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Abstract Particle-driven gravity currents frequently occur in nature, for instance as turbid-
ity currents in reservoirs. They are produced by the buoyant forces between fluids of different
density and can introduce sediments and pollutants into water bodies. In this study, the prop-
agation dynamics of gravity currents is investigated using the FLOW-3D computational fluid
dynamics code. The performance of the numerical model using two different turbulence clo-
sure schemes namely the renormalization group (RNG) k–ε scheme in a Reynold-averaged
Navier-Stokes framework (RANS) and the large-eddy simulation (LES) technique using the
Smagorinsky scheme, were compared with laboratory experiments. The numerical simula-
tions focus on two different types of density flows from laboratory experiments namely:
Intrusive Gravity Currents (IGC) and Particle-Driven Gravity Currents (PDGC). The simu-
lated evolution profiles and propagation speeds are compared with laboratory experiments and
analytical solutions. The numerical model shows good quantitative agreement for predicting
the temporal and spatial evolution of intrusive gravity currents. In particular, the simulated
propagation speeds are in excellent agreement with experimental results. The simulation
results do not show any considerable discrepancies between RNG k–ε and LES closure
schemes. The FLOW-3D model coupled with a particle dynamics algorithm successfully
captured the decreasing propagation speeds of PDGC due to settling of sediment particles.
The simulation results show that the ratio of transported to initial concentration Co/Ci by
the gravity current varies as a function of the particle diameter ds . We classify the transport
pattern by PDGC into three regimes: (1) a suspended regime (ds is less than about 16 µm)
where the effect of particle deposition rate on the propagation dynamics of gravity currents
is negligible i.e. such flows behave like homogeneous fluids (IGC); (2) a mixed regime (16
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µm < ds < 40 µm) where deposition rates significantly change the flow dynamics; and (3) a
deposition regime (ds > 40 µm) where the PDGC rapidly loses its forward momentum due to
fast deposition. The present work highlights the potential of the RANS simulation technique
using the RNG k–ε turbulence closure scheme for field scale investigation of particle-driven
gravity currents.

Keywords Gravity currents · Density currents · Buoyant forces · Computational fluid
dynamics (CFD) · Lock-exchange flows · Particle settling · Environmental fluid mechanics

1 Introduction

Many kinds of gravity currents, produced by the density difference between different flu-
ids, are observed in nature. They are also known as “density currents” or “buoyancy-driven
currents”. The density differences generally arise due to temperature variations, dissolved
material or suspended solids [37,41]. Thus, the formation and evolution of gravity currents
are influenced by various natural conditions. In water environments, saline intrusions or oil
spills in the oceans, turbid water intrusions in a lake, and suspended sediment plumes in a
river are good examples. They frequently introduce harmful pollutants into the water bodies
[8], and thus an understanding of their dynamics and prediction of their fate are crucial for
managing water quality.

The field investigation of gravity currents is usually very difficult due to their complicated
and unexpected occurrence characteristic. On the other hand, scaled laboratory experiments
have been widely used to elucidate the dynamics of gravity currents. Many studies have
investigated various aspects of gravity currents using lock-exchange experiments. In some
of the earlier experiments, gravity currents were commonly generated by releasing dense
fluid ρd into uniform ambient fluid ρa [17,24,28,36]. In such a case, the gravity current
will propagate along the bottom surface and is referred to as a Bottom Boundary Gravity
Current (hereafter called BBGC, see Fig. 1). Benjamin [3] suggested that for energy-con-
serving flows, Ud = 0.5

√
g′ H where Ud is the propagation speed of a gravity current,

g′ = g(ρd − ρa)/ρa is the reduced gravity, and H is the total water depth in a tank. The
experiments of Keulegan [24] determined that the equation for initial velocity was given by
Ud = 0.462

√
g′ H . Von Kármán [43] derived a theoretical formula for the propagation speed

of a BBGC based on the Bernoulli equation assuming an ideal fluid and irrotational flow.
This is given by Ud = 1.41

√
g′hd , where hd is the height of a gravity current.

When there is an ambient two-layered fluid system and the density of the lock fluid is
equal to the average of the densities of the two ambient fluids (see Fig. 2), the gravity cur-
rent will propagate along the interface between the upper and the lower fluid layers and is
commonly referred to an Intrusive Gravity Current (hereafter called IGC). The dynamics
of IGC propagating into a two-layer fluid was investigated experimentally [4,11,22,34,39].

Fig. 1 Sketch of lock-exchange
experiment for a bottom
boundary gravity current (BBGC)
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Fig. 2 Sketch of lock-exchange experiment for an intrusive gravity current (IGC)

Lowe et al. [26] derived analytical solutions for propagation speeds based on the analysis
of Holyer and Huppert [22] and Rooij et al. [34]. They applied Bernoulli’s principle along
streamlines assuming the flow to be energy-conserving. For the energy-conserving grav-
ity current with a small density difference between the upper and lower fluids and with
ρd = (ρo + ρ1)/2, they determined that Ud = 0.5

√
g′

o H/2, where g′
o = 0.5g(ρ1 − ρo)/ρo.

