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A two-dimensional depth-averaged hydrodynamic model is developed to simulate the evolution of
meandering channels from the complex interaction between downstream and secondary flows, bed load
and suspended sediment transport, and bank erosion. The depth-averaged model calculates both bed
load and suspended load assuming equilibrium sediment transport and simulates bank erosion with a
combination of two interactive processes: basal erosion and bank failure. The mass conservation equation
is solved to account for both vertical bed-elevation changes as well as lateral migration changes when
sediment is removed through basal erosion and bank failure. The numerical model uses deformable ele-
ments and a movable grid to simulate the gradual evolution of a near-straight deformable channel into a
highly sinuous meandering channel. The model correctly replicates the different phases of the evolution
of free meandering channels in experimental laboratory settings including: (1) downstream and
upstream migration; (2) lateral extension; and (3) rotation of meander bends.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

The evolution of meandering channels involves the complex
interaction of fluid dynamics, sediment transport, and bank ero-
sion. Flow converges to the concave banks and diverges near con-
vex banks due to the secondary flows in meandering channels.
Flow momentum redistribution causes bed degradation near con-
cave banks and deposition near convex banks. Bed degradation
steepens concave banks while deposition stabilizes convex banks.
This causes concave banks to retreat as bank erosion occurs, while
convex banks advance with the build up of point bars. Conse-
quently, the planform of meandering channel evolves as meander-
ing loops migrate to downstream. Due to the limitation of detailed
experimental and field data of flow and sediment transport, this
study aims to examine flow and sediment transport during the
meandering processes using a two-dimensional numerical model.

With the rapid development of mathematical models and ad-
vances in computer technology, one-, two- and three-dimensional,
computational fluid dynamic models have become increasingly
popular to simulate the morpho-dynamic processes of natural riv-
ers (Darby et al., 2002); meandering streams (Mosselman, 1998;
Duan et al., 2001; Olsen, 2003); and braiding channels (Nicholas
ll rights reserved.
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and Smith, 1999). Meandering models (Ikeda et al., 1981;
Johannesson and Parker, 1989; Sun et al., 1996; Zolezzi and
Seminara, 2001; Camporeale et al., 2005) employed the quasi-
two dimensional analytical solutions of Navier–Stokes equation
and assumed the bank erosion rate proportional to near bank
excessive velocity. These models have limitations due to linear
solutions of flow field and neglecting sediment transport field near
banks. On the other hand, flow patterns and velocity profiles have
been examined with depth-integrated models by Zarrati et al.
(2005), and also in sine-generated meandering streams by da Silva
et al. (2006). A full three-dimensional computational fluid dynamic
model has been successfully applied to simulate the formation of
meandering streams (Olsen, 2003; Wilson et al., 2003). More re-
cent contributions focused on the diffusion and dispersion charac-
teristics in meander bends using transient tracer tests (Baek et al.,
2006; Marion and Zaramella, 2006; Seo et al., 2008).

Several models can simulate bank erosion and lateral migration
of alluvial channels. Among them Mosselman (1998) simulated the
morpho-dynamic processes of the Ohre River, a meandering grav-
el-bed in the former state of Czechoslovakia. Darby et al. (2002) re-
placed the bank erosion subroutine within the two-dimensional,
depth-averaged numerical model RIPA with the Osman and Thorne
(1988) bank erosion algorithm to simulate the bank erosion pro-
cesses at the Goodwin Creek, Mississippi. Duan et al. (2001) and
Duan and Julien (2005) developed a two-dimensional, depth-
averaged hydrodynamic and sediment transport model and
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Nomenclature

@zb
@n transverse slope
a reference bed level
B = 8:47� 0:9 integration constant
Cm ¼ 8:0 coefficient
C and Ca suspended sediment concentrations and value at z = a,

respectively
C� depth-averaged equilibrium concentrations of sus-

pended sediment
C0L lift coefficient
Duu; Duv ; and Dvv dispersion terms from the discrepancy be-

tween the depth-averaged velocity and the actual veloc-
ity in Cartesian coordinates

Dc
uu; Dc

uv ; and Dc
vv dispersion terms in curvilinear coordinates

D� ¼ d50‘
ðs�1Þg

m2

h i1
3

dimensionless particle diameter

dr width of the control volume nearest to the edge of the
bank

d50 median particle diameter
E erosion coefficient with a unit of ðm3=kgÞ1=2 in SI system
h flow depth
hb near-bank flow depth
g gravitational acceleration
K1 and K2 coefficients accounting for the effects of longitudinal

and transverse slopes, respectively
ks roughness height and equals the median particle diam-

eter
N� a coefficient equal to 7.0 derived by Engelund (1974)
n Manning roughness coefficient
p porosity of bed and bank material
qb bed-load sediment transport per unit width
R�e ¼ u�d50

m particle Reynolds number
Rn Rouse number
qbx and qby bed-load transport components in the x and y direc-

tions, respectively
qsx and qsy suspended load components in the x and y directions,

respectively
qb

br net volume of sediment from bank erosion
ql and qr sediment transport rates in the longitudinal and trans-

verse directions, respectively
qbr ¼ qb

br þ qf
br transverse component of the sediment transport

rate at the near-bank region as a result of bank erosion
qsl and qsr suspended sediment transport rates in the longitudi-

nal and transverse directions, respectively
qf

br sediment material eroded per unit width from bank fail-
ure

r channel radius of curvature
s ¼ qs

q specific gravity

T ¼ s��s�c
s�c dimensionless transport parameter

t time
U depth-averaged total velocity
u and v depth-averaged velocity components in the x and y

directions, respectively
u� shear velocity
ul and ul local and depth-averaged streamwise velocities, respec-

