Efficient Algorithm for Computing Einstein Integrals

Junke Guo and Pierre Y. Julien

Abstract: Analytical approximations to Einstein integrals are proposed. The approximations represented by two fast-converging series are valid for all values of their arguments. Accordingly, the algorithm can be easily incorporated into professional software like HEC-RAS or HEC-6 with minimum computational effort.

DOI: 10.1061/(ASCE)0733-9429(2004)130:12(1198)

CE Database subject headings: Bed load; Suspended load; Sediment transport; Computation; Algorithms.

Introduction

The Einstein bed load function is a landmark of modern sediment transport mechanics. It provides the first theoretical framework for sediment transport calculation, which guided many of the following researchers. Nevertheless, the computation of Einstein bed load function requires an estimation of two integrals \(J_1 \) and \(J_2 \), which cannot be integrated in closed form for most cases and are very slowly convergent for direct numerical integration because of singularity of the integrands near the bed (Nakato 1984). Einstein (1950) provided a numerical table and graphs to facilitate the calculation. Some mathematical software, such as MatLab and Maple can also be used to integrate them numerically. However, both methods cannot be easily implemented in professional software. For example, the widely used HEC-RAS and HEC-6 do not include Einstein bed load function (U.S. Army Corps of Engineers 1993, 2003) probably because of the complexity. The purpose of this article is to provide a fast-converging algorithm to estimate Einstein integrals \(J_1 \) and \(J_2 \).

Einstein Integrals

In his bed load function, Einstein (1950) defined

\[
J_1(z) = \int_E^1 \left(\frac{1 - \xi}{\xi} \right)^z d\xi
\]

and

\[
J_2(z) = \int_E^1 \left(\frac{1 - \xi}{\xi} \right)^z \ln \xi d\xi
\]

where \(E = \frac{z}{z+1} \) (relative bed-layer thickness to water depth). Eq. (1) originates from Rouse’s sediment concentration distribution; and \(z = Rouse \) number that expresses the ratio of the sediment properties to the hydraulic characteristics of the flow (Julien 1995, p. 185). Eq. (2) comes from the product of the logarithmic velocity profile and Rouse sediment concentration distribution. For the purpose of manipulation, the above two integrals can be rearranged as

\[
J_1(z) = \int_0^1 \left(\frac{1 - \xi}{\xi} \right)^z d\xi - \int_0^E \left(\frac{1 - \xi}{\xi} \right)^z d\xi
\]

and

\[
J_2(z) = \int_0^1 \left(\frac{1 - \xi}{\xi} \right)^z \ln \xi d\xi - \int_0^E \left(\frac{1 - \xi}{\xi} \right)^z \ln \xi d\xi
\]

Integral \(J_1 \)

After using Beta function, Guo and Hui (1991) and Guo and Wood (1995) found that for \(z < 1 \),

\[
\int_0^1 \left(\frac{1 - \xi}{\xi} \right)^z d\xi = B(1+z, 1-z) = \frac{\Gamma(1+z)\Gamma(1-z)}{\Gamma(2)} = \frac{z\pi}{\sin z\pi}
\]

On the other hand, the second term on the right-hand side of Eq. (3) is defined as

\[
F_1(z) = \int_0^E \left(\frac{1 - \xi}{\xi} \right)^z d\xi
\]

It can be solved using integration by parts as

\[
F_1(z) = \left. \left(\frac{1 - E}{E} \right)^z \right|_0^E + zF_1(z) + zF_1(z-1)
\]
Multiple applications of the above recurrence formula results in

\[
F_1(z) = -\frac{1}{z-1} \frac{(1-E)z}{E-1} - \frac{z}{z-1} F_1(z-1)
\]

(7b)

Thus, from Eqs. (3), (5), (6), and (8), one can get \(J_1 \) for \(z < 1 \)

\[
J_1(z) = \frac{z n}{\sin z n} \left\{ \frac{(1-E)z}{E-1} - z \sum_{k=1}^{\infty} \frac{(z-1)^k}{k-1} \left(\frac{E}{1-E} \right)^{k-z} \right\}
\]

(9)

Similar to Eq. (7b), applying integration by parts to Eq. (1), one gets

\[
J_1(z) = -\frac{1}{z-1} \frac{(1-E)z}{E-1} - \frac{z}{z-1} J_1(z-1)
\]

(10)

Therefore, for \(1 < z < 2 \), one obtains

\[
J_1(z) = \frac{1}{z-1} \frac{(1-E)z}{E-1} - \frac{z}{z-1} \left\{ \frac{(z-1)\pi}{\sin z(1-\pi)} \left(\frac{1}{E} \right)^{1-z} \right\}
\]

\[
+ (z-1) \sum_{k=1}^{\infty} \frac{(z-1)^k}{k} \left(\frac{E}{1-E} \right)^{k-z} - (z-1) \alpha \sum_{k=1}^{\infty} \frac{(z-1)^k}{k} \left(\frac{E}{1-E} \right)^{k-z}
\]

\[
= \frac{1}{z-1} \frac{(1-E)z}{E-1} + \frac{z \pi}{\sin z \pi} \left(\frac{(1-E)z}{E-1} \right)^{1-z} - \frac{z}{z-1} \sum_{k=1}^{\infty} \frac{(z-1)^k}{k} \left(\frac{E}{1-E} \right)^{k-z}
\]

(11)

which is identical to Eq. (9). Furthermore, one can recognize the self similarity of Eq. (9) for any noninteger value of \(z \).

For any integer \(z = n \), a closed solution can be obtained by applying the binomial theorem to the integrand

\[
J_1(n) = \int_{E}^{n} \left(\frac{1-x}{E} \right)^n d\xi = \sum_{k=0}^{n} \frac{(-1)^k n!}{(n-k)!k!} \int_{E}^{n} \xi^{k+n} d\xi
\]

\[
= \sum_{k=0}^{n-2} \frac{(-1)^k n!}{(n-k)!} \frac{1-E^{n-k+1}}{1-E} + \sum_{k=1}^{n-2} \frac{(-1)^k n!}{(n-k)!k!} \frac{E^{n-k+1}}{n-k+1}
\]

\[
+ n(-1)^{n-1} \int_{E}^{n} \xi d\xi + \frac{(-1)^n}{E n} \int_{E}^{n} \xi d\xi
\]

\[
= \sum_{k=0}^{n-2} \frac{(-1)^k n!}{(n-k)!k!} \frac{E^{n-k+1}-1}{n-k+1} + (-1)^n (n \ln E - E + 1)
\]

(12)

For example, when \(n = 3 \), it gives

\[
J_1(3) = -3 \ln E + \frac{1}{2 E^2} - \frac{3}{E} + 3 + E
\]

(13)

To avoid computational overflow, it is suggested to apply Eq. (9) to any noninteger \(z \) value, and use Eq. (12) for any integer \(z \) value. In practice, an integer \(z \) can be considered \(z = n \pm 10^{-3} \). For example, if \(z = 2.998 \), Eq. (9) is used; if \(z = 2.999 \), it can be considered \(z = 3 \) and Eq. (12) is then applied. Besides, from Fig. 1, one can see that Eq. (9) converges to Eq. (12) when \(z \) tends to an integer \(n \). In fact, this convergence can also be analytically demonstrated, the proof being beyond the scope of this note.