For defining more complicated types of flow in a two-layer fluid, three dimensionless param-
eters (ε, σ,Δ) were introduced in Sutherland et al. [39]. The dimensionless parameter ε is
defined as the relative density difference between the gravity current and ambient fluid lay-
ers, given by ε = (ρd − ρ̄)/(ρ1 − ρo). Here, the depth-weighted average density is ρ̄ =
(ρoho + ρ1h1)/H and ρd is the density of fluid in the lock. Therefore, the experiments with
ε= 0 correspond to cases in which the density of the lock fluid is equal to the depth-weighted
average density of the upper and lower layers (ρd = ρ̄). Another parameter σ is used to
characterize the relative density difference between the upper and lower layers, defined as
σ = (ρ1 − ρo)/ρo. The relative depth of the upper and lower layer ambient fluids compared
with the total depth is characterized with the parameter Δ = (ho − h1)/H . For example,
experiments with Δ = 0 correspond to cases in which the upper and lower layers have equal
depth. Holyer and Huppert [22] extended the theory derived by Benjamin [3] to describe the
dynamics of interfacial gravity currents. Sutherland et al. [39] adapted the theory of Holyer
and Huppert [22] to develop an empirical prediction for propagation speed. They defined the
symmetric degree of intrusion into a two-layer fluid using ε and Δ. When the fluid density
contained behind the lock gate is equal to the depth-weighted average densities of the ambient
two layer fluid, the intrusive gravity current is regarded as a symmetrical flow, ε = 0. A more
symmetrical intrusive gravity current occurs when both ε and Δ = 0, while asymmetrical
cases occur when ε �= 0. For ε and Δ = 0, the equation for the propagation speed can be
simplified to Ud/

√
gσ H � 0.25. This is identical to the formula of Lowe et al. [26]. For

the symmetrical cases, the experiments of Sutherland et al. [39] showed excellent agreement
with theoretical analysis while highlighting that the role of interfacial waves were negligible
(i.e. the interface in front of the intrusion remains stable and undisturbed).

In the last decade, Computational Fluid Dynamics (CFD) has increasingly been used to
investigate gravity currents and has resulted in better understanding of their dynamics. Härtel
et al. [18] investigated lock-exchange flows in an infinite channel using Direct Numerical
Simulations (DNS). Their simulations successfully reproduced the formation of the lobe and
cleft instability that occurs at the head of a gravity current. Fringer et al. [13] presented numer-
ical results of lock-exchange gravity currents using the SUNTANS model and discussed the
difference between hydrostatic and non-hydrostatic simulation results. They showed that the
hydrostatic simulation can not capture the formation of the Kelvin–Helmholtz billows and
does not reproduce the propagation speed correctly. In contrast the non-hydrostatic simula-
tion captured both the propagation speed and the Kelvin–Helmholtz billows correctly. Ooi
et al. [30] studied qualitative and quantitative aspects of the dynamics of gravity currents
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using Large Eddy Simulation (LES). Their model was validated using the results of Härtel
et al. [18] and showed very good agreement of propagation speeds. In nature, gravity cur-
rents can be produced by an increased bulk density due to suspended particles. In particular,
during a severe flood event, gravity currents in rivers or lakes are usually induced by high sus-
pended sediment loads from watersheds, and are known as “Particle-Driven Gravity Currents
(PDGC) or turbidity currents”. PDGC are very important in many environmental flows due to
their influence on water quality [2]. Turner [40] theoretically derived the governing equations
for slowly varying gravity currents on a slope. These governing equations were modified by
Parker et al. [31] in order to add the effects of resuspension from the erodible bed. They pro-
posed an empirical relation, coupled with a simplified integral model to compute the erosion
and deposition of the bottom boundary during passage of PDGC. Altinakar et al. [1] carried
out laboratory experiments with various slopes and particle diameters. They found that the
deposition rate of sediments is related to the propagation speed and the thickness of PDGC.
However, the application of such theoretical approaches and/or integral models to PDGC
requires empirical data from extensive laboratory experiments for verification and validation.

In this regard, numerical models are attractive, since once validated, they can be used to
perform parametric studies in order to gain insights on the dynamics of PDGC. However,
numerical prediction of PDGC is more complex than that of homogeneous gravity currents
because the buoyancy flux of PDGC varies both temporally and spatially depending on how
particles move in turbulent flows (due to advection, settling and resuspension). This makes
CFD simulations of PDGC quite challenging and interesting [5,7,23,42]. Necker et al. [29]
presented high-resolution simulations of density currents and extended their work to include
resuspending PDGC. De Cesare et al. [9] used a 3-D numerical model to account for the
sediment transport and deposition in a reservoir by PDGC to study volume reduction in res-
ervoirs. Chung et al. [8] employed the Estuary Lake and Coastal Ocean Model (ELCOM) for
simulations of hydrodynamic processes, coupled with the Computational Aquatic Ecosystem
DYnamics Model (CAEDYM) to simulate the particle dynamics. Heimsund [19] evaluated
the usefulness of FLOW-3D in order to simulate turbidity currents on deep-sea floors and
found good agreement between simulation and laboratory experimental results. Georgoulas
et al. [14] presented 3-D simulations of turbidity currents using the commercial code FLU-
ENT using the RNG k–ε turbulence model [44]. They employed a multi-phase numerical
approach which provides separate velocity fields for each phase (water phase and sediment
phase). De Cesare et al. [10] used CFX-4 model coupled with an erosion-deposition model
to evaluate the impact of turbidity currents on water quality of Lake Lugano.