tively
ubn and ubs near-bed transverse and longitudinal velocities,

respectively
vr ; vr , and v s transverse velocity, depth-averaged transverse

velocity, and transverse velocity at the water surface,
respectively

z0 zero velocity level
z and z0 actual and reference elevations above bed, respectively
zb bed elevation
Dhbank bank height above the water surface
a ¼ 0:85 friction coefficient
ax and ay fractional components of bed-load transport in the x

and y directions, respectively
b deviation angle of near bed velocity
b0 ratio of the diffusion of sediment to fluid turbulent dif-

fusion
b1 longitudinal bed-slope angle
b2 transverse bed-slope angle
e bank erosion rate
f surface elevation
h angle between the centerline and positive x axis
j ¼ 0:41 von-Karman constant
ks ¼ 0:59 friction coefficient
l ¼ tan / friction coefficient
l0 a factor to address bedform effects
mt eddy viscosity
n depth-averaged bank erosion rate due to hydraulic force
qs and q mass densities of sediment and water, respectively
d averaged bank slope angle
sbx and sby friction shear stress terms at the bottom in the x and

y directions, respectively
sxy; sxx; syx; and syy Reynolds shear stress terms

s� ¼ qu2
�

ðqs�qÞgd50
Shields parameter

s�c ¼ sc
ðqs�qÞgd50

critical value of s� on sloping bed

s�c ;0 critical Shields parameter on a horizontal bed
/ angle of repose
x fall velocity
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successfully simulated the initiation, evolution, and widening of
meandering channels.

However, there are several remaining questions regarding the
fundamental physical processes that govern meandering evolution.
For instance, it is not clear that numerical models can properly
simulate the formation of meandering channels. The complete sim-
ulation of the various modes of deformation of meandering chan-
nels such as downstream and upstream migration, lateral
extension and rotation of meander bends has not been reported
in literature. Furthermore, the mechanism that governs the evolu-
tions of meandering rivers (e.g. flow, sediment, bank erosion) has
not been fully understood. This research has been undertaken to
demonstrate that a simple two-dimensional numerical model can
be an effective tool to study the mechanism of meandering evolu-
tion. The earlier developments of the two-dimensional, depth-
averaged hydrodynamic and sediment transport model (Duan
and Nanda, 2006; Duan and Julien, 2005; Duan, 2004) are extended
to simulate the evolution patterns of meandering channels. The
main hypothesis of this research is that meandering planform
geometry and variations in bed bathymetry caused the redistribu-
tion of flow momentum and consequently the migration of mean-
dering channels.

This article specifically focuses on the numerical simulation of
meandering channel planform changes at different stages of their
evolution. The objective is to demonstrate that 2D numerical mod-
els of deformable meandering channels can properly simulate the
various types of deformation including downstream and upstream
migration, lateral extension, and rotation of meander bends. A brief
review of the flow and sediment transport algorithms is followed by
a description of the bank erosion and channel deformation mechan-
ics. The results of the model link the processes of bed topography
and flow momentum with the processes of deformation of
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meandering channels including upstream and downstream migra-
tion, lateral extension and rotation of deformable channels.

2. Flow simulation algorithm

The governing equations for flow simulation are the depth-
averaged Reynolds approximation of momentum equations (Eqs.
(1) and (2)) and continuity equation (Eq. (3)).

@ðhuÞ
@t
þ @

@x
ðhu2Þ þ @Duu

@x
þ @

@y
ðhuvÞ þ @Duv

@y

¼ �gh
@f
@x
þ @

@x
ðhsxxÞ þ

@

@y
ðhsxyÞ � sbx ð1Þ

@ðhvÞ
@t
þ @

@x
ðhuvÞ þ @Duv

@x
þ @

@y
ðhv2Þ þ @Dvv

@y

¼ �gh
@f
@y
þ @

@x
ðhsyxÞ þ

@

@y
ðhsyyÞ � sby ð2Þ

@h
@t
þ @

@x
ðhuÞ þ @

@y
ðhvÞ ¼ 0 ð3Þ

where u and v are depth-averaged velocity components in the x and
y directions, respectively; t is time; f is surface elevation; h is flow
depth; g is acceleration of gravity; sbx and sby are friction shear
stress terms at the bottom in the x and y directions, respectively,
written as sbx ¼ n2g=h

1
3uU and sby ¼ n2g=h

1
3vU, in which U is

depth-averaged total velocity and n is Manning’s roughness coeffi-
cient; sxy; sxx; syx; and syy are depth-averaged Reynolds stress
terms, which are expressed as sxx ¼ 2mt@u=@x; syy ¼ 2mt@v=@y;
sxy ¼ syx ¼ mt @u=@yþ @v=@xð Þ, in which mt is eddy viscosity; and
Duu; Duv ; and Dvv are dispersion terms resulting from the discrep-
ancy between the depth-averaged velocity and the actual velocity
in the Cartesian coordinate, which are calculated by using the
dispersion terms at the streamwise and transverse directions as
follows:

Dc
uu ¼

Z z0þh

z0

ðul � ulÞ2dz; Dc
uv ¼

Z z0þh

z0

ðul � ulÞðv r � v rÞdz; Dc
vv

¼
Z z0þh

z0

ðv r � v rÞ2dz ð4Þ

where Dc
uu; Dc

uv ; and Dc
vv denote dispersion terms in curvilinear

coordinates, and z0 is the zero velocity level.
The depth-averaged parabolic eddy viscosity model is adopted,

where the depth-averaged eddy viscosity is obtained as follows:

mt ¼
1
6
ju�h ð5Þ

where u� is shear velocity and j is the von-Karman constant. Even-
tually, more sophisticated turbulent model components could be
developed to improve the accuracy of the two-dimensional model-
ing results.

