

qs =�
zb

H

u�z�c�z�dz =
1

�
c�zb�u*H�INT1 ln�30

H

kc
� + INT2� �4�

where kc represents the composite roughness �i.e., grain resistance
and form drag�. INT2 is given by

INT2 =�
�b

1 � �1 − ��/�
�1 − �b�/�b

�ZR

ln���d� �5�

Again, Einstein �1950� proposed another graph for −I2 in order to
calculate INT2 �INT2=�bI2 /0.216�. Guo and Wood �1995� have
proposed analytical series-based approximations for INT1 and
INT2 �called J1 and J2 by Guo and Wood, 1995�, which are valid
for fine sediments �ZR�1�. The writers in their recent paper have
extended these analytical series-based approximations to be valid
for the entire range of ZR and �b. However, their use for practical

Table 1. Coefficients for INT1 Formulation

�b c0
I c1

I c2
I c3

I c4
I c5

I c6
I R2

0.01 1.4852 0.2025 14.087 20.918 −10.91 2.034 −0.1345 1.00

0.02 1.2134 1.9542 10.613 6.0002 −3.6259 0.6938 −0.0462 1.00

0.03 1.1409 2.4266 8.2541 2.4058 −1.7617 0.3474 −0.0234 1.00

0.04 1.1138 2.5982 6.7187 1.029 −1.001 0.2045 0.0139 1.00

0.05 1.1038 2.6626 5.6497 0.3822 −0.6174 0.1315 −0.0091 1.00
0.06 1.102 2.6809 4.864 0.0422 −0.3989 0.0894 −0.0063 1.00

0.07 1.1048 2.6775 4.2624 −0.1487 −0.2639 0.0629 −0.0045 1.00

0.08 1.1104 2.6636 3.787 −0.2598 −0.1757 0.0454 −0.0033 1.00

0.09 1.1178 2.6448 3.4019 −0.3254 −0.1156 0.0333 −0.0025 1.00

0.1 1.1266 2.6239 3.0838 −0.3636 −0.0734 0.0246 −0.0019 1.00



JOU
calculations is still limited since the computation of the integrals
requires the implementation of a numerical subroutine or func-
tion. The effort and time required for incorporating any numerical
subroutine or function for the direct integration of INT1 and INT2

suggest the necessity of developing more practical approaches
that can be implemented more readily into a numerical model.
The present discussion attempts to fulfill this last item.

Analysis and Formulations for Integrals INT1
and INT2

INT1 and INT2 are computed numerically �also computed using
similar analytical approximations as proposed by the writers� for
different ZR and �b values. Then a sixth-order regression analysis
of the results is performed in order to obtain simple formulations
for INT1 and INT2, as shown by Eqs. �6� and �7� �see coefficients
in Table 1 and Table 2�:

INT1 =
1

c0
I + c1

I ZR + c2
I Z R

2 + c3
I Z R

3 + c4
I Z R

4 + c5
I Z R

5 + c6
I Z R

6 �6�

INT2 =
− 1

c0
II + c1

IIZR + c2
IIZ R

2 + c3
IIZ R

3 + c4
IIZ R

4 + c5
IIZ R

5 + c6
IIZ R

6 �7�

The writers have presented series-based approximations of the
Einstein integrals. The discussers have developed additional for-
mulations of these integrals with their practical application in
mind. The proposed alternative approximations need some coef-
ficients for different values of �b; however, in most existing
formulas for estimating sediment entrainment or near-bed concen-
trations under equilibrium conditions, the reference level
�b=zb /H is taken to be 0.05 �Itakura and Kishi 1980; Celik and
Rodi 1984; Akiyama and Fukushima 1986; García and Parker
1991, among others�, which involves seven coefficients for each
integral. Figs. 2 and 3 show comparisons of the exact solutions
�dots� against the proposed practical formulation �continuous line�
for INT1 and INT2, respectively. Good agreement was found by
using these practical formulations.
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Table 2. Coefficients for INT2 Formulation