The objective of the present study is to explore the dynamics of IGC and PDGC using
the 3-D non-hydrostatic FLOW-3D CFD code [12] and hence demonstrate the applicability
of the code for studying PDGC at the field scale. We are able to simulate IGC and PDGC
consisting of different particle sizes by incorporating a particle dynamics algorithm into the
code. The ability of the numerical model to predict various important dynamics of IGC and
PDGC such as propagation speed, intrusion height and thickness, and the effect of particle
sizes on propagation speed is justified by comparing numerical results with laboratory exper-
iments in literature [16,39]. In Sect. 2, we provide a brief description for the computational
approach we employ for this study. An overview of the problem set-up and a summary of all
the simulation cases are described in Sect. 3. We then present and discuss simulation results
in Sect. 4. In the first part of the Sect. 4, we present the results and analysis of IGC simula-
tions. In the second part of the Sect. 4, we present novel results from a series of numerical
simulations of PDGC to highlight the effects of different particle settling rates on propagation
speeds. The numerical predictions are compared with lock-exchange experiments [16], as
shown in Fig. 3. We finally draw some conclusions in Sect. 5.
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Fig. 3 Sketch of lock-exchange experiment for a particle-driven gravity current (PDGC)

2 Numerical methodology

2.1 Overview of FLOW-3D code

We employ the FLOW-3D CFD code to both examine how well the model captures the
dynamics of gravity currents as well gain insights on PDGC. FLOW-3D is a commercial
code capable of fluid-boundary tracking and resolves fluid-fluid and fluid-air interfaces using
highly-resolved structured meshes. The model provides transient, 3-D numerical solutions
to multi-scale, multi-physics flow problems. It is ideally suited for free-surface flows since it
exploits the highly accurate improved Volume of Fluid (VOF) technique [21] to predict the
free surface. In addition to the VOF technique, the structured FAVOR(Fractional Area-Vol-
ume Obstacle Representation) method [20] is used to get accurate geometric representations
of complex geometries in the computational domain that is based on rectangular volume
cells. The FAVOR method is also employed to eliminate flow losses, which may result from
using a Cartesian grid system. In general, a Cartesian grid representation of a curved flow
regime can result in considerable numerical flow losses due to a zigzag approximation for
the interface between flow and obstacles. The FAVOR technique eliminates the zigzag direc-
tional changes by smoothly blocking out fractional portions of grid cell faces and volumes.
The model numerically solves the fluid flow governing equations using the finite-volume
approach. In the FAVOR technique, all variables are stored at cell centers except for veloci-
ties which are recorded at cell-faces.

2.2 Governing equations

The model simultaneously solves the 3-D Reynolds-averaged Navier-Stokes (RANS) equa-
tions for fluid flow with the Boussinesq approximation, the conservation of mass equation,
and scalar transport equations. The governing equations are coupled with the equations of
state relating density to temperature, sediment concentration, and sediment particle settling.
A scalar transport equation can be used to compute advection, diffusion, and dispersion of
scalars (e.g. sediment concentration and temperature). These equations are given in tensor
notation by

∂ui

∂t
+ u j

∂ui

∂x j
= − 1

ρr

∂p

∂xi
+ ∂

∂x j

(
ν

∂ui

∂x j
− u′

i u
′
j

)
+ gi

ρ − ρr

ρr
, (1)

∂ui

∂xi
= 0, (2)

∂φ

∂t
+ ∂

∂xi
(uiφ) = ∂

∂xi

(
Γ

∂φ

∂xi
− u′

iφ
′
)

, (3)
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where ui are the mean velocity components in a Cartesian coordinate system (x, y, z); t is
time; ρr is the reference density; p is the total pressure; ν is the fluid kinematic viscosity;
−u′

i u
′
j are Reynolds stresses; g is the gravitational acceleration; φ is the mean scalar; Γ is

the molecular diffusivity of the scalar φ; −u′
iφ

′ is the turbulent fluxes of the scalar φ; and ρ is
density which can be calculated as a function of temperature and concentration. The overbar
(-) implies averaging of fluctuating quantities. Equation (3) is a scalar transport equation
which can be used to solve for the scalar field (e.g. sediment concentration or temperature
etc.) and it is coupled with Eq. (1) only through the buoyancy term with the Boussinesq
approximation.