To include the effect of secondary flow, four dispersion terms
were added to the momentum equations. The mathematical
expressions of these terms are derived after assuming that the
streamwise velocity satisfies the logarithmic law for uniform flows
over well-packed gravel-beds (Kironoto and Graf, 1994). The
streamwise velocity profile can then be written as follows:

ul

ul
¼

1
j

ln zþ z0

ks

� �
þ B

1
j

ln h
ks
� 1þ ks

h

� �
þ B 1� ks

h

� � ð6Þ

where ul and ul are respectively the streamwise and depth-averaged
streamwise velocities; z and z0 are the actual and reference eleva-
tions above bed; h is flow depth; j ¼ 0:41 is the von-Karman con-
stant; ks is the roughness height and equals the mean-sized
sediment particle; and B is a constant of integration and is typically
equal to 8:47� 0:9 (Kironoto and Graf, 1994). The transverse veloc-
ity profile of the secondary flow is assumed to be linear. The profile
of the transverse velocity proposed by Odgaard (1989) was adopted
in this model.

v r ¼ v r þ 2v s
z
h
� 1

2

� �
ð7Þ

where v r , v r , and v s are the transverse velocity, depth-averaged
transverse velocity, and transverse velocity at the water surface,
respectively. Engelund (1974) derived the tangent of the deviation
angle of the bottom shear stress and gave the following expression:

sr

sl

� �
b

� v r

ul

� �
b

¼ 7:0
h
r

ð8Þ

where r is the radius of channel curvature. This formulation is sim-
ilar to the classical formulation of Rozovskii, also discussed in Julien
(2002). According to Eq. (7), the magnitude of the deviation of sec-
ondary flow velocities from the mean transverse velocity at the sur-
face and the bottom are equal. Therefore, Eq. (8) (Engelund, 1974)
was used as the transverse velocity at the surface. The dispersion
terms, Dc

uu; Dc
uv ; and Dc

vv , were calculated by substituting Eqs. (6)
and (7) into Eq. (4), and then decomposed into the x and y direction
in the Cartesian coordinates in Eqs. (1) and (2) to solve for flow
velocity. A more detailed description of the hydrodynamic model
was included in Duan (2004).

3. Sediment transport algorithm

3.1. Bed-load transport

To predict bed-load transport in a curved channel, at least three
forces should be considered. These forces include: (1) the bed-
shear stress in the longitudinal direction; (2) the lateral bed-shear
stress due to curvature-induced secondary flow in the transverse
direction; and (3) the lateral component of the gravitational force
on the sloping channel bed, or bank. The influence of gravity on
bed-load transport is reflected in terms of its effect on incipient
motion of sediment and the direction of bed-load transport.

Numerous equations are available to predict the bed-load trans-
port rate. In the present study, we selected the Meyer-Peter and
Muller’s bed-load transport formula, which is valid for uniform
sediment having a mean particle size ranging from 0.23 to
28.6 mm. The bed-load transport rate was computed with this for-
mula as follows:

qb ¼ Cm½ðs� 1Þg�0:5d1:5
50 ðl0s� � s�cÞ1:5 ð9Þ

where qb is the total bed-load transport rate per unit width;
s� ¼ qu2

�=ðqs � qÞgd50 is the effective particle mobility parameter;
s�c ¼ sc=ðqs � qÞgd50 is the critical value of s� for incipient motion
depending on the particle Reynolds number (R�e ¼ u�d50=m), and
s�c ¼ 0:047 when R�e > 100; the constant coefficient Cm ¼ 8:0; d50

is the mean particle diameter; and s ¼ qs=q, where qs and q are
densities of sand and water, respectively. The bed surface is as-
sumed to be free of bed forms and the factor for bed form resis-
tance, l0 = 1, is used in this model.

Bed-load transport is known to deviate from the downstream
flow direction because of the influence of secondary flows, and
the lateral shear stress and gravitational effects on the transverse
bed slope. The deviation angle is defined as the angle between
the centerline of the channel and the direction of shear force at
the bed. Engelund (1974), Bridge and Bennett (1992), and Darby
and Delbono (2002) derived relations to estimate the deviation
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angle based on the analytical solutions of flow field in sinuous
channels. Bridge and Bennett (1992) and Darby and Delbono
(2002) stressed in their relations that flow in the bend with a vary-
ing curvature is non-uniform, so steady and non-uniform flow
momentum equations are necessary when solving the flow field.
As a result, the tangent of the deviation angle (Darby and Delbono,
2002) is not only a function of the mean longitudinal and trans-
verse velocity components, local radii of curvature and friction,
but also varies spatially in sine-generated bends. This study
adopted the deviation angle, b; written as follows:

tan b ¼ ubr

ubl
� 1þ al

ksl

ffiffiffiffiffiffi
s�c
s�

r
@zb

@n
¼ �N�

h
r
� 1þ al

ksl

ffiffiffiffiffiffi
s�c
s�

r
@zb

@n
ð10Þ

where ubr and ubl are the near-bed transverse and longitudinal
velocities, respectively; a ¼ 0:85; l ¼ tan /; and ks ¼ 0:59 are fric-
tion coefficients, in which / is the angle of repose; r is the radius of
the curvature; N� is a coefficient that equals 7.0 derived by Engel-
und (1974); and @zb=@n denotes the transverse slope. The first term
on the right of Eq. (10) accounts for the effect of secondary flow
velocity at the bottom, and the second term quantifies the gravita-
tional effects of the transverse bed slope. Therefore, the direction of
bed-load transport in Cartesian coordinates denoted by x and y can
be obtained as follows:

ax

ay

� �
¼

sin b cos b

cosb � sin b

� �
sin h

cosh

� �
ð11Þ

where h is the angle between the centerline and positive x axis; b is
the deviation angle; and ax and ay denote the fractional compo-
nents of bed-load transport in the x and y directions, respectively.