�b c0
II c1

II c2
II c3

II c4
II c5

II c6
II R2
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The discussers have found an explicit approximation for the Ein-
stein Integrals which result in a discrepancy less than 1% to the
approximation of the writers, though the approximation has
greater errors when the dimensionless reference height becomes
bigger than 0.01 for the first integral and 0.001 for the second
integral. However, a huge fraction of natural conditions is cov-
ered by this approximation. The calculation speed is more than
two orders faster than the approximation of the writers and nearly
twice as fast as the recurrence formula suggested by Guo et al.
�1996�, which is the foundation for the suggested formula. The
combination of the explicit approximation and the recurrence for-
mula is suggested as an optimal algorithm for the estimation of
both integrals. In the following, the recurrence formula of Guo
et al. �Approximation II� and the explicit approximation �Ap-
proximation III� by the discusser will be compared with respect to
performance and accuracy with the actual formulation of the
writers �Approximation I�. The derivation of the explicit approxi-
mation for the integral J1 starts with the identical idea as
the writers’, which is multiple application of the recurrence
formula �1�

J1��b,z� = � 1

z − 1
� · � �1 − �b�z

�b
z−1 � − � 1

z − 1
� · J1��b,z−1� �1�

In Eq. �1� �b=a /h, with a the reference height, h the water depth,
and z the Rouse number. To get an explicit formula for the cal-
culation of J1, Eq. �1� was expanded three times in z

J1��b,z� =
z · �

sin	z · �

−

�b
1−z

1 − z
�2�

The explicit approximation was obtained with the aid of Eq. �2�,
which is an approximation for J1 when z�1 �see Guo et al.�. This
equation leads to a discrepancy in the solution of the writers,
which is less than 1% in if �b is smaller than 0.01 �Fig. 1�.

J1��b,z� = � 1

z − 1
� · � �1 − �b�z

�b
z−1 �

− � z

z − 1
� · �� 1

z − 2
� · � �1 − �b�z−1

�b
z−2 �

− � z − 1� · � 1 � ·
�1 − �b�z−2
z − 2 �
z − 3

�
�b

z−3 �
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− � z − 2

z − 3
� · � �z − 3� · �

sin	�z − 3� · �

−

�b
4−z

4 − z
��� �3�

The explicit approximation of the second Einstein Integral is also
based on the publication of Guo et al., but the accuracy is not as
good as the approximation of the first Einstein Integral. The start-
ing point for the derivation of the explicit approximation for J2 is
again the recurrence formula given by Guo et al. for J2:

J2��b,z� =
1

z − 1
· �� �1 − �b�z

�b
� · ln��b� − z · J2��b,z−1� + J1��b,z��

�4�

The explicit approximation is achieved in a similar way as for J1.
Guo et al. have suggested for z�1 the following approximation
for J2:

J2��b,z� = −
z · � · f �z�

sin�z · ��
−

�b
z−1

1 − z
· log��b� +

�b
z−1

�1 − z�2

f �z� = �1 − �� − log�2 − z� +
1

1 − z
+

1

2 · �1 − z�
+

1

24 · �2 − z�2

�5�

Here f�z��approximation of a more complicated functional in
terms of Gamma functions given by Guo and Wood �1995�. An
explicit approximation for J2 was found after double expansion
of Eq. �4� and replacement of the terms J1 and J2 in Eq. �6�, with
the functions summarized in Eq. �7�. The final equation shows a
discrepancy to the solution of the writers which is less than 1%
for a reference height that is smaller than 0.001 �Fig. 2�

J2��b,z� = � 1

z − 1
� · �log��b� ·

�1 − �b�z

�b
z−1

− z · �� 1

z − 2
� · �log��b� ·

�1 − �b�z−1

�b
z−2

− �z − 1� · J2��b,z−3� · J1��b,z−2��� + J1��b,z�� �6�

The approximation of the function f �z� is not straightforward as
the second term becomes undefined when the argument is nega-
tive �z�4�. Numerical experiments with �6� have shown that a
good approximation can be achieved if the absolute argument in
the log function is calculated.