2.3 Turbulence modeling

Most flows of engineering interest are turbulent which precludes direct numerical solutions
due to prohibitively costly simulations. Hence, RANS simulations are commonly used to
obtain mean flow quantities for engineering applications. However, the RANS formulation
results in additional terms u′

i u
′
j and u′

iφ
′ in Eq. (1) and (3), respectively. The u′

i u
′
j term rep-

resents momentum fluxes induced by the turbulence and can be viewed as additional stress
terms (the so-called Reynolds stresses) that need to be modeled (an in-depth discussion on
turbulence modeling is given in [32]). A common approach to model the Reynolds stresses
is to use the turbulent viscosity hypothesis due to Boussinesq (see [32,35]):

− u′
i u

′
j = νt

(
∂ui

∂x j
+ ∂u j

∂xi

)
− 2

3
kδi j , (4)

where νt is the turbulent (eddy) viscosity, δi j is the Kronecker delta, k is the turbulent kinetic
energy. The uiφ term in Eq. (3) represents the turbulent scalar flux and is given by

− u′
iφ

′ = Γt
∂φ

∂xi
, (5)

where Γt is a turbulent scalar diffusivity defined as Γt = νt/Sct where Sct is the turbulent
Schmidt number, generally determined by laboratory experiments.

In order to close the system of mean flow equations (Eqs. (1) and (3)), a turbulence model is
required. The most common turbulence models in engineering flow analysis are the so called
two-equation eddy viscosity models (e.g. k–ε model). The FLOW-3D code provides several
turbulence closure schemes, including the standard k–ε model, the renormalization-group
(RNG) k–ε model, and the large-eddy simulation (LES) technique. In this study, we use the
RNG k–ε within the RANS framework and the LES technique. In the RNG k–ε model, the
eddy viscosity is given by

νt = cµk2/ε. (6)

In Eq. (6), the turbulent kinetic energy k and its dissipation rate ε are obtained from the
following transport equations.

∂k

∂t
+ u j

∂k

∂x j
= ∂

∂x j

(
νt

σk

∂k

∂x j

)
+ P + G − ε, (7)

∂ε

∂t
+ u j

∂ε

∂x j
= ∂

∂x j

(
νt

σε

∂ε

∂x j

)
+ c1ε

ε

k
(P + c3εG) − c2ε

ε2

k
− Rε, (8)
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where P , G, and R are defined as

P = νt

(
∂ui

∂x j
+ ∂u j

∂xi

)
∂ui

∂x j
, (9)

G = gi

ρr

νt

Sct

∂ρ

∂xi
, (10)

Rε = cµη3(1 − η/ηo)

1 + βη3

ε2

k
, (11)

where cµ=0.085; c1ε=1.42; c2ε=1.83; c3ε=0.2; σk=1.39; σε=1.39; β=0.015; and ηo=4.38
[11,43]. The parameter η is the ratio of the turbulent time scale (k/ε) to the mean strain time
scale S), given by

η = S
k

ε
, (12)

where S = √
2Si j Si j and Si j represents the strain rate tensor given by

Si j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
. (13)

In addition to the RANS simulations, this study presents LES simulations that provide
more detailed information about interfacial turbulence between a gravity current and the
ambient fluid. In the LES technique, large eddies are resolved directly, but small eddies are
modeled using a subgrid-scale turbulence model. For the large eddies, the governing equa-
tions are obtained by filtering them in either Fourier space (wave-number) or physical space.
The subgrid-scale turbulence model adopted in the model is based on the turbulent viscosity
hypothesis analogous to the RANS approach (for details, please see [25,32]). In the subgrid
model, the Reynolds stresses are defined as follows:

τi j = 2
µt

ρ
Si j − 2

3
ρkδi j , (14)

where µt denotes the subgrid-scale turbulent dynamic viscosity. Smagorinsky [38] defined
µt as

µt = ρ(cL)2
√

Si j Si j , (15)

where c is a constant (usually taken to be about 0.2) and L is a length scale defined as the
geometric mean of the grid cell dimensions given by

L = (δxδyδz)1/3. (16)

2.4 Coupling a particle dynamics model with FLOW-3D

General flow situations are approximated using incompressible fluids for engineering appli-
cations, but in some situations, it is important to include the effect of buoyant forces associated
with small density variations. The Flow-3D model provides a solution of the flow, influenced
by buoyant forces, by coupling its incompressible flow solution algorithm with an energy
transport equation and a local evaluation of the density as a function of temperature. We
developed a new particle algorithm which is coupled with the FLOW-3D to simulate the
effect of different particle deposition rates. In the particle dynamic model, the settling veloc-
ities ωs are computed as a function of each particle’s diameter ds and corresponding density
ρs according to Stokes’ law.
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Fig. 4 Schematic of the
concentration change due to
particle deposition in cell
(i, j, k). Ci jk indicates the
concentration in cell (i, j, k)

ωs = gd2
s

18ν

(
ρs − ρw(T )

ρw(T )

)
, (17)

where ρw(T ) is the water density defined as a function of temperature from Gill [15]. The
temporal evolution of the particle field can then be treated in an Eulerian manner using a
turbulent advection-diffusion equation. Thus, Eq. (3) becomes:

∂φ

∂t
+ ∂

∂xi
(uiφ) = ∂

∂xi

(
Γ

∂φ

∂xi
− u′

iφ
′
)

+ ∂

∂z
(ωsφ). (18)

In the computational cell (i, j, k), final density ρn
i jk at time level n is calculated as a

function of temperature and particle concentration as follows:

ρn
i jk = ρw(T )n

i jk

[

1 + (G − 1)
V n

si jk

Vi jk

]

, (19)

where ρw(T )n
i jk is the water density in cell (i, j, k) at temperature T oC; V n

si jk
is the particles

volume in cell (i, j, k), which is updated each time step due to deposition of particles as
shown in Fig. 4; Vi jk is the total fluid volume in cell (i, j, k); and G is the specific gravity of
a particle.