The critical shear stress of sediment particles on a longitudi-
nally and transversely sloped bed is correlated to the critical shear
stress of the same sized particle on the flat bed as follows (van Rijn,
1989):

s�c ¼ K1K2s�c;0 ð12Þ

where s�c and s�c;0 are the critical shear stress on sloping and hori-
zontal beds, respectively; K1 and K2 are coefficients accounting for
the effects of longitudinal and transverse slopes, respectively. The
coefficient K1 is defined as

K1 ¼ sinð/� b1Þ= sin / ðfor a downsloping bedÞ ð13Þ

K1 ¼ sinð/þ b1Þ= sin / ðfor an upsloping bedÞ ð14Þ

where / is the angle of repose; and b1 is the longitudinal bed-slope
angle. Whereas K2 ¼ ½cos b2�½1� ðtan2 b2= tan2 /Þ�0:5; and b2 is the
transverse bed-slope angle. More details on the expressions of
K1 and K2 can be found in Julien and Anthony (2002) and Duan
and Julien (2005).

3.2. Suspended sediment transport

To calculate the rate of suspended sediment transport, a sus-
pended sediment concentration profile must be assumed. In this
model, the classic Rouse profile (van Rijn, 1989) is assumed to be
valid at z = a from the channel bed to the water surface. The Rouse
profile is written as follows:

C
Ca
¼ h� z

z
a

h� a

� �Rn

ð15Þ

where a is the reference bed level; z is the distance from the bot-
tom; Rn is the Rouse number; and C and Ca are concentrations of
suspended sediment with their values at z = a, respectively. The
expression of the Rouse number is given as follows:
Rn ¼
x

jb0u�
ð16Þ

where Rn is the Rouse number; x is the falling velocity; j ¼ 0:4 is
the von-Karman constant; u� is the shear velocity; and b0 describes
(van Rijn, 1989) the difference in the diffusion of a sediment particle
from the diffusion of a fluid ‘‘particle” (Duan and Julien, 2005; Duan
and Nanda, 2006). The suspended sediment transport rate is the
product of the velocity profile and suspended sediment concentra-
tion profile.

The van Rijn formula (1989) was adopted here for computing
the reference concentration as follows:

Ca ¼ 0:015
d50

a
T1:5

D0:3
�

ð17Þ

where D� ¼ d50‘ ðs� 1Þg=m2
� �1

3 is the dimensionless particle diameter
and T ¼ s� � s�c=s�c where s� is the dimensionless grain shear-
stress parameter and s�c is the critical bed-shear stress according
to Eq. (12). By knowing the longitudinal and transverse velocity
profiles (Eqs. (6) and (7)) and the concentration of suspended sedi-
ment (Eq. (15)), the suspended sediment transport rates in the
longitudinal and transverse directions can be obtained as follows:

qsl ¼
Z z0þh

z0

ulC dz; qsr ¼
Z z0þh

z0

v rC dz; ð18Þ

where qsl and qsr are the suspended sediment transport rates in the
longitudinal and transverse directions, respectively. Because the
Cartesian coordinates are used in this model, the longitudinal and
transverse components of the suspended sediment transport rate
were transformed into the x and y Cartesian coordinate components
according to Eq. (11).

4. Channel deformation algorithm

4.1. Bed-elevation changes

To simulate channel bed degradation or aggradation, the bed-
load transport rate is linked with the mass conservation equation.
The sediment continuity equation is then used for calculating bed-
elevation changes as follows:

ð1� pÞ @zb

@t
þ @ðqbx þ qsxÞ

@x
þ
@ðqby þ qsyÞ

@y
¼ 0 ð19Þ

where p is porosity of bed and bank material; zb is bed elevation;
qbx and qby are components of bed-load transport rate in the x and
y directions, respectively; and qsx and qsy are components of total
suspended loads in the x and y directions, respectively.

4.2. Bank erosion

Bank erosion consists of two interactive physical processes: ba-
sal erosion and bank failure (Osman and Thorne, 1988). Basal ero-
sion refers to the fluvial entrainment of bank material removal by
the near-bed hydrodynamic forces. Bank failure occurs due to geo-
technical instability (e.g., planar failure, rotational failure, sapping,
or piping). The present model separates the calculation of bank
erosion and the advance and retreat of bank lines. Sediment from
basal erosion is calculated by using an analytical approach derived
in Duan et al. (2001) and Duan (2005). Mass wasting from bank
failure is calculated using the parallel bank-failure model for
non-cohesive bank material.

4.3. Basal erosion

The depth-averaged bank erosion rate is the difference between
the entrainment and deposition of bank material calculated by Eq.
(20) and (21) derived in Duan (2005).
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Fig. 2. Channel bankline adjustment algorithm after bank erosion.
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n ¼ E 1� sbc

sb0

� �3
2 ffiffiffiffiffiffiffi

sb0
p

ð20Þ

n is the depth-averaged bank erosion rate due to hydraulic force, sbc

and sb0 are the critical shearing stress of bank material and the ac-
tual bed-shear stress at the bank toe, respectively; and E is the ero-
sion coefficient with a unit of ðm3=kgÞ1=2 in SI system, which relates
to the averaged bank angle, coefficient of lift force, the depth-aver-
aged and equilibrium concentration of suspended sediment, which
is calculated as

E ¼ sin d

ffiffiffiffiffiffiffiffi
C 0L

3qs

s
1� C

C�
cos d

� �
ð21Þ

where d is the averaged bank slope angle; C0L is the lift coefficient
obtained as C0L ¼ CLln2ð0:35d=ksÞ=j2; in which CL ¼ 0:178, a con-
stant for turbulent flow, j is von-Karman constant, and ks is the
roughness height equal to the mean size of sand grain (Chien and
Wan, 1991); qs is the density of sediment particles; C and C� are
the depth-averaged and equilibrium concentrations of suspended
sediment, respectively; The mass volume contributing to the main
channel from basal erosion can be calculated as follows:

qb
br ¼

nð1� pÞhb

sin d
ð22Þ

where qb
br is the net volume of sediment contributed to the main

channel from bank erosion and hb is the flow depth at the near-bank
region. To account for porosity p in the bank material, the factor
1� p is multiplied. If n ¼ 0; the riverbank is not undergoing erosion,
so the near-bank, suspended sediment concentration reaches the
value of equilibrium. The term sin d converts the distance of bank
erosion to the volumetric net bank material from basal erosion.