J2��b,z−3� = −
�z − 2� · � · f �z�

sin��z − 2� · ��
−

�b
3−z

3 − z
· log��b� +

�b
3−z

�3 − z�2

J1��b,z−2� = � 1

z − 2
� · � �1 − �b�z−1

�b
z−2 �

− � z − 1

z − 2
� · � �z − 2� · �

sin	�z − 2� · �

−

�b
3−z

3 − z
�

f �z� = �1 − �� − log�
4 − z
� +
1

3 − z
+

1

2 · �4 − z�
+

1

24 · �4 − z�2

�7�

The results of the integrals J1 and J2 obtained with the approxi-
mation of the writers have been compared with the recurrence
formula of Guo et al. and the explicit approximation suggested by

the discussers



z = �z � �0.01,0.02,…10.0��
�8�

�b = ��b � �10−5.0,10−4.9,…10−1.0��

Both approaches lead to rather big errors, if the Rouse number z
approaches integer values and if the dimensionless reference
height �b approaches unity. When the reference height a becomes
small in comparison to h, the discrepancies disappear. The reason
is that the recurrence formulas have been derived by Guo et al.
under the assumption that a is small in comparison to h.

Fig. 1. Discrepancy in percent between the suggested explicit
approximation �top� and the recurrence formula �2� �bottom� in
comparison to the approximation of the writers for J1. Discontinues
lines indicates that the curve is limited to the range of the axis.

Fig. 2. Discrepancy in percent between the suggested explicit
approximation �top� and the recurrence formula �2� �bottom� in
comparison to the approximation of the writers for J1
JOU
To achieve optimal performance and accuracy, the recurrence
formula and the explicit approximation can be applied for the
distinct areas in the co-domain in which these algorithms result in
small errors in comparison to the exact solution. In Fig. 3, the
results for such an algorithm are presented. It can be seen that for
the integral J1 the discrepancy reduces to less than 1% for J1. For
J2 the discrepancies are still one order higher than for the integral
J1, though significantly reduced in comparison to Fig. 2. The
error for J2 growths are maximal for z=1 and �b�0.01, but it is
still less than 2.5% while �b�0.01. The most accurate approxi-
mation of the writers can be used if higher accuracy is anticipated
in the designated regions.

We have summarized the computation time for the calculation
of 10 times the co-domain �Eq. �8� for these three different ap-
proximations �see Fig. 4�. The approximation of the writers is the
slowest one due to its numerical complexity, though it is the most
exact one. The explicit approximation is nearly twice as fast as
the recurrence formula and more than two orders faster than the

Fig. 3. Error in percent between the suggested optimal
approximation algorithm and the results of the writers

Fig. 4. Calculation time of the various approximations for the
calculation of 10 times the co-domain
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approximation of the writers. The combination of Approximations
II and III is still more than two orders faster than the recent one
suggestd by the writers.

Conclusions

An optimal scheme for calculating the Einstein Integrals has been
proposed on the foundation of the work of Guo et al. and the
suggested explicit approximation. The new suggested algorithm
can be efficiently used in morphodynamic models like TIMOR
�TIdal MORphodynamics; Zanke 2002�, which are based on the
solution of vertical integrated flow models. In such kinds of ap-
plications the suspended sediment transport rates have to be cal-
culated for every time-step, grid point, and grain size, which leads
to high calculation times. Therefore the improvement of the cal-
culation speed and accuracy has direct impact on the performance
of the morphodynamic model. This study was only possible due
to the work of Prof. Junke Guo in the past 10 years concerning
the derivation of an approximation for the Einstein Integrals. In
the latest publication, discussed here, the writers found the most
exact approximation of these equations to date, which is consid-
ered to be an important step in science.
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The writers have proposed infinite series expressions for evaluat-
ing the Einstein integrals. The discusser would like to mention the
following points regarding the note:
1. Eq. �3� is only valid for z�1 because for z	1 both the

integrals on the right-hand side are divergent. Similarly, Eqs.
�7� and �8� are valid only for z�1. While this limitation was
stated explicitly before Eqs. �5� and �9�, it should have been
mentioned at other relevant places also.