We assumed that the forces induced by particle settling have a negligible influence on the
motion of the fluid phase. Thus, the motion of the fluid phase is solved using the Navier-
Stokes equation without two-way coupling between the particles and the fluid. However, in
order to describe the motion induced by particle-driven buoyant forces, the turbulent advec-
tion-diffusion equation is coupled with the Navier-Stokes equation through the buoyancy
term. Since we are only interested in mixture flows with small mass loadings, the Bous-
sinesq approximation in which the density variations affects only the gravitational term can
be invoked in the Navier-Stokes equation.

3 Problem configuration and simulation cases

In order to use the experimental data for the validation of the numerical model, simula-
tions are performed under conditions that correspond to the laboratory experimental setup in
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Sutherland et al. [39] and Gladstone et al. [16]. The first series of simulation cases are per-
formed to identify the propagation dynamics of IGC. The simulation results of the first series
of simulations are compared with the experimental measurements of Sutherland et al. [39].
The second series of simulations are performed to numerically reproduce the experiments
of Gladstone et al. [16] so as to evaluate the capability of the numerical model to capture
the important aspects of PDGC. Brief description of these series of simulations are provided
next.

3.1 Intrusive gravity currents in a two-layer fluid (IGC)

The model simulation setup is configured to be identical to the experimental dimensions
in Sutherlands experiments (i.e. 197.1 cm long by 17.6 cm wide by 48.5 cm height). The
lock-length (l) behind the gate is fixed at 18.6 cm and the total water depth (H) is set equal
to 20 cm. We selected a total of three simulation cases from the experimental setup [39].
For defining the different simulation cases, we used the dimensionless parameters ε, σ , and
Δ, respectively. In two of the simulation cases (Cases 1 and 2), the density of the lock fluid
is equal to the depth-weighted average of the upper and lower layers (ε = 0, symmetrical
condition). In the first case, the depth of the two layers in the ambient fluids is also equal
(ho = h1) with σ = 0.02. In the second case, the depth of the two layers in the ambient
fluids is not equal (ho �= h1) with σ = 0.02. The third simulation (Case 3) is conducted with
ε �= 0 (asymmetrical condition). Table 1 shows the initial conditions for all the simulations.

The computational domain for the IGC simulations is illustrated in Fig. 5 with the spec-
ified boundary conditions. The computational grid size in the x-, z-directions is chosen to
be 1.0 mm for laterally-averaged simulations. For 3-D simulations, the computational grid is
extended in lateral (y) direction. However, due to computational constraints, a coarser grid

Table 1 Summary of IGC simulation setup

Case # Case name ε Δ H (cm) ho h1 ρ̄ (kg/m3) ρ1 ρo ρd

1 IGC 0 0 20 10 10 1,010 1,020 1,000 1,010

2 IGC 0 0.75 20 17.5 2.5 1,002.5 1,020 1,000 1,002.5

3 IGC 0.625 0.75 20 17.5 2.5 1,002.5 1,020 1,000 1,015

The nondimensional parameters are defined as ε = (ρd − ρ̄)/(ρ1 − ρo), Δ = (ho − h1)/H where ρ̄ =
(ρoho + ρ1h1)/H

Fig. 5 Computational domain depicting the mesh and the boundary conditions for the simulations corre-
sponding to the experimental setup of Sutherland et al. [39]
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Table 2 Initial conditions for the IGC simulation cases

Case no. Mesh block # 1 Mesh block # 2

T ( ◦C) SS (mg/l) ρd (kg/m3) T ( ◦C) SS (upper/lower) ρo/ρ1 ho/h1 (cm/cm)

1 4 16,100 1,010 4 0/32160 1,000/1,020 10/10

2 4 4,050 1,002.5 4 0/32160 1,000/1,020 17.5/2.5

3 4 24,110 1,015 4 0/32160 1,000/1,020 17.5/2.5

size is used in the lateral direction (i.e. Δx = Δz = 1.0 mm and Δy = 30 mm), with a
computational grid comprising of approximately 2.5 million cells. The domain is divided
into two sub-domains using multi-block meshes.

The first mesh block is created in the fluid area filled behind lock gate and the second
mesh block contains the larger sub-domain that contains a receiving fluid (a two-layer fluid).