4.4. Mass failure for non-cohesive bank material

Pizzuto (1990) derived and applied a slumping bank-failure
model for non-cohesive bank material, which was later modified
by Nagata et al. (2000). Fluvial erosion degrades the channel bed
and destabilizes the upper bank until the bank angle exceeds the
angle of repose for bank material. The slumping bank-failure model
requires the bank-failure surface to be inclined at the angle of re-
pose projected to the floodplain. In the present study, the slumping
bank-failure model was combined with the parallel retreat method
that assumes the newly formed bank surface after bank failure is
always parallel to the old surface (Chen and Duan, 2008). It as-
sumes that mass wasting from bank failure is the product of the
rate of basal erosion and height of bank surface above the water
surface. Therefore, the amount of bank material from mass failure
is calculated as follows:

qf
br ¼ nDhbankð1� pÞ ð23Þ

where qf
br is sediment material eroded per unit channel length from

bank failure, and Dhbank is bank height above the water surface.

4.5. Advance and retreat of bank lines

Meandering migration consists of the retreat of concave banks
and advances of convex banks. Bank erosion causes bankline re-
treat. Advance is caused by the sediment deposition near the bank.
The deposited sediment can be supplied from eroded bank or bed
material transported from the upstream region. A bank retreats as
the material is transported away by flow. Predicting bank advance
or retreat is based on a balance (or mass conservation) of the sed-
iment in a control volume near the bank, including sediment from
bank erosion and failure, sediment stored on the bed due to depo-
sition, and sediment fluxes transported in and out of the control
volume. The rate of bank advance or retreat shown in Fig. 1 can
be calculated as follows (Duan et al., 2001; Duan and Julien, 2005):

e ¼ �

@ql

@l
dr
2
þ qr � qbr

� �
hb

ð24Þ

where e is the bank migration rate (if the bank advances, e > 0; if
the bank retreats, e < 0; if the bank is unchanged, e ¼ 0); dr is de-
fined as the width of the control volume nearest to the edge of
the bank; hb is the near-bank flow depth; ql and qr are the total sed-
iment transport rates in the longitudinal and transverse directions,
respectively; and qbr ¼ qb

br þ qf
br is the transversse component of the

sediment transport rate at the near-bank region as a result of bank
erosion. Under the assumption of a triangular cross section of the
boundary element, dr in Eq. (24) is the width of the control volume
adjacent to the bank shown in Fig. 1. We can reason from Eq. (24)
that the bank retreats when the net longitudinal sediment transport
rate is increased or the sediment is transported away from the
banks in the transverse direction or a net amount of sediment mate-
rials are carried out of a control volume near the bank. Conversely, if
the net sediment transported to the control volume is positive, the
bank will advance.

4.6. Mesh adjustment algorithm

Since the boundary of the computation domain is changing, the
mesh has to be adjusted from time to time. Fig. 2a showed the
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algorithm of mesh adjustment. The dynamic mesh traces the
boundary of the meandering channel and matches the computa-
tional domain to the new channel. The new mesh for the next time
step is equally spaced along the banks, and it is also equally spaced
in the transverse direction.

In Fig. 2b, open dots are the old boundary nodes. Solid dots are
the boundary nodes after banks are moved according to the erosion
distance. Solid dots are the boundary nodes after a mesh adjust-
ment. In this figure, node A retreats, and node B advances. The
old cross section AB is moved to A’B’ after bank erosion. Assuming
channel width remains unchanged during meandering process,
bank retreat at one side of channel should be equal to the advance
Flow Direction 

Bend  #1 

Bend  #2 

A 

A’ 

A 

A’ 

A 

A’ 

Fig. 3. Numerical simulation of the topograp
at the other side of channel. In the present channel meandering
simulations, the bank erosion rate is the average of the absolute
values of these rates at both banks of the channel because a con-
stant channel width is assumed.

The new centerline is obtained by connecting the centers of
each new cross section. The new centerline may be a little longer
or shorter than the previous one due to the deformation of mean-
dering loops. Since no additional nodes are added or deleted during
computation, the position of each cross section should be relocated
in order to obtain a mesh for a better computational accuracy and
efficiency. The new centerline is equally divided, and the center of
each cross section is re-determined. In case of a high erosion rate,
T=0.0 

T=1.5 hrs 

T=6.0 hrs 

T= 12.0 hrs 

T= 20 hrs 

T= 32 hrs 

Bend  #3 

hic evolution of a meandering channel.
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the time step of bank erosion has to be reduced. The adjusted cross
section A0B0 must be normal to the new centerline, and has a width
of the initial channel width AB. Then, at each cross section, compu-
tational nodes along the transverse direction are uniformly distrib-
uted. The adjusted mesh has the same computational domain as
the previous one, even though the positions of cross sections and
computational nodes have been relocated in the physical domain.
Each new cross section of the adjusted mesh is normal to the
new centerline, and computational nodes are uniformly distrib-
uted along the transverse direction.