Integral \(J_2 \)

Guo and Wood (1995) and Guo (2002) also showed that for \(z < 1 \), one has

\[
\int_{0}^{1} \left(\frac{1-x}{x} \right)^z \ln x dx = \frac{z \pi}{\sin z \pi} \left[\psi(1-z) - (1-\gamma) \right]
\]

\[
= \frac{z \pi}{\sin z \pi} \left[\psi(z) + \pi \cot z \pi - (1-\gamma) \right]
\]

\[
= \frac{z \pi}{\sin z \pi} \left[\pi \cot z \pi - 1 - \frac{1}{z} + \sum_{k=1}^{\infty} \left(\frac{1}{k} - \frac{1}{1+z+k} \right) \right]
\]

(14)

where \(\gamma = 0.577215 \ldots \) = Euler constant; and \(\psi(z) = \psi \) function, a special function (Andersson 1985). Defining

\[
F_2(z) = \int_{0}^{E} \left(\frac{1-x}{x} \right)^z \ln x dx
\]

(15)

in Eq. (4) and applying integration by parts gives

\[
F_2(z) = E \left(\frac{1-E}{E} \right)^n \ln E + z F_2(z-1) + z F_2(z) - F_1(z)
\]

(16a)

or
Like Eq. (9), Eq. (18) includes three infinite series. Series (8) and (17) are rapidly convergent as soon as $k - z > 1$, because E^{k-z} quickly tends to zero. In practice, taking the first 10 terms in Eqs. (8) and (17) is accurate enough since there is no sediment transport under $z > 10$. The convergence of the first series in Eq. (18) is comparatively slower. For calculation, the following approximation can be used in a program

$$
\sum_{k=1}^{\infty} \left(\frac{1}{k} - \frac{1}{z+k} \right) = f(z) \approx \frac{\pi^2}{6} \frac{z}{(1+z)^{3/2}}
$$

which is shown in Fig. 3 where the maximum relative error is 0.26% for $0 \leq z \leq 6$.

The above analysis can be summarized in the form of a computational algorithm. First, for an integer value z, i.e., $|z - \text{round}(z)| < 10^{-3}$, Eqs. (12) and (19) are directly applied. Otherwise, the following algorithm is used.

- **Step 1**: Estimate $F_1(z)$ from Eq. (8) using a maximum of 10 terms, $k=10$.
- **Step 2**: Estimate $J_1(z)$ from Eq. (9).
- **Step 3**: Estimate the first series in Eq. (18) by using the approximation (20).
- **Step 4**: Estimate $F_2(z)$ from Eq. (17) using $k=10$ terms.
- **Step 5**: Estimate $J_2(z)$ from Eq. (18).

A Fortran subroutine or Excel spreadsheet can be downloaded from http://courses.nus.edu.sg/course/cveguoj/ce5309/pierre.html for the above algorithm. The results of applying this algorithm are plotted in Figs. 1 and 2 where the symbol of a cross indicates the exact values from Eqs. (12) and (19). In addition, the exact values of J_1 for $z=n+1/2$ can be found with Maple and are also plotted in Fig. 1. For example,

$$J_1 \left(\frac{1}{2} \right) = \frac{\pi}{4} - \frac{1}{2} \sin^{-1}(2E - 1) - E \sqrt{\frac{1}{E} - 1} \quad (21a)$$

$$J_1 \left(\frac{3}{2} \right) = \frac{-3\pi}{4} + \frac{3}{2} \sin^{-1}(2E - 1) + (2 + E) \sqrt{\frac{1}{E} - 1} \quad (21b)$$

For the interest of application, the convergence of Eq. (18) to Eq. (19) is only shown in Fig. 2.
\[
J_1\left(\frac{5}{2}\right) = \frac{5\pi}{4} - \frac{5}{2} \sin^{-1}(2E - 1) + \left(\frac{2}{3E} - \frac{14}{3} - E\right) \sqrt{\frac{1}{E} - 1}
\]

(21c)

\[
J_1\left(\frac{7}{2}\right) = -\frac{7\pi}{4} + \frac{7}{2} \sin^{-1}(2E - 1)
\]

\[
+ \left(\frac{2}{5E^2} - \frac{32}{15E} + \frac{116}{15} + E\right) \sqrt{\frac{1}{E} - 1}
\]

(21d)

\[
J_1\left(\frac{9}{2}\right) = -\frac{9\pi}{4} - \frac{9}{2} \sin^{-1}(2E - 1)
\]

\[
+ \left(\frac{2}{7E^3} - \frac{58}{35E^2} + \frac{156}{35E} - \frac{388}{35} - E\right) \sqrt{\frac{1}{E} - 1}
\]

(21e)

One can see that Eqs. (9) and (18), respectively, converge to Eqs. (12) and (19), the results for integer \(z\) values from Eq. (21) also coincide with those from Eq. (9). Thus, one can consider that Eqs. (9) and (18) correctly represent the accurate values of \(J_1\) and \(J_2\), respectively. The numerical calculation shows that the presented approximations are computationally efficient and can avoid computational overflow. Therefore, they can be incorporated into professional software like HEC-RAS or HEC-6.

Conclusions

This note presents an effective approximation to Einstein integrals \(J_1\) and \(J_2\) that are valid over the entire range of the Rouse number \(z\) and the relative bed-layer thickness \(E\). The approximations can be readily implemented using widespread tools such as programmable calculators, spreadsheets, Fortran, or MatLab. In particular, it may provide a simple way to incorporate Einstein bed load function into widely used hydraulic software. The numerical experiment shows that the proposed algorithm rapidly converges to the exact values of \(J_1\) and \(J_2\).
Discussion of “Efficient Algorithm for Computing Einstein Integrals”
by Junke Guo and Pierre Y. Julien

DOI: 10.1061/(ASCE)0733-9429(2004)130:12(1198)

Jorge D. Abad1 and Marcelo H. García2
1Graduate Research Assistant, Dept. of Civil Engineering, Univ. of Illinois at Urbana-Champaign, Urbana, IL 61801. E-mail: abad@uiuc.edu
2Chester and Helen Siess Professor, Dept. of Civil Engineering, Univ. of Illinois at Urbana-Champaign, Urbana, IL 61801.