The wall boundary is specified as non-tangential stress areas with a no-slip condition. At
the walls, k and ε are computed using a logarithmic law of wall function [33], and given by

k = u2∗√
Cµ

, ε = u3∗
κyo

, (20)

where u∗ = shear velocity; κ = von Kármán constant; and yo = the normal distance from the
boundary wall to the location of tangential velocity. At the free surface, no flux conditions
are imposed. For initial conditions in the numerical simulations, the velocity is set to zero
and the density difference for each simulation is developed by adjusting temperature (T )
and adding concentration (suspended sediments concentration SS). The initial conditions for
temperature and concentration for the IGC simulation cases are shown in Table 2.

3.2 Particle-driven gravity currents (PDGC)

The computational domain and setup used in this study correspond to the laboratory exper-
imental setup of Gladstone et al. [16] (i.e. 5.7 m long, 0.2 m wide, and 0.4m water depth).
They carried out a series of experiments using mixtures containing two different diameters of
silicon carbide particle (25 µm and 69 µm). The silicon carbide particles (ρs = 3,217 kg/m3)
were used to create the excess density in the experiments. The concentration of particle sus-
pension was set to be 11.2 kg/m3. Reduced gravitational acceleration (g′) was calculated
to be 0.076 m/s2. We performed a total of 4 simulations (case 4 through 7) to validate the
numerical results with the the experiments of Gladstone et al. [16] as shown in Table 3.
Note, in cases 4 and 7, only one particle size is used for the simulations, while sediment
mixtures comprising two particle sizes are used for the others. Furthermore, additional sim-
ulations with different particle sizes were performed to investigate the dynamics of PDGC
and determine the conditions under which particles settle out of gravity currents.

4 Results and discussion

In this section, we first provide results from IGC simulation cases (cases 1 through 3, shown
in Table 1). Numerical simulations exhibit changes in IGC dynamics in response to changes
in ε and Δ. We also provide physical validation of the numerical model through quantitative
comparisons with analytical solutions and experimental measurements. We then use PDGC
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Table 3 PDGC simulation cases using mixtures comprising of different particle diameters

Case no. Case name T ( ◦C) SS (kg/m3) ρd (kg/m3) ds#1 (69 µm) ds#2 (25 µm) ρa (kg/m3)

4 PDGC 20 11.2 1,005.9 0 % 100 % 998.2

5 PDGC 20 11.2 1,005.9 50 % 50 % 998.2

6 PDGC 20 11.2 1,005.9 80 % 20 % 998.2

7 PDGC 20 11.2 1,005.9 100 % 0 % 998.2

simulations to explore the fate and transport of suspended particles in the flow. Finally, we
present flow regimes, which can vary subject to changes in particle sizes.

4.1 Intrusive gravity currents (IGC, case 1 through 3)

In the first symmetrical case (case 1: ε = 0 and Δ = 0), the simulation snapshots are created
to visualize the temporal evolutions of the intrusive gravity current. The simulation snapshots
are compared with images taken from the laboratory experiments of Sutherland et al. [39]
(see Fig. 6).

The temporal and spatial distributions of concentration are solved using scalar transport
equations. The transported concentration contributes to changes in the density in each of the
computational cells. The molecular diffusivity is neglected and only turbulent diffusivity is
used to account for turbulent mixing effect.

Figure 6 shows that the fluid contained behind the lock gate collapses symmetrically and
propagates along the interface after the lock gate is removed. The head already starts to form
and is visible after 2 s. The initial collapse begins with rapid acceleration and the current head
becomes uniform in shape after 26 s. As it propagates to the right end of the wall, the head of
the gravity current causes strong mixing, resulting in mass loss and dilution in the head. The
temporal evolution of the gravity current is illustrated well with images taken from both the
experiments and the numerical simulations as shown in Fig. 6. It is clear that the numerical
model with RNG k–ε and LES approaches predict well the dynamics of IGC developed with
perfect symmetrical conditions (ε = 0 and Δ = 0). It is also evident that the LES resolves
the fine scales associated with the mixing that occurs in the vicinity of the gravity current
head. The formation of Kelvin–Helmholtz billows showing vertical structure behind the head
of IGC is reproduced very well by LES closure scheme, but this detail is not captured by the
RANS simulation using the RNG k–ε closure scheme. The numerical results of RNG k–ε

shows the front shape and body of the gravity current without Kelvin–Helmholtz billows. In
the 3-D high resolution simulations of gravity currents, the formation of lobe and cleft at the
head of gravity current was generally observed in both experimental and computed density
currents [27,29,30]. In this study, 3-D LES closure scheme also shows reasonable agreement
with the laboratory experiment, but the lobe and cleft at the head was not evident due to the
coarser grid size that was used in the lateral (y) direction.