After the mesh adjustment, the flow field needs to be recalculated
for a certain time to achieve the steady state for the new channel.
This entire process is repeated for each new morphological time-
step until the simulation is completed at the final time step specified.

5. Meandering channel deformation results

The evolution of a sine-generated meandering channel was sim-
ulated to test the capabilities of the developed model. The experi-
ment was conducted in a physical model by da Silva (1995) in a
sine-generated channel with an initial angle of 30�. Flow discharge
T=1.5 hrs 

T=12.0 hrs

T= 32 hrs 

Fig. 4. Longitudinal bed-elevation ch
is 2.10 l/s, width of the channel is 0.4 m, and total length of the sim-
ulated channel is 7.29 m. The bed and bank are assumed to be erod-
ible and are composed of the same coarse sand d50 ¼ 0:45 mm, and
the channel width is constant. The new simulated channel bound-
ary was plotted over the older boundaries in Fig. 3 to illustrate the
complicated motions of meandering loops. The evolution of the
bed topography resulting from development of the meandering
channel is plotted in Fig. 3, where the alternate bar and pool form
is shown clearly in the channel. From Fig. 3, it is also obvious that
downstream and upstream translation, lateral extension, upstream
and downstream rotation, and enlargement of the meandering
channel, as well as the combination of these movements, are cap-
tured in the current model. The bed elevations at the center of the
channel and near the left and right banks at different times are
shown in Fig. 4. At the beginning, the height of sand bars increases
as the meandering channel evolves. As time progresses, the sand
bar gradually migrates downstream with the increasing amplitude
and wavelength of the meandering channel. The changes of a typ-
ical cross section, Section A–A in Bend #2, was shown in Fig. 5 in
which the main channel shifts to the left bank as the sand bars
grow at the right bank.
T=6.0 hrs 

T=20 hrs

anges along the channel length.



Fig. 5. Cross sectional changes as sand bars grow in the convex banks.
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Neither laboratory experiments nor field measurements are
able to record through real-time measurements the detailed his-
tory of meandering channel evolution. By contrast, a numerical
model can record the planform evolution changes of meandering
channels, as well as the flow topography and momentum, at each
time step. Therefore, the simulated entire evolutionary process
was divided into five phases according to the characteristic
changes in meandering planform geometry.

1. At the early stage, a near-straight channel migrates rapidly in
the downstream direction.

2. As sinuosity increases, downstream translation diminishes and
meandering loops expand laterally in the second stage.

3. When sinuosity is sufficiently large, the rate of downstream
migration reduces and the planform geometry remains essen-
tially unchanged for some time.

4. Meandering loops migrate in the upstream direction and con-
tinue to expand laterally.

5. As channel sinuosity continues increasing, the meandering
loops begin to rotate until reaching a sinuosity about 3.7. Con-
sequently, a neck cutoff will be formed.

Similar meandering planforms can be found in natural freely
meandering rivers. Fig. 6 showed five reaches of a free meander-
ing river in Tanana Valley State Forest near Nenana City at
(64.731952, �149.974365) in Alaska from Google Earth. Five
reaches closely match five stages of meandering evolutions in
Fig. 3, which indicated different reaches of this river are at var-
ious stages of meandering evolution. At stages 4 and 5, bifurca-
tion occurred that will further complicate the meandering
evolution process. The current model version cannot simulate
the process of a neck cutoff. Correlations between the rate of
bank erosion with flow momentum and bed elevations at differ-
ent stages of meandering evolution are described in the follow-
ing sections. In the following sub-sections, each phase of the
channel development process is illustrated with changes in bed
elevation and with the corresponding distribution of momentum
over the reach.

5.1. Phase 1: downstream migration

This phase is characterized by downstream translation and
slight rotation of meandering loops. Fig. 7a and b is the bed topog-
raphy and the momentum distribution of the initial sine-generated
meandering channel, respectively. Fig. 8a shows that the meanders
migrate downstream when channel sinuosity is low (less than 1.4).
The head of the first meandering (bend #1) loop slightly rotates
downstream until sinuosity reaches 1.4. As the meandering loop
migrates downstream, large sediment deposits or point bars
(marked in red) shown in Fig. 8a emerge on the convex bank near
the apex. They expand almost symmetrically to the apex with a
slight rotation in the downstream direction. Fig. 8b shows the dis-
tribution of flow momentum, or unit discharge defined as the
product of velocity and depth, in shaded colors. This figure shows
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Fig. 6. One free meandering river in Tanana Valley State forest near Nenana City, Alaska.
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Fig. 7. Initial sine-generated meandering channel (black T = 0 h).

(a) Bed elevation (m) Flow momentum (m2/s) 

Flow Direction 
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Momentum Transition

Maximum 
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Fig. 8. First phase of downstream meandering migration (black, T = 1.5 h, purple T = 0 h). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.).
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that the maximum momentum zone resides near the convex bank
in the region upstream of the apex pointed by the blue arrow. Sand
bars form where flow momentum is reducing in the downstream
region of the apex. The location where the maximum momentum
shifts from the convex bank (or the inner bank) to the concave
bank (or the outer bank), hereafter is called the momentum transi-
tion zone, occurs slightly downstream from the apex as shown in
the first bend (marked in a blue ellipse).
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Fig. 9. Second stage of lateral expansion (black T = 6.0 h, purple T = 1.5 h). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.).
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5.2. Phase 2: lateral extension