The writers are congratulated for developing analytical approximations to Einstein integrals (herein INT1 and INT2). It was stated by the writers in their technical note that these algorithms can be incorporated into professional hydraulic software, and the discussers agree on this. However, it is pointed out here that the calculation of INT1 and INT2 can be easily incorporated more directly by subroutines or functions for numerical integration (by using any numerical library or by coding one) into any hydraulic and sediment transport model (e.g., Abad 2002). In terms of practicality, there is a need for more simple formulations than those series-based ones presented by the writers. The present discussion focuses on describing practical formulations for calculating the Einstein integrals based on regression analysis. The development of the methodology is derived for use in depth-averaged sediment transport models.

Brief Background

Fig. 1 shows an open-channel configuration. Depending on the vertical location (z), sediment transport can be treated as bed-load (z < zb) or suspended load (z > zb), where zb is called the reference level or the bed-layer thickness. Suspended sediment load at equilibrium conditions is calculated by using a Rousean profile, as shown below:

\[
c(z) = c(z_b) \left(\frac{(H-z)/z_b}{(H-z_b)/z_b} \right)^{z_b} \]

(1)

where \(c(z) \) = concentration in the vertical direction; \(c(z_b) \) = concentration at the reference level (bed-layer thickness); \(Z_R = w_s/\kappa u_s \) is the Rouse number; \(H \) = water depth; \(w_s \) = settling velocity of the particle; \(\kappa \) = Von Karman coefficient (~0.40 given by experiments); and \(u_s \) = shear velocity. A depth-averaged suspended concentration can be calculated by integrating Eq. (1) along the vertical direction as shown in Eq. (2):

\[
\bar{c} = \frac{1}{H} \int_{z_b}^{H} c(z)dz = \frac{1}{H} \int_{z_b}^{H} \left(\frac{(H-z)/z_b}{(H-z_b)/z_b} \right)^{z_b} dz
\]

(2)

Using \(\delta = z/H \) and \(\delta_b = z_b/H \), Eq. (2) can be expressed as

\[
\bar{c} = c(z_b)INT_1 = c(z_b) \int_{\delta_b}^{1} \left(\frac{(1 - \delta)/\delta}{(1 - \delta_b)/\delta_b} \right)^{z_b} d\delta
\]

(3)

Einstein (1950) proposed a relation for the depth-averaged sediment concentration as \(\bar{c} = c(z_b)\delta_b/0.216 \), where \(I_1 \) is given by the well-known Einstein’s monographs (Einstein 1950; García 1999, 2005). Assuming logarithmic velocity profile and identical horizontal velocities for water and sediment, the suspended sediment load can be calculated by using

\[
q_s = \int_{z_b}^{H} u(z)c(z)dz = \frac{1}{\kappa c(z_b)u_s H} INT_1 \ln \left(30 \frac{H}{k_s} \right) + INT_2
\]

(4)

where \(k_c \) represents the composite roughness (i.e., grain resistance and form drag). INT2 is given by

\[
INT_2 = \int_{\delta_b}^{1} \left(\frac{(1 - \delta)/\delta}{(1 - \delta_b)/\delta_b} \right)^{z_b} \ln(\delta)d\delta
\]

(5)

Again, Einstein (1950) proposed another graph for \(-I_2 \) in order to calculate INT2 (INT2 = δb/0.216). Guo and Wood (1995) have proposed analytical series-based approximations for INT1 and INT2 (called \(J_1 \) and \(J_2 \) by Guo and Wood, 1995), which are valid for fine sediments \((Z_R < 1) \). The writers in their recent paper have extended these analytical series-based approximations to be valid for the entire range of \(Z_R \) and \(\delta_b \). However, their use for practical

Table 1. Coefficients for INT1 Formulation

<table>
<thead>
<tr>
<th>(\delta_b)</th>
<th>(c_1^0)</th>
<th>(c_1^1)</th>
<th>(c_1^2)</th>
<th>(c_1^3)</th>
<th>(c_1^4)</th>
<th>(c_1^5)</th>
<th>(c_1^6)</th>
<th>(R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>1.4852</td>
<td>0.2025</td>
<td>14.087</td>
<td>20.918</td>
<td>−10.91</td>
<td>2.034</td>
<td>−0.1345</td>
<td>1.00</td>
</tr>
<tr>
<td>0.02</td>
<td>1.2134</td>
<td>1.9542</td>
<td>10.613</td>
<td>6.0002</td>
<td>−3.6259</td>
<td>0.6938</td>
<td>−0.0462</td>
<td>1.00</td>
</tr>
<tr>
<td>0.03</td>
<td>1.1409</td>
<td>2.4266</td>
<td>8.2541</td>
<td>2.4058</td>
<td>−1.7617</td>
<td>0.3474</td>
<td>−0.0234</td>
<td>1.00</td>
</tr>
<tr>
<td>0.04</td>
<td>1.1138</td>
<td>2.5982</td>
<td>6.7187</td>
<td>1.029</td>
<td>−1.001</td>
<td>0.2045</td>
<td>0.0139</td>
<td>1.00</td>
</tr>
<tr>
<td>0.05</td>
<td>1.0398</td>
<td>2.6626</td>
<td>5.6497</td>
<td>3.8282</td>
<td>−0.6174</td>
<td>0.1315</td>
<td>−0.0091</td>
<td>1.00</td>
</tr>
<tr>
<td>0.06</td>
<td>1.102</td>
<td>2.6809</td>
<td>4.864</td>
<td>0.0422</td>
<td>−0.3989</td>
<td>0.0894</td>
<td>−0.0063</td>
<td>1.00</td>
</tr>
<tr>
<td>0.07</td>
<td>1.1048</td>
<td>2.6775</td>
<td>4.2624</td>
<td>−0.1487</td>
<td>−0.2639</td>
<td>0.0629</td>
<td>−0.0045</td>
<td>1.00</td>
</tr>
<tr>
<td>0.08</td>
<td>1.1104</td>
<td>2.6636</td>
<td>3.787</td>
<td>−0.2598</td>
<td>−0.1757</td>
<td>0.0545</td>
<td>−0.0033</td>
<td>1.00</td>
</tr>
<tr>
<td>0.09</td>
<td>1.1178</td>
<td>2.6448</td>
<td>3.4019</td>
<td>−0.3254</td>
<td>−0.1156</td>
<td>0.0333</td>
<td>−0.0025</td>
<td>1.00</td>
</tr>
<tr>
<td>0.1</td>
<td>1.1266</td>
<td>2.6239</td>
<td>3.0838</td>
<td>−0.3636</td>
<td>−0.0734</td>
<td>0.0246</td>
<td>−0.0019</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Table 2. Coefficients for INT$_2$ Formulation