The traveling distance calculated from both RNG k–ε and LES runs are plotted as a func-
tion of time in Fig. 7. It shows very good agreement with experimental measurements and the
analytical solutions from Sutherland et al. [39], Lowe et al. [26], and Benjamin [3]. In order
to identify the difference between laterally-averaged and 3-D simulations, we additionally
consider the 3-D simulation results in Fig. 6. It is clear that there is no significant difference
between the 2-D and 3-D LES simulation results.
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Fig. 6 Temporal evolutions of an intrusive gravity current (IGC) for case 1 (symmetrical case) where exper-
imental results of Sutherland et al. [39] were visualized by adding dye. Density contours showing temporal
evolutions in laterally-averaged and 3-D numerical simulations were calculated based on RNG k–ε and LES.
The x − z cross-sections were taken along the center line in the y-direction

Fig. 7 Traveling distance of IGC as a function of time for case 1. The square and circle symbols indicate
simulation results from this study while triangles indicate experimental results from Sutherland et al. [39].
The solid line indicates the analytical solution from Sutherland et al. [39] and Lowe et al. [26]. The dashed
line indicates the analytical solution from Benjamin [3] (Ud/

√
gσ H � 0.252 with hd/H � 0.23 where the

hd was taken from the 3-D LES simulation result captured at 26 s)
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Fig. 8 Temporal evolutions of the intrusive gravity current (IGC) for case 2 (symmetrical case) where exper-
imental results of Sutherland et al. [39] were visualized by adding dye. Density contours showing temporal
evolutions in laterally-averaged simulations were calculated based on RNG k–ε and LES models

In the second symmetrical case (case 2: ε = 0 and Δ �= 0), we observe different dynamics
compared to the perfect symmetrical case (case 1) as shown in Fig. 8 In this case, the propa-
gation speed is observed to be slower than that of the gravity current in case 1. In particular,
the gravity current does not form a symmetrical head as it propagates. This is because the
return flows in the upper layer and lower layer of the ambient fluid move at different speeds
and they interact with the end wall differently. Sutherland et al. [39] also mentioned that the
density difference between lock and ambient upper-layer fluid is small. Therefore the top
return flow takes longer to be established, resulting in mixing between the lock and ambi-
ent fluid behind lock-gate, whereas the return flow in the lower layer of the ambient fluid
intrudes into the lock fluid rapidly with weak vorticity. After the collapse phase, the lock
fluid forms the head and tail of the gravity current. Shear instability occurs only across the
interface between the gravity current and the upper layer. The shape of the gravity current
seems similar to a gravity current propagating over a no-slip, bottom (BBGC).

By comparing the experiment with the simulation at t = 14 s (see Fig. 8b), the numerical
simulation shows less mixing than the experiment where some initial mixing is introduced by
vorticity in the upper lighter layer behind lock gate. After the collapse phase, the numerical
simulations also show weaker shear instabilities in the rear part of the tail region (Fig. 8c).
Sutherland et al. [39] note that the mixing between lock fluid and the upper-later ambient fluid
is promoted by the vorticity created by the gate removal. In the numerical simulations, the
vorticity developed by the lock-gate removal cannot be simulated. However, the propagation
speed of the intrusive current is still correctly reproduced by the numerical simulations.
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Fig. 9 Temporal evolutions of the intrusive gravity current (IGC) for case 3 (asymmetrical case) where exper-
imental results of Sutherland et al. [39] were visualized by adding dye. Density contours showing temporal
evolutions in laterally-averaged simulations were calculated based on RNG k–ε and LES models

In simulations with symmetrical conditions (cases 1 and 2), the amplitude of the waves
is small enough to keep the sharp and stable interface ahead of the intrusive gravity current
(not deflected vertically). Similar observations in laboratory experiments have been reported
by Sutherland et al. [39] and Cheong et al. [6]. They conclude that the interfacial wave is
probably negligible for the dynamics of the intrusion propagating into a two-layer fluid with
symmetrical conditions. However, a large amplitude internal wave, as is apparent from the
images in Fig. 9, is observed in the simulations with asymmetrical condition (case 3, ε �= 0
and Δ �= 0). Figure 9 shows that the internal wave propagates faster than the gravity current.
In this situation, it is not easy to determine analytical solutions for propagation speeds because
the process of developing waves including reflected waves strongly affects the dynamics of
the gravity current.

The propagation speed of IGC is one of the important parameters investigated through
lock-exchange flow experiments. We plot propagation distances at different instants in time
from both numerical simulations and the experiments, as shown in Fig. 10. We assess the
forecasting performance of the numerical model using absolute mean error (AM E) and root
mean square error (RM SE), as defined by:

AM E = 1

n

(
n∑

i=1

|Mi − Si |
)

, (21)
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Fig. 10 Quantitative evaluation
of IGC simulation errors using
AME and RMSE. The dots
indicate the propagation
distances of IGC (Case 1, Case 2,
Case 3 shown in Table 2) at each
measurement time (t = 2, 14, 26,
and 38 s)

RM SE =
√√
√
√ 1

n

n∑

i=1

(Mi − Si )2, (22)

where n is number of data points, Mi are the laboratory measurements, and Si are the simu-
lation results. The AME and RMSE for propagation distances of IGC at each measurement
time (t= 2, 14, 26, and 38 s) are calculated to be 6.24 and 10.99 cm, which are less than less
than 6 % of the total propagation distance of 200 cm., based on the data shown in Fig. 10.
Also shown in Fig. 10 is the coefficient of determination, R2 which provides a measure
of the goodness of fit of the simulation results. Overall, the numerical model shows good
quantitative agreement for predicting propagation speed and temporal-spatial evolutions of
IGC.