2. While the range of z has been stated �z�10� in the note, that
for E has not been mentioned. The value of E used by the
writers ranges from 0.00001 to 0.1. Obviously, if E is higher
than 0.1, the convergence of the series in Eqs. �9� and �18�

would be quite slow. In fact, if E�0.5, Eq. �8� will not be
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valid since F1�−
��0 for E / �1−E��1. Such high values of
E may be practically impossible, but mathematical rigor de-
mands a passing mention of the fact. The sentence in the
Conclusions section stating, “…valid over the entire range of
the Rouse number z and the relative bed-layer thickness E,”
should therefore be qualified with additional information.

3. While integer �and n+1/2� values of z may be useful for
comparing the proposed algorithm with exact solutions, it is
very unlikely that the actual value of z would be an exact
integer. The discusser feels that the paragraph following Eq.
�13� is therefore not really appropriate. In fact, it may be
more desirable to have a single expression �Eq. �9�� for all
values of z with the provision that if z is an exact integer, its
value would be taken as z±0.001!

4. In the paragraph above Eq. �20�, rapid convergence of series
�8� and �17� should be based on rapid approach to zero of
	E / �1−E�
k−z, and not Ek−z. As discussed in point 2 above, if
E�0.5, Ek−z will still approach zero rapidly but the series
will not converge.

5. While the writers mention the limit z=10 before Eq. �20�, the
maximum relative error for the approximation is stated only
for z�6. It was found that the error increases with further
increase in z and becomes more than 0.8% for
z=10. While this may be acceptable for practical purposes,
the approximation may be considerably improved by consid-
ering the limiting behavior of the series in Eq. �20�. The
following approximation was derived with the use of the
limiting behavior and was found to have a maximum error of
only 0.03% over the entire range z�0:

�
k=1


 �1

k
−

1

z + k
� = ln�1 + 1.781z� −

0.1361z

�1 + 1.284z�2.150 �1�

6. An alternative methodology for deriving series expressions
for J1 is described below: Since �1−�� /� is less than 1 for
��0.5 and more than 1 for ��0.5, we write

J1�z,E� =�
E

0.5 �1 − �

�
�z

d� +�
0.5

1 �1 − �

�
�z

d� �2�

Making the substitution x=� / �1−�� in the first integral and
x= �1−�� /� in the second integral, we get

J1�z,E� =�
E*

1

x−z�1 + x�−2dx +�
0

1

xz�1 + x�−2dx

= �
i=1



�− 1�i−1i	1 − E*

i−z

i − z

+ �
i=1



�− 1�i−1i

i + z
�3�

where E*=E / �1−E�. Both these series, however, converge
slowly. Also, for integer z values, the computations have to
make use of the fact that lim

p→0
�xp−1� / p=ln x. To avoid the

slow convergence, the following approximation was
obtained with a maximum error of 0.18% using the data for
0�z�5 �in steps of 0.5� and −5� log E�−1 �in steps of 1�:

J1�z,E� = −
E*

1−z − 1

1 − z
+ 2.061

E*
2−z − 1

2 − z
− 1.385

E*
2.6−z − 1

2.6 − z

+
0.3327

0.6703 + z
�4�

Similarly, J2�z ,E� was approximated with a maximum error

of 0.03% as



J2�z,E� =
E*

1−z	1 − �1 − z�ln E*
 − 1

�1 − z�2

− 1.903
E*

2−z	1 − �2 − z�ln E*
 − 1

�2 − z�2

+ 2.022
E*

2.6−z	1 − �2.6 − z�ln E*
 − 1

�2.6 − z�2 −
0.2914

1.652 + z

�5�

Again, in the unlikely event of z being exactly equal to 1, 2,
or 2.6, we make use of the fact that