Fig. 9a shows the evolution of bed topography especially the
growth of point bars during the processes of lateral expansion.
When channel sinuosity is larger than 1.4, downstream migration
reduces, while lateral extension increases appreciably at both the
second and the third bend. When meandering loops extend later-
ally, the head of the loop slightly rotates in the upstream direction
at the second bend and in the downstream direction at the third
bend. As a consequence, sand bars expand laterally while tilting
to the downstream or upstream directions that correspond with
the directions of head rotations. Changes in distribution of flow
momentum shown in Fig. 9b explain why the lateral expansion re-
places downstream translation during this second phase. Sand bars
form where flow decelerates and flow momentum begins to de-
crease. On the concave bank, the maximum momentum zone
(pointed by a blue arrow) resides close to the inflection point at
the second bend, while it is located upstream of the inflection point
at the third bend. Therefore, in the second bend, flow is accelerat-
ing at the concave bank until reaching the maximum momentum
at the inflection point. This flow acceleration will cause bank ero-
sion. This acceleration zone also exists at the concave bank in the
third bend, but has a shorter length than that in the second bend.
This distribution results in a longer reach subject to bank erosion
due to flow acceleration on the concave bank in the second bend
that perhaps drives the head rotates toward the upstream. Conse-
quently, the second bend rotates towards upstream, but the third
bend towards the downstream.
(a)

Flow Direction 

Bend  #3 

(b)

Fig. 10. Third stage of meandering migration of quasi-equilibrium (black T = 20 h, purp
reader is referred to the web version of this article.).
On the other hand, at the second bend, the meandering loop ro-
tates in the upstream direction when the momentum transition
zone is located at the immediate upstream region of the apex. At
the third bend, the meandering loop rotates in the downstream
direction as it extends laterally where the momentum transition
zone is located at the downstream of the apex. Therefore, the loca-
tion of the flow momentum transition determines whether the
head of a meandering loop is rotating downstream or upstream
as it migrates downstream and extends laterally. Not only the
geometry of the meandering planform but also the topographic
features (e.g., point bars) affect the redistributions of flow momen-
tum in meandering channels. Without the formation of point bars,
the maximum flow momentum always resides close to the inner
banks (Fig. 7b), so that meandering channels will not evolve into
high-sinuous meandering channels (Chen and Duan, 2006). The
point bar formation redistributes flow momentum and causes
the momentum transition zone shift to near the apex. As a result,
the migration of meandering channels is dominated by the forma-
tion of point bars, as well as by the evolution of meandering plan-
forms. The sinuosity of a meandering loop is about 2.0 in this
phase.

5.3. Phase 3: quasi-equilibrium

A quasi-equilibrium meander in Fig. 10a indicates that the plan-
form geometry of the meander loop remains almost unchanged
when the meandering loop has a sinuosity of 2.0. During this
phase, the rate of lateral bank erosion is negligible, and therefore
Bend  #3 

Momentum Transition

Maximum 
Momentum

le T = 12 h). (For interpretation of the references to color in this figure legend, the
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the planform of the meandering loop does not change for about
8 h. Fig. 10a shows a nearly symmetrical meandering loop, and
the transition reach in the upstream and downstream regions of
the bend is perpendicular to the flow centerline at the apex. Addi-
tionally, the point bars continue to grow at a slow rate, and the
growth of sand bars is almost symmetrical with respect to the
apex. Fig. 10b shows that the flow momentum is lower and more
uniformly distributed than in the first two phases. The maximum
flow momentum is located near the convex bank close to the cross-
ing and then move towards the apex of the meander bend as
meandering evolves (Fig. 11b). Because of the symmetrical mean-
dering planform and size and geometric location of sand bars,
the migration rate of this meandering planform is almost zero
although point bars continue to grow and the distribution of flow
momentum continues to change slowly.
5.4. Phase 4: upstream migration

As point bars grow larger (Fig. 11a), the maximum flow
momentum zone in the upstream half of the bend shifts toward
the apex, while the maximum flow momentum zone in the down-
stream half of the bend moves past the crossing (Fig. 11b). Since
flow momentum in the downstream half of the bend is larger than
(a) Bed elevation (m) 

Flow Direction 

Bend  #3 

(b

Fig. 11. Fourth stage of upstream meandering migration (black T = 26 h, purple T = 20 h
referred to the web version of this article.)

(a)

Flow Direction 

Bed elevation (m) 

Bend  #3 

(b

Fig. 12. Fifth stage of rotation and meandering
in the upstream half, the entire meandering loop begins to migrate
in the upstream direction. The purple line in Fig. 11b denotes the
channel boundaries at T = 20 h, and the black line denotes the
channel boundaries at T = 26 h. The meandering loop also expands
laterally as it migrates in the upstream direction. Since the maxi-
mum momentum zones reside near the crossing and the momen-
tum transition zone is located almost at the apex, the meandering
loop remains symmetrical as it migrates in the upstream direction.
Although no upstream or downstream rotation is observed, the
neck of the meandering loop becomes narrow, which indicates that
the rate of migration at the downstream crossing is greater than at
the upstream crossing.
5.5. Phase 5: meandering channel rotation

As soon as the maximum momentum zone shifts toward the
apex, the momentum transition zone moves to the downstream re-
gion of the apex (Fig. 12b). Therefore, the head of the meandering
loop begins to rotate in the downstream direction, and its migra-
tion rate in the upstream direction begins to reduce. Fig. 12a shows
that asymmetrical point bars are starting to develop with a lobate
feature pointed in the downstream direction. The purple lines in
Fig. 12b are the boundaries of the meandering channels at
Flow momentum (m2/s) 

Bend  #3 

Momentum Transition

Maximum 
Momentum

)

). (For interpretation of the references to color in this figure legend, the reader is

Bend  #3 

Flow momentum (m2/s) 