4.2 Particle-driven gravity currents (PDGC, cases 4 through 7)

The temporal evolutions of PDGC are captured for each simulation at t = 0, 5, 15, 25, 30,
and 50 s with concentration contour after the release of the particle added fluid (see Figs. 11,
12). During the initial collapse, the propagating gravity currents show similar evolutions and
almost constant velocity for all simulation runs. However, as they travel further, the gravity
currents in each simulation run show different speeds depending on the particle sizes in the
mixture.

In Fig. 13, we compare the simulated and observed current front position versus time.
The numerical model successfully captures the decreasing propagation speed due to the
different deposition rates between each particle size. The curve shows constant slope dur-
ing the slumping phase of gravity currents. In this flow regime, the velocity of the currents
remains constant regardless of the proportion of the coarse and fine particles. Thereafter,
propagation speed decreases as the particle size increases. We observe that the divergence
between experiments and numerical results increases with time. A possible reason for the
observed divergence between laboratory experiments and numerical results might be due
to the difficulty in modeling the particle resuspension mechanism from bottom sediments.
In the present numerical model, particles reaching to the bottom can not be resuspended.
Therefore the celerity calculations in the model are expected to be slightly lower than the
laboratory measurement.

The transported concentration by the gravity current is plotted as a function of particle
size at t = 100 s (see Fig. 14). The ratio of transported concentration Co at t = 100 s to
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Fig. 11 Simulated temporal evolutions of PDGC, plotted with concentration shaded contours for simulation
case 4 and case 7, based on the laterally-averaged RANS method with RNG k–ε

Fig. 12 Simulated temporal evolutions of PDGC, plotted with concentration shaded contours for simulation
cases 5 and 6, based on the laterally-averaged RANS method

initial concentration Ci of the gravity current varies as a function of the particle diameter
ds . The flow patterns of PDGC can be subdivided into three regimes describing the effect of
particle size. The effect of particle settling velocity on the propagation speed of the PDGC is
negligible at a value of ds less than about 16 µm. The different deposition rates depending

123



Environ Fluid Mech

Fig. 13 Simulated temporal evolutions of PDGC, for cases 4, 5, 6, and 7, based on RANS method with RNG
k–ε. The filled marks indicate the percentage of coarse (69 µm) and fine (25 µm) size fractions by mass from
experiments [16]. The black square indicates 100 %, 25 µm; The black triangle indicates 50 %, 25 µm and
50 %, 69 µm; The black lozenge is 20 %, 25 µm and 80 %, 69 µm; The black downward triangle indicates
100 %, 69 µm

Fig. 14 The transported concentration by PDGC as a function of particle size at t = 100 s. Ci is initial
concentration of the fluid inside the lock. Co is the concentration horizontally transported at t = 100 s by
PDGC

on ds , however, significantly contribute to the dynamics when 16 µm < ds < 40 µm. When
ds > 40 µm, the PDGC rapidly loses its forward momentum.

5 Conclusions

This study simulated the propagation dynamics of gravity currents using a three-dimensional,
non-hydrostatic numerical model. Two different turbulence closure schemes (RNG k–ε and
LES) were employed, and their comparative performance was presented. The numerical sim-
ulations focus on two different types of density flows (IGC and PDGC). In the study of IGC,
the evolution profile and propagation speed were compared with laboratory experiments and
analytical solutions. The numerical model shows good quantitative agreement for predicting
temporal, and spatial evolutions of IGC. In particular, the simulated propagation speed is in
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excellent agreement with experimental measurements for simulation case 1. The evaluation of
the numerical model for predicting the propagation speed of IGC was presented using AME
and RMSE which were calculated to be 6.24 and 10.99 cm, respectively. These values are
less than 6 % of the total propagation distance of 200 cm. The simulation results do not show
any considerable discrepancies between RNG k–ε RANS and LES techniques. The results
clearly demonstrate the viability of the RNG k–ε closure scheme within a RANS frame-
work for field scale applications with fast computational times without significant loss in
performance. Field scale simulations are simply not feasible with LES or DNS because such
techniques are computationally intensive and thus become prohibitive for field applications.

In the study of PDGC, the FLOW-3D model successfully captured the decreasing propaga-
tion speed due to the different deposition rates which vary with particle size. The transported
concentration by the gravity current was plotted as a function of particle size at t = 100
s. The ratio Ci/Co of transported to initial concentration of the gravity current varies as a
function of the particle diameter ds . Particle transport by gravity currents can be classified
into three regimes: (1) a suspended regime (ds is less than about 16 µm) where the effect of
particle deposition rate on the propagation dynamics of gravity currents is negligible i.e. such
flows behave like homogeneous fluids (IGC); (2) a mixed regime (16 µm < ds < 40 µm)
where deposition rates significantly change the flow dynamics; and (3) a deposition regime
(ds > 40 µm) where the PDGC will rapidly lose forward momentum due to fast deposition
rates. We note that these flow regimes are valid for particles with specific gravity of 3.22
settling in water. Extension of this study that include a pick-up function for the resuspension
of particles is ongoing to investigate erodability of bottom beds by gravity currents.
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