lim
p→0

xp	1 − p ln x
 − 1
p2 = −

�ln x�2

2

The discusser feels that Eqs. �4� and �5� above would perform
better than the writers’ Eqs. �9� and �18� for computation of the
Einstein integrals.
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We would like to thank all the discussers for their constructive
comments and for providing alternative approximations of the
Einstein integrals. It is commonly agreed that these two integrals
remain elusive to exact solutions. However, a lot of progress has
been made in developing fast and accurate approximations. Abad
and Garcia emphasize the need for simpler algorithms and pro-
pose a polynomial approximation. Srivastava provides keen in-
sight into the convergence of the series and offers improvements.
Roland et al. present an error analysis as well as a valuable com-
parison of the computational time of various algorithms. Besides
polynomial approximations and different series expansions, other
e-mail communications by A. R. Kacimov pointed to the possible
use of hypergeometric series as well as software packages like
MatLab, Maple, and Mathematica. Four main issues are raised in
the discussions and they are addressed in the following sequence:
�1� convergence; �2� algorithm efficiency; �3� accuracy; and �4�
computational time. This closure also includes a comparative
analysis of the different algorithms and an application example on
the Missouri River.

First, regarding convergence, Srivastava correctly points out
that the proposed series are not convergent when the bed layer
thickness E is greater than 0.5. Well, this is a trivial case because
when E�0.5, sediment is exclusively transported as bedload and
the integration is not required. For most practical applications, the
value of E is relatively small. For a typical laboratory flume ex-
periment, given a grain diameter of D=1 mm and a flow depth of

h=10 cm, the value of E is 0.02. The value of E for field appli-

JOU
cations is even smaller, as per the example below.
Second, all the discussions express concerns about the compu-

tational efficiency of the proposed method. It was readily ac-
knowledged in the Technical Note that the first series of J2 in Eq.
�18� converges slowly. Calculation times of the order of a second
were not considered excessive, and accuracy was preferred over
CPU time. In view of the discussions, however, it is now possible
to substantially improve computational efficiency. The results of
an earlier formulation proposed by Guo and Wood can be ex-
panded and simplified to replace the former Eq. �14� with

�
0

1 �1 − �

�
�z

ln �d�

= −
z�

sin z�
	�1 − �� − ��1 − z�


= −
z�

sin z�
��1 − �� − ��n + 1 − z� + �

k=1

n
1

k − z�
= −

z�

sin z�
��1 − �� − ln�n − z� −

1

2�n − z�
+

1

12�n − z�2

−
1

120�n − z�4 + ¯ + �
k=1

n
1

k − z� �1�

in which �=0.57721566490153286060651. . . and ��x� is the psi
function, a special function. For calculations, it is suggested that n
take as n=ceil�z�+2, in which ceil�z� means the ceiling of the
value of z. For example, if z=0.1, n=ceil�0.1�+2=3; if z=3.7,
n=ceil�3.7�+2=6. Although it is derived for z�1, Eq. �1� above
is valid for any noninteger value of z. One can demonstrate that
Eq. �1� requires fewer terms than Eq. �14� and converges rapidly.

After replacing Eq. �14� with Eq. �1�, the proposed
algorithm can be slightly modified. For noninteger z, i.e.,

z−round�z�
�0.005,
• Step 1: Estimate F1�z� from Eq. �8� using a maximum

k=ceil�z�+4.
• Step 2: Estimate J1�z� from Eq. �9�.
• Step 3: Estimate Eq. �1� above using a value n=ceil�z�+2.
• Step 4: Estimate F2�z� from Eq. �17� using a maximum

k=ceil�z�+2.
• Step 5: The value of J2�z� is then obtained by subtracting the

result of Step 4 from the result of Step 3.
For integer z values, one can use the same steps as those in the
technical note or a recurrent formula like Eq. �10�. A program in
both FORTRAN �einstein.f90� and MatLab �einstein.m� for the
above algorithm, together with alternatives proposed by the dis-
cussers, can be downloaded from �http://myweb.unomaha.edu/
~junkeguo� or �http://www.engr.colostate.edu/%7Epierre/ce_old/
Projects/index.html�. The software programs of readers interested
in sharing their source codes will be made available at the same
site.