<table>
<thead>
<tr>
<th>δ_b</th>
<th>c_0</th>
<th>c_1</th>
<th>c_2</th>
<th>c_3</th>
<th>c_4</th>
<th>c_5</th>
<th>c_6</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>1.151</td>
<td>2.1787</td>
<td>7.6572</td>
<td>-0.2777</td>
<td>-0.57</td>
<td>0.1424</td>
<td>-0.0105</td>
<td>1.00</td>
</tr>
<tr>
<td>0.02</td>
<td>1.1428</td>
<td>2.4442</td>
<td>4.2581</td>
<td>-0.4713</td>
<td>-0.1505</td>
<td>0.0467</td>
<td>-0.0036</td>
<td>1.00</td>
</tr>
<tr>
<td>0.03</td>
<td>1.1744</td>
<td>2.4172</td>
<td>3.0015</td>
<td>-0.4405</td>
<td>-0.049</td>
<td>0.0218</td>
<td>-0.0018</td>
<td>1.00</td>
</tr>
<tr>
<td>0.04</td>
<td>1.2143</td>
<td>2.364</td>
<td>2.3733</td>
<td>-0.3955</td>
<td>-0.0104</td>
<td>0.0116</td>
<td>-0.0001</td>
<td>1.00</td>
</tr>
<tr>
<td>0.05</td>
<td>1.2574</td>
<td>2.3159</td>
<td>1.9239</td>
<td>-0.3558</td>
<td>0.0075</td>
<td>0.0064</td>
<td>-0.0006</td>
<td>1.00</td>
</tr>
<tr>
<td>0.06</td>
<td>1.3023</td>
<td>2.2773</td>
<td>1.6411</td>
<td>-0.3228</td>
<td>0.0167</td>
<td>0.0035</td>
<td>-0.0004</td>
<td>1.00</td>
</tr>
<tr>
<td>0.07</td>
<td>1.3486</td>
<td>2.2481</td>
<td>1.4351</td>
<td>-0.2955</td>
<td>0.0216</td>
<td>0.0017</td>
<td>-0.0003</td>
<td>1.00</td>
</tr>
<tr>
<td>0.08</td>
<td>1.3961</td>
<td>2.2269</td>
<td>1.2782</td>
<td>-0.2728</td>
<td>0.0243</td>
<td>0.0005</td>
<td>-0.0002</td>
<td>1.00</td>
</tr>
<tr>
<td>0.09</td>
<td>1.445</td>
<td>2.2125</td>
<td>1.1548</td>
<td>-0.2536</td>
<td>0.0258</td>
<td>-0.0002</td>
<td>-0.0001</td>
<td>1.00</td>
</tr>
<tr>
<td>0.1</td>
<td>1.4952</td>
<td>2.2041</td>
<td>1.0552</td>
<td>-0.2372</td>
<td>0.0265</td>
<td>-0.0008</td>
<td>-0.00005</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Fig. 2. Comparison between analytical solution and regression analysis for INT$_1$($\delta_b=0.05$)

Fig. 3. Comparison between analytical solution and regression analysis for INT$_2$($\delta_b=0.05$)

Analysis and Formulations for Integrals INT$_1$ and INT$_2$

INT$_1$ and INT$_2$ are computed numerically (also computed using similar analytical approximations as proposed by the writers) for different Z_b and δ_b values. Then a sixth-order regression analysis of the results is performed in order to obtain simple formulations for INT$_1$ and INT$_2$, as shown by Eqs. (6) and (7) (see coefficients in Table 1 and Table 2):

$$ INT_1 = \frac{1}{c_0 + c_1 Z_R + c_2 Z^2_R + c_3 Z^3_R + c_4 Z^4_R + c_5 Z^5_R + c_6 Z^6_R} $$

(6)

$$ INT_2 = \frac{1}{c_0 + c_1 Z_R + c_2 Z^2_R + c_3 Z^3_R + c_4 Z^4_R + c_5 Z^5_R + c_6 Z^6_R} $$

(7)

The writers have presented series-based approximations of the Einstein integrals. The discussers have developed additional formulations of these integrals with their practical application in mind. The proposed alternative approximations need some coefficients for different values of δ_b; however, in most existing formulas for estimating sediment entrainment or near-bed concentrations under equilibrium conditions, the reference level $\delta_b=H_0$ is taken to be 0.05 (Itakura and Kishi 1980; Celik and Rodi 1984; Akiyama and Fukushima 1986; García and Parker 1991, among others), which involves seven coefficients for each integral. Figs. 2 and 3 show comparisons of the exact solutions (dots) against the proposed practical formulation (continuous line) for INT$_1$ and INT$_2$, respectively. Good agreement was found by using these practical formulations.

References

Guo, J., and Wood, W. L. (1995). “Fine suspended sediment transport calculations is still limited since the computation of the integrals requires the implementation of a numerical subroutine or function. The effort and time required for incorporating any numerical subroutine or function for the direct integration of INT$_1$ and INT$_2$ suggest the necessity of developing more practical approaches that can be implemented more readily into a numerical model. The present discussion attempts to fulfill this last item.
The discussers have found an explicit approximation for the Einstein Integrals which result in a discrepancy less than 1% to the approximation of the writers, though the approximation has greater errors when the dimensionless reference height becomes bigger than 0.01 for the first integral and 0.001 for the second integral. However, a huge fraction of natural conditions is covered by this approximation. The calculation speed is more than two orders faster than the approximation of the writers and nearly twice as fast as the recurrence formula suggested by Guo et al. (1996), which is the foundation for the suggested formula. The combination of the explicit approximation and the recurrence formula is suggested as an optimal algorithm for the estimation of both integrals. In the following, the recurrence formula of Guo et al. (Approximation II) and the explicit approximation (Approximation III) by the discusser will be compared with respect to performance and accuracy with the actual formulation of the writers (Approximation I). The derivation of the explicit approximation for the integral J_1 starts with the identical idea as the writers’, which is multiple application of the recurrence formula (1)

$$J_{1,(g_{b,c})}=\left(\frac{1}{z-1}\right)\cdot\left(\frac{(1-\xi_b)^z}{\xi_b^{z-1}}\right)\cdot\left(\frac{1}{z-1}\right)\cdot J_{1,(g_{b,c-1})}$$

(1)