Momentum Transition

Maximum 
Momentum

)

migration (black T = 32 h, black T = 26 h).
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T = 26 h, while the black lines are the boundaries at T = 32 h. Notice
that these features take a long time to develop compared to Phases
1 and 2. This is because the sinuosity is very high and the momen-
tum is much lower than in Phases 1 and 2. Since the crossing reach
in the downstream half of the bend migrates upstream faster than
that in the upstream reach and because the head of meandering
loop rotates in the upstream direction, a goose-neck shaped mean-
dering loop is formed. This goose-neck shaped meandering loop is
a very common planform in natural meandering streams where
some bends have a head in the upstream direction and some have
a head in the downstream direction. It has been observed that 40%
of Mississippi River bends have their heads toward the down-
stream direction and 60% toward the upstream direction (Larsen,
1995). Whether the head of the meandering loop is upstream or
downstream depends on the location of flow momentum transi-
tion zones. This simulation through the present study indicates
that if the momentum transition zone is located exactly at the
apex, the meandering loop will expand only laterally. However, if
the momentum transition zone is located immediately upstream
from the apex, the meandering loop will migrate and rotate in
the upstream direction. Otherwise, the meandering loop will mi-
grate and rotate in the downstream direction.

In summary, the evolution of a meandering channel begins with
downstream translation and is followed with lateral expansion,
and upstream/downstream rotation before it reaches a quasi-sta-
ble state where sinuosity is approximately 2.0. The quasi-stable
meandering planform has a minimum bank erosion rate, and the
meandering planform is almost symmetrical with respect to the
apex. When sinuosity in a meandering channel slowly continues
to increases, the quasi-steady meandering planform migrates in
the upstream direction and continuously expands laterally. The
upstream migration rate eventually decreases and the head of
the meandering loop rotates in the downstream direction. A
goose-neck shaped meandering loop is formed at end of the
simulation.

This evolution process of the meandering planform geometry is
closely linked to the distribution of flow momentum, especially at
the location where the maximum flow momentum zone shifts
from one bank to the other. The simulated results indicate that
the location where the maximum momentum zone shifts from
the convex to the concave bank in a meandering channel varies
with strength in the secondary current, which is induced by the
curvature of meanders and the transverse bed slope due to the
development and expansion of sand bars. Laboratory experiments
(Friedkin, 1945; Schumm et al., 1987) have also shown that a
meandering channel can evolve from a mildly curved channel to
a highly sinuous channel. As soon as a sinuous channel develops,
the transverse slope appears with the accompanying formation of
sand bars. The core of the maximum momentum zone moves to
the center and then to the concave bank due to the increased cur-
vature and topographically induced secondary flow. This influence
of topographically induced secondary flow is believed to be at least
as important as secondary flow induced by curvature (Hooke,
1975; Dietrich and Smith, 1983; Dietrich and Whiting, 1989; Nel-
son and Smith, 1989).

Natural meandering channels have different planform configu-
rations and various types of sand bars (e.g., point bars, multiple
bars). The location of the maximum momentum zones and the
transitions of momentum from convex or concave banks may oc-
cur anywhere within a meandering bend. This momentum shift
determines if the evolution of a meandering channel is down-
stream/upstream translation, lateral expansion, upstream/down-
stream rotation, or any combination of these motions. The
presence of developed sand bars near the convex bank in highly
sinuous channels causes a large transverse slope, which facilitates
the shift of the maximum shear stress zone to the concave bank.
6. Discussion

The computational modeling results of meandering migration
processes indicated that it is feasible to use a depth-averaged,
two-dimensional model to simulate the hydrodynamic flow field,
sediment transport, bank erosion, and consequently meandering
evolution processes. Although the hydrodynamic flow field in
meandering channels is highly three-dimensional, the dispersion
terms in momentum equations arising from the secondary flow
can be included to compensate this effect (Duan, 2004). Natural
meandering rivers often have variable widths, and the unsteady
flow during storm events is usually the driving mechanism of
meandering evolution. This requires a robust numerical scheme
that can capture rapidly varied floodwaves. The upwinding shape
functions for the efficient element method (Duan et al., 2001;
Duan, 2004) adopted in this model is not capable of simulating
unsteady flow, which limits the applicability of the current ver-
sion to steady or quasi-unsteady flows. Besides since the morpho-
logic processes of meandering rivers involves continuous changes
of flow paths due to bank erosion and point bar formations, the
numerical scheme must incorporate an algorithm for handling
alterations of dry and wet nodes. Otherwise, a constant width
assumption is needed to confine the simulation domain to the
wet nodes.

Additionally, the cutoff of meandering bends is an important
feature in meandering evolution, which can be simulated by using
an adjustable mesh. Available finite element and finite volume
methods have limitations when applying to rapidly changing un-
steady flow under complex geometries (Toro and Chakraborty,
1994; Toro and Garcia-Navarro, 2007). Future research on robust
numerical schemes, such as the high-order WENO scheme, is
needed to extend the models’ capability to real life natural rivers.
7. Conclusions

The present two-dimensional numerical model incorporates
physically-based bank erosion model components into a depth-
averaged flow model with bed load and suspended sediment trans-
port to simulate the processes of meandering evolution. A very
important aspect of this model is that bank erosion does not guar-
antee the retreat of a bank line if eroded bank material remains at
the toe of the bank. Whether or not a bank retreats or advances de-
pends on the balance of sediment load near the banks where sed-
iment may be transported both in the downstream direction and
also laterally due to secondary flows.

The primary conclusions of this study are: (1) this 2D numerical
model clearly demonstrates the evolution of meandering channels
from low to high sinuosity; (2) the growth of point bars affects the
distribution of shear stress, secondary currents and flow momen-
tum; and (3) the model properly simulates the various modes of
deformation of meandering channels, such as downstream and up-
stream migration, lateral extension and rotation of meander bends.
The essential processes leading to formation of meandering chan-
nels are well replicated with this model. The modeling results con-
tributed to better understanding of the processes associated with
lateral channel migration, as well as aids in explaining the forma-
tion of river meanders.
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