Third, in terms of accuracy, the formulation of Roland et al. is
a combination of the three versions of Guo and Wood, Guo et al.,
and Guo and Julien. There is, however, some concern regarding
their statement “the error for J2 becomes maximal for z=1 and E
or �b�0.01 but it is still less than 10%.” Values of z=1 are not
unusual in practice and 10% looks like a disquietly large error.
Roland kindly provided a FORTRAN code of his algorithm, but
we experienced difficulties running his software and replicating
his results. A comparison of several algorithms is presented in this
section. Values of E=0.1 and z=0.55, 1.55, 2.55, 3.55, and 4.55

are considered for the calculations. This large value for E is se-
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lected here because Roland et al. showed that it corresponds to
larger differences between approximations and exact solutions.
The results obtained for the two integrals J1 and J2 using four
different algorithms �from the Technical Note; Eq. �1�; Abad and
Garcia; and Srivastava� are summarized in Table 1. They are com-
pared with the exact values obtained from numerical integration
in Maple. It is concluded that like the results from the original
note, the improvement with Eq. �1� is accurate. Other methods
also produce fine results. However, the method of Srivastava can
generate errors larger than the value of 0.03% cited in his discus-
sion. For instance, Table 1 shows a 17% error for J2 at z=2.55.
Things get worse around z=2.6 with errors as large as 800%
when z=2.6−0.001=2.599. A positive value for J2=186.19 is
also incorrectly obtained when z=2.6+0.001=2.601.

Fourth, regarding computational time, the CPU times of three
algorithms are considered. The calculations were performed with
MatLab and FORTRAN on a Dell Notebook. The results of the
methods are very comparable at about 0.015625 s. In addition,
one can produce Figs. 1 and 2 in the Technical Note in only
0.875 s. It is fair to say that these algorithms to solve the two
Einstein integrals are fast and accurate. Further comparison of the
algorithms is presented in the following field application to the
Missouri River.

Example: A calculation example with field data is pre-
sented here. The site of the Missouri River near Omaha, Neb., is
selected for sediment transport calculations using Einstein’s
method. The main parameters are slope S=0.00012, flow depth
h=7.8 ft=2.38 m, and water temperature T=7°C. The measured
velocity profile u and suspended sand concentration c for the
fraction passing a 0.105 mm sieve and retained on a 0.074 mm
sieve are shown in Table 2 �from Julien 1995, p. 202�. The as-
signment is to calculate the unit sediment discharge for this size
fraction.

Solution: Several algorithms are used for the determination of
J1 and J2. We use the methods of Srivastava, Abad and Garcia,
and Eq. �1� for comparisons with the exact solution. The mea-
sured velocity profile and the suspended sediment concentration
distribution are fitted as follows:

Table 1. Comparison of Various Algorithms at E=0.1

Method z=0.55 z=1.55 z=2.55 z=3.55 z=4.55

�a� Value of J1

Exact value 0.97458 2.7326 13.002 77.623 519.35

Guo and Julien
�Technical Note�

0.97458 2.7326 13.002 77.623 519.35

Guo and Julien Eq. �1� 0.97458 2.7326 13.002 77.623 519.35

Abad and Garcia 0.97433 2.7350 12.997 77.620 519.19

Srivastava 0.97362 2.7313 12.982 77.604 519.81

�b� Value of J2

Exact value −1.1201 −4.4912 −24.513 −155.85 −1078.9

Guo and Julien
�Technical Note�

−1.1201 −4.4913 −24.513 −155.85 −1078.9

Guo and Julien Eq. �1� −1.1201 −4.4913 −24.513 −155.85 −1078.9

Abad and Garcia −1.1200 −4.4921 −24.513 −155.84 −1078.0

Srivastava −1.1258 −4.5535 −28.742 −155.93 −1107.8

Note: The exact values are numerical integrations with Maple.
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Fig. 1. Curve-fittings of velocity and concentration distributions
Table 2. Measurements of Distributions of Velocity and Concentration in
Missouri River