In Eq. (1) $\xi_b=a/h$, with a the reference height, h the water depth, and z the Rouse number. To get an explicit formula for the calculation of J_1, Eq. (1) was expanded three times in z

$$J_{1,(g_{b,c})}=\frac{z\cdot\pi}{\sin(z\cdot\pi)}-\frac{\xi_b^{1-z}}{1-z}$$

(2)

The explicit approximation was obtained with the aid of Eq. (2), which is an approximation for J_1 when $z<1$ (see Guo et al.). This equation leads to a discrepancy in the solution of the writers, which is less than 1% in if ξ_b is smaller than 0.01 (Fig. 1).

$$J_{1,(g_{b,c})}=\left(\frac{1}{z-1}\right)\cdot\left(\frac{(1-\xi_b)^z}{\xi_b^{z-1}}\right)$$

$$-\left(\frac{z}{z-2}\right)\cdot\left(\frac{1}{\xi_b^{z-2}}\right)$$

$$-\left(\frac{z-1}{z-2}\right)\cdot\left(\frac{(1-\xi_b)^{z-2}}{\xi_b^{z-3}}\right)$$

(3)

The explicit approximation of the second Einstein Integral is also based on the publication of Guo et al., but the accuracy is not as good as the approximation of the first Einstein Integral. The starting point for the derivation of the explicit approximation for J_2 is again the recurrence formula given by Guo et al. for J_2:

$$J_{2,(g_{b,c})}=\left(\frac{1}{z-1}\right)\cdot\left(\frac{(1-\xi_b)^z}{\xi_b^{z-1}}\right)\cdot\left(\frac{1}{z\cdot\pi}\right)\cdot \ln(\xi_b) - z \cdot J_{2,(g_{b,c-1})} + J_{1,(g_{b,c})}$$

(4)

The explicit approximation is achieved in a similar way as for J_1. Guo et al. have suggested for $z<1$ the following approximation for J_2:

$$J_{2,(g_{b,c})}=\left(\frac{1}{z-1}\right)\cdot\left(\frac{(1-\xi_b)^z}{\xi_b^{z-1}}\right)\cdot\left(\frac{1}{z\cdot\pi}\right)\cdot \ln(\xi_b) - z \cdot J_{2,(g_{b,c-1})} + J_{1,(g_{b,c})}$$

(5)

$$f(z)=\log(1-\gamma) - \log(2-z) + \frac{1}{1-z} + \frac{1}{2 \cdot (1-z)} + \frac{1}{24 \cdot (2-z)^2}$$

(6)

Here $f(z)$=approximation of a more complicated functional in terms of Gamma functions given by Guo and Wood (1995). An explicit approximation for J_2 was found after double expansion of Eq. (4) and replacement of the terms J_1 and J_2 in Eq. (6), with the functions summarized in Eq. (7). The final equation shows a discrepancy to the solution of the writers which is less than 1% for a reference height that is smaller than 0.001 (Fig. 2).

$$J_{2,(g_{b,c})}=\left(\frac{1}{z-1}\right)\cdot\left(\frac{(1-\xi_b)^z}{\xi_b^{z-1}}\right)\cdot\left(\frac{1}{z\cdot\pi}\right)\cdot \ln(\xi_b) - z \cdot J_{2,(g_{b,c-1})} + J_{1,(g_{b,c})}$$

(7)

The approximation of the function $f(z)$ is not straightforward as the second term becomes undefined when the argument is negative ($z>4$). Numerical experiments with (6) have shown that a good approximation can be achieved if the absolute argument in the log function is calculated.

$$J_{2,(g_{b,c-3})}=\frac{(z-2)\cdot \pi \cdot f(z)}{\sin(z-2)\cdot\pi} \cdot \frac{\xi_b^{3-z}}{3-z} \cdot \log(\xi_b) + \frac{\xi_b^{3-z}}{3-z}$$

$$J_{1,(g_{b,c-2})}=\left(\frac{1}{z-2}\right)\cdot\left(\frac{(1-\xi_b)^{z-1}}{\xi_b^{z-2}}\right)\cdot\left(\frac{1}{z\cdot\pi}\right)\cdot \ln(\xi_b) - z \cdot J_{2,(g_{b,c-3})} + J_{1,(g_{b,c-2})}$$

$$f(z)=\log(1-\gamma) - \log(1-\gamma) + \frac{1}{3-z} + \frac{1}{2 \cdot (4-z)} + \frac{1}{24 \cdot (4-z)^2}$$

(8)

The results of the integrals J_1 and J_2 obtained with the approximation of the writers have been compared with the recurrence formula of Guo et al. and the explicit approximation suggested by the discussers.
Both approaches lead to rather big errors, if the Rouse number z approaches integer values and if the dimensionless reference height ξ_b approaches unity. When the reference height a becomes small in comparison to h, the discrepancies disappear. The reason is that the recurrence formulas have been derived by Guo et al. under the assumption that a is small in comparison to h. To achieve optimal performance and accuracy, the recurrence formula and the explicit approximation can be applied for the distinct areas in the co-domain in which these algorithms result in small errors in comparison to the exact solution. In Fig. 3, the results for such an algorithm are presented. It can be seen that for the integral J_1 the discrepancy reduces to less than 1% for $\xi_b < 0.01$. For J_2 the discrepancies are still one order higher than for the integral J_1, though significantly reduced in comparison to Fig. 2. The error for J_2 growths are maximal for $z=1$ and $\xi_b > 0.01$, but it is still less than 2.5% while $\xi_b < 0.01$. The most accurate approximation of the writers can be used if higher accuracy is anticipated in the designated regions.

We have summarized the computation time for the calculation of 10 times the co-domain in Eq. (8) for these three different approximations (see Fig. 4). The approximation of the writers is the slowest one due to its numerical complexity, though it is the most exact one. The explicit approximation is nearly twice as fast as the recurrence formula and more than two orders faster than the
approximation of the writers. The combination of Approximations II and III is still more than two orders faster than the recent one suggested by the writers.

Conclusions

An optimal scheme for calculating the Einstein Integrals has been proposed on the foundation of the work of Guo et al. and the suggested explicit approximation. The new suggested algorithm can be efficiently used in morphodynamic models like TIMOR (Tidal MORphodynamics; Zanke 2002), which are based on the solution of vertical integrated flow models. In such kinds of applications the suspended sediment transport rates have to be calculated for every time-step, grid point, and grain size, which leads to high calculation times. Therefore the improvement of the calculation speed and accuracy has direct impact on the performance of the morphodynamic model. This study was only possible due to the work of Prof. Junke Guo in the past 10 years concerning the derivation of an approximation for the Einstein Integrals. In the latest publication, discussed here, the writers found the most exact approximation of these equations to date, which is considered to be an important step in science.