�
u

�m/s�
c

�kg/m3�

0.090 1.31 0.411

0.115 1.37 0.380

0.154 1.41 0.305

0.179 1.45 0.299

0.218 1.47 0.277

0.282 1.56 0.238

0.346 1.62 0.217

0.372 1.65 —

0.410 1.65 0.196

0.436 1.65 —

0.474 1.68 0.184

0.538 1.71 —

0.615 1.71 0.148

0.744 1.74 0.130

0.872 1.81 —

1.000 — —



u = M ln � + N �2�

c = K�1 − �

�
�z

�3�

in which �=distance relative to the flow depth from the bed; and
M, N, K, and z=fitting constants from the measurements. Fig. 1
gives M =0.2171 m/s, N=1.8321 m/s, K=0.1775 kg/m3, and
z=0.3469. With Eqs. �2� and �3�, the Einstein bed-load function
can be written as

qT = KMh�4.61
�1 − E�z

Ez−1 +
N

M
J1�z,E� + J2�z,E�� �4�

in which qT=unit sediment discharge including bed load, the 1st
term, and suspended load, the 2nd and 3rd terms. Given the me-
dian sediment size dm= �0.105+0.074� /2=0.0895 mm, the bed-
layer thickness is then a=2dm=0.179 mm, and the relative thick-
ness E=a /h=7.5
10−5. Compared with the exact value of
0.7520 kg/s.m from Maple, the improved algorithm with Eq. �1�
gives qT=0.7520 kg/s.m with a CPU time 0.015 s; and Srivasta-
va’s method gives qT=0.7496 kg/s.m, also with a CPU time
0.015 s. The method of Abad and Garcia with the coefficients at
the lowest value E=�b=0.01 gives qT=4.3667 kg/s.m with the
same CPU time. This example shows that Eq. �1� and Srivastava’s
method are comparable. The method of Abad and Garcia leads to
a 580% error in this case because of the small values of E. It is
clear that a better approximation of the 14 coefficients would
improve the method of Abad and Garcia when �b�0.01. The
FORTRAN program �missouri.f90� and MatLab program �missou-
ri.m� for this example are available at the previously mentioned
Web site.

In summary, the insightful discussions lead us to a substan-
tially improved solution for J2 in Eq. �1�. This algorithm is quick,
accurate, efficient, and convergent. The other methods proposed
in the discussions are also quite good although some deficiencies
are observed. For instance, the method of Abad and Garcia can
lead to substantial errors when E�0.01 or �b�0.01. The method
of Srivastava is also prone to large errors around z=2.6. Software
and algorithms can be downloaded and shared at the writers’ Web
sites. In view of such excellent discussions of this article, H. A.
Einstein would certainly appreciate the renewed interest in the use
of his method.
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This paper is of great interest to the community of hydraulic
engineering. The writer has developed an enhanced two-
dimensional numerical model for simulating flow hydrodynamics
and mass transport in meandering channels. The dispersion terms
in momentum equations play an important role in the writer’s
model. The dispersion terms result from the discrepancy between
the depth-averaged velocity and the actual velocity. The writer
used the logarithmic law to describe the streamwise velocity
profile

ul

u*
=

1

�
ln� z

z0
� �1�

where ul=streamwise velocity; u*=shear velocity; �=Von
Kármán’s constant �=0.4�; z=vertical coordinate; and
z0=constant �a certain distance from the wall�.

Zero-Velocity Level

The logarithmic velocity profile shows that the flow has zero
velocity at z=z0 and obviously requires a condition of z	z0. The
constant z0, also called the zero-velocity level, is of the same
order of magnitude as the viscous sublayer thickness and is a
function of whether the boundary is hydraulically smooth or
rough.

The constant z0 is an important parameter in the dispersion
terms of the momentum equations, as shown in Eqs. �15� to �17�
of the original paper. To calculate z0, the writer used Eq. �2�,
which contains three relations for flow in three boundary regimes,
namely, those of the hydraulically smooth regime �Re�5�, the
completely rough regime �Re	70�, and the transitional regime
�5�Re�70�, according to the magnitude of roughness Reynolds
number Re, defined as Re=u*ks /�, where �=kinetic viscosity and

ks=roughness height
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