References

Discussion of “Efficient Algorithm for Computing Einstein Integrals” by Junke Guo and Pierre Y. Julien

DOI: 10.1061/(ASCE)0733-9429(2004)130:12(1198)

Rajesh Srivastava 1
1Associate Professor, Dept. of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India. E-mail: rajeshs@iitk.ac.in

The writers have proposed infinite series expressions for evaluating the Einstein integrals. The discusser would like to mention the following points regarding the note:

1. Eq. (3) is only valid for \(z < 1 \) because for \(z \geq 1 \) both the integrals on the right-hand side are divergent. Similarly, Eqs. (7) and (8) are valid only for \(z < 1 \). While this limitation was stated explicitly before Eqs. (5) and (9), it should have been mentioned at other relevant places also.

2. While the range of \(z \) has been stated (\(z < 10 \)) in the note, that for \(E \) has not been mentioned. The value of \(E \) used by the writers ranges from 0.00001 to 0.1. Obviously, if \(E \) is higher than 0.1, the convergence of the series in Eqs. (9) and (18) would be quite slow. In fact, if \(E > 0.5 \), Eq. (8) will not be valid since \(F_i(\infty) \neq 0 \) for \(E/(1-E) > 1 \). Such high values of \(E \) may be practically impossible, but mathematical rigor demands a passing mention of the fact. The sentence in the Conclusions section stating, “...valid over the entire range of the Rouse number \(z \) and the relative bed-layer thickness \(E \),” should therefore be qualified with additional information.

3. While integer (\(n+1/2 \)) values of \(z \) may be useful for comparing the proposed algorithm with exact solutions, it is very unlikely that the actual value of \(z \) would be an exact integer. The discusser feels that the paragraph following Eq. (13) is therefore not really appropriate. In fact, it may be more desirable to have a single expression [Eq. (9)] for all values of \(z \) with the provision that if \(z \) is an exact integer, its value would be taken as \(z = 0.001! \).

4. In the paragraph above Eq. (20), rapid convergence of series (8) and (17) should be based on rapid approach to zero of \([E/(1-E)]^{k+\epsilon} \), and not \(E^{k+\epsilon} \). As discussed in point 2 above, if \(E > 0.5 \), \(E^{k+\epsilon} \) will still approach zero rapidly but the series will not converge.

5. While the writers mention the limit \(z = 10 \) before Eq. (20), the maximum relative error for the approximation is stated only for \(z < 6 \). It was found that the error increases with further increase in \(z \) and becomes more than 0.8% for \(z = 10 \). While this may be acceptable for practical purposes, the approximation may be considerably improved by considering the limiting behavior of the series in Eq. (20). The following approximation was derived with the use of the limiting behavior and was found to have a maximum error of only 0.03% over the entire range \(z > 0 \):

\[
\sum_{k=1}^{\infty} \left(\frac{1}{k} - \frac{1}{z+k} \right) = \ln(1 + 1.781z) - \frac{0.1361z}{(1 + 1.284z)^{1.359}} \quad (1)
\]

6. An alternative methodology for deriving series expressions for \(J_1 \) is described below: Since \((1-\xi/\xi)\) is less than 1 for \(\xi > 0.5 \) and more than 1 for \(\xi < 0.5 \), we write

\[
J_1(z,E) = \int_E^{0.5} \left(\frac{1-\xi}{\xi} \right) d\xi + \int_{0.5}^{1} \left(\frac{1-\xi}{\xi} \right) d\xi \quad (2)
\]

Making the substitution \(x = \xi/(1-\xi) \) in the first integral and \(x = (1-\xi)/\xi \) in the second integral, we get

\[
J_1(z,E) = \int_{E_x}^{1} x^{-\epsilon}(1+x)^{-2} dx + \int_{0}^{1} x^{\epsilon}(1+x)^{-2} dx = \sum_{i=0}^{\infty} \frac{(-1)^{i+1}E_i^{k+\epsilon}}{i-z} + \sum_{i=1}^{\infty} \frac{(-1)^{i+1}}{i+z} \quad (3)
\]

where \(E_x = E/(1-E) \). Both these series, however, converge slowly. Also, for integer \(z \) values, the computations have to make use of the fact that \(\ln x = \lim_{p \to 0} (x^p - 1)/p \). To avoid the slow convergence, the following approximation was obtained with a maximum error of 0.18% using the data for \(0 \leq z \leq 5 \) (in steps of 0.5) and \(-5 \leq \log E \leq -1 \) (in steps of 1):

\[
J_1(z,E) = -\frac{E^{k+\epsilon} - 1}{1-z} + 2.061 \frac{E^{2k+\epsilon} - 1}{2-z} - 1.385 \frac{E^{5k+\epsilon} - 1}{2.6-z} + 0.3327 \frac{E^{4k+\epsilon} - 1}{0.6703+z} \quad (4)
\]

Similarly, \(J_3(z,E) \) was approximated with a maximum error of 0.03% as
\[J_2(z,E) = \frac{E^{1-z}[1 - (1-z)\ln E_z] - 1}{(1-z)^2} - 1.903 \frac{E^{2-z}[1 - (2-z)\ln E_z] - 1}{(2-z)^2} + 2.022 \frac{E^{2.6-z}[1 - (2.6-z)\ln E_z] - 1}{(2.6-z)^2} = 0.2914 \frac{1}{1.652 + z} \]

Again, in the unlikely event of \(z \) being exactly equal to 1, 2, or 2.6, we make use of the fact that

\[\lim_{p \to 0} \frac{\ln \left(1 - p \ln x \right) - 1}{p^2} = -\frac{(\ln x)^2}{2} \]

The discusser feels that Eqs. (4) and (5) above would perform better than the writers’ Eqs. (9) and (18) for computation of the Einstein integrals.

Closure to “Efficient Algorithm for Computing Einstein Integrals” by Junke Guo and Pierre Y. Julien

DOI: 10.1061/(ASCE)0733-9429(2004)130:12(1198)

Junke Guo\(^1\) and Pierre Y. Julien\(^2\)

\(^1\)Assistant Professor, Dept. of Civil Engineering, Univ. of Nebraska, PKI 204D, 1110 S. 67th St., Omaha, NE 68182-0178 (corresponding author). E-mail: junkeguo@unlnotes.unl.edu

\(^2\)Professor, Dept. of Civil Engineering, Colorado State Univ., Engineering Research Center, Room B205, Fort Collins, CO 80523-1320. E-mail: pierre@engr.colostate.edu

We would like to thank all the discussers for their constructive comments and for providing alternative approximations of the Einstein integrals. It is commonly agreed that these two integrals remain elusive to exact solutions. However, a lot of progress has been made in developing fast and accurate approximations. Abad and Garcia emphasize the need for simpler algorithms and propose a polynomial approximation. Srivastava provides keen insight into the convergence of the series and offers improvements. Roland et al. present an error analysis as well as a valuable comparison of the computational time of various algorithms. Besides polynomial approximations and different series expansions, other e-mail communications by A. R. Kacimov pointed to the possible use of hypergeometric series as well as software packages like MatLab, Maple, and Mathematica. Four main issues are raised in the discussions and they are addressed in the following sequence: (1) convergence; (2) algorithm efficiency; (3) accuracy; and (4) computational time. This closure also includes a comparative analysis of the different algorithms and an application example on the Missouri River.

First, regarding convergence, Srivastava correctly points out that the proposed series are not convergent when the bed layer thickness \(E \) is greater than 0.5. Well, this is a trivial case because when \(E > 0.5 \), sediment is exclusively transported as bedload and the integration is not required. For most practical applications, the value of \(E \) is relatively small. For a typical laboratory flume experiment, given a grain diameter of \(D=1 \) mm and a flow depth of \(h=10 \) cm, the value of \(E \) is 0.02. The value of \(E \) for field applications is even smaller, as per the example below.

Second, all the discussions express concerns about the computational efficiency of the proposed method. It was readily acknowledged in the Technical Note that the first series of \(J_2 \) in Eq. (18) converges slowly. Calculation times of the order of a second were not considered excessive, and accuracy was preferred over CPU time. In view of the discussions, however, it is now possible to substantially improve computational efficiency. The results of an earlier formulation proposed by Guo and Wood can be expanded and simplified to replace the former Eq. (14) with

\[\int_0^1 \left(\frac{1}{\xi} \right)^z \ln \xi d\xi \]

in which \(\gamma=0.5772156649015328606651... \) and \(\psi(x) \) is the psi function, a special function. For calculations, it is suggested that \(n \) take as \(n=\text{cei}(z)+2 \), in which \(\text{cei}(z) \) means the ceiling of the value of \(z \). For example, if \(z=0.1 \), \(n=\text{cei}(0.1)+2=3 \); if \(z=3.7 \), \(n=\text{cei}(3.7)+2=6 \). Although it is derived for \(z<1 \), Eq. (1) above is valid for any noninteger value of \(z \). One can demonstrate that Eq. (1) requires fewer terms than Eq. (14) and converges rapidly.

After replacing Eq. (14) with Eq. (1), the proposed algorithm can be slightly modified. For noninteger \(z \), i.e., \(\left| z-\text{round}(z) \right| > 0.005 \),

- **Step 1:** Estimate \(F_1(z) \) from Eq. (8) using a maximum \(k=\text{cei}(z)+4 \).
- **Step 2:** Estimate \(J_1(z) \) from Eq. (9).
- **Step 3:** Estimate Eq. (1) above using a value \(n=\text{cei}(z)+2 \).
- **Step 4:** Estimate \(F_2(z) \) from Eq. (17) using a maximum \(k=\text{cei}(z)+2 \).
- **Step 5:** The value of \(J_2(z) \) is then obtained by subtracting the result of Step 4 from the result of Step 3.

For integer \(z \) values, one can use the same steps as those in the technical note or a recurrent formula like Eq. (10). A program in both FORTRAN (einstein.f90) and MatLab (einstein.m) for the above algorithm, together with alternatives proposed by the discussers, can be downloaded from (http://myweb.unomaha.edu/~junkeguo) or (http://www.engr.colostate.edu/epsierre/ce_old/Projects/index.html). The software programs of readers interested in sharing their source codes will be made available at the same site.

Third, in terms of accuracy, the formulation of Roland et al. is a combination of the three versions of Guo and Wood, Guo et al., and Guo and Julien. There is, however, some concern regarding their statement “the error for \(J_2 \) becomes maximal for \(z=1 \) and \(E = \xi_0 > 0.01 \) but it is still less than 10%.” Values of \(z=1 \) are not unusual in practice and 10% looks like a disquietly large error. Roland kindly provided a FORTRAN code of his algorithm, but we experienced difficulties running his software and replicating his results. A comparison of several algorithms is presented in this section. Values of \(E=0.1 \) and \(z=0.55, 1.55, 2.55, 3.55, \) and 4.55 are considered for the calculations. This large value for \(E \) is se-
lected here because Roland et al. showed that it corresponds to larger differences between approximations and exact solutions. The results obtained for the two integrals J_1 and J_2 using four different algorithms (from the Technical Note; Eq. (1); Abad and Garcia; and Srivastava) are summarized in Table 1. They are compared with the exact values obtained from numerical integration in Maple. It is concluded that like the results from the original note, the improvement with Eq. (1) is accurate. Other methods also produce fine results. However, the method of Srivastava can generate errors larger than the value of 0.03% cited in his discussion. For instance, Table 1 shows a 17% error for J_2 at $z=2.55$. Things get worse around $z=2.6$ with errors as large as 800% when $z=2.6-0.001=2.599$. A positive value for $J_2=186.19$ is also incorrectly obtained when $z=2.6+0.001=2.601$.

Fourth, regarding computational time, the CPU times of three algorithms are considered. The calculations were performed with MatLab and FORTRAN on a Dell Notebook. The results of the methods are very comparable at about 0.015625 s. In addition, one can produce Figs. 1 and 2 in the Technical Note in only 0.875 s. It is fair to say that these algorithms to solve the two Einstein integrals are fast and accurate. Further comparison of the algorithms is presented in the following field application to the Missouri River.

Example: A calculation example with field data is presented here. The site of the Missouri River near Omaha, Neb., is selected for sediment transport calculations using Einstein’s method. The main parameters are slope $S=0.00012$, flow depth $h=7.8$ ft $=2.38$ m, and water temperature $T=7$°C. The measured velocity profile u and suspended sand concentration c for the fraction passing a 0.105 mm sieve and retained on a 0.074 mm sieve are shown in Table 2 (from Julien 1995, p. 202). The assignment is to calculate the unit sediment discharge for this size fraction.

Solution: Several algorithms are used for the determination of J_1 and J_2. We use the methods of Srivastava, Abad and Garcia, and Eq. (1) for comparisons with the exact solution. The measured velocity profile and the suspended sediment concentration distribution are fitted as follows:

Table 1. Comparison of Various Algorithms at $E=0.1$

<table>
<thead>
<tr>
<th>Method</th>
<th>$z=0.55$</th>
<th>$z=1.55$</th>
<th>$z=2.55$</th>
<th>$z=3.55$</th>
<th>$z=4.55$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Value of J_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exact value</td>
<td>0.97458</td>
<td>2.7326</td>
<td>13.002</td>
<td>77.623</td>
<td>519.35</td>
</tr>
<tr>
<td>Guo and Julien (Technical Note)</td>
<td>0.97458</td>
<td>2.7326</td>
<td>13.002</td>
<td>77.623</td>
<td>519.35</td>
</tr>
<tr>
<td>Guo and Julien Eq. (1)</td>
<td>0.97458</td>
<td>2.7326</td>
<td>13.002</td>
<td>77.623</td>
<td>519.35</td>
</tr>
<tr>
<td>Abad and Garcia</td>
<td>0.97433</td>
<td>2.7350</td>
<td>12.997</td>
<td>77.620</td>
<td>519.19</td>
</tr>
<tr>
<td>Srivastava</td>
<td>0.97362</td>
<td>2.7313</td>
<td>12.982</td>
<td>77.604</td>
<td>519.81</td>
</tr>
<tr>
<td>(b) Value of J_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exact value</td>
<td>-1.1201</td>
<td>-4.4912</td>
<td>-24.513</td>
<td>-155.85</td>
<td>-1078.9</td>
</tr>
<tr>
<td>Guo and Julien (Technical Note)</td>
<td>-1.1201</td>
<td>-4.4913</td>
<td>-24.513</td>
<td>-155.85</td>
<td>-1078.9</td>
</tr>
<tr>
<td>Guo and Julien Eq. (1)</td>
<td>-1.1201</td>
<td>-4.4913</td>
<td>-24.513</td>
<td>-155.85</td>
<td>-1078.9</td>
</tr>
<tr>
<td>Abad and Garcia</td>
<td>-1.1200</td>
<td>-4.4921</td>
<td>-24.513</td>
<td>-155.84</td>
<td>-1078.0</td>
</tr>
<tr>
<td>Srivastava</td>
<td>-1.1258</td>
<td>-4.5535</td>
<td>-28.742</td>
<td>-155.93</td>
<td>-1107.8</td>
</tr>
</tbody>
</table>

Note: The exact values are numerical integrations with Maple.

Table 2. Measurements of Distributions of Velocity and Concentration in Missouri River

<table>
<thead>
<tr>
<th>ξ</th>
<th>u (m/s)</th>
<th>c (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.090</td>
<td>1.31</td>
<td>0.411</td>
</tr>
<tr>
<td>0.115</td>
<td>1.37</td>
<td>0.380</td>
</tr>
<tr>
<td>0.154</td>
<td>1.41</td>
<td>0.305</td>
</tr>
<tr>
<td>0.179</td>
<td>1.45</td>
<td>0.299</td>
</tr>
<tr>
<td>0.218</td>
<td>1.47</td>
<td>0.277</td>
</tr>
<tr>
<td>0.282</td>
<td>1.56</td>
<td>0.238</td>
</tr>
<tr>
<td>0.346</td>
<td>1.62</td>
<td>0.217</td>
</tr>
<tr>
<td>0.372</td>
<td>1.65</td>
<td>—</td>
</tr>
<tr>
<td>0.410</td>
<td>1.65</td>
<td>0.196</td>
</tr>
<tr>
<td>0.436</td>
<td>1.65</td>
<td>—</td>
</tr>
<tr>
<td>0.474</td>
<td>1.68</td>
<td>0.184</td>
</tr>
<tr>
<td>0.538</td>
<td>1.71</td>
<td>—</td>
</tr>
<tr>
<td>0.615</td>
<td>1.71</td>
<td>0.148</td>
</tr>
<tr>
<td>0.744</td>
<td>1.74</td>
<td>0.130</td>
</tr>
<tr>
<td>0.872</td>
<td>1.81</td>
<td>—</td>
</tr>
<tr>
<td>1.000</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
\[u = M \ln \xi + N \]
(2)

\[c = K \left(\frac{1 - \xi}{\xi} \right)^2 \]
(3)

in which \(\xi \) = distance relative to the flow depth from the bed; and \(M, N, K, \) and \(\varepsilon \) = fitting constants from the measurements. Fig. 1 gives \(M = 0.2171 \) m/s, \(N = 1.8321 \) m/s, \(K = 0.1775 \) kg/m\(^3\), and \(\varepsilon = 0.3469 \). With Eqs. (2) and (3), the Einstein bed-load function can be written as

\[q_T = KMh \left[4.61 \frac{(1 - E)^2}{E^{1/3}} + \frac{N}{M} J_0(z, E) + J_2(z, E) \right] \]
(4)

in which \(q_T \) = unit sediment discharge including bed load, the 1st term, and suspended load, the 2nd and 3rd terms. Given the median sediment size \(d_m = (0.105 + 0.074)/2 = 0.0895 \) mm, the bed-layer thickness is then \(\varepsilon = 2d_m = 0.179 \) mm, and the relative thickness \(E = \alpha/h = 7.5 \times 10^{-5} \). The logarithmic law to describe the streamwise velocity \(u_l = u_0 \ln(z/\zeta_0) \) is an important parameter in the dispersion terms of the momentum equations play an important role in the writer’s model. The dispersion terms result from the discrepancy between the depth-averaged velocity and the actual velocity. The writer used the logarithmic law to describe the streamwise velocity profile

\[\frac{u_j}{u_s} = \frac{1}{\kappa} \ln \left(\frac{z}{z_0} \right) \]
(1)

where \(u_j \) = streamwise velocity; \(u_s \) = shear velocity; \(\kappa \) = Von Kármán’s constant (=0.4); \(z \) = vertical coordinate; and \(z_0 \) = constant (a certain distance from the wall).

Zero-Velocity Level

The logarithmic velocity profile shows that the flow has zero velocity at \(z = z_0 \), and obviously requires a condition of \(z \geq z_0 \). The constant \(z_0 \) also called the zero-velocity level, is of the same order of magnitude as the viscous sublayer thickness and is a function of whether the boundary is hydraulically smooth or rough.

The constant \(z_0 \) is an important parameter in the dispersion terms of the momentum equations, as shown in Eqs. (15) to (17) of the original paper. To calculate \(z_0 \), the writer used Eq. (2), which contains three relations for flow in three boundary regimes, namely, those of the hydraulically smooth regime (\(\mathcal{R}_s < 5 \)), the completely rough regime (\(\mathcal{R}_s \geq 70 \)), and the transitional regime (\(5 < \mathcal{R}_s < 70 \)), according to the magnitude of roughness Reynolds number \(\mathcal{R}_s \), defined as \(\mathcal{R}_s = u_r k_s / \nu \), where \(\nu \) = kinetic viscosity and \(k_s \) = roughness height